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Figure 1: Visual results of our proposed PKA on multi-conditional generation. Our proposed PKA
achieves high-quality multi-conditional generation with remarkable efficiency. Zoom in for better
visualization.

ABSTRACT

While modern text-to-image models excel at generation from prompts, they often
lack the fine-grained control necessary for specific user requirements like spa-
tial layouts or subject appearances. Multi-condition control emerges as a key
solution to this limitation. However, its application in Diffusion Transformers
(DiTs) is severely hampered by the “concatenate-and-attend” strategy, which cre-
ates a prohibitive computational and memory bottleneck. Our analysis reveals
that this computation is largely redundant. We therefore introduce Patch-wise and
Keyword-Aware Attention (PKA), a framework using two specialized modules
to eliminate this inefficiency. Position-Aligned Attention (PAA) confines spa-
tial control to aligned patches, while Keyword-Scoped Attention (KSA) restricts
subject-driven control to keyword-activated regions. Complemented by an early-
timestep sampling strategy that accelerates training, PKA achieves up to a 10×
inference speedup and a 5.12× reduction in attention module VRAM, all while
maintaining or improving generative quality. Our work offers a practical path
towards complex, fine-grained, and resource-friendly AI generation.
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1 INTRODUCTION

After years of rapid development, Diffusion Transformers (DiTs) (Peebles & Xie, 2023; Esser et al.,
2024) have become a leading architecture for image generation. While their performance is remark-
able, most existing DiTs are guided predominantly by textual prompts. In many real-world scenar-
ios, users often require more fine-grained control, such as specifying spatial arrangements, layouts,
or visual references. This calls for multi-condition diffusion models that can flexibly incorporate
both textural conditions and visual conditions.

In UNet-based diffusion models (Rombach et al., 2022; Podell et al., 2024), this challenge is typ-
ically addressed via feature-level fusion, as exemplified by methods like ControlNet (Zhang et al.,
2023), in which different condition modalities are injected at various layers of the UNet via feature
addition or modulation Sun et al. (2024); He et al. (2024; 2025). However, since feature fusion
is less straightforward in transformer architectures, DiTs typically adopt a different paradigm: an
attention-based interaction where all condition and noisy image tokens are concatenated and pro-
cessed jointly (Tan et al., 2024; 2025; Wang et al., 2025; Pan et al., 2025).

However, this “concatenate-and-attend” strategy is computationally prohibitive. Assuming c condi-
tion inputs and n tokens per condition, the resulting attention computation scales as O(c2n2) due to
the pairwise attention across all conditions and noisy image tokens at each transformer block. As the
number of conditions increases (e.g., combining text, layout, reference image, and depth maps), the
total sequence length grows substantially. The attention mechanism’s computational and memory
demands scale quadratically, creating a critical bottleneck that leads to excessive memory consump-
tion and inference latency. This naturally forces a central question: Does effective multi-condition
control truly require such massive attention computation?

To answer this question, we first investigated the attention patterns within existing multi-condition
DiTs (Tan et al., 2024). Our analysis confirms that a significant portion of the attention computa-
tion is indeed redundant. This redundancy manifests differently depending on the condition type,
which we categorize as spatial-aligned and subject-driven. For spatial-aligned conditions like layout
maps, attention is intensely localized. As shown in Figure 2, the attention matrix is concentrated
almost exclusively along its diagonal, indicating that only spatially aligned or adjacent patches in-
teract meaningfully. Interactions between distant regions, in contrast, contribute negligible attention
scores. For subject-driven conditions, such as textual descriptions of an object, attention is also
sparse; only a small subset of cross attention map is strongly activated, and these activations corre-
late directly with the keyword-relevant areas of the image (Figure 3). This suggests that full attention
is superfluous.
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Attention MatrixSpatial Condition

Generated Image

Figure 2: Attention matrix in spatial-aligned
generation. The activations are strong at the
same or nearby positions (along the diagonal),
while activations between distant positions are
weak.

Input Condition

Output Image

Map: Subject →X

Map: “Shirt” → X

Mask: Subject →X

Mask: “Shirt” → X

Figure 3: Attention maps in subject-driven gen-
eration. Prompt: “On the beach, a lady wearing
this shirt sits under a beach umbrella.” X is the
noisy image.

