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Abstract
MuZero has demonstrated remarkable performance in board
and video games where Monte Carlo tree search (MCTS)
method is utilized to learn and adapt to different game en-
vironments. This paper leverages the strength of MuZero to
enhance agents’ planning capability for joint active simul-5

taneous localization and mapping (SLAM) and navigation
tasks, which require an agent to navigate an unknown en-
vironment while simultaneously constructing a map and lo-
calizing itself. We propose SLAMuZero, a novel approach
for joint SLAM and navigation, which employs a search10

process that uses an explicit encoder-decoder architecture
for mapping, followed by a prediction function to evalu-
ate policy and value based on the generated map. SLA-
MuZero outperforms the state-of-the-art baseline and signif-
icantly reduces training time, underscoring the efficiency of15

our approach. Additionally, we develop a new open source
library for implementing SLAMuZero, which is a flexi-
ble and modular toolkit for researchers and practitioners
(https://anonymous.4open.science/r/Anomalous-F517/).

1 Introduction20

Imagine you find yourself in a new city and need to reach
a specific destination. How would you like to navigate your
way out? Like most people, you would likely rely on a map.
You also need to first identify “your position” on the map.
This scenario draws an analogy to robotic navigation, where25

a robotic is tasked with exploring a new room (Figure 1a)
while building a map on the top of it (Figure 1b).

Simultaneous Localization and Mapping (SLAM) is a
widely employed technique in the fields of robotics and
computer vision. It allows robots and devices to simultane-30

ously create a map of their environment while determining
their own position within that environment. SLAM enables
a robot or sensor to navigate and understand an unknown or
partially unknown space by both building a map of the sur-
roundings and continuously updating its own position rela-35

tive to that map, which is crucial for autonomous vehicles,
drones, and other robotic systems that need to operate in un-
familiar or changing environments (Placed et al. 2023).

The rapid advancement in deep reinforcement learning
(DRL), the widespread availability of user-friendly simula-40

tors (Beattie et al. 2016; Savva et al. 2019), and the accessi-
bility of open-source datasets from cameras and sensors (Xia
et al. 2018; Chang et al. 2017; Ramakrishnan et al. 2021)

(a) Observation (b) Map and location

Figure 1: Motivating example of SLAM and navigation

have stimulated a surge of research interest in active SLAM
(Mirowski et al. 2016; Chen and Gupta 2019; Chaplot et al. 45

2020a,b). This paper introduces a novel learning framework
referred as SLAMuZero, designed to address the joint chal-
lenges of SLAM and navigation. Within this framework, we
leverage the power of Muzero, a highly regarded planning
module in DRL known for its remarkable performance in 50

handling complex action spaces across a variety of game en-
vironments (Schrittwieser et al. 2020; Hubert et al. 2021;
Antonoglou et al. 2021). Our contributions include:

1. We introduce SLAMuZero for joint SLAM and naviga-
tion. SLAMuZero extends the search process in MuZero 55

by introducing a SLAM module that decodes the pre-
dicted map from the hidden state for path planning. SLA-
MuZero outperforms the state-of-the-art baseline and
significantly reduces training time.

2. We provide a modular and extendable library for im- 60

plementing SLAMuZero. This library provides a user-
friendly toolkit for deploying MCTS-based algorithms
and allows users to readily adapt MuZero and its variants
to existing RL frameworks.

The rest of the paper is organized as follows: Sec. 2 dis- 65

cusses related work. Sec. 3 presents preliminaries regard-
ing MuZero. Sec. 4 introduces our proposed SLAMuZero.
Sec. 5 introduces the solution approach. Sec. 6 presents nu-
merical results and Sec. 7 concludes.

2 Related Work 70

There has been a growing trend applying deep learning and
reinforcement learning methods to SLAM (Placed et al.



