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Abstract— Navigating unfamiliar environments presents sig-
nificant challenges for blind and low-vision (BLV) individuals.
In this work, we construct a dataset of images and goals across
different scenarios such as kitchens or outdoor navigation. We
then investigate how grounded instruction generation methods
can provide contextually-relevant navigational guidance to users
in these instances. Through a study involving sighted users, we
demonstrate that large pretrained language models can produce
correct and useful instructions perceived as beneficial for BLV
users. We also conduct a survey and interview with 4 BLV
users and observe useful insights on preferences for different
instructions based on the scenario.

I. INTRODUCTION AND BACKGROUND

Nearly 253 million people struggle with visual impairment
worldwide, where 36 million of these individuals are blind
[1]. Dealing with the complexities of daily life poses sig-
nificant challenges for these individuals, particularly when
exploring unfamiliar environments. Traditional aids such
as canes and guide dogs are vital in facilitating mobility
and independence. However, these tools have limitations in
conveying the rich visual information that sighted individuals
rely on for navigation and object recognition.

There has been recent growth on using vision-and-
language models as visual assistants that can interactively
communicate with a user to provide feedback [2]. Addition-
ally, after interviews with blind and low vision individuals,
prior work has noted a critical issue with the use of guide
dogs: the communication from the user to the dog is uni-
modal. However, there may be questions users want to ask,
such as “Is it safe to cross the street?” [3]. They posit that any
robotic guide dog should handle complex interaction with a
user to answer these types of questions. As the companies
and the research community begin to integrate large language
models into these robot systems, it is important to understand
the role of a language model’s contextual understanding
capabilities in providing personalized, informative feedback
tailored to a user’s specific goals and surroundings. In this
work, we focus on navigation assistance and investigate the
usefulness and contextual relevance of generated instructions
for navigational assistance using large language models
(LLMs) and vision-and-language models (VLMs).

Existing work in the field of blind and low vision (BLV)
navigation assistance has primarily focused on lower-level
navigation tasks such as obstacle avoidance [4]–[8]. Many
existing systems gather different kinds of information from
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Fig. 1: We formulate the problem of providing contextually-
relevant navigational instructions to blind and low vision
(BLV) people as a grounded instruction generation task,
which we then evaluate with sighted and BLV participants
in a user study.

the environment, using basic object detection [9] often com-
bined with auditory output [10] based on templates [11] to
generate descriptions or simply list objects [12]. While these
approaches offer valuable assistance, they often overlook the
importance of context and relevance in delivering instructions
to BLV users [10], [13].

Descriptions are subjective and depend on the user’s con-
text [10], [15], and overly generic or unnecessary information
is often not preferred by users [13], [16], [17]. Noting these
flaws with prior work and considering recent work on the
importance of context for BLV participants [10], [13], we
propose to augment such systems with LLMs and VLMs
and understand whether these methods are able to generate
contextually-relevant instructions.

II. PROBLEM SETTING

We want to generate instructions that are useful and goal-
aware for BLV users, as shown in Figure 1. We frame this
problem as a grounded instruction generation task, where a
model S(w0, ...,wN |g,o) uses an egocentric image to generate
an instruction w = [w0, ...,wN ] that describes a route for an
BLV user to reach a goal g given an image observation o. The
goal g is semantic task context from the user like “How do
I get to the building’s entrance?” The amount of objects and
semantic information that can be conveyed to a user based
on an image is often innumerable; however, only a subset
of this information is useful to the user to accomplish their
goal. In this work, we are interested in how the environment
and goal impact the usefulness of the generated instruction.

VizWiz [14] is a collection of photographs captured by
BLV participants and serves as a basis for formulating tasks
related to object detection and visual question-answering.



Fig. 2: Left: We select 48 images from indoor and outdoor environments in VizWiz [14] and annotate them with navigation
goals. Middle: We design three instruction generation methods, described further in Section III. Right: These generated
instructions are then evaluated in a user study with sighted and BLV participants.

Since VizWiz does not consider navigation instruction
generation, we created our own dataset by selecting 48
images from VizWiz that were relevant to navigation from
four different environments: offices, kitchens, general indoor,
and general outdoor settings. We then assigned each image a
goal, such as “Where is the TV remote”, which in navigation
tasks, may not be visible in a single frame due to the object’s
size or placement.