Motivated by these observations, we propose Patch-Wise and Keyword-Aware Attention (PKA), a
novel mechanism for efficient multi-condition control. PKA leverages the inherent sparsity of these
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attention patterns through two specialized, condition-aware modules designed to eliminate compu-
tational waste. The first, Position-Aligned Attention (PAA), addresses spatial-aligned conditions.
It replaces full attention with a direct one-to-one correspondence between noisy image and con-
dition tokens at the same spatial coordinates. By computing attention only between these aligned
pairs, PAA enables highly localized control with minimal overhead. The second, Keyword-Scoped
Attention (KSA), is designed for subject-driven conditions. It operates by first identifying the most
relevant image regions via an attention map between the textual keyword and the noisy image tokens.
This map is then used to create a relevance-scoped mask, confining subsequent attention computa-
tions only to these salient regions and drastically pruning the number of query-key interactions.

Furthermore, we posit that the conventional timestep sampling strategy employed in the training of
flow matching (Lipman et al., 2023) models is suboptimal for fine-tuning multi-conditional genera-
tion tasks. To investigate the temporal influence of visual conditions, we conducted a perturbation
analysis across the denoising process. This experiment revealed a crucial insight: visual conditions
exert their strongest influence during the early, high-noise stages of generation. Motivated by this
finding, we introduce a novel early-timestep sampling scheme that concentrates training on these
critical phases, which accelerates convergence and enhances the final model’s control fidelity.

By integrating these advancements, our experiments validate that we can significantly reduce both
computational latency and the memory footprint of the attention mechanism, all without compro-
mising the model’s generative performance. Quantitatively, for scenarios with a high number of
conditions, our method achieves an impressive speedup of up to 10.0× and a 5.12× reduction in
memory consumption for the attention module.

In summary, our contributions are as follows.

• We conduct an in-depth analysis of multi-condition DiTs, identifying and characterizing
the computational redundancy inherent in the standard full-attention mechanism.

• We propose methodological advancements to improve both inference and training effi-
ciency, which include PKA, a lightweight attention framework to reduce computation, and
an early timestep sampling strategy to accelerate fine-tuning convergence.

• We conduct comprehensive experiments, demonstrating that our method achieves state-
of-the-art efficiency, including up to a 10× speedup while maintaining or even improving
generation quality and controllability over strong baselines.

2 RELATED WORK

2.1 CONTROLLABLE DIFFUSION GENERATION

Multi-condition generation enables users to guide the synthesis process with diverse inputs like
spatial layouts or reference subjects. In UNet-based architectures, this is often achieved via feature-
level fusion. One line of work, including ControlNet (Zhang et al., 2023), T2I-Adapter (Mou et al.,
2024), and GLIGEN (Li et al., 2023), integrates spatial conditions like edge maps or poses through
feature injection. Another line, featuring IP-Adapter (Ye et al., 2023), EZIGen (Duan et al., 2024),
and InstantID (Wang et al., 2024), focuses on incorporating subject appearance from reference im-
ages to ensure identity consistency. In contrast, DiT-based models typically achieve multi-condition
control through attention-based interaction. Frameworks like OminiControl (Tan et al., 2024) and
UniCombine (Wang et al., 2025) have demonstrated the viability of this paradigm, where all condi-
tional and latent tokens are concatenated for joint processing through full self-attention. However,
this “concatenate-and-attend” approach faces a critical limitation: the computational cost grows
quadratically with the number of tokens. This leads to substantial memory and runtime overhead,
rendering these methods inefficient for practical scenarios that demand rich and varied conditional
inputs.

2.2 EFFICIENT MECHANISM FOR DIFFUSION TRANSFORMERS

Several strategies have been proposed to mitigate computational overhead in DiTs. One research
direction focuses on inference-time optimization, such as caching or decomposing less informative
tokens (Zou et al., 2025; Ma et al., 2024; Zou et al., 2024; Liu et al., 2025; Chen et al., 2025).

3
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Another popular approach improves efficiency by removing or simplifying layers that contribute
minimally to the final generation quality (Fang et al., 2025; Zhu et al., 2024; Yang et al., 2025).
For the specific task of multi-condition generation, methods like PixelPonder (Pan et al., 2025) and
OminiControl2 (Tan et al., 2025) have also improved efficiency through techniques such as dynamic
token pruning and input downsampling. In stark contrast, our PKA module reduces complexity
from a different perspective: rather than relying on token reuse or architectural pruning, we leverage
condition-specific structural priors to eliminate redundancy.

3 METHOD

3.1 PRELIMINARY

Diffusion Transformers (DiTs), such as FLUX.1 (Labs, 2024) and Stable Diffusion 3 (Esser et al.,
2024), utilize a Transformer architecture as their denoising backbone. These models progressively
refine noisy image tokens (X ∈ RN×d), guided by various condition tokens like text (CT ∈ RM×d).

In multi-condition frameworks (Tan et al., 2024; 2025; Wang et al., 2025), additional visual condi-
tion tokens (CI ∈ RNI×d) are incorporated by concatenating them with the text and image tokens.
All tokens are then processed jointly through a multi-modal attention (MMA) mechanism:

MMA([CT ;X;CI ]) = Softmax
(
QK⊤
√
d

)
V (1)

The primary issue with this “concatenate-and-attend” paradigm is its computational cost. The at-
tention matrix QK⊤ ∈ R(M+N+NI)×(M+N+NI) scales quadratically with the sequence length,
becoming prohibitively expensive as more conditions are added.

During training, these models typically use flow matching (Lipman et al., 2023) to learn the de-
noising process. Conventionally, the timestep t for each training sample is drawn from a standard
logit-normal distribution Logit-N (0, 1), ensuring the model is trained across all stages of the gener-
ation trajectory.

3.2 PATCH-WISE AND KEYWORD-AWARE ATTENTION

Building on the DiT-based text-to-image generation model FLUX (Labs, 2024), we propose Patch-
Wise and Keyword-Aware Attention (PKA), a mechanism that decomposes the standard full-
attention into a series of lightweight, specialized attentions. Our method operates on a sequence
of tokens comprising text (T), the noisy image (X), the spatial condition (SP), and the subject condi-
tion (SJ). As illustrated in Figure 4(b), we fundamentally redesign the attention structure to reduce
computational overhead. A key design principle is that condition tokens (SP and SJ) only perform
self-attention within their respective conditions. This structural choice enables a highly efficient
Condition Cache mechanism, as shown in Figure 4(a). The Key and Value projections for all con-
dition tokens are computed only once in the first denoising step and are then cached and reused for
all subsequent steps. This eliminates redundant computations across the denoising trajectory. The
noisy image tokens (X) selectively interact with the conditions via our proposed Position-Aligned
Attention (PAA) and Keyword-Scoped Attention (KSA) modules, while maintaining full attention
with text (T).

3.2.1 POSITION-ALIGNED ATTENTION

For the spatial condition, we introduce Position-Aligned Attention (PAA). The core intuition is that
spatial layout primarily governs the structural arrangement of the image, and interactions between
spatially distant patches are negligible. Therefore, it is both intuitive and efficient to compute atten-
tion only between corresponding spatial positions.

PAA ([X;SP ]) [i] = Softmax

(
QXi

K⊤
SPi√
d

)
VSPi

(2)

As illustrated in Figure 4(c), we perform a one-to-one attention computation between the noisy
image tokens and the spatial condition tokens at the same spatial coordinates. Specifically, we align
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Figure 4: Overview of our method. (a) The denoise framework. Full computation occurs only at
the first step; the Keys and Values of all condition tokens are then cached for subsequent steps.
(b) Patch-Wise and Keyword-Aware Attention.Our decomposed attention mechanism, where condi-
tions only perform self-attention (enabling the KV cache). The noisy image tokens (X) then interact
with spatial (SP) and subject (SJ) conditions via PAA and KSA, respectively. (c) Position-Aligned
Attention (PAA). PAA performs efficient one-to-one attention between the image (X) and spatial
condition (SP) tokens at their aligned positions. (d) Keyword-Scoped Attention (KSA). KSA com-
putes a relevance mask from text keywords in one step. This mask is then applied in subsequent
steps to confine the attention computation between the image (X) and subject (SJ) to only the most
relevant regions.

the Q, K, and V representations at each position and compute their attention independently, as
formulated in Eq. 2. This design reduces the computational complexity from O(N2) in the full
attention case to O(N), where N is the number of tokens of the noisy image.

3.2.2 KEYWORD-SCOPED ATTENTION

For the subject condition, we propose Keyword-Scoped Attention (KSA). The key insight is that
a subject’s visual appearance is typically confined to a localized area within the generated image.
Therefore, a global attention pass that computes interactions between the subject and all image
tokens is inefficient and redundant.