Figure 2: SLAMuZero architecture

2023). An end-to-end learning scheme is adopted by (Chen
and Gupta 2019) for active SLAM conducted on the Habi-
tat platform (Savva et al. 2019). Chaplot et al. 2020b uses a75

hierarchical learning scheme to achieve better performance
for navigation tasks across different indoor environments.
Oh and Cavallaro 2019 proposed a learning method that
predicts the future camera view from a current state-action
pair for exploration. Gottipati et al. 2019 leverages convo-80

lutional neural network for perception and model-free deep
reinforcement learning for acting to disambiguate the agent
pose within a reference map. Placed and Castellanos 2020
uses laser measurements as inputs to D3QN and guided the
training with the reward to solve active SLAM. However, the85

current DRL methods for active SLAM lack the necessary
planning abilities required for agents to navigate unknown
environments effectively. To address this issue, our SLA-
MuZero integrates a SLAM module with MuZero, resulting
in enhanced planning capabilities and learning efficiency.90

3 Preliminary
MuZero
MuZero (Schrittwieser et al. 2020) is designed for RL tasks
and is capable of learning to master complex environments
and games without any prior knowledge of their rules. At95

the core of MuZero is Monte-Carlo Tree Search (MCTS)
(Schrittwieser et al. 2020; Browne et al. 2012), a technique
that has demonstrated superhuman performance across vari-
ous game scenarios. MuZero is structured into three phases.
In the planning phase, MuZero first encodes past observa-100

tions into a hidden state. Subsequently, it executes MCTS,
where the process initiates at the root node. At each encoun-
tered leaf node, MuZero employs a prediction function to
evaluate the hidden state and generate priors for candidate
actions (child nodes), along with computing the value as-105

sociated with the node. At each non-leaf node, MuZero se-
lects a child node recursively, continuing this process until
it reaches a leaf node. Concurrently, it updates the hidden
state in a recurrent manner with a dynamics function, which
takes the previous hidden state and selected actions as input.110

In the acting phase, an action is sampled from a distribution
proportional to the visit count of the root node’s children. In
the training phase, for the evaluation function, the policy is
aligned with the visit count distribution, while the value is
trained to approximate the n-step bootstrapping return. For 115

the dynamic function, the model is trained to minimize the
difference between the predicted and the observed reward.

4 SLAMuZero
In this section, we introduce SLAMuZero, which consists
of representation, SLAM, prediction and dynamics mod- 120

ules. The workflow of SLAMuZero is illustrated in Fig-
ure 3. In our SLAMuZero, the representation module h and
SLAM module q constitute the Encoder-Decoder architec-
ture, which is a mapping between sensor output and the esti-
mated environment. The representation module encodes the 125

raw observations into a hidden state. The model is unrolled
for K steps, where the hidden state is recurrently updated
through dynamics module g. At each hypothetical step k,
the hidden state is decoded by the SLAM module to gen-
erate the map and location as mk

t , l
k
t . The policy and value 130

are computed from the internal map and location mk
t , l

k
t by

the prediction module, pkt , v
k
t = f(mk

t , l
k
t ), which guides

the search tree expansion. The search is performed at each
timestep t. The next action at+1 is selected according to the
visit count for each action from the root node of search tree. 135

We now introduce each module and how four modules are
jointly trained in SLAMuZero (Figure 2).

• Representation: The hidden state is the output of the
representation module h, which takes raw observations
as input, such as an RGB image of the room to be ex- 140

plored. In this work, the module takes images as in-
put, which have a resolution of 256x256 and consist of
three channels. These three channels are rescaled to the
range [0,1]. Given the large spatial resolution of the RGB
observations, the representation module employs a se- 145

quence of convolutions with a stride of 2 to reduce the
spatial resolution. The output is a hidden state with a res-
olution of 16x16 and 64 channels.



Figure 3: SLAMuZero workflow.

• SLAM: The map mk and location lk in the map mk

are generated by the SLAM module. The module takes150

the hidden state as input and performs deconvolution to
generate a decoded state with the same resolution as the
ground truth map. It also reduces the number of chan-
nels to 2, with one representing the predicted map and
the other representing the explored area. This decoded155

state is then passed into an estimator, which outputs the
location using a combination of convolutions and fully
connected layers.