In our setting, we are considering only a single image, but
in practical applications, the image alone may not contain the
answer to the goal. For example, in the case of ”Where is
the TV remote”, the remote may not be visible and may
require providing potential hints. To capture these kinds of
problems, we construct a split such that 20% of our dataset
are Hard examples which require a model to reason more
extensively on how to provide instructions for the goal. The
complementary split is referred to as the Easy split. Each
of the images was annotated by sighted volunteers with
instructions that would solve the goal.

III. GROUNDED INSTRUCTION GENERATION

We compare methods for generating navigation instruc-
tions from single images paired with semantic task context.

Human instructions. As a point of reference for machine-
generated instructions, we sent selected image-goal pairs to
four human annotators tasked with generating instructions
for BLV users.

Template Instructions. Past work [11] extracted the ob-
ject of interest from the user’s goal query. For example, for
the sentence “where is the textbook”, this baseline extracts
the object “textbook”, then detects where the object is using
the OWL-ViT open-vocabulary object detector [18]. This
method then localizes the object into nine predefined areas
(top left, center, bottom right, etc.). If a user asks about the
location of a microwave, the system can concisely respond:
“The microwave is at the top left.”

LLM-generated Instructions. Text-only LLMs have
good commonsense reasoning abilities given text input;

however, unlike VLMs, they cannot take images as input. In
order to generate grounded navigation instructions, we take a
Socratic model [19] approach, where we provide the outputs
of various off-the-shelf models as additional information for
the LLM. We use off-the-shelf object detection [18], depth
estimation [20], image captioning, and optical character
recognition. These inputs are formatted into a prompt with
the goal and a few in-context examples. We use GPT4 [21] as
the LLM and get contextually relevant, grounded instructions
as the output.

VLM-generated Instructions. VLMs are able to take
images as input, so rather than a Socratic models approach,
we use GPT-4 Vision [21] with the image as an input and
prompt the model to generate an instruction.

IV. STUDY DESIGN

We conducted two IRB-approved human subject studies
with sighted and BLV participants.

A. Sighted User Study

Sighted participants were asked to take a survey to rate
instructions given an image and a goal. They rated the
instructions in terms of Correctness and Usefulness on a
1 to 7 Likert scale based on the following definition. We
define Correctness as how accurate the instruction is with
respect to directions and objects in the image. This metric
also verifies the instruction generation methods generate
accurate instructions. We define Usefulness as how useful
the instruction would be to a BLV user to help achieve their
goal, considering its relevance and safety. We recruited eight
sighted participants, who each viewed six images across four
methods.

B. BLV User Study

Due to the low-incidence of the BLV population, we
recruited three blind and one low-vision participant. Similar
to the sighted user study, each image is rated by a BLV
participant for Usefulness. We do not collect Correctness
ratings as it depends on the level of visual impairment and



how they perceive the scene. After the survey, we conducted
a semi-structured interview. Survey questions were aimed
to elicit their thoughts on navigating different environments,
including social spaces, and their thoughts about the kinds
of methods they experienced.

V. RESULTS

We present our sighted and BLV user study results.

A. Sighted Survey Results

With our sighted user survey, we find that users find
the generated instructions correct and useful, which shows
promise for these methods to be tested with BLV users.

Generated instructions are similarly useful to human
annotated instructions. Table I shows the aggregated cor-
rectness and usefulness scores given by sighted users across
methods. Users found human-generated instructions more
accurate than LLM- and VLM-generated instructions. In
contrast, the difference between usefulness ratings between
human, LLM-, and VLM-generated instructions was much
smaller. The difference in usefulness ratings between the
VLM and LLM could be explained by harder-to-answer
instances benefiting from the input of the entire image, while
easy-to-answer instances can be solved more directly with
object detectors, as supported by Table II.

Users find different amounts of usefulness of instruc-
tions depending on the environment. Figure 3 shows box
plots of the usefulness scores of sighted users across different
environments. We find that the VLM and human-generated
instructions have similar usefulness score distributions com-
pared to the LLM-generated and templated instructions. We
also observe that instructions generated for office and general
indoor environments are rated more useful than kitchen
and outdoor instructions. This trend could be because the
instruction generation methods have to reason about more
complex scenes, or users having different expectations in
these scenes.