To address this, KSA leverages temporal consistency (Zhou et al., 2025) in a two-step process, as
illustrated in Figure 4(d). The first step, performed at timestep t, is to generate a binary mask Mt that
efficiently locates the subject. This is achieved by computing a lightweight attention map between
the image queries Qt

X and the keys from a small set of keyword tokens K:

M t = Norm

(∑
i∈K

(
Qt

XKt
i
⊤
))

≥ ϵ (3)

Here, the keyword set K typically contains just 1 to 2 tokens, and ϵ is the mask threshold. Unless
otherwise specified, we use ϵ = 0.2 in the experiments.

According to the temporal consistency of the denoising process, we then reuse this mask M at
timestep t + 1 to select a subset of image tokens Q̂t+1

X = Qt+1
X ◦ M t. By filtering out irrele-

vant positions beforehand, the final KSA attention computation is confined only to the semantically
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meaningful regions, drastically reducing computational overhead:

KSA ([X;SJ ]) = Softmax

(
Q̂t+1

X Kt+1
SJ

⊤

√
d

)
V t+1
SJ (4)

3.3 EARLY-TIMESTEP SAMPLING

Prevailing flow matching models typically adopt a timestep sampling strategy where t is drawn
from a logit-normal distribution that t ∼ Logit-N (0, 1). However, our investigation reveals that
this conventional approach is suboptimal for fine-tuning on multi-conditional control tasks. Our key
empirical insight, as illustrated in Figure 5, is that the conditioning information is predominantly
injected and learned during the initial phase of the denoising trajectory, i.e, higher t. To align the
training process with this phenomenon, we propose a modified sampling strategy that intention-
ally prioritizes these critical early timesteps. We achieve this by skewing the sampling distribution
towards the beginning of the process, drawing timesteps from a shifted logit-normal distribution:
t ∼ Logit-N (µ, δ), where µ > 0, δ > 1. This targeted approach concentrates the model’s training
on the temporal segments most crucial for effective conditional control.

Figure 5: SSIM of Visual condition perturbation. “High-to-low” refers to applying perturbations
sequentially from the early (high t) to late (low t) stages of the generation process, while “Low-to-
high” is the reverse.

4 EXPERIMENT

4.1 SETUP

Training Details. We curate a subset from the Subject200K dataset (Tan et al., 2024), ensuring
each image caption contains a descriptive keyword. This subset is then partitioned into training
and testing sets. To ensure a fair comparison, we fine-tune the FLUX.1 (Labs, 2024) model using
LoRA (Hu et al., 2022), which is trained for 20,000 iterations using the Prodigy (Mishchenko &
Defazio, 2024) optimizer with a batch size of 1 and a gradient accumulation step of 4.

Evaluation Details. We employ OminiControl2 (Tan et al., 2025) and UniCombine (Wang et al.,
2025) as baselines for our comparative analysis. Efficiency metrics, including inference latency and
condition overhead, are measured on a single NVIDIA RTX 6000 Ada GPU. For evaluating gener-
ation quality, we define three multi-conditional tasks: Subject-Canny-to-Image, Subject-Depth-to-
Image, and Canny-Depth-to-Image.

Metrics. To evaluate subject consistency, we calculate the CLIP-I (Radford et al., 2021) and DI-
NOv2 (Oquab et al., 2024) scores between generated images and ground-truth images. To measure
controllability, we compute the F1 Score for edge conditions and the MSE score for depth conditions

6
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between maps extracted from the generated images and the original conditional inputs. For assess-
ing generative quality, we compute FID (Heusel et al., 2017) and SSIM (Wang et al., 2004) between
the generated and ground-truth image sets. Additionally, we adopt the CLIP-T (Radford et al., 2021)
score to estimate the text consistency between the generated images and the text prompts.

4.2 MAIN RESULTS

OminiControl2 UniCombine OursConditions OminiControl2 UniCombine OursConditions

Figure 6: Qualitative comparison for multi-conditional control. From top to bottom: Subject-Canny-
to-Image, Subject-Depth-to-Image, and Canny-Depth-to-Image. Zoom in for better visualization.

4.2.1 EFFICIENCY

Figure 7 illustrates the trend of inference time as the number of conditions increases. The results
reveal that our method achieves a significant speedup, ranging from 3.90× to 10×, compared to the
full-attention mechanism in UniCombine. Notably, our approach also surpasses the performance
of OminiControl2. In terms of memory efficiency, Figure 8 shows that our attention mechanism
reduces the VRAM consumption by a factor of 2.46× to 5.12× relative to full attention. For this
analysis, each condition is represented by 1024 tokens. Collectively, these findings demonstrate that
our method substantially reduces computational costs in terms of both time and memory.

10.0 X

6.46 X

3.90 X

Figure 7: Time consumption comparison across
different condition numbers.

5.12 X

3.61 X

2.46 X

Figure 8: VRAM consumption of attention
mechanism comparison across different condi-
tion numbers.

4.2.2 QUALITATIVE COMPARISON

We evaluated our method on a suite of three challenging multi-conditional generation tasks: Subject-
Canny-to-Image, Subject-Depth-to-Image, and Canny-Depth-to-Image. Figure 6 provides a quali-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

tative comparison, showcasing the clear advantages of our approach over the baseline methods,
OminiControl2 and UniCombine. While the performance gains are nuanced, our method consis-
tently yields superior results. In direct comparison, images generated by OminiControl2 suffer from
lower visual fidelity and noticeable artifacts. Meanwhile, UniCombine’s outputs, though structurally
coherent, often exhibit a muted or desaturated color palette, lacking the chromatic richness produced
by our method.

4.2.3 QUANTITATIVE EVALUATION

The quantitative results in Table 1 confirm the effectiveness of our approach. Our method signif-
icantly outperforms competing baselines in Generative Quality and Subject Consistency across all
tasks. In terms of Controllability, it is highly competitive, achieving the best results on most tasks,
with the minor exception of a narrow margin on the Subject-Canny task. Furthermore, our model’s
Text Fidelity is comparable to the leading baseline, trailing by a perceptually negligible difference.

Table 1: Comparison of different methods across various tasks and metrics. The bold represents the
optimal result.

Task Method Quality Controllability Consistency Fidelity
FID↓ SSIM↑ F1↑ MSE↓ CLIP-I↑ DINOv2↑ CLIP-T↑

Subject Canny
OminiControl2 72.03 0.406 0.192 - 0.878 0.867 0.327
UniCombine 61.03 0.493 0.551 - 0.912 0.901 0.352
Ours 52.99 0.553 0.414 - 0.945 0.926 0.349

Subject Depth
OminiControl2 80.20 0.391 - 366 0.867 0.838 0.325
UniCombine 70.22 0.454 - 312 0.911 0.879 0.350
Ours 62.08 0.515 - 160 0.935 0.904 0.348

Canny Depth
OminiControl2 71.87 0.475 0.194 303 - - 0.342
UniCombine 67.40 0.508 0.369 250 - - 0.354
Ours 53.01 0.613 0.411 114 - - 0.353

4.3 ABLATION STUDY

4.3.1 EFFECT OF POSITION-ALIGNED ATTENTION

To evaluate our Position-Aligned Attention (PAA), we compare it against two baselines: full at-
tention (W/o PAA), and Sliding Window Attention (SWA) (Pan et al., 2023) with various window
sizes. While both methods produce high-fidelity images that adhere to the spatial conditions, as
shown in Figure 9, our PAA architecture is demonstrably more efficient. PAA operates at a latency
of just 13.63s and consumes only 237MB of VRAM, outperforming even the most efficient SWA
(14.00s and 276MB). This confirms PAA delivers high-quality spatial control at substantially lower
computational cost.

w/o PAAcondition PAA SWA. 1 SWA. 5 SWA. 9 w/o condition

Latency (S) 15.38 13.63 14.00 14.11 14.32 13.58

VRAM (MB) 308 237 276 291 316 198

Figure 9: Ablation study on the PAA module.
Zoom in for better visualization.

w/o KSAsubject ϵ = 0.2 ϵ = 0.4 ϵ = 0.6 ϵ = 0.8 w/o subject

Latency (S) 16.59 15.33 15.26 15.25 15.23 15.17

VRAM (MB) 368 260 242 235 230 229

Figure 10: Ablation study on the KSA mask
threshold ϵ. Zoom in for better visualization.

4.3.2 EFFECT OF KEYWORD-SCOPED ATTENTION

Our Keyword-Scoped Attention (KSA) module provides powerful and tunable control over both
computational efficiency and subject fidelity. The impact of its mask threshold ϵ serves as a clear

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

demonstration of this capability. In Figure10, at the baseline setting (w/o KSA, equivalent to ϵ=0),
the model ensures maximum subject fidelity but at a significant computational cost of 16.59s in
latency and 368MB of VRAM consumption.

As the threshold is increased to 0.4, KSA strategically prunes the attention map to yield substantial
efficiency gains, reducing latency and VRAM to just 15.26s and 242MB, respectively. Notably,
even at this more aggressive setting, the generated image remains highly faithful to the reference.
The differences are confined to subtle variations in fine details, such as the rendering of the chair’s
legs and the motorcycle’s windshield, showcasing a graceful trade-off rather than an abrupt drop in
quality. This highlights the robustness of KSA to its threshold; it is not a sensitive hyperparameter
but an intuitive control that allows users to freely balance computational savings with the precise
level of subject fidelity their application requires.

4.3.3 EFFECT OF EARLY-TIMESTEP SAMPLING

Figure 11 visually demonstrates the effectiveness of our early-timestep sampling strategy. Prioritiz-
ing early timesteps (a positive µ) yields markedly superior outcomes for visual condition fine-tuning
compared to the standard (µ = 0) or late-biased (a negative µ) approaches. Our proposed early-
timestep sampling not only accelerates the convergence of the fine-tuning process but also leads to
a final model with enhanced control fidelity.

Condition 500 iter. 1k iter. 2k iter. 4k iter. 8k iter.

μ
 =

 -0
.5

, δ
 =

 1
.5

 
μ

 =
 -0

, δ
 =

 1
 

μ
 =

 0
.5

, δ
 =

 1
.5

 

Figure 11: Comparison of visual conditional generation results across different µ and δ.

5 CONCLUSION

In this paper, we addressed the computational inefficiency of multi-condition Diffusion Transform-
ers by proposing Patch-wise and Keyword-Aware Attention (PKA), a novel mechanism that de-
composes full attention into two efficient modules: Position-Aligned Attention (PAA) for spatial
conditions and Keyword-Scoped Attention (KSA) for subject-driven ones. Our extensive exper-
iments validate this approach, demonstrating a significant up to 10.0× inference speedup and a
5.12× reduction in VRAM consumption for the attention module, all while maintaining or even en-
hancing generative quality and controllability compared to state-of-the-art methods. Looking ahead,
the significant efficiency gains of multi-condition control of PKA make it a promising foundation
for tackling more complex generative tasks. A particularly exciting future direction is extending
our framework to video generation, where PKA’s principles could be applied to enforce temporal
consistency across frames at a manageable computational cost. Ultimately, PKA offers a scalable
and practical solution that paves the way for the next generation of complex and resource-friendly
AI applications.
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A APPENDICES

A.1 USAGE OF LARGE LANGUAGE MODELS

In adherence to the ICLR 2026 disclosure policy, we report the use of a Large Language Model
(LLM) during the preparation of this manuscript. The role of the LLM was strictly limited to that of
a writing aid for polishing and proofreading. The authors first drafted the entire content, including
the methodology, results, and conclusions. Subsequently, specific sections of the pre-written text
were processed by the LLM to identify and suggest corrections for grammatical errors, spelling
mistakes, and awkward phrasing.

All suggestions generated by the LLM were critically reviewed by the authors, who retained full con-
trol and made the final decision on whether to accept, modify, or reject the proposed changes. The
LLM did not contribute in any way to the core scientific ideas, experimental design, data analysis,
or the formulation of conclusions presented in this work. The intellectual contribution, concep-
tual framework, and all scientific claims are entirely the work of the human authors, who bear full
responsibility for the content of this paper.

A.2 VISUAL CONDITION PERTURBATION

To investigate the temporal influence of the visual condition, we conduct a perturbation analysis on
Ominicontrol, where the condition is removed at different timesteps during the denoising process.
We compare two sequences: a ‘high-to-low’ order, where perturbation starts from the early, high-
noise timesteps (high t), and a ‘low-to-high’ order, which does the reverse.

Figure 12 offers a stark qualitative comparison of these two scenarios. In the ‘high-to-low’ sequence,
the generated images rapidly lose coherence with the visual condition. The core structure and key
subject features begin to diverge significantly after only a few perturbed steps. In stark contrast,
when applying perturbations in the ‘low-to-high’ order, the outputs remain remarkably faithful to
the condition for a much longer duration, with major deviations only appearing near the end of the
process. This visual evidence strongly supports our conclusion: the visual condition exerts its most
critical influence and establishes the foundational structure of the image during the initial phase of
the generation process.

A.3 CONVERGENCE OF EARLY-TIMESTEP SAMPLING

Prevailing flow matching models typically adopt a standard logit-normal timestep sampling strategy,
where the timestep t is drawn from a Logit-N (0, 1) distribution to ensure the model trains across the
full generation trajectory. Building on our insight that visual conditions are most influential early in
this process, we propose an early-timestep sampling strategy. We modify the sampling distribution
to a shifted logit-normal, t ∼ Logit-N (µ, δ), where setting µ > 0 intentionally prioritizes these
critical early phases.

Figure 13 demonstrates the clear advantage of this approach by plotting the SSIM score during
training for different sampling strategies. Our proposed strategy with µ = 0.5 and δ = 1.5 (the
orange line) achieves a significantly faster convergence rate and reaches a higher final SSIM score
compared to both the standard strategy where µ = 0 (blue line) and a strategy biased towards later
timesteps where µ = −0.5 (green line). This confirms that our targeted sampling strategy not
only accelerates the training process but also leads to a better-converged model with superior final
performance.

A.4 SCALABILITY WITH INCREASING CONDITIONS

Figure 14 showcases successful generations using two simultaneous conditions, such as combining a
subject with a sketch. The complexity is increased in Figure 15, which presents high-quality results
from three conditions, and is further demonstrated in Figure 16, which shows robust generation
under four simultaneous conditions.

Across these examples, our method consistently and harmoniously synthesizes the multiple con-
straints, maintaining high visual quality and strong fidelity to each input condition. This highlights
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Perturbation timestep order: high to low

Perturbation timestep order: low to high

Condition

Condition

Figure 12: Qualitative results of visual condition perturbation. Left to right: visual condition, 0 (no
perturbation), 7, 14, 21 perturbation steps, and 28 steps (no visual condition). Zoom in for better
visualization.

the scalability and effectiveness of our approach in handling complex, multi-conditional generation
scenarios.

A.5 MORE QUALITATIVE COMPARISON WITH BASELINES

Figure 17 displays a qualitative comparison of our method against the OminiControl2 and UniCom-
bine baselines across a variety of challenging multi-conditional tasks. The images generated by
OminiControl2 often suffer from low visual quality and contain noticeable artifacts. While Uni-
Combine’s results are more structurally coherent, they frequently exhibit a muted or desaturated
color palette and demonstrate weaker adherence to the provided visual conditions. In contrast, our
proposed method consistently produces high-quality images with rich, vibrant colors. More impor-
tantly, our approach shows superior fidelity, accurately rendering both the specified subject and the
detailed spatial constraints from the conditions.
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Figure 13: SSIM across the training iteration. our early-timestep sampling (µ = 0.5, δ = 1.5)
achieves better convergence.

“this sofa” “black sofa” “white wall”SketchSubject

“teenager’s bedroom” “dilapidated house” “sandy beach”DepthSubject

“modern greenhouse” “modern factory” “muddy wild”CannySubject

“beside lake” “rice filed” “snowy day”DepthCanny

“bright room” “dark night” “cyberpunk style”CannySketch

“sunlit backyard” “rainy park” “painting with PKA”DepthSketch

Figure 14: The images generated by 2 condi-
tions. Zoom in for better visualization.

Depth “buried in snow” “buried in sand”SketchSubject

Depth “on wooden table” “on glass table”Canny Subject

Canny “in a busy city” “in a quiet forest”SketchSubject

Depth “beside a fountain” “beside a tree”Canny Sketch 

Figure 15: The images generated by 3 condi-
tions. Zoom in for better visualization.

Canny Depth “white ice skates”SketchSubject

Canny Depth “in vegetable patch”SketchSubject

Canny Depth “on a sandy path”SketchSubject

Figure 16: The images generated by 4 condi-
tions. Zoom in for better visualization.
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OminiControl2 UniCombine OursConditions OminiControl2 UniCombine OursConditions

Figure 17: Visual comparison on Subject-Canny-to-Image, Subject-Depth-to-Image, and Canny-
Depth-to-Image. Zoom in for better visualization.
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