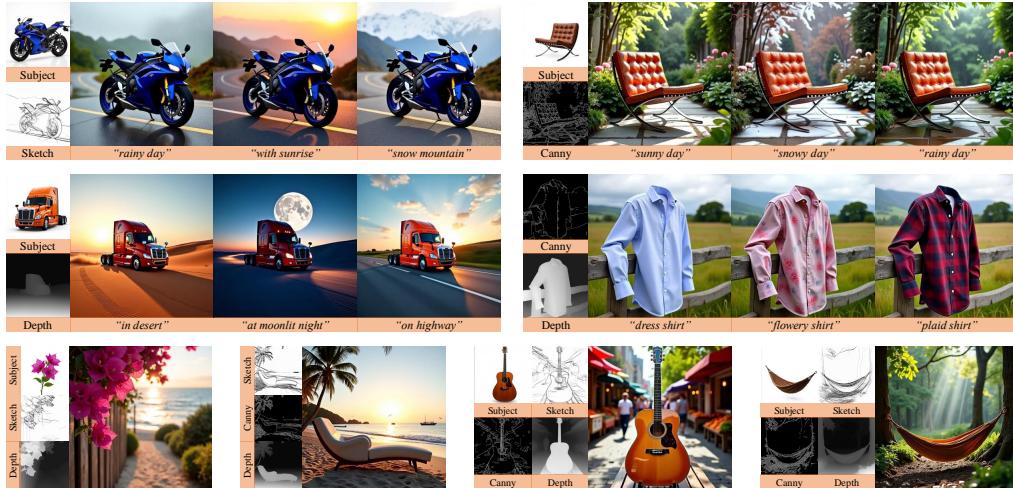


000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PATCH-WISE AND KEYWORD-AWARE: EFFICIENT MULTI-CONDITION CONTROL OF DIFFUSION TRANS- FORMERS VIA POSITION-ALIGNED AND KEYWORD- SCOPED ATTENTION

008 **Anonymous authors**

009 Paper under double-blind review



031
032 Figure 1: Visual results of our proposed PKA on multi-conditional generation. Our proposed PKA
033 achieves high-quality multi-conditional generation with remarkable efficiency. Zoom in for better
034 visualization.

ABSTRACT

040 While modern text-to-image models excel at generation from prompts, they often
041 lack the fine-grained control necessary for specific user requirements like spa-
042 tial layouts or subject appearances. Multi-condition control emerges as a key
043 solution to this limitation. However, its application in Diffusion Transformers
044 (DiTs) is severely hampered by the “concatenate-and-attend” strategy, which cre-
045 ates a prohibitive computational and memory bottleneck. Our analysis reveals
046 that this computation is largely redundant. We therefore introduce Patch-wise and
047 Keyword-Aware Attention (PKA), a framework using two specialized modules
048 to eliminate this inefficiency. Position-Aligned Attention (PAA) confines spa-
049 tial control to aligned patches, while Keyword-Scoped Attention (KSA) restricts
050 subject-driven control to keyword-activated regions. Complemented by an early-
051 timestep sampling strategy that accelerates training, PKA achieves up to a 10 \times
052 inference speedup and a 5.12 \times reduction in attention module VRAM, all while
053 maintaining or improving generative quality. Our work offers a practical path
towards complex, fine-grained, and resource-friendly AI generation.

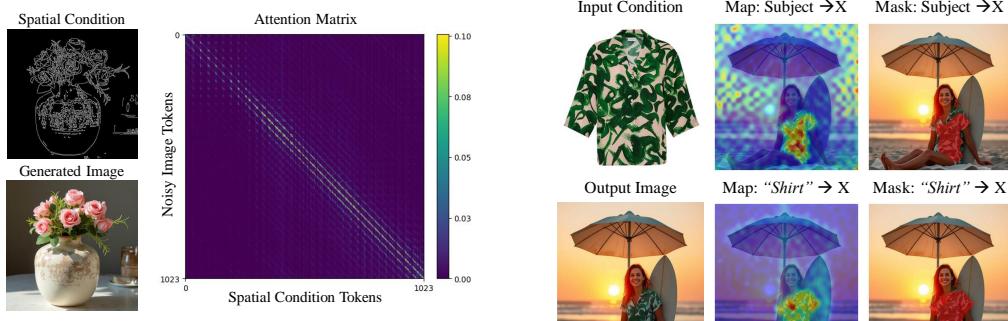
054 1 INTRODUCTION

056 After years of rapid development, Diffusion Transformers (DiTs) (Peebles & Xie, 2023; Esser et al.,
 057 2024) have become a leading architecture for image generation. While their performance is remarkable,
 058 most existing DiTs are guided predominantly by textual prompts. In many real-world scenarios,
 059 users often require more fine-grained control, such as specifying spatial arrangements, layouts,
 060 or visual references. This calls for multi-condition diffusion models that can flexibly incorporate
 061 both textural conditions and visual conditions.

062 In UNet-based diffusion models (Rombach et al., 2022; Podell et al., 2024), this challenge is typically
 063 addressed via feature-level fusion, as exemplified by methods like ControlNet (Zhang et al.,
 064 2023), in which different condition modalities are injected at various layers of the UNet via feature
 065 addition or modulation Sun et al. (2024); He et al. (2024; 2025). However, since feature fusion
 066 is less straightforward in transformer architectures, DiTs typically adopt a different paradigm: an
 067 attention-based interaction where all condition and noisy image tokens are concatenated and pro-
 068 cessed jointly (Tan et al., 2024; 2025; Wang et al., 2025; Pan et al., 2025).

069 However, this “concatenate-and-attend” strategy is computationally prohibitive. Assuming c condition
 070 inputs and n tokens per condition, the resulting attention computation scales as $O(c^2n^2)$ due to
 071 the pairwise attention across all conditions and noisy image tokens at each transformer block. As the
 072 number of conditions increases (e.g., combining text, layout, reference image, and depth maps), the
 073 total sequence length grows substantially. The attention mechanism’s computational and memory
 074 demands scale quadratically, creating a critical bottleneck that leads to excessive memory consump-
 075 tion and inference latency. This naturally forces a central question: *Does effective multi-condition*
 076 *control truly require such massive attention computation?*

077 To answer this question, we first investigated the attention patterns within existing multi-condition
 078 DiTs (Tan et al., 2024). Our analysis confirms that a significant portion of the attention computa-
 079 tion is indeed redundant. This redundancy manifests differently depending on the condition type,
 080 which we categorize as spatial-aligned and subject-driven. For spatial-aligned conditions like layout
 081 maps, attention is intensely localized. As shown in Figure 2, the attention matrix is concentrated
 082 almost exclusively along its diagonal, indicating that only spatially aligned or adjacent patches in-
 083 teract meaningfully. Interactions between distant regions, in contrast, contribute negligible attention
 084 scores. For subject-driven conditions, such as textual descriptions of an object, attention is also
 085 sparse; only a small subset of cross attention map is strongly activated, and these activations corre-
 086 late directly with the keyword-relevant areas of the image (Figure 3). This suggests that full attention
 087 is superfluous.



101 Figure 2: Attention matrix in spatial-aligned
 102 generation. The activations are strong at the
 103 same or nearby positions (along the diagonal),
 104 while activations between distant positions are
 105 weak.

106 Figure 3: Attention maps in subject-driven gen-
 107 eration. Prompt: “On the beach, a lady wearing
 108 this shirt sits under a beach umbrella.” X is the
 109 noisy image.