• Prediction: For each pair of map mk and location lk,
the policy pk and value vk are output by the prediction160

module f . In the prediction module, the policy head and
value head maintain the spatial resolution while altering
the number of channels, followed by linear layers to map
the size of the output to the number of actions and the
value support size, respectively.165

• Dynamics: Given a hidden state sk−1 and a candi-
date action ak−1, the dynamics module g produces an
immediate reward rk and a new hidden state sk =
g(sk−1, ak−1). The module initially encodes the action
into a single panel with the same resolution as the hid-170

den state, rescaled to the range [0,1]. This panel is then
appended to the hidden state and passed through 8 Resid-
ual Blocks to generate the next hidden state with the same
shape. To enhance the stability of the process, the hidden
state is rescaled to fall within the range [0, 1] at each175

step. Additionally, the loss is multiplied by 1
K to ensure

that the unroll step size has no impact on the magnitude
of the total gradient.

5 Solution Approach
Learning algorithm180

The algorithm for SLAMuZero is summarized in Alg. 1.
For one sub trajectory sampled from replay buffer, for each
timestep t, the representation module h generates the ini-
tial hidden state s0t from the past observations o1:t from the
sampled trajectory. The model is subsequently unrolled re-185

currently for K steps. At each step k, five pairs of quantities
are collected to calculate the loss, namely the predicted pol-
icy pkt with the action probability from the root node πt+k,
the preidcted value vkt with the n-step bootstrapping value

zt+k, the predicted reward rkt with the actual reward re- 190

ceived ut+k, the predicted map mk
t with the ground truth

map dt+k, the predicted location lkt with the actual location
et+k. Then, the dynamics module g receives the hidden state
sk−1
t from the previous step and the real action at+k as in-

puts to generate the next hidden state skt . The model employs 195

a loss function to minimize the discrepancies between pre-
dicted and actual rewards, values, and policies, as well as the
discrepancies between estimated and actual maps and loca-
tions, commonly referred to as the “SLAM error”. This loss
function is defined as follows: 200

lt(θ) =

K∑
k=0

lr(ut+k, r
k
t ) + lv(zt+k, v

k
t ) + lp(πt+k, p

k
t )

+ lmap(dt+k,m
k
t ) + lpose(et+k, l

k
t ) + c||θ||2 (1)

where, lr, lv, lp, lmap, lpose are errors for reward, value, pol-
icy, map, location, respectively. c||θ||2 is a regularized term
capturing the learning process parameterized by θ.

Algorithm 1: SLAMuZero

1: for t← 1...N do
2: πt ←planning(h(o1:t)) ▷ Sample action at from

root node’s children visit count
3: at ∼ πt.
4: Execute at in environment to collect ut, ground

truth dt, et
5: for k ← 1...K do
6: mk

t , l
k
t = q(skt , θ)

7: pkt , v
k
t = f(mk

t , l
k
t , θ)

8: akt ∼ pkt
9: rkt , s

k+1
t = g(skt , a

k
t , θ)

10: end for
11: zt = bootstrap({u}1:t)
12: Obtain loss according to Equ. 1
13: θ ←optimise(l, θ)
14: end for

Open source library
To implement and evaluate the proposed SLAMuZero, we 205

propose an open-source library tailored for customizing
MuZero algorithms. This library is seamlessly integrated
with the Habitat platform, which offers a realistic and con-
trolled setting for testing, to perform visual based robot nav-
igation tasks (Figure 4). The data source is detailed in Sec. 6. 210

We now introduce the design of the open-source library to
facilitate the implementation of our proposed SLAMuZero.
Despite the existence of numerous RL frameworks, such
as stable-baselines (Raffin et al. 2021), rllib (Liang et al.
2018), and ElegantRL (Liu et al. 2021), the implemen- 215

tation of MCTS-based algorithms and their adaptation to
specific tasks remains a challenge. The widely used Effi-
cientZero (Ye et al. 2021), LightZero (Niu et al. 2023) suf-
fer from difficulties in extending the algorithm to accom-
modate customized loss designs, customized neural network 220

designs, and easy adaptation to different frameworks or en-
vironments. To address these issues, we develop a library



