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ABSTRACT

One of the fundamental problems in digital agents is their lack of understanding of
their environment. For instance, a web browsing agent may get lost in unfamiliar
websites, uncertain what pages must be visited to achieve its goals. To address
this, we propose Go-Browse, a method for automatically collecting diverse and
realistic web agent data at scale through structured exploration of web environments.
Go-Browse achieves efficient exploration by framing data collection as a graph
search, enabling reuse of information across exploration episodes. We instantiate
our method on the WebArena benchmark, collecting a dataset of 10K successful
task-solving trajectories and 40K interaction steps across 100 URLs. Fine-tuning a
7B parameter language model on this dataset achieves a success rate of 21.7% on
the WebArena benchmark, beating GPT-40 mini by 2.4% and exceeding current
state-of-the-art results for sub-10B parameter models by 2.9%E]

1 INTRODUCTION

Despite their impressive and often superhuman performance in other domains, most pretrained LLMs
do not perform well on GUI-based web agent tasks. For instance, on the WebArena benchmark (Zhou
et al.) where humans achieve a 78% success rate, frontier models like GPT-40 (OpenAl, 2024a) and
GPT-40-MINT (OpenAl, 2024b) score only 38% and 19% respectively, while a smaller model like
QWEN-2.5-7B-INSTRUCT (Yang et al.| 2024)) scores only 8%. On the other hand, models trained
specifically for GUI-based interaction score much better, with CLAUDE-3.7-SONNET (Anthropic,
2025)) scoring 45.4% and COMPUTER-USING AGENT (OpenAl, 2025) achieving 58%. This gap
suggests that training on agent-specific interaction data is crucial for realizing effective web agents.

But collecting high-quality web agent data presents its own set of challenges. Human-generated
trajectories offer one source for quality demonstrations but are notoriously expensive and time-
consuming to collect for the vast datasets required. One class of methods tries to automatically scale
human-generated data or use humans-in-the-loop in the dataset collection process (Shen et al.,[2024;
Zhou et al., 2024;|Lai et al.,|2024). Another line of work attempts to improve scalability further by
proposing fully unsupervised and automatic methods for data generation; for example, by generating
synthetic demonstrations from wikiHow-style tutorial articles (Ou et al.) or by building an exploration
policy that collects data by interacting with websites (Murty et al., [2024aib).

Among these unsupervised methods, the latter ones that directly explore web environments of interest
perform significantly better than those that use indirect and more generic knowledge from the internet
(16% (Murty et al., [2024b) vs. 6% (Ou et al.)) success rate). This gap underscores a fundamental
problem in digital agents: their lack of prior understanding of the environments they are deployed
on. Learning from a tutorial or even a human-generated demonstration on how to cancel an ongoing
order on Amazon is unlikely to transfer to the myriad of other websites that a web agent may need to
interact with. Instead, agents are likely to be more successful if they learn directly from environments
they will encounter.

In this work, we introduce GO-BROWSE, a method that automatically collects diverse, realistic, and
tailored web agent data through systematic and structured exploration of websites. In particular,

'We release our code, dataset and models at https://anonymous.4open.science/r/
Go—Browse.
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Figure 1: Overview of the GO-BROWSE algorithm for web agent data collection for a website.
GO-BROWSE’s outer-loop (left) maintains an exploration frontier of discovered but not yet fully
explored webpages. GO-BROWSE’s inner loop (right) explores each webpage in the frontier by (1)
Proposing tasks for that webpage that are grounded in interaction; (2) Checking the feasibility of
those tasks; and (3) Sampling trajectories and discovering new webpages by solving feasible tasks.

GO-BROWSE iteratively builds up a graph of previously visited URLs while collecting data. This
allows us to reuse information across exploration episodes, resetting new episodes to previously
discovered promising webpages, and continuing exploration from there. This improves exploration
efficiency over previous unsupervised data collection methods (Murty et al., [2024bja)), which have
minimal reuse of information across episodes. Furthermore, resetting to previously discovered
webpages allows GO-BROWSE to decouple the challenge of web navigation (finding the correct
page) from that of local task solving (performing actions on that page). We demonstrate that this
decoupling facilitates a bootstrapping effect, enabling even weaker pretrained LLMs to collect higher-
quality data, since local task execution is often less demanding than website navigation, which often
requires domain-specific knowledge. GO-BROWSE draws inspiration from previous RL works like
GOo-EXPLORE (Ecoffet et al.| 2019; 2021), which used analagous reset-then-explore strategies to
solve games like Montezuma’s Revenge that have notoriously difficult exploration challenges.

To evaluate GO-BROWSE, we instantiate it on the WebArena benchmark, collecting a dataset of ~10K
successful task-solving trajectories as well as ~17K unsuccessful trajectories across 100 distinct
URLs. Finetuning QWEN-2.5-7B-INSTRUCT on our dataset achieves a task success rate of 21.7%
on WebArena. This result surpasses NNETNAV (Murty et al., [2024b), the current state-of-the-art
results for sub-10B parameter models by 2.9% and beats GPT-40-MINI by 2.4%.

2 BACKGROUND

2.1 LLM WEB AGENTS

Following previous work (Chezelles et al., 2024} Zhou et al.), our web agents are implemented using
the ReAct pattern (Yao et al.,|[2023) where at each timestep ¢ we prompt the LLM with a state s; and
ask it to produce an action a;. Executing a; in the browser generates a new state s; 1.
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We include several components in each s;: the task or goal g, a flattened accessibility tree repre-
sentation of the current webpage, a description of the action space, the history of previous actions
and any errors encountered when executing the last action. The action space includes primitive
operations represented as python functions like click (id), scroll (dx, dy),type (text)
and send_msg_to_usr (msg), which the agent uses to interact with the browser environment.
Each action a; produced by the LLM consists of a chain-of-thought and a python function call. The
complete action space and prompt template are detailed in the Appendix [A]

A trajectory 7 = {s1, a1, S2, az, ..., ST, ar } represents a sequence of states and actions taken by the
agent in attempting to complete a task. Trajectories terminate either when a maximum horizon length
T is reached or when the agent performs a terminal action (such as send_msg_to_usr (msg) ).
For each trajectory, we define a reward model R(g,7) € {0,1} that evaluates task completion
success. The binary reward indicates whether the agent successfully completed the specified task
(R(g,7) = 1) or failed (R(g,7) = 0) by the end of the trajectory. In this work, we leverage the
BROWSERGYM (Chezelles et al., 2024) python package to implement our web agent.

2.2  EXPLORATION POLICIES FOR DATA COLLECTION

To collect web agent data in an environment through direct interaction, we need to design a method
that can explore the environment effectively to gather diverse and high-quality demonstrations, which
we refer to as an exploration policy. We can classify past work on building exploration policies into
two main categories: interaction-first and instruction-first.

Interaction-first Exploration Policy. Interaction-first approaches (Murty et al., 2024a3b)), such as
NNETNAV roll out an agent (e.g., a prompted pretrained LLM) to explore a website with general
exploration instructions (e.g., persona simulation) instead of a concrete task (e.g., Add Nintendo
Switch to cart). The collected trajectories are then labeled with concrete tasks in retrospect using
another prompted LLM, which we call a Labeler (). We call each rollout here an exploration episode.
Algorithm|[I]provides pseudocode for this process.

A benefit of interaction-first approaches is that the collected trajectories may potentially explore
deeper parts of the website that might not be immediately apparent in the initial state. But since each
exploration episode operates independently, there’s significant redundancy in exploration—agents
may often revisit the same parts of websites across different episodes, leading to similar task
demonstrations. Additionally, without specific task guidance, agents may spend considerable time
collecting trajectories that do not yield interesting or useful tasks.

Instruction-first Exploration Policy. Unlike interaction-first approaches, instruction-first exploration
policies (Lai et al., 2024; [Murty et al., [ 2024a; Zhou et al.|[2024)) first generate potential tasks and then
attempt to solve them. In this approach, a prompted LLM task proposer P observes a state s; and
generates a set of plausible tasks G = {g1, g2, ..., i } grounded in the webpage’s observed content
and functionality. A pretrained policy A then attempts to solve each task g;, generating trajectories
7; = {s0, ao, 51, a1, ...} for each proposed task. Finally, a reward model R(g;, 7;) € {0, 1} evaluates
whether each trajectory successfully completes its corresponding task, and successful pairs (g;, 7;)
where R(g;, ;) = 1 are added to the dataset D. Algorithm provides pseudocode for this approach.

This approach leverages an LLM’s prior knowledge to efficiently generate diverse, useful and
contextually relevant tasks, but has limitations: proposed tasks are typically limited to the currently
observed page, and the LLM may occasionally hallucinate infeasible tasks about unobserved parts
of the website. This is because task proposal in these methods is typically anchored to an initial
static observation. To address this, works like PAE (Zhou et al,[2024) require screenshots of human
demonstrations across the website to gain additional context for task proposal; instead, our work
implements the task proposer P with agents that explore and gather their own context automatically.

3 GO-BROWSE

We propose GO-BROWSE, which addresses the limitations of past interaction-first and instruction-
first approaches. For each website of interest, GO-BROWSE builds a systematic map of previously
discovered webpages by treating exploration as a graph traversal problem. It maintains an exploration
frontier of discovered but not yet fully explored webpages and progressively explores and expands
this frontier by proposing and solving tasks that encourage both local webpage exploration and
finding new webpages for global frontier expansion.
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Algorithm 1 Interaction-first Exploration Algorithm 2 Instruction-first Exploration
1: A<+ Agent() 1: P + TaskProposer()
2: L «+ Labeler() 2: A+ Agent()
3: D+ 0 3: R < RewardModel()
4 4: D« 0
5: for website W € W do 5: for website W € W do
6: for 1... N iterations do 6: S0 « InitialState(1V)
7: so < InitialState(1V) 7: G < P(so0,)
8: g < Exploration instructions. 8: for task g € G do
9: 7 < SampleTrajectory (A, so, g) 9: 7 < SampleTrajectory (A, so, g)
10: Dr + L(7) 10: if R(g,7) = 1 then
11: D+ DUD, 11: D+ DU{(g,7)}
12: end for 12: end if
13: end for 13: end for
14: 14: end for
15: return D 15: return D

Figure 2: Comparison of common styles of exploration policies for web agent data collection.

Fig. [T)illustrates the GO-BROWSE algorithm and Algorithm [3| provides pseudocode. Specifically,
GO-BROWSE builds up a graph G = (V, £), where nodes v € V are unique URLs and edges e € £
are trajectories between them. As shown in Fig. |1} its outer loop (left) resembles graph traversal (e.g.,
breadth-first search), while an inner loop (right) resembles instruction-first exploration.

In each outer loop iteration, GO-BROWSE first selects a webpage v from the frontier and then performs
the following inner loop to collect data and explore v: (1) Propose navigational and local tasks for v
using the NavExplorer and PageExplorer modules, (2) Check feasibility of proposed tasks
with the FeasibilityChecker module, and (3) Sample trajectories by solving feasible tasks
with the Solvers module. We describe these modules below. GO-BROWSE’s outer loop enforces
global coverage of the website while the inner loop thoroughly explores each discovered webpage.

NavExplorer: Frontier Expansion and Navigational Task Collection. The NavExplorer
module is responsible for proposing navigational tasks to webpages that neighbor the current
webpage v in the graph. This is similar to the TaskProposer module in instruction-first ap-
proaches, but instead of just asking the LLM to propose tasks from a static observation, we instead
implement NavExplorer as a web agent itself. We instruct it with a goal ¢ to find neighbor-
ing webpages through interaction with the current webpage, and propose navigational tasks to
reach them. We do the latter by extending the action space of the NavExplorer agent with an
add_tasks_to_dataset (tasks: tuple[str]) function. Designing NavExplorer as
a web agent empowers it to perform its own purposeful exploration and ground proposed tasks on dy-
namically obtained observations. To keep the exploration process efficient and prioritize nodes added
to the frontier, NavExplorer is asked to prioritize adding tasks for navigating to new webpages
that are likely to have common and useful tasks that a user might want to perform. Full prompts for
the NavExplorer modules are provided in Appendix

PageExplorer: Local Page Exploration and Task Collection. The PageExplorer is similar to
the NavExplorer, except that it is responsible for proposing tasks local to the current webpage v.
It does so by asking an LLM to generate a set of plausible tasks that a user may want to perform on
the current webpage (prompts in Appendix[A.2) The tasks generated by the PageExplorer help
generate training data that thoroughly explore the functionality of each webpage.

FeasibilityChecker: Task Filtering and Trajectory Sampling. The FeasibilityChecker
module filters the tasks proposed by the previous two modules by (1) using a strong pretrained LLM
agent (e.g., computer-use trained LLM) to try and solve each task, and (2) using a pretrained VLM-
as-a-judge to check if the sampled trajectory solves the task. We sample up to IV, trajectories,
stopping if we sample a success. Proposed tasks with at least one successful trajectory are considered
feasible and kept in the dataset along with their corresponding trajectories, while the rest are discarded.

Solvers: Prefixed and Unprefixed Sampling. The Solvers sample additional trajectories for
the filtered, feasible tasks, but can use cheaper models to sample a larger number of trajectories.
Additionally, Solvers perform a mix of prefixed and unprefixed sampling. In prefixed sampling,
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Algorithm 3 Go-Browse

1: Initialize Dataset D < (), Graph G = (V, &), Frontier F' «+ ()
2: Initialize Modules: NavExplorer, PageExplorer, FeasibilityChecker, Solvers, RewardModel R
3: for each website W; € W do

4: Uroot <— GetRootURL(W;); Add vroor to F' and V
5: while F' is not empty do
6: v < SelectAndRemoveFromFrontier(F’)
7: Sy 4 GetCurrentState(v)
> Propose navigation and local tasks
8: Gnav < NavExplorer.propose_tasks(s. )
9: Giocal < PageExplorer.propose_tasks(s, )
10: gproposed — gnav U glocal
11: gfcasiblc — @
> Filter for feasible tasks and collect initial trajectories
12: for task g € Gproposea dO
13: (is_feasible, Ttc, vnew) < FeasibilityChecker.check_and_collect(g, sv, R, Nmaz)
14: if is_feasible then
15: Add (g, T[c) to D; Add g to Gheasible
16: if Unew is @ new discovered URL then
17: Add vnew to V and F'; Add new edges to €
18: end if
19: end if
20: end for
> Sample additional prefixed and unprefixed trajectories
21: for feasible task g € Greasible dO
22: Torefixed — Solvers.sample(g, s», R, prefixed=True)
23: D+ DU{(g,7) | T € Torefixed }
24: Sroot < GetState(GetRootURL(W;))
25: Tunprefixed <— Solvers.sample(g, Sroot, R, prefixed=False)
26: D+ DU {(g, T) | T E Tunpreﬁxed}
27: end for
28: end while
29: end for
30:

31: return D

the agent tries to solve g starting from the current webpage v, while in unprefixed sampling, the agent
has to solve g starting from the root node of the webpage (e.g., usually the homepage or dashboard).
Prefixed sampling makes the agent’s job easier by decoupling navigation (finding the webpage) from
task solving locally on that webpage. As we discuss in Section [6] prefixed sampling has higher
success rates, letting us bootstrap from even weaker pretrained models. Still, it is useful to sample
unprefixed trajectories to instill long-horizon task-solving and exploratory behaviors in the agent.

Relation to Instruction-First and Interaction-First Approaches. We can think of
GO-BROWSE’s inner-loop interaction between the NavExplorer, PageExplorer and
FeasibilityChecker as a form of instruction-first exploration. But unlike typical instruction-
first approaches that only start at the root node (homepage, dashboard, etc.) of the website, GO-
BROWSE’s inner-loop is initialized with new pages from the frontier at every iteration. This addresses
the localized exploration of instruction-first approaches by enforcing global website coverage. Fur-
thermore, by using web agents for task proposal, GO-BROWSE enables more grounded task proposal
based on real observations. GO-BROWSE also addresses the exploration efficiency limitation of
interaction-first approaches by reusing information from past episodes. Since each iteration of
the outer-loop resets exploration to a previously discovered webpage, GO-BROWSE can reduce
redundancy and instead spend more budget on exploring novel parts of the website.

4 DATA COLLECTION

We collect a dataset (GO-BROWSE-WA) by running GO-BROWSE on the WebArena benchmark
(Zhou et al.), which consists of 5 self-hosted websites, representing clones of common domains:
Shopping Admin (CMS), Shopping, Reddit, Gitlab, and Map. We explore 20 different URLs for each
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of the five domains, collecting tasks across 100 distinct URLs. While our experiments focus on these
domains, we note that the same data collection pipeline can be run on other websites of interest.

For the NavExplorer we perform up to 15 steps of interaction with CLAUDE-3.7-SONNET (An-
thropic}, 2025)). For the PageExplorer we perform up to 20 steps with GPT-40 (OpenAll 2024a)
and 10 steps with CLAUDE-3.7-SONNET. Appendix provides analysis of some of the com-
plementary differences in behavior between these models. The FeasibilityChecker uses
CLAUDE-3.7-SONNET to try solving proposed tasks, with a maximum of 3 tries, and uses a GPT-
40-based "VLM-as-a-judge” reward model (adopted from |Wang et al.[(2025); |Sun et al.| (2025)).
We keep a maximum of 30 feasible tasks per URL. For the Solvers we use GPT-40-MINI and
QWEN-2.5-7B-INSTRUCT. Task solving is limited to a maximum horizon length of 10 steps. The
Solvers sample 2 prefixed trajectories and 2 unprefixed ones. For all interaction steps in the dataset
collection process we use a temperature of 0.7. Overall, GO-BROWSE-WA took ~ $975.57 to collect;
for a detailed cost analysis, see Appendix [B.2]

Table |1| shows the composition statistics of the GO-BROWSE-WA dataset. The dataset contains
similar proportions of successful trajectories from each model we use to sample trajectories (Fig.[3).
While here we only finetune on the success steps, we release all steps in our dataset, including failures.
The dataset also includes alternate representations of webpage observations (accessibility tree, HTML,
and screenshots); although, we only use the accessibility tree for our finetuning experiments.

Table 1: Dataset statistics on the 5 WebArena Owen-2578
domains (20 pages explored/domain). nstruet CELoMini (Clamiteesh7 St
Success  Failure Total 295% 36.6% 339%
Trajectories 9,504 17,245 26,749 . . . .
Steps 30,339 157,123 196,462 Figure 3: Proportion of successful trajecto-

ries from each model in the Go-Browse-WA
Unique tasks 37422 dataset.

5 FINE-TUNING SETUP AND RESULTS

For our experiments, we train QWEN-2.5-7B-INSTRUCT by performing supervised finetuning on
only the success trajectories of our dataset. Finetuning hyperparameters are provided in Appendix [C|
For fair comparison, we also train a model using the same parameters on the NNETNAV-WA
dataset (Murty et al.,[2024b)) which consists of 45K interaction steps across the 5 WebArena domains.

We benchmark the finetuned models on the 812 WebArena benchmark using BROWSERGYM
(Chezelles et al., [2024). Correctness of each task is evaluated using task-specific reward functions
provided by WebArena. We use a temperature of O for the models when benchmarking.

Table [3] shows the success rates of the finetuned models on WebArena as well as other pretrained
models. Our model, GO-BROWSE-7B, achieves a success rate of 21.7% overall on the WebArena
tasks, outperforming the other models in the table. The GO-BROWSE-7B model outperforms the
pretrained QWEN-2.5-7B-INSTRUCT model by 13.4% and the finetuned NNETNAV-7B model by
2.9%. Notably, GO-BROWSE-7B also outperforms GPT-40-MINI by 2.4%. Appendix [B.3]provides
results of performing statistical significance testing with paired bootstrap tests.

Looking at individual domains, GO-BROWSE-7B scores higher than GPT-40-MINT and NNETNAV-
7B in all domains except for Gitlab. Notably, GO-BROWSE-7B beats NNETNAV-7B by 11% on the
Shopping Admin domain and 7% on the Reddit domain.

We also evaluate our models on Online-Mind2Web (Xue et al., 2025)),
an out-of-domain benchmark with 300 tasks across 136 live websites. NNetNav-7B 4.00
GO-BROWSE-7B still maintains a lead over NNETNAV-7B even Go-Browse-7B 5.33
in this generalization experiment, though—as expected—models GPT-40-mini 9.33

perform worse in this setting compared to the in-domain WebArena. )
GPT-40-MINI also scores much worse on Online-Mind2Web. Table 2: Online-M2W results.

6 ANALYSIS

Model SR (%)

Go-Browse Generates Diverse Tasks. Fig. 4|compares the distribution of tasks in the NNETNAV-
WA and GO-BROWSE-WA datasets. We follow Murty et al.| (2024b)) in using GPT-40-MINI to
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Table 3: Success rates on WebArena tasks. Bold indicates the best result in each category.

Model Overall (%) Admin (%) Shopping (%) Reddit(%) Gitlab (%) Map (%)
Closed Models.

GPT-40-MINI 19.3 19.2 19.3 21.1 20.9 15.6

GPT-40 37.6 35.7 323 50.9 36.7 37.5

CLAUDE-3.7-SONNET 454 374 37.0 58.8 52.0 47.7
Open-weights 7B Models.

QWEN-2.5-7B-INSTRUCT 8.3 7.1 9.4 7.9 8.7 7.8

NNETNAV-7B 18.8 14.3 20.3 23.7 19.9 17.2

GO-BROWSE-7B 21.7 25.3 224 30.7 15.3 17.9

cluster dataset tasks into higher-level intent categories. We can see that NNETNAV shows a tendency
to have larger wedges in its task distribution, indicating redundancy in exploration since each episode
is independent. This pattern is particularly evident in domains that are challenging to navigate, such
as Shopping Admin, because a larger number of episodes will navigate to the same easy-to-find
webpages, leading to similar tasks; harder to find webpages, even if discovered by one episode, may
rarely be revisited in a future episode. GO-BROWSE addresses this issue by resetting to previously
encountered webpages. Even if a page is difficult to navigate to, once it is discovered, GO-BROWSE
makes sure it is thoroughly explored in future episodes.

GO-BROWSE-WA also exhibits a more balanced distribution across domains; NNETNAV contains a
disproportionately large number of Gitlab tasks and relatively few Reddit tasks. These observations
align with our model performance results in Table [3] where NNETNAV-7B only outperforms GO-
BROWSE-7B on the Gitlab domain, and performs notably worse on Shopping Admin and Reddit.

Go-Browse’s Successful Trajectories Go Deeper. Fig. [5 plots how deep into the website the
finetuned models go when solving tasks. On the left, when considering all trajectories, we see that
both GO-BROWSE and NNETNAV behave similarly, but on trajectories where only GO-BROWSE
was successful (middle), we see that the depth distribution is more right-skewed, suggesting that
GO-BROWSE owes some of its wins to its tendency to solve longer-horizon tasks. If we look at the
NNETNAV-only successful trajectories (right), we again see no significant difference in behavior,
showing that going deeper is a unique characteristic of GO-BROWSE’s successes.

Table [d] shows URL patterns with the largest difference in success trajectory visits between GO-
BROWSE and NNETNAV. GO-BROWSE’s successes more frequently involve navigating to deeper
URLSs, such as editing specific product attributes or viewing particular order details. Notably, GO-
BROWSE exhibits significantly higher visit counts to these deeper URLs, including several that
NNETNAV never successfully visited. For instance, GO-BROWSE visited URLs for editing product
attributes and searching Reddit 9 and 7 more times respectively, with NNETNAV having 1 or 0 visits
to these. Conversely, while NNETNAV more frequently visits URLs related to creating new projects

Z

Gitlab

-
e |
’%

S

Ui

(a) NNETNAV-WA Task Distribution (b) GO-BROWSE-WA Task Distribution

Figure 4: Task diversity of the Go-Browse and NNetNav datasets. Zoom to read sub-task labels.
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Figure 5: Distributions of maximum URL path lengths (depth) achieved by trajectories across all
trajectories (left), trajectories where only Go-Browse was successful (middle), and trajectories where
only NNetNav was successful (right). Go-Browse owes some of its wins to its tendency to go deeper.
Note, depth is calculated as the number segments in the URL path.

Table 4: Top URLs by difference in visit count (GO-BROWSE (GB) vs. NNETNAV (NN)).

More Visits URL GB NN Diff. Depth
By Visits  Visits
<shopping_admin>/catalog/product/edit/id/{id}/ 10 1 9 5
GB <reddit>/search?query={query}?g=%7Bquery%$7D 7 0 7 2
<shopping_admin>/catalog/.../configurable/store/{id}/back/edit/ 5 0 5 12
<shopping_admin>/sales/order//view/order_id/{id}//{id}/ 6 2 4 6
<reddit>/user/{user}/edit_biography 5 0 5 3
<gitlab>/projects/new 2 6 4 2
NN <gitlab>/projects/new#blank_project 2 5 3 2
<gitlab>/{user}/{repo}/-/commits/main 2 5 3 5
<gitlab>/{user}/{repo}/-/forks/new 1 4 3 5
<reddit>/forums/by_submissions/{id} 0 3 3 3

or forks in Gitlab, the difference in visitation counts is comparatively smaller. It is also interesting
to observe their differing strategies for Reddit: GO-BROWSE tends to use the more direct search
functionality, whereas NNETNAV attempts to find forums by navigating to the by_submissions
page. This aligns with our earlier finding that GO-BROWSE tends to succeed on tasks requiring

deeper navigation.

Prefixed Sampling Bootstraps Weaker
Models. Fig. [f] plots success rates of
prefixed and unprefixed sampling against
the depth of the node (URL) on which
the tasks were sourced. Overall, prefixed
sampling leads to higher success rates.
The difference is especially pronounced
as depth increases: it is harder to find
deeper nodes again when starting from the
root. The difference is also especially ap-
parent for weaker models like QWEN-2.5-
7B-INSTRUCT. Prefixed sampling thus
allows us to bootstrap from weaker pre-
trained models, enabling creation of higher
quality data compared to what pretrained
models can generate on their own.

Success Rate
o
N
/
/
’

~— All Models - Prefixed
== All Models - Unprefixed
—+— Quen - Prefixed

—— Qwen - Unprefixed

0.1

0.0
14 5-8 9-12

Node Depth Range
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Figure 6: Prefixed sampling leads to higher success
rates, especially on deeper nodes, particularly for
weaker models like QWEN-2.5-7B-INSTRUCT. Node
depth is shortest trajectory length to reach a node from
the root node, calculated using Dijkstra’s algorithm.

FeasibilityChecker Improves Exploration Efficiency. During data collection, 403 tasks were
filtered out by the FeasibilityChecker. This corresponds to a reduction of 3.2K trajectory
rollouts (~ 29.4k steps). This is a 13% reduction in steps for the same amount of positive data.
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Go-Browse’s Outer Loop Improves Website Coverage. We (Resets / Tasks) _ Unique URLs

analyze the effect of GO-BROWSE’s outer loop by varying how
many discovered URLs we reset to when proposing tasks, while ~ (1/30) 183
fixing the total proposed tasks at 30 per domain. The 1/30 case (576) 214
corresponds to Go-Browse without its outer loop (proposing 30 as72) 260

tasks for just a single URL per domain). As the number of reset . .
nodes increases, the number of unique URLs visited grows steadily, 1able 5: Unique URLs visited
demonstrating that Go-Browse’s outer loop is critical for broader ~2cross 5 domains with varying #
website coverage and more representative data. of resets.

7 RELATED WORK

LLM Web Agents. We build on multiple works on LLM web agents like the WebArena benchmark
(Zhou et al.) and BrowserGym (Chezelles et al.,|2024) which both provide infrastructure for building
and evaluating web agents and also provide an action space and observation features that we leverage
in ReAct-based web agents (Yao et al.,[2023). There is also a line of works that augment the action
space (e.g., with developer APIs or self-learned workflows) (Song et al.,[2024; |Wang et al., 2025;
Zheng et al.,|2025)) or perform a form of in-context learning by extending observations with additional
context from past interactions (Wang et al., 2024} Murty et al.,|2024a}; |Wang et al., [2025)). Our work
instead improves the base agentic capabilities of LLMs while keeping the scaffolding minimal.

Synthetic Data Generation for Web Agents. Past works on generating synthetic data for web
agents have focused on either generating data from static indirect knowledge on the internet (e.g.,
tutorial articles) (Ou et al.) or by logging direct interactions with websites (Shen et al.| 2024; Lai
et al., 2024; Murty et al., [2024aibj |[Zhou et al., [2024). Among the latter methods, interaction-first
methods (Murty et al.,|2024b) seem to work unsupervised, while instruction-first methods (Zhou
et al.,2024; |Shen et al.,2024; [Lai et al.,|2024)) have typically required a human-in-the-loop to provide
additional context. In our work, we build an unsupervised instruction-first method that can gather its
own context via exploration. We also note more recent, concurrent instruction-first/hybrid methods
for unsupervised collection of web agent data (Pahuja et al.||2025} [Sun et al., [2024; Trabucco et al.|
2025). A key difference is GO-BROWSE’s focus on deeply exploring websites by explicitly building
and leveraging its own web graph. This helps GO-BROWSE collect high-quality and high-coverage
data that enables training a state-of-the-art model for WebArena.

Exploration Methods in Reinforcement Learning. There is also a rich line of work from the
RL community on improving exploration in agents (Bellemare et al., [2016} [Pathak et al.| 2017}
Burda et al.| 2019; Ecoffet et al.| 2019;2021). Of these, our method takes the most inspiration from
Go-Explore (Ecoffet et al., 2019;2021) which uses analogous reset-then-explore strategies to share
information across episodes to improve exploration efficiency in the context of Atari games.

8 CONCLUSION AND LIMITATIONS

In this work, we propose GO-BROWSE, a fully unsupervised and scalable method for collecting web
agent data through structured exploration of websites. We release, GO-BROWSE-WA, a dataset 9.5K
successful and 39K unsuccessful task solving trajectories obtained while exploring the WebArena
environments. We show that simple supervised finetuning of 7B parameter LLM on this dataset leads
to significant improvements in success rates of web agents over the the previous state-of-the-art for
sub-10B parameter models and also beats GPT-40-MINI. We thoroughly analyze the characteristics
of our dataset and trained models, showing that GO-BROWSE-WA contains high-quality and diverse
trajectories that lead to models that are able to better and more deeply navigate explored websites.

There are a number of limitations in our current experimental setup that open promising avenues for
future research. Expanding data collection to a broader range of websites beyond the five WebArena
domains would allow us to generate even larger datasets. While our current method achieves strong
results using a 7B model trained on only successful trajectories, incorporating the signal from the
39K unsuccessful trajectories by exploring alternative training objectives (e.g., RL-based objectives)
and scaling up model size may unlock even greater performance improvements. Finally, while using
LLMs helps us scale training data, this risks introducing biases from models and prompts that may
propagate to agent behavior, requiring careful auditing and mitigation before deployment.
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REPRODUCIBILITY STATEMENT

We release our code, dataset and models at https://anonymous.4open.science/r/
Go-Browse|with documentation on how to reproduce our dataset collection and experiment runs.
Additionally, we describe dataset collection hyperparameters in Section 4| and finetuning hyperparam-
eters in Section [5]and Appendix[C|
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A WEB AGENT IMPLEMENTATION DETAILS

A.1 WEB AGENT ACTION SPACE

shows the action space used for web agent experiments, adopted from the BrowserGym
framework [Drouin et al.| (2024).
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Action Type | Description
noop (wait_ms) Do nothing for specified time.
click (elem) Click at an element.
hover (elem) Hover on an element.
fill (elem, value) Type into an element.
keyboard_press (key_comb) Press a key combination.
scroll(x, V) Scroll horizontally or vertically.
select_option(elem, options) Select one or multiple options.
goto (url) Navigate to a url.
go_back () Navigate to the previous page.
go_forward () Navigate to the next page.
new_tab () Open a new tab.
tab_close () Close the current tab.
tab_focus (index) Bring tab to front.
send_msg_to_user (text) Send a message to the user.
report_infeasible (reason) Notify user that instructions are infeasible.

Table 6: Web Agent action space.

A.2 PROMPTS FOR LM COMPONENTS

Prompt Template for Web Agents

# Instructions

You are a UI Assistant, your goal is to help the user perform tasks using a web browser. Review the
instructions from the user, the current state of the page and all other information to find the best possible
next action to accomplish your goal. Your answer will be interpreted and executed by a program, make
sure to follow the formatting instructions.

# Goal {Goal}

#Action Space
{Action space description from Table 6]}

Here are examples of actions with chain-of-thought reasoning:

{"thought": "I now need to click on the Submit button to send the form. I will use the click action on the
button, which has bid 12.", "action": "click(’12*)"}

{"thought": "I found the information requested by the user, I will send it to the chat.", "action":
"send_msg_to_user(’The price for a 15 inch laptop is 1499 USD.’)"}

{"thought": "I have finished navigating to the Products page. I will inform the user that I have completed

n,on

the task.", "action": "send_msg_to_user(’I have finished navigating to the Products page.’)"}

# Current Accessibility Tree
{Axtree Text}

# Error Message from Last Action
{Last Action Error}

# History of Past Actions
{Past Actions}

# Next Action

You will now think step by step and produce your next best action. Reflect on your past actions, any
resulting error message, the current state of the page before deciding on your next action. Provide your
output as a single json with a thought and an action. All reasoning must be contained within the thought
key of the json output, and only a single action must be provided for the action key. Future actions will
be taken subsequently. If you have finished performing the request, send a message to the user in a
concise and to the point manner.

12
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Goal for NavExplorer

I am trying to collect a dataset to train a better web browser agent that can perform actions for users in a
web browser. For this, we are particularly interested to collect **navigation tasks** that are feasible to
perform from the current web page.

Navigation tasks are tasks requiring navigating to a specific page.

Collect navigation tasks that require navigating to another webpage from this current page. You may
click on links to try finding other interesting pages to collect tasks from. But if you do navigate to
another page, instead of collecting tasks on that page, make sure to navigate back to the previous page
using ‘go_back* or ‘goto‘. We will collect tasks from these new pages later. When collecting navigation
tasks, prioritize those that would likely have interesting/useful tasks on them over ones that likely won’t
give many useful tasks to collect.

As you are exploring, you can add navigation tasks to the dataset using the ‘add_tasks_to_dataset
function.

When you are done exploring the current page, send a message to the user using ‘send_msg_to_user*
confirming this.

Be sure to prioritize adding navigation tasks to pages that a typical user of this web page would most
often want to navigate to, over niche pages that the typical user would rarely frequent.

**Important** Remember that if you are successful at navigating to a new page, you should add a
corresponding task to the dataset as your next action before finding new pages.

Goal for PageExplorer

I am trying to collect a dataset to train a better web browser agent that can perform actions for users in a
web browser. For this, I need to first collect tasks that are feasible to perform on the current web page.
The tasks should be concrete (e.g., on an amazon product page for product X, an appropriate task could
be "Leave a positive review for X" or on a maps website a task could be "Show me driving directions
from X to Y." where X and Y are specific locations).

You may explore by performing actions on this web page if that helps to determine concrete tasks that
are feasible.

Find the tasks that are possible to perform on the current web page itself, without have to navigate to
other links/urls. Though, you may find it helpful to navigate through menus on this page to get a better
idea of what types of tasks are feasible. If you accidentally go to a new url while trying to navigate
items on the page, you can go back to the previous page using the ‘go_back* function.

Tasks are usually of three types:

1. Information seeking: The user wants to obtain certain information from the webpage, such as the
information of a product, reviews, map info, comparison of map routes, etc.

2. Site navigation: The user wants to navigate to a specific page.

3. Content modification: The user wants to modify the content of a webpage or configuration.

Be as specific as you can while creating tasks. The web agent may start from a different web page when
asked to complete the task and so may not have the current page context to understand the task. So, for
example, avoid creating generic tasks like "Add item to cart" or "Print receipt for this order." Instead
you want to create specific tasks like "Add a Sony PS5 to cart" or "Print a receipt for Martha Jone’s
order of the Nike Velocity Sweatpants from May 21, 2021"

I recommend the following order to collecting tasks:

1. First look for information seeking/extraction tasks that can be answered simply using information on
the current page, requiring no additional actions.

2. Collect navigation tasks that require navigating to another webpage from this current page. You
may click to links to try finding other interesting pages to collect tasks from. But if you do navigate to
another page, instead of collecting tasks on that page, make sure to navigate back to the previous page
using ‘go_back‘. We will collect tasks from these new pages later. When collecting navigation tasks,
prioritize those that would likely have interesting/useful tasks on them over ones that likely won’t give
many useful tasks to collect.

13
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3. Finally, you can try to find content modification tasks on the current page that require performing
actions on the current page itself.

As you are exploring the page, you may find it helpful to click on buttons, links, and other elements on
the page to see if they reveal any additional information or options that could lead to new tasks. You
can also hover over elements to see if they provide any tooltips or additional context.

**Important™*:

When collecting tasks, focus more on the common tasks that a typical user of this webpage would want
to perform. Avoid niche tasks that are unlikely to be relevant to the typical user of this website.

For most common styles of tasks, it may be useful to include a few variants or related tasks to help the
web agent learn frequently used skills.

As you are exploring, you can add tasks to the dataset using the ‘add_tasks_to_dataset‘ function.

When you are done exploring, send a message to the user using ‘send_msg_to_user‘ confirming this.

Prompt for VLM-as-a-judge Reward Model

You are an expert in evaluating the performance of a web navigation agent. The agent is designed to
help a human user navigate a website to complete a task. Given the user’s intent, the agent’s action
history, the final state of the webpage, and the agent’s response to the user, your goal is to decide
whether the agent’s execution is successful or not. Please be careful of each detail and strict about the
evaluation process.

There are three types of tasks:

1. Information seeking: The user wants to obtain certain information from the webpage,
such as the information of a product, reviews, map info, comparison of map routes, etc. The bot’s
response must contain the information the user wants, or explicitly state that the information is not
available. Otherwise, e.g. the bot encounters an exception and respond with the error content, the task
is considered a failure. Besides, be careful about the sufficiency of the agent’s actions. For example,
when asked to list the top-searched items in a shop, the agent should order the items by the number of
searches, and then return the top items. If the ordering action is missing, the task is likely to fail.

2. Site navigation: The user wants to navigate to a specific page. Carefully examine the
bot’s action history and the final state of the webpage to determine whether the bot successfully
completes the task. No need to consider the bot’s response.

3. Content modification: The user wants to modify the content of a webpage or configura-
tion. Carefully examine the bot’s action history and the final state of the webpage to determine whether
the bot successfully completes the task. No need to consider the bot’s response.

User Intent: {Goal}

Action History:

{Last Actions}

The final state of the webpage provided as an accessibility tree:
{Axtree Text}

The last snapshot of the web page is shown in the image.
{Screenshot}
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B ADDITIONAL ANALYSES

B.1 DESIGN CHOICES FOR TASK PROPOSAL

B.1.1 GPT-40 vs. CLAUDE-3.7-SONNET FOR PAGEEXPLORER TASK PROPOSAL

To understand how task proposal behavior differs based on model choice, we tag proposed Page-
Explorer tasks using an LLM as navigational (Nav), information-seeking (Info), or state/content-
modifying (Mod) tasks (the same three categories mentioned in the PageExplorer goal). We also
perform clustering of these tasks to measure diversity, similar to Section [6]

The models differ in task proposal behavior as shown in Table[7} (1) CLAUDE-3.7-SONNET proposes
almost almost double the number of tasks with half the max step budget; (2) GPT-40 generates a
more diverse set of tasks for the quantity proposed, especially Mod tasks, where GPT-40 has many
more task clusters.

The efficiency of Claude allows us to give it a smaller max step budget when used as a PageExplorer.
On the other hand, GPT-40 ’s diversity of Mod tasks justifies using it as well to complement Claude.

Table 7: Comparison of GPT-40 and CLAUDE-3.7-SONNET for PageExplorer agents.

Model # Tasks # Clusters Max # Steps (Per Node)
Nav Info Mod Nav Info Mod

GPT-40 274 227 243 24 18 34 20

CLAUDE-3.7-SONNET 415 508 516 23 19 19 10

B.1.2 NAVEXPLORER VS. PAGEEXPLORER TASKS

Since navigational tasks are important for website coverage and are linked to Go-Browse’s outer loop,
we also explicitly add a NavExplorer agent with Claude (chosen for its efficiency) in addition to the
PageExplorer agents. This more than doubles the number of navigational tasks in the dataset.

Table 8: Comparison of Explorer types on navigation tasks.

Explorer Type #Nav Tasks # Nav Task Clusters

NavExplorer 925 32
PageExplorer 689 31

B.2 DATASET COLLECTION COST ANALYSIS

Table 9] provides the cost per model during rollouts (both data collection and task proposal - Panel
A) and also the cost of trajectory evaluation using GPT-40 (Panel B). The overall cost of collecting
GO-BROWSE-WA is $975.57. We note that for trajectory rollouts, the cost of CLAUDE-3.7-SONNET,
GPT-40 and GPT-40-MINI is significantly reduced due to lower prices for cached tokens. We
observe that (~ 53% of input tokens are cache reads on average). We use the official OpenAl and
Anthropic API pricing to compute their costs and use Together Al (Together Al to estimate API cost
for QWEN-2.5-7B-INSTRUCT.

B.3 PAIRED BOOTSTRAP TEST FOR WEBARENA RESULTS

We measure statistical significance using the paired bootstrap test with 10,000 bootstrap samples
of the WebArena benchmark results. Our model is statistically significantly better than QWEN-
2.5-7B-INSTRUCT (p < 0.001). It was also judged as better than GPT-40-MINI (p = 0.108) and
NNETNAV-7B (p =0.094). These results demonstrate a moderate degree of confidence in our model’s
improvement over these baselines, with high win ratios for GO-BROWSE-7B.
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Table 9: Go-Browse cost analysis for rollouts (agents) and trajectory evaluation.

Panel A: Rollout Costs (Agents)

Model Num. Trajs Num. Steps  Avg. Cost/Step  Total Cost ($)
GPT-40-mini 11,695 95,314 0.0008 76.25
Qwen-2.5-7B Instruct 10,203 79,209 0.0025 198.02
Claude-3.7-Sonnet 5,102 24,532 0.0190 466.11
GPT-40 103 789 0.0181 14.28
Total (Rollouts) 27,103 199,844 0.0037 754.66

Panel B: Trajectory Evaluation Costs

Model Num. Trajs Avg. Cost / Traj Eval Total Cost
GPT-40 11,105 0.0199 220.91
Grand Total (Rollouts + Eval) $975.57

Table 10: Paired bootstrap tests of models vs. GO-BROWSE-7B on WebArena with 10K samples.

. Win Ratio
Model Compared Winner (Baseline / Tie / Go-BROWSE-7B)  P-value
CLAUDE-3.7-SONNET  CLAUDE-3.7-SONNET (1,000 / 0.000 / 0.000) 0.000
GPT-40 GPT-40 (1.000 / 0.000 / 0.000) 0.000
GPT-40-MINI GO-BROWSE-7B (0.085 /0.024 / 0.892) 0.108
NNETNAV-7B Go-BROWSE-7B (0.076 /0018 / 0.906) 0.094
QWEN-2.5-7B-INSTRUCT ~ GO-BROWSE-7B (0.000/0.000 / 1.000) 0.000

C HYPERPARAMETERS AND ADDITIONAL EXPERIMENT DETAILS

For our finetuning experiments, we use the following hyperparameters. We train for 2 epochs on the
whole dataset with a maximum sequence length of 24K tokens. We use a learning rate of 2e-5. We
use a batch size of 8 (1 per gpu) with 4 gradient accumulation steps.

We used the following computational resources. For finetuning with a single NVIDIA 8xH100 node
where each H100 has 80GB of VRAM. Training took ~40 hours for each finetuning run. For dataset
generation, we run on 5 nodes with of a SLURM cluster in parallel, with 256GB of RAM and 8 CPUs
allocated to each, one each per WebArena domain. We also ran LLM inference servers on 8 NVIDIA
L40S GPUs to support inferencing with QWEN-2.5-7B-INSTRUCT. Overall, dataset generation took
~3 weeks to complete.

In this work, besides generating our own GO-BROWSE-WA dataset, we leverage the NNETNAV-WA
dataset to build a baseline. This dataset was released with the Apache License 2.0 license.

D LLM USAGE

An integral part of GO-BROWSE is collecting data automatically by employing LLMs to explore and
interact with websites. The usage of LLMs in this capacity has been detailed extensively in Section 3]
and throughout the paper text. We also use LLMs to help with paper writing, particularly, to suggest
revisions to phrasing of initial section drafts and to iterate on code for figures. All LLM generated
revisions are further reviewed and revised by the authors before being included in the paper.
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