Motivated by these observations, we propose Patch-Wise and Keyword-Aware Attention (PKA), a novel mechanism for efficient multi-condition control. PKA leverages the inherent sparsity of these

108 attention patterns through two specialized, condition-aware modules designed to eliminate computational
 109 waste. The first, Position-Aligned Attention (PAA), addresses spatial-aligned conditions.
 110 It replaces full attention with a direct *one-to-one* correspondence between noisy image and condition
 111 tokens at the same spatial coordinates. By computing attention only between these aligned
 112 pairs, PAA enables highly localized control with minimal overhead. The second, Keyword-Scoped
 113 Attention (KSA), is designed for subject-driven conditions. It operates by first identifying the most
 114 relevant image regions via an attention map between the textual keyword and the noisy image tokens.
 115 This map is then used to create a relevance-scoped mask, confining subsequent attention computa-
 116 tions only to these *salient regions* and drastically pruning the number of query-key interactions.
 117

118 Furthermore, we posit that the conventional timestep sampling strategy employed in the training of
 119 flow matching (Lipman et al., 2023) models is suboptimal for fine-tuning multi-conditional genera-
 120 tion tasks. To investigate the temporal influence of visual conditions, we conducted a perturbation
 121 analysis across the denoising process. This experiment revealed a crucial insight: visual conditions
 122 exert their strongest influence during the early, high-noise stages of generation. Motivated by this
 123 finding, we introduce a novel early-timestep sampling scheme that concentrates training on these
 124 critical phases, which accelerates convergence and enhances the final model’s control fidelity.
 125

126 By integrating these advancements, our experiments validate that we can significantly reduce both
 127 computational latency and the memory footprint of the attention mechanism, all without compro-
 128 mising the model’s generative performance. Quantitatively, for scenarios with a high number of
 129 conditions, our method achieves an impressive speedup of up to $10.0\times$ and a $5.12\times$ reduction in
 130 memory consumption for the attention module.
 131

132 In summary, our contributions are as follows.
 133

- 134 • We conduct an in-depth analysis of multi-condition DiTs, identifying and characterizing
 135 the computational redundancy inherent in the standard full-attention mechanism.
- 136 • We propose methodological advancements to improve both inference and training effi-
 137 ciency, which include PKA, a lightweight attention framework to reduce computation, and
 138 an early timestep sampling strategy to accelerate fine-tuning convergence.
- 139 • We conduct comprehensive experiments, demonstrating that our method achieves state-
 140 of-the-art efficiency, including up to a $10\times$ speedup while maintaining or even improving
 141 generation quality and controllability over strong baselines.

142 2 RELATED WORK

143 2.1 CONTROLLABLE DIFFUSION GENERATION

144 Multi-condition generation enables users to guide the synthesis process with diverse inputs like
 145 spatial layouts or reference subjects. In UNet-based architectures, this is often achieved via feature-
 146 level fusion. One line of work, including ControlNet (Zhang et al., 2023), T2I-Adapter (Mou et al.,
 147 2024), and GLIGEN (Li et al., 2023), integrates spatial conditions like edge maps or poses through
 148 feature injection. Another line, featuring IP-Adapter (Ye et al., 2023), EZIGen (Duan et al., 2024),
 149 and InstantID (Wang et al., 2024), focuses on incorporating subject appearance from reference im-
 150 ages to ensure identity consistency. In contrast, DiT-based models typically achieve multi-condition
 151 control through attention-based interaction. Frameworks like OminiControl (Tan et al., 2024) and
 152 UniCombine (Wang et al., 2025) have demonstrated the viability of this paradigm, where all condi-
 153 tional and latent tokens are concatenated for joint processing through full self-attention. However,
 154 this “concatenate-and-attend” approach faces a critical limitation: the computational cost grows
 155 quadratically with the number of tokens. This leads to substantial memory and runtime overhead,
 156 rendering these methods inefficient for practical scenarios that demand rich and varied conditional
 157 inputs.

158 2.2 EFFICIENT MECHANISM FOR DIFFUSION TRANSFORMERS

159 Several strategies have been proposed to mitigate computational overhead in DiTs. One research
 160 direction focuses on inference-time optimization, such as caching or decomposing less informative
 161 tokens (Zou et al., 2025; Ma et al., 2024; Zou et al., 2024; Liu et al., 2025; Chen et al., 2025).

162 Another popular approach improves efficiency by removing or simplifying layers that contribute
 163 minimally to the final generation quality (Fang et al., 2025; Zhu et al., 2024; Yang et al., 2025).
 164 For the specific task of multi-condition generation, methods like PixelPonder (Pan et al., 2025) and
 165 OminiControl2 (Tan et al., 2025) have also improved efficiency through techniques such as dynamic
 166 token pruning and input downsampling. In stark contrast, our PKA module reduces complexity
 167 from a different perspective: rather than relying on token reuse or architectural pruning, we leverage
 168 condition-specific structural priors to eliminate redundancy.

170 3 METHOD

172 3.1 PRELIMINARY

174 Diffusion Transformers (DiTs), such as FLUX.1 (Labs, 2024) and Stable Diffusion 3 (Esser et al.,
 175 2024), utilize a Transformer architecture as their denoising backbone. These models progressively
 176 refine noisy image tokens ($X \in \mathbb{R}^{N \times d}$), guided by various condition tokens like text ($C_T \in \mathbb{R}^{M \times d}$).

177 In multi-condition frameworks (Tan et al., 2024; 2025; Wang et al., 2025), additional visual condition
 178 tokens ($C_I \in \mathbb{R}^{N_I \times d}$) are incorporated by concatenating them with the text and image tokens.
 179 All tokens are then processed jointly through a multi-modal attention (MMA) mechanism:

$$180 \quad 181 \quad \text{MMA}([C_T; X; C_I]) = \text{Softmax} \left(\frac{QK^\top}{\sqrt{d}} \right) V \quad (1)$$

182 The primary issue with this ‘‘concatenate-and-attend’’ paradigm is its computational cost. The attention
 183 matrix $QK^\top \in \mathbb{R}^{(M+N+N_I) \times (M+N+N_I)}$ scales quadratically with the sequence length,
 184 becoming prohibitively expensive as more conditions are added.

186 During training, these models typically use flow matching (Lipman et al., 2023) to learn the de-
 187 noising process. Conventionally, the timestep t for each training sample is drawn from a standard
 188 logit-normal distribution $\text{Logit-}\mathcal{N}(0, 1)$, ensuring the model is trained across all stages of the gener-
 189 ation trajectory.

190 3.2 PATCH-WISE AND KEYWORD-AWARE ATTENTION

192 Building on the DiT-based text-to-image generation model FLUX (Labs, 2024), we propose Patch-
 193 Wise and Keyword-Aware Attention (PKA), a mechanism that decomposes the standard full-
 194 attention into a series of lightweight, specialized attentions. Our method operates on a sequence
 195 of tokens comprising text (T), the noisy image (X), the spatial condition (SP), and the subject con-
 196 dition (SJ). As illustrated in Figure 4(b), we fundamentally redesign the attention structure to reduce
 197 computational overhead. A key design principle is that condition tokens (SP and SJ) only perform
 198 self-attention within their respective conditions. This structural choice enables a highly efficient
 199 Condition Cache mechanism, as shown in Figure 4(a). The Key and Value projections for all con-
 200 dition tokens are computed only once in the first denoising step and are then cached and reused for
 201 all subsequent steps. This eliminates redundant computations across the denoising trajectory. The
 202 noisy image tokens (X) selectively interact with the conditions via our proposed Position-Aligned
 203 Attention (PAA) and Keyword-Scope Attention (KSA) modules, while maintaining full attention
 204 with text (T).

205 3.2.1 POSITION-ALIGNED ATTENTION

207 For the spatial condition, we introduce Position-Aligned Attention (PAA). The core intuition is that
 208 spatial layout primarily governs the structural arrangement of the image, and interactions between
 209 spatially distant patches are negligible. Therefore, it is both intuitive and efficient to compute atten-
 210 tion only between corresponding spatial positions.

$$212 \quad 213 \quad \text{PAA}([X; SP]) [i] = \text{Softmax} \left(\frac{Q_{X_i} K_{SP_i}^\top}{\sqrt{d}} \right) V_{SP_i} \quad (2)$$

215 As illustrated in Figure 4(c), we perform a one-to-one attention computation between the noisy
 216 image tokens and the spatial condition tokens at the same spatial coordinates. Specifically, we align

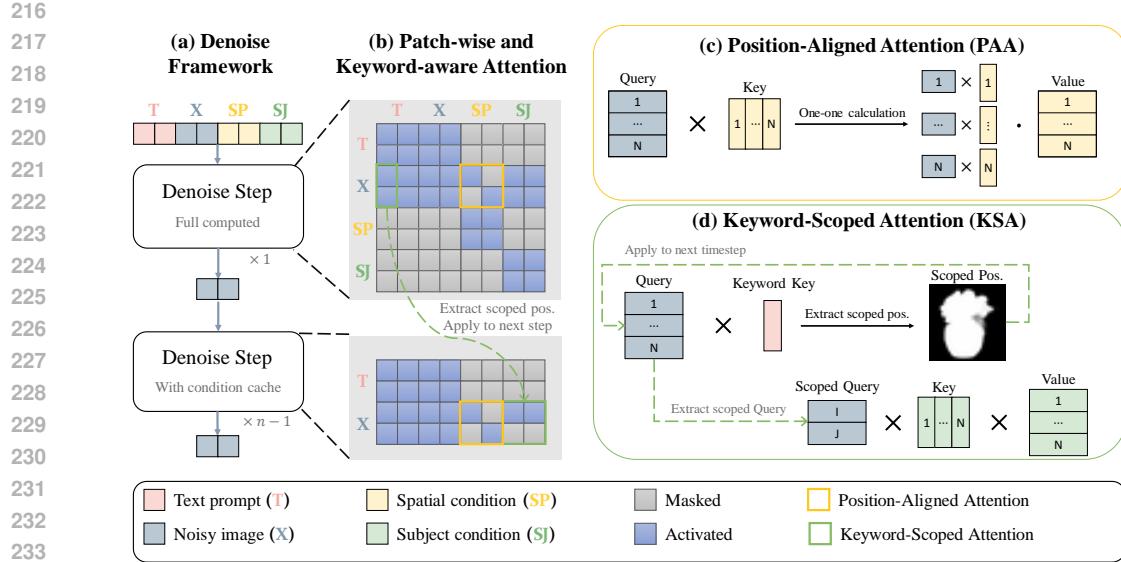


Figure 4: Overview of our method. (a) The denoise framework. Full computation occurs only at the first step; the Keys and Values of all condition tokens are then cached for subsequent steps. (b) Patch-Wise and Keyword-Aware Attention. Our decomposed attention mechanism, where conditions only perform self-attention (enabling the KV cache). The noisy image tokens (X) then interact with spatial (SP) and subject (SJ) conditions via PAA and KSA, respectively. (c) Position-Aligned Attention (PAA). PAA performs efficient one-to-one attention between the image (X) and spatial condition (SP) tokens at their aligned positions. (d) Keyword-Scoped Attention (KSA). KSA computes a relevance mask from text keywords in one step. This mask is then applied in subsequent steps to confine the attention computation between the image (X) and subject (SJ) to only the most relevant regions.

the Q , K , and V representations at each position and compute their attention independently, as formulated in Eq. 2. This design reduces the computational complexity from $\mathcal{O}(N^2)$ in the full attention case to $\mathcal{O}(N)$, where N is the number of tokens of the noisy image.

3.2.2 KEYWORD-SCOPED ATTENTION

For the subject condition, we propose Keyword-Scoped Attention (KSA). The key insight is that a subject’s visual appearance is typically confined to a localized area within the generated image. Therefore, a global attention pass that computes interactions between the subject and all image tokens is inefficient and redundant.

To address this, KSA leverages temporal consistency (Zhou et al., 2025) in a two-step process, as illustrated in Figure 4(d). The first step, performed at timestep t , is to generate a binary mask M_t that efficiently locates the subject. This is achieved by computing a lightweight attention map between the image queries Q_X^t and the keys from a small set of keyword tokens \mathbb{K} :

$$M^t = \text{Norm} \left(\sum_{i \in \mathbb{K}} \left(Q_X^t K_i^T \right) \right) \geq \epsilon \quad (3)$$

Here, the keyword set \mathbb{K} typically contains just 1 to 2 tokens, and ϵ is the mask threshold. Unless otherwise specified, we use $\epsilon = 0.2$ in the experiments.

According to the temporal consistency of the denoising process, we then reuse this mask M at timestep $t + 1$ to select a subset of image tokens $\hat{Q}_X^{t+1} = Q_X^{t+1} \circ M^t$. By filtering out irrelevant positions beforehand, the final KSA attention computation is confined only to the semantically

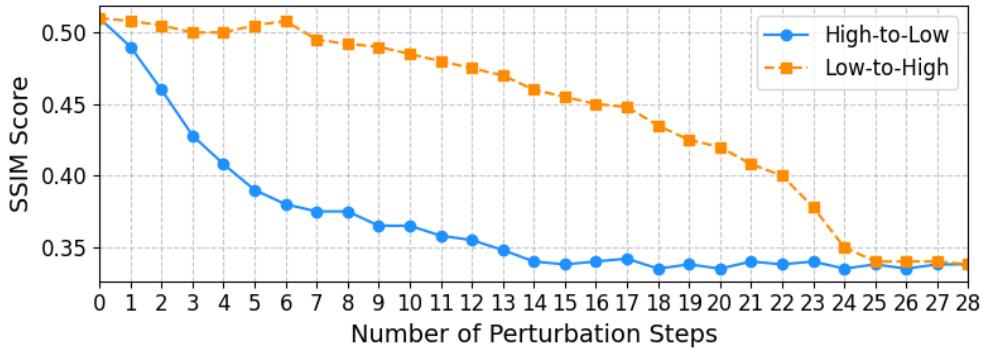
270 meaningful regions, drastically reducing computational overhead:
 271

272
$$KSA([X; SJ]) = \text{Softmax} \left(\frac{\hat{Q}_X^{t+1} K_{SJ}^{t+1}^\top}{\sqrt{d}} \right) V_{SJ}^{t+1} \quad (4)$$

 273
 274

275 3.3 EARLY-TIMESTEP SAMPLING
 276

277 Prevailing flow matching models typically adopt a timestep sampling strategy where t is drawn
 278 from a logit-normal distribution that $t \sim \text{Logit-N}(0, 1)$. However, our investigation reveals that
 279 this conventional approach is suboptimal for fine-tuning on multi-conditional control tasks. Our key
 280 empirical insight, as illustrated in Figure 5, is that the conditioning information is predominantly
 281 injected and learned during the initial phase of the denoising trajectory, i.e., higher t . To align the
 282 training process with this phenomenon, we propose a modified sampling strategy that intentionally
 283 prioritizes these critical early timesteps. We achieve this by skewing the sampling distribution
 284 towards the beginning of the process, drawing timesteps from a shifted logit-normal distribution:
 285 $t \sim \text{Logit-N}(\mu, \delta)$, where $\mu > 0, \delta > 1$. This targeted approach concentrates the model’s training
 286 on the temporal segments most crucial for effective conditional control.
 287



300 Figure 5: SSIM of Visual condition perturbation. “High-to-low” refers to applying perturbations
 301 sequentially from the early (high t) to late (low t) stages of the generation process, while “Low-to-
 302 high” is the reverse.
 303

304 4 EXPERIMENT
 305

306 4.1 SETUP
 307

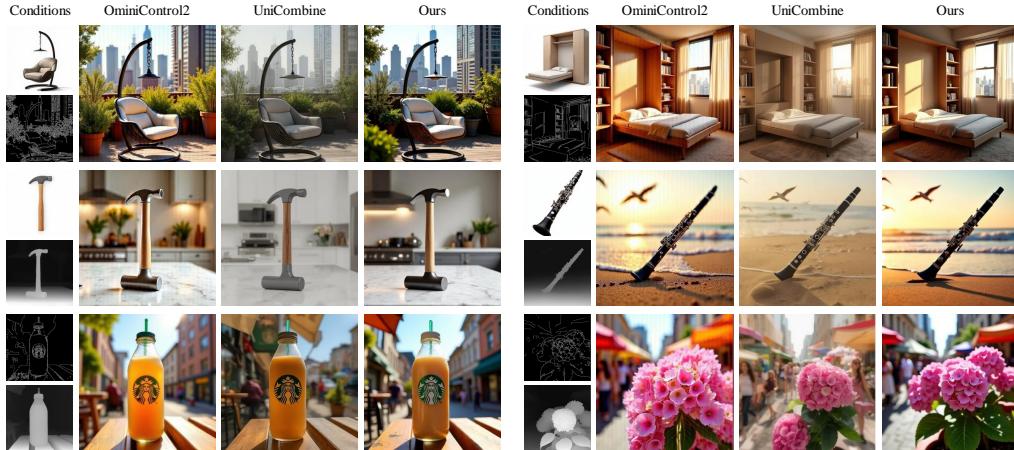
308 **Training Details.** We curate a subset from the Subject200K dataset (Tan et al., 2024), ensuring
 309 each image caption contains a descriptive keyword. This subset is then partitioned into training
 310 and testing sets. To ensure a fair comparison, we fine-tune the FLUX.1 (Labs, 2024) model using
 311 LoRA (Hu et al., 2022), which is trained for 20,000 iterations using the Prodigy (Mishchenko &
 312 Defazio, 2024) optimizer with a batch size of 1 and a gradient accumulation step of 4.
 313

314 **Evaluation Details.** We employ OminiControl2 (Tan et al., 2025) and UniCombine (Wang et al.,
 315 2025) as baselines for our comparative analysis. Efficiency metrics, including inference latency and
 316 condition overhead, are measured on a single NVIDIA RTX 6000 Ada GPU. For evaluating generation
 317 quality, we define three multi-conditional tasks: Subject-Canny-to-Image, Subject-Depth-to-
 318 Image, and Canny-Depth-to-Image.
 319

320 **Metrics.** To evaluate subject consistency, we calculate the CLIP-I (Radford et al., 2021) and DI-
 321 NOv2 (Oquab et al., 2024) scores between generated images and ground-truth images. To measure
 322 controllability, we compute the F1 Score for edge conditions and the MSE score for depth conditions
 323

324 between maps extracted from the generated images and the original conditional inputs. For assessing
 325 generative quality, we compute FID (Heusel et al., 2017) and SSIM (Wang et al., 2004) between
 326 the generated and ground-truth image sets. Additionally, we adopt the CLIP-T (Radford et al., 2021)
 327 score to estimate the text consistency between the generated images and the text prompts.
 328

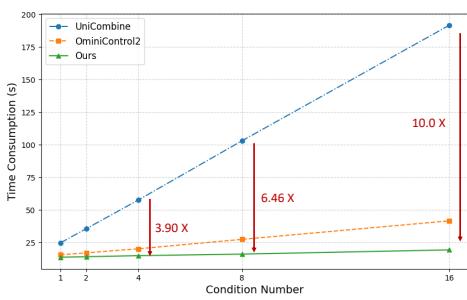
329 4.2 MAIN RESULTS



347
 348 Figure 6: Qualitative comparison for multi-conditional control. From top to bottom: Subject-Canny-
 349 to-Image, Subject-Depth-to-Image, and Canny-Depth-to-Image. Zoom in for better visualization.
 350

351 4.2.1 EFFICIENCY

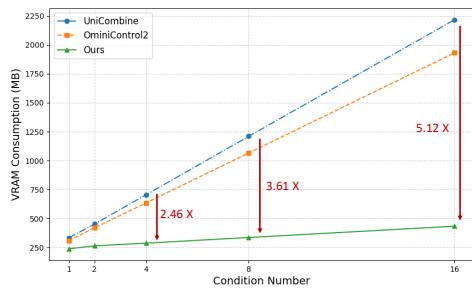
353 Figure 7 illustrates the trend of inference time as the number of conditions increases. The results
 354 reveal that our method achieves a significant speedup, ranging from $3.90 \times$ to $10.0 \times$, compared to the
 355 full-attention mechanism in UniCombine. Notably, our approach also surpasses the performance
 356 of OminiControl2. In terms of memory efficiency, Figure 8 shows that our attention mechanism
 357 reduces the VRAM consumption by a factor of $2.46 \times$ to $5.12 \times$ relative to full attention. For this
 358 analysis, each condition is represented by 1024 tokens. Collectively, these findings demonstrate that
 359 our method substantially reduces computational costs in terms of both time and memory.
 360



371 Figure 7: Time consumption comparison across
 372 different condition numbers.
 373

375 4.2.2 QUALITATIVE COMPARISON

376 We evaluated our method on a suite of three challenging multi-conditional generation tasks: Subject-
 377 Canny-to-Image, Subject-Depth-to-Image, and Canny-Depth-to-Image. Figure 6 provides a qualita-



371 Figure 8: VRAM consumption of attention
 372 mechanism comparison across different condi-
 373 tion numbers.
 374

tative comparison, showcasing the clear advantages of our approach over the baseline methods, OminiControl2 and UniCombine. While the performance gains are nuanced, our method consistently yields superior results. In direct comparison, images generated by OminiControl2 suffer from lower visual fidelity and noticeable artifacts. Meanwhile, UniCombine’s outputs, though structurally coherent, often exhibit a muted or desaturated color palette, lacking the chromatic richness produced by our method.

4.2.3 QUANTITATIVE EVALUATION

The quantitative results in Table 1 confirm the effectiveness of our approach. Our method significantly outperforms competing baselines in Generative Quality and Subject Consistency across all tasks. In terms of Controllability, it is highly competitive, achieving the best results on most tasks, with the minor exception of a narrow margin on the Subject-Canny task. Furthermore, our model’s Text Fidelity is comparable to the leading baseline, trailing by a perceptually negligible difference.

Table 1: Comparison of different methods across various tasks and metrics. The bold represents the optimal result.

Task	Method	Quality		Controllability		Consistency		Fidelity
		FID↓	SSIM↑	F1↑	MSE↓	CLIP-I↑	DINOv2↑	
Subject Canny	OminiControl2	72.03	0.406	0.192	-	0.878	0.867	0.327
	UniCombine	61.03	0.493	0.551	-	0.912	0.901	0.352
	Ours	52.99	0.553	0.414	-	0.945	0.926	0.349
Subject Depth	OminiControl2	80.20	0.391	-	366	0.867	0.838	0.325
	UniCombine	70.22	0.454	-	312	0.911	0.879	0.350
	Ours	62.08	0.515	-	160	0.935	0.904	0.348
Canny Depth	OminiControl2	71.87	0.475	0.194	303	-	-	0.342
	UniCombine	67.40	0.508	0.369	250	-	-	0.354
	Ours	53.01	0.613	0.411	114	-	-	0.353

4.3 ABLATION STUDY

4.3.1 EFFECT OF POSITION-ALIGNED ATTENTION

To evaluate our Position-Aligned Attention (PAA), we compare it against two baselines: full attention (W/o PAA), and Sliding Window Attention (SWA) (Pan et al., 2023) with various window sizes. While both methods produce high-fidelity images that adhere to the spatial conditions, as shown in Figure 9, our PAA architecture is demonstrably more efficient. PAA operates at a latency of just 13.63s and consumes only 237MB of VRAM, outperforming even the most efficient SWA (14.00s and 276MB). This confirms PAA delivers high-quality spatial control at substantially lower computational cost.

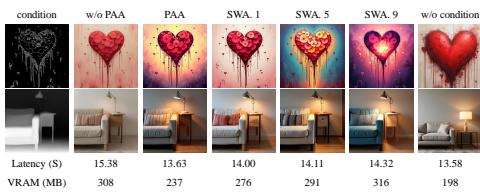


Figure 9: Ablation study on the PAA module. Zoom in for better visualization.

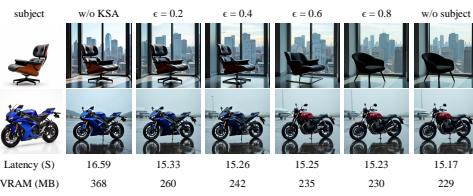


Figure 10: Ablation study on the KSA mask threshold ϵ . Zoom in for better visualization.

4.3.2 EFFECT OF KEYWORD-SCOPED ATTENTION

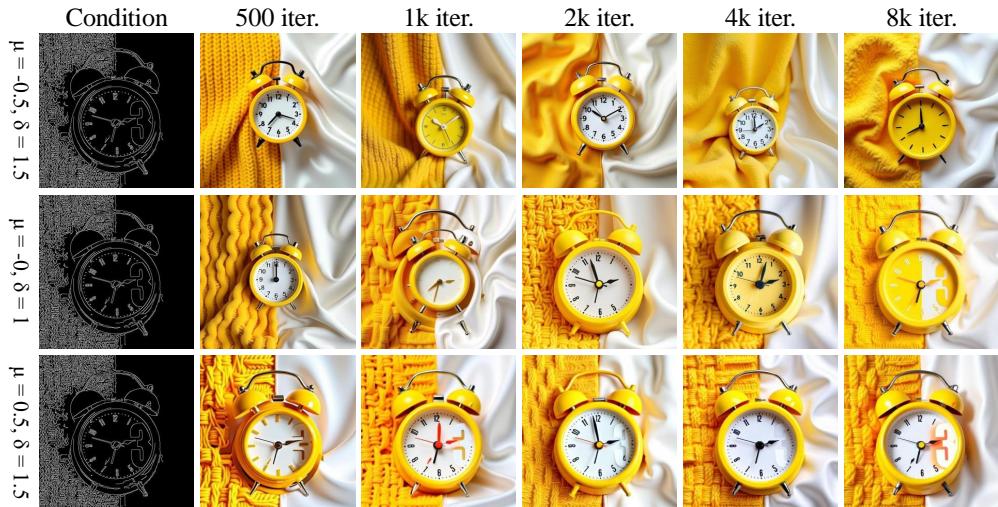
Our Keyword-Scoped Attention (KSA) module provides powerful and tunable control over both computational efficiency and subject fidelity. The impact of its mask threshold ϵ serves as a clear

432 demonstration of this capability. In Figure 10, at the baseline setting (w/o KSA, equivalent to $\epsilon=0$),
 433 the model ensures maximum subject fidelity but at a significant computational cost of 16.59s in
 434 latency and 368MB of VRAM consumption.

435 As the threshold is increased to 0.4, KSA strategically prunes the attention map to yield substantial
 436 efficiency gains, reducing latency and VRAM to just 15.26s and 242MB, respectively. Notably,
 437 even at this more aggressive setting, the generated image remains highly faithful to the reference.
 438 The differences are confined to subtle variations in fine details, such as the rendering of the chair’s
 439 legs and the motorcycle’s windshield, showcasing a graceful trade-off rather than an abrupt drop in
 440 quality. This highlights the robustness of KSA to its threshold; it is not a sensitive hyperparameter
 441 but an intuitive control that allows users to freely balance computational savings with the precise
 442 level of subject fidelity their application requires.

443 4.3.3 EFFECT OF EARLY-TIMESTEP SAMPLING

444 Figure 11 visually demonstrates the effectiveness of our early-timestep sampling strategy. Prioritizing
 445 early timesteps (a positive μ) yields markedly superior outcomes for visual condition fine-tuning
 446 compared to the standard ($\mu = 0$) or late-biased (a negative μ) approaches. Our proposed early-
 447 timestep sampling not only accelerates the convergence of the fine-tuning process but also leads to
 448 a final model with enhanced control fidelity.



470 Figure 11: Comparison of visual conditional generation results across different μ and δ .
 471

472 5 CONCLUSION

473 In this paper, we addressed the computational inefficiency of multi-condition Diffusion Trans-
 474 formers by proposing Patch-wise and Keyword-Aware Attention (PKA), a novel mechanism that de-
 475 composes full attention into two efficient modules: Position-Aligned Attention (PAA) for spatial
 476 conditions and Keyword-Scoped Attention (KSA) for subject-driven ones. Our extensive ex-
 477 periments validate this approach, demonstrating a significant up to $10.0\times$ inference speedup and a
 478 $5.12\times$ reduction in VRAM consumption for the attention module, all while maintaining or even en-
 479 hancing generative quality and controllability compared to state-of-the-art methods. Looking ahead,
 480 the significant efficiency gains of multi-condition control of PKA make it a promising foundation
 481 for tackling more complex generative tasks. A particularly exciting future direction is extending
 482 our framework to video generation, where PKA’s principles could be applied to enforce temporal
 483 consistency across frames at a manageable computational cost. Ultimately, PKA offers a scalable
 484 and practical solution that paves the way for the next generation of complex and resource-friendly
 485 AI applications.

486 REFERENCES
487

488 Zhiyuan Chen, Keyi Li, Yifan Jia, Le Ye, and Yufei Ma. Accelerating diffusion transformer via
489 increment-calibrated caching with channel-aware singular value decomposition. In *Proceedings*
490 *of the Computer Vision and Pattern Recognition Conference*, pp. 18011–18020, 2025.

491 Zicheng Duan, Yuxuan Ding, Chenhui Gou, Ziqin Zhou, Ethan Smith, and Lingqiao Liu. Ezigen:
492 Enhancing zero-shot personalized image generation with precise subject encoding and decoupled
493 guidance. *arXiv preprint arXiv:2409.08091*, 2024.

494 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
495 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
496 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
497 2024.

498 Gongfan Fang, Kunjun Li, Xinyin Ma, and Xinchao Wang. Tinyfusion: Diffusion transformers
499 learned shallow. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp.
500 18144–18154, 2025.

501 Junjie He, Yuxiang Tuo, Binghui Chen, Chongyang Zhong, Yifeng Geng, and Liefeng Bo. Anystory:
502 Towards unified single and multiple subject personalization in text-to-image generation, 2025.
503 URL <https://arxiv.org/abs/2501.09503>.

504 Qingdong He, Jinlong Peng, Pengcheng Xu, Boyuan Jiang, Xiaobin Hu, Donghao Luo, Yong Liu,
505 Yabiao Wang, Chengjie Wang, Xiangtai Li, and Jiangning Zhang. Dynamiccontrol: Adaptive
506 condition selection for improved text-to-image generation. *arXiv preprint arXiv:2412.03255*,
507 2024.

508 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
509 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in
510 neural information processing systems*, 30, 2017.

511 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
512 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International
513 Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=nZeVKeFYf9>.

514 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024.

515 Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei Yang, Jianfeng Gao, Chunyuan Li,
516 and Yong Jae Lee. Gligen: Open-set grounded text-to-image generation. In *Proceedings of the
517 IEEE/CVF conference on computer vision and pattern recognition*, pp. 22511–22521, 2023.

518 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
519 matching for generative modeling. In *The Eleventh International Conference on Learning
520 Representations*, 2023. URL <https://openreview.net/forum?id=PqvMRDCJT9t>.

521 Dong Liu, Jiayi Zhang, Yifan Li, Yanxuan Yu, Ben Lengerich, and Ying Nian Wu. Fastcache: Fast
522 caching for diffusion transformer through learnable linear approximation, 2025. URL <https://arxiv.org/abs/2505.20353>.

523 Xinyin Ma, Gongfan Fang, Michael Bi Mi, and Xinchao Wang. Learning-to-cache: Accelerat-
524 ing diffusion transformer via layer caching. In *The Thirty-eighth Annual Conference on Neu-
525 ral Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=ZupoMzMNro>.

526 Konstantin Mishchenko and Aaron Defazio. Prodigy: An expeditiously adaptive parameter-free
527 learner. In *Forty-first International Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=JJpOssn0uP>.

528 Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, and Ying Shan.
529 T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion
530 models. In *Proceedings of the AAAI conference on artificial intelligence*, volume 38, pp. 4296–
531 4304, 2024.

540 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khali-
 541 dov, Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, Mido Assran,
 542 Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra,
 543 Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Herve Jegou, Julien Mairal, Patrick
 544 Labatut, Armand Joulin, and Piotr Bojanowski. DINOv2: Learning robust visual features with-
 545 out supervision. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL
 546 <https://openreview.net/forum?id=a68SUt6zFt>. Featured Certification.

547 Xuran Pan, Tianzhu Ye, Zhuofan Xia, Shiji Song, and Gao Huang. Slide-transformer: Hierarchi-
 548 cal vision transformer with local self-attention. In *Proceedings of the IEEE/CVF conference on*
 549 *computer vision and pattern recognition*, pp. 2082–2091, 2023.

550 Yanjie Pan, Qingdong He, Zhengkai Jiang, Pengcheng Xu, Chaoyi Wang, Jinlong Peng, Haoxuan
 551 Wang, Yun Cao, Zhenye Gan, Mingmin Chi, et al. Pixelponder: Dynamic patch adaptation for
 552 enhanced multi-conditional text-to-image generation. *arXiv preprint arXiv:2503.06684*, 2025.

553 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 554 *the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

555 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 556 Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image
 557 synthesis. In *The Twelfth International Conference on Learning Representations*, 2024. URL
 558 <https://openreview.net/forum?id=di52zR8xgf>.

559 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 560 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 561 models from natural language supervision. In *International conference on machine learning*, pp.
 562 8748–8763. PMLR, 2021.

563 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 564 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 565 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

566 Yanan Sun, Yuchen Liu, Yinhao Tang, Wenjie Pei, and Kai Chen. Anycontrol: create your artwork
 567 with versatile control on text-to-image generation. In *European Conference on Computer Vision*,
 568 pp. 92–109. Springer, 2024.

569 Zhenxiong Tan, Songhua Liu, Xingyi Yang, Qiaochu Xue, and Xinchao Wang. Ominicontrol: Min-
 570 imal and universal control for diffusion transformer. *arXiv preprint arXiv:2411.15098*, 2024.

571 Zhenxiong Tan, Qiaochu Xue, Xingyi Yang, Songhua Liu, and Xinchao Wang. Ominicontrol2:
 572 Efficient conditioning for diffusion transformers. *arXiv preprint arXiv:2503.08280*, 2025.

573 Haoxuan Wang, Jinlong Peng, Qingdong He, Hao Yang, Ying Jin, Jiafu Wu, Xiaobin Hu, Yanjie
 574 Pan, Zhenye Gan, Mingmin Chi, et al. Unicombine: Unified multi-conditional combination with
 575 diffusion transformer. *arXiv preprint arXiv:2503.09277*, 2025.

576 Qixun Wang, Xu Bai, Haofan Wang, Zekui Qin, and Anthony Chen. Instantid: Zero-shot identity-
 577 preserving generation in seconds. *arXiv preprint arXiv:2401.07519*, 2024.

578 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
 579 from error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–
 580 612, 2004.

581 Xiaomeng Yang, Lei Lu, Qihui Fan, Changdi Yang, Juyi Lin, Yanzhi Wang, Xuan Zhang, and
 582 Shangqian Gao. Alter: All-in-one layer pruning and temporal expert routing for efficient diffusion
 583 generation. *arXiv preprint arXiv:2505.21817*, 2025.

584 Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt
 585 adapter for text-to-image diffusion models. 2023.

586 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 587 diffusion models, 2023.

594 Chao Zhou, Tianyi Wei, and Nenghai Yu. Scale your instructions: Enhance the instruction-following
595 fidelity of unified image generation model by self-adaptive attention scaling, 2025. URL <https://arxiv.org/abs/2507.16240>.

596

597 Haowei Zhu, Dehua Tang, Ji Liu, Mingjie Lu, Jintu Zheng, Jinzhang Peng, Dong Li, Yu Wang, Fan
598 Jiang, Lu Tian, et al. Dip-go: A diffusion pruner via few-step gradient optimization. *Advances in*
599 *Neural Information Processing Systems*, 37:92581–92604, 2024.

600

601 Chang Zou, Evelyn Zhang, Runlin Guo, Haohang Xu, Conghui He, Xuming Hu, and Linfeng Zhang.
602 Accelerating diffusion transformers with dual feature caching, 2024. URL <https://arxiv.org/abs/2412.18911>.

603

604 Chang Zou, Xuyang Liu, Ting Liu, Siteng Huang, and Linfeng Zhang. Accelerating diffusion trans-
605 formers with token-wise feature caching. In *The Thirteenth International Conference on Learning*
606 *Representations*, 2025. URL <https://openreview.net/forum?id=yYZbZGo4ei>.