Figure 4: An overview of system architecture

for MCTS-based deep reinforcement learning as follows:
A primary interface is provided to specify the search algo-
rithm, network designs, as well as the learner, where loss225

and optimizer can be easily customized. The library employs
mctx (Danihelka et al. 2021) as the backend for perform-
ing the search process, which can be fully compiled just-in-
time and run in parallel, ensuring an efficient process. De-
signed for flexibility and extensibility, our library simplifies230

the adaptation of MCTS-based RL to prevailing RL frame-
works. It empowers users to innovate with advanced neu-
ral networks, experiment with novel loss functions, and test
in customized environments. More details can be found in
(https://anonymous.4open.science/r/Anomalous-F517/).235

6 Experiment
In this section, we conduct numerical experiments and make
a comparison of our method and baselines.

Experimental set-up
The exploration task involves the agent navigating in an un-240

familiar environment with the goal of exploring as much
space as possible (see Figure. 1). The agent receives ob-
servations in the form of RGB images from the visual sen-
sor and pose information from the motion sensor. To guide
the agent in the environment, we utilize an analytical path245

planner (Sethian 1996), which takes the agent’s pose, the
map, and the goal as inputs to calculate the robot’s action
sequence. The reward in this task is defined as the explo-
ration ratio of the entire room, and the action is defined as
the location on the predicted map.250

The evaluation metric is the percentage of area explored
in the scene (Cov), which is the ratio of coverage to the max-
imum possible coverage in the corresponding scene. The pa-
rameters for the Gibson scene are the same as those used in
Neural SLAM (Chaplot et al. 2020a). Other parameters are255

listed in Table 1.
Table 1: The parameters for experiments

Para Val Para Val
Episodes 30 Vision Range 64
Frame Width 256 Simulations 30
Frame Height 256 Trajectories 4
Camera Height 1.25 N bootstrapping 10
Sample per Trajectory 16 K steps 5

The data utilized in our experiments are Gibson (Xia et al.

Figure 5: Coverage ratio per step on Gibson Val set

2018). The Gibson dataset offers large-scale, photorealistic
environments for testing autonomous agents. It encompasses
a variety of indoor environments, making it a suitable dataset 260

for evaluating models across a wide range of scenarios. The
task datasets can be found on the Habitat repository (Savva
et al. 2019).

Results
The proposed SLAMuZero is trained on the Gibson dataset 265

with a maximum of 1 million frames in contrast to 10 mil-
lion frames for other baselines. This indicates a significant
improvement on training efficiency of our method. The re-
sult in Table. 2 is the averaged coverage ratio (Cov) over 280
episodes for 14 different unseen scenes from Gibson Val set. 270

SLAMuZero achieves 0.961 final explore ratio in a com-
parison to 0.948 from the state-of-the-art baseline. To bet-
ter understand the performance of SLAMuZero, we also add
the result of Muzero without any SLAM module. Figure. 5
plots the explore ratio (Cov) of SLAMuZero and MuZero 275

per step averaged over all Gibson Val set. The advantage of
the SLAM module is akin to a shift in perspective, allowing
control to take place on a map, while MuZero’s advantage
lies in planning with a leanred model.

Table 2: Comparison of our method and baselines

Method Cov
RL + 3LConv (Savva et al. 2019) 0.737
RL + Res18 (Chaplot et al. 2020a) 0.747
RL + Res18 + AuxDepth (Mirowski et al. 2016) 0.779
RL + Res18 + ProjDepth (Chen and Gupta 2019) 0.789
Active Neural SLAM (Chaplot et al. 2020a) 0.948
MuZero 0.803
SLAMuZero 0.961

7 Conclusion 280

This paper has introduced the SLAMuZero framework,
which integrates Simultaneous Localization and Mapping
(SLAM) with the tree-search based MuZero. By combining
these two robust techniques, we have demonstrated advance-
ments in joint active SLAM and navigation, enhancing an 285

agent’s planning capabilities and enabling efficient naviga-
tion in unknown environments while concurrently construct-
ing precise maps and accurately localizing the agent. More-
over, we have presented an open-source library designed to
facilitate the implementation and experimentation of SLA- 290

MuZero.
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