Correctness Usefulness

Templated 3.85±1.95 1.96±1.05
LLM-based 4.73±1.61 4.24±1.38
VLM-based 4.75±1.78 4.52±1.70
Human 5.46±1.46 4.73±1.83

TABLE I: Sighted user ratings for Correctness and Use-
fulness. Human-annotated instructions are more accurate
compared to the other methods, but the LLM- and VLM-
generated instructions were rated similarly useful.

Easy Split Hard Split

Templated 2.11±1.09 1.40±0.70
LLM-based 4.39±1.75 5.00±1.49
VLM-based 4.20±1.30 4.40±1.71
Human 4.58±1.80 5.30±1.95

TABLE II: Usefulness scores for the Easy and Hard splits
from the 48 image-goal pairs. Interestingly, the Easy split
was rated lower than the Hard split.
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Method
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Fig. 3: Sighted participant Usefulness ratings over the
generated instructions for 48 image-goal pairs across four
methods separated by environment. VLM-based instructions
had similar ratings across environments to humans. The
LLM-based model was rated slightly less useful.

B. BLV Survey Results

The sighted user results indicate that the generated instruc-
tions are correct and show trends about the role of context.
Though these results provide insights about the generated
instructions, we focus on the quantitative and qualitative
results from our BLV user study.

BLV participants rate methods as less useful compared
to sighted participants. As shown in Table III, we find the
LLM- and VLM-generated instructions were rated slightly
lower to the human. Unsurprisingly, the template instructions
were consistently not useful. Due to our small size of our
BLV user study, we will focus primarily on the qualitative
semi-structured interview in the next section.

C. BLV Qualitative Interview

Different environments change preferences on the
kinds of instructions. Participants indicated that in confined
spaces such as a kitchen, they have a preference for less
broad instructions, whereas outdoor, open spaces can be
more broad (e.g. “walk forward until you reach the corner”).
The low-vision participant noted that lighting and audio cues
could provide a means for useful guidance.

Generative methods rely on visual cues. Participants
noted that some responses relied on visual cues such as “it’s
near the big sign” which is not useful. Their suggestion was
to make the system more specific and to focus on integrating
more spatial awareness as those instructions are most useful.

Participants preferred specific directions (e.g. “take a few
steps to your right”, “10 degrees to the right”) over vague
ones (e.g. “the table is in the center”). However, they
noted that specificity is not always useful. For example,
knowing how many objects are on a table might be too much
information to be given at once and could be asked as a
separate question.

What makes a useful navigation assistant? Several
participants indicated that an ideal system would tell them
where things are laid out in relation to other things that they



Method Usefulness

Templated 2.00±1.29
LLM-based 3.97±1.78
VLM-based 4.45±1.73
Human 4.03±1.80

TABLE III: Usefulness ratings from our BLV participants.
The VLM-based instructions were rated as more useful than
all of instructions.

can reason about. For example, “the sponge is in the bottom
right of the basin” is helpful, but “the bench is to the right
of the sign” is not. In contrast to prior work in this space
and systems like Google Maps, participants noted frustration
with instructions that stated a precise number of feet to walk,
especially since these systems cannot tell the user when they
have reached that distance. Instructions like “walk until you
reach the corner” would resolve this issue. Thus, leveraging
the relationship between the goals with one’s surroundings
can be helpful. One participant found the LM-generated
instructions to be wordy or condescending, motivating inves-
tigations into preferences in how these models communicate
information.

VI. CONCLUSION, ETHICS, AND LIMITATIONS

LLM and VLM-based methods for grounded instruction
generation show great promise in integrating with assis-
tive technologies. However, a significant challenge associ-
ated with using these models is their tendency to produce
hallucinations or inaccurate generations. Poorly generated
instructions can lead to confusion and put users in potentially
hazardous situations.

We also recognize the reference instructions written by
sighted annotators may not be tailored to how a BLV user
may want to be given instructions, as the annotators were
not expertly trained to communicate with BLV users.

LLMs and VLMs are also susceptible to biases present
in their training data [22]. It’s important to ensure these
technologies are trained on diverse data sets that accurately
represent the variety of cultures and environments that may
be encountered so that these assistive technologies can serve
users in an equitable manner. By emphasizing the role of
context in the generation of instructions for BLV users, we
hope our work can initiate a community discussion on how to
handle the many possible scenarios a user could experience.
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