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648
649

A APPENDICES

650
651

A.1 USAGE OF LARGE LANGUAGE MODELS

652
653
654
655
656
657

In adherence to the ICLR 2026 disclosure policy, we report the use of a Large Language Model (LLM) during the preparation of this manuscript. The role of the LLM was strictly limited to that of a writing aid for polishing and proofreading. The authors first drafted the entire content, including the methodology, results, and conclusions. Subsequently, specific sections of the pre-written text were processed by the LLM to identify and suggest corrections for grammatical errors, spelling mistakes, and awkward phrasing.

658
659
660
661
662
663

All suggestions generated by the LLM were critically reviewed by the authors, who retained full control and made the final decision on whether to accept, modify, or reject the proposed changes. The LLM did not contribute in any way to the core scientific ideas, experimental design, data analysis, or the formulation of conclusions presented in this work. The intellectual contribution, conceptual framework, and all scientific claims are entirely the work of the human authors, who bear full responsibility for the content of this paper.

664

A.2 VISUAL CONDITION PERTURBATION

665
666
667
668
669
670

To investigate the temporal influence of the visual condition, we conduct a perturbation analysis on Ominicontrol, where the condition is removed at different timesteps during the denoising process. We compare two sequences: a ‘high-to-low’ order, where perturbation starts from the early, high-noise timesteps (high t), and a ‘low-to-high’ order, which does the reverse.

671
672
673
674
675
676
677
678

Figure 12 offers a stark qualitative comparison of these two scenarios. In the ‘high-to-low’ sequence, the generated images rapidly lose coherence with the visual condition. The core structure and key subject features begin to diverge significantly after only a few perturbed steps. In stark contrast, when applying perturbations in the ‘low-to-high’ order, the outputs remain remarkably faithful to the condition for a much longer duration, with major deviations only appearing near the end of the process. This visual evidence strongly supports our conclusion: the visual condition exerts its most critical influence and establishes the foundational structure of the image during the initial phase of the generation process.

679
680

A.3 CONVERGENCE OF EARLY-TIMESTEP SAMPLING

681
682
683
684
685
686

Prevailing flow matching models typically adopt a standard logit-normal timestep sampling strategy, where the timestep t is drawn from a $\text{Logit-}\mathcal{N}(0, 1)$ distribution to ensure the model trains across the full generation trajectory. Building on our insight that visual conditions are most influential early in this process, we propose an early-timestep sampling strategy. We modify the sampling distribution to a shifted logit-normal, $t \sim \text{Logit-}\mathcal{N}(\mu, \delta)$, where setting $\mu > 0$ intentionally prioritizes these critical early phases.

687
688
689
690
691
692
693

Figure 13 demonstrates the clear advantage of this approach by plotting the SSIM score during training for different sampling strategies. Our proposed strategy with $\mu = 0.5$ and $\delta = 1.5$ (the orange line) achieves a significantly faster convergence rate and reaches a higher final SSIM score compared to both the standard strategy where $\mu = 0$ (blue line) and a strategy biased towards later timesteps where $\mu = -0.5$ (green line). This confirms that our targeted sampling strategy not only accelerates the training process but also leads to a better-converged model with superior final performance.

694
695

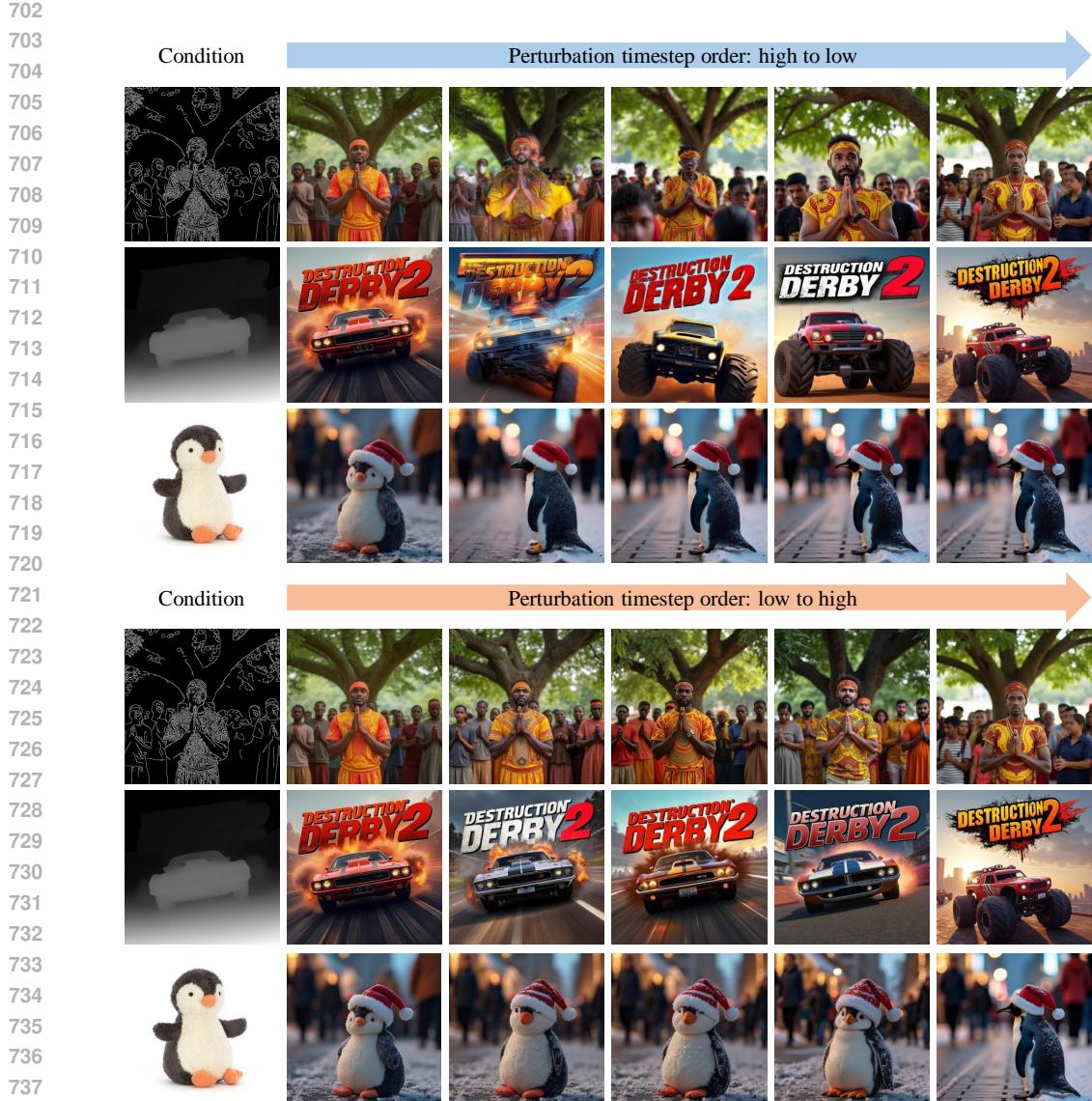
A.4 SCALABILITY WITH INCREASING CONDITIONS

696
697
698
699
700

Figure 14 showcases successful generations using two simultaneous conditions, such as combining a subject with a sketch. The complexity is increased in Figure 15, which presents high-quality results from three conditions, and is further demonstrated in Figure 16, which shows robust generation under four simultaneous conditions.

701

Across these examples, our method consistently and harmoniously synthesizes the multiple constraints, maintaining high visual quality and strong fidelity to each input condition. This highlights



740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Figure 12: Qualitative results of visual condition perturbation. Left to right: visual condition, 0 (no perturbation), 7, 14, 21 perturbation steps, and 28 steps (no visual condition). Zoom in for better visualization.

the scalability and effectiveness of our approach in handling complex, multi-conditional generation scenarios.

A.5 MORE QUALITATIVE COMPARISON WITH BASELINES

Figure 17 displays a qualitative comparison of our method against the OminiControl2 and UniCombine baselines across a variety of challenging multi-conditional tasks. The images generated by OminiControl2 often suffer from low visual quality and contain noticeable artifacts. While UniCombine’s results are more structurally coherent, they frequently exhibit a muted or desaturated color palette and demonstrate weaker adherence to the provided visual conditions. In contrast, our proposed method consistently produces high-quality images with rich, vibrant colors. More importantly, our approach shows superior fidelity, accurately rendering both the specified subject and the detailed spatial constraints from the conditions.

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

Figure 13: SSIM across the training iteration. our early-timestep sampling ($\mu = 0.5, \delta = 1.5$) achieves better convergence.

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

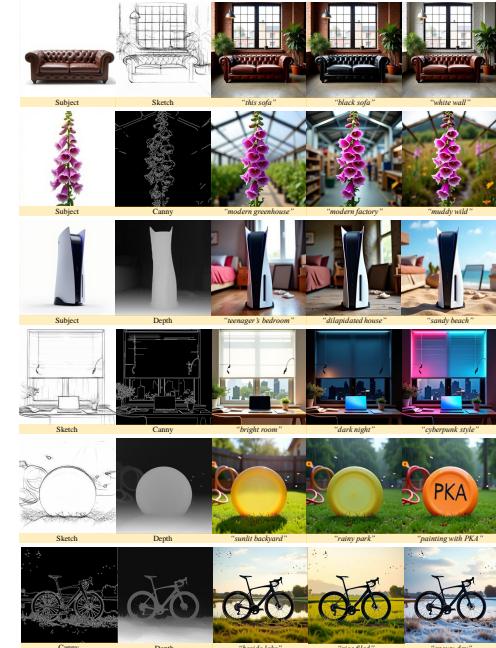


Figure 14: The images generated by 2 conditions. Zoom in for better visualization.

807

808

809

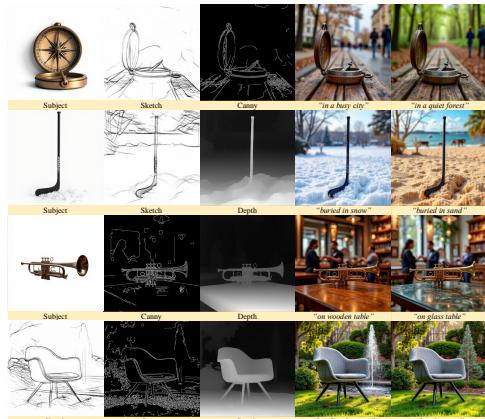


Figure 15: The images generated by 3 conditions. Zoom in for better visualization.

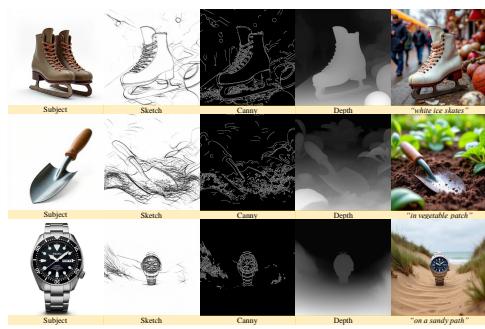
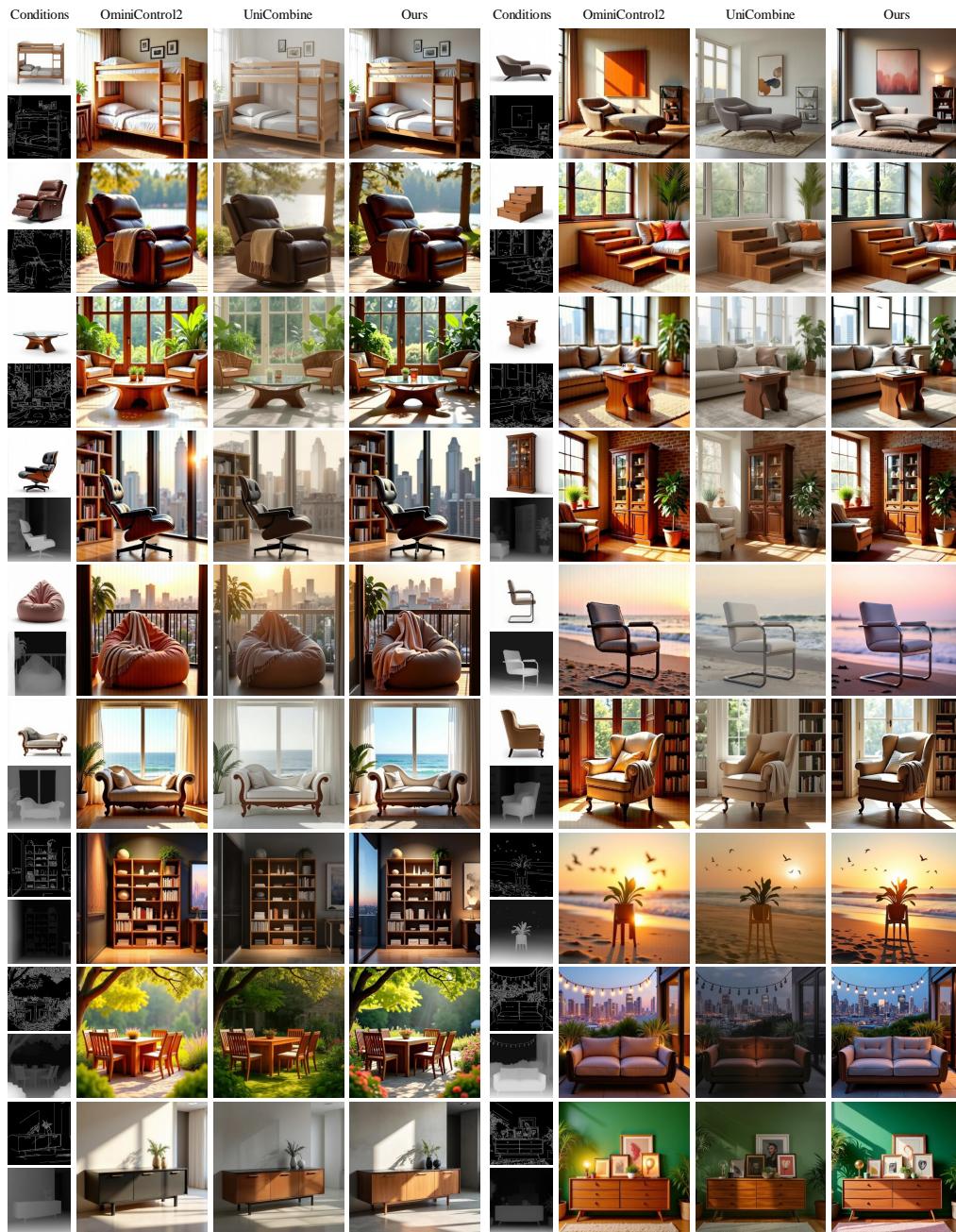


Figure 16: The images generated by 4 conditions. Zoom in for better visualization.

810
811
812
813
814
815858 Figure 17: Visual comparison on Subject-Canny-to-Image, Subject-Depth-to-Image, and Canny-
859 Depth-to-Image. Zoom in for better visualization.860
861
862
863