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ABSTRACT

High-content genetic perturbation experiments provide insights into biomolecular
pathways at unprecedented resolution, yet experimental and analysis costs pose
barriers to their widespread adoption. In-silico modeling of unseen perturbations
has the potential to alleviate this burden by leveraging prior knowledge to enable
more efficient exploration of the perturbation space. However, current knowledge-
graph approaches neglect the semantic richness of the relevant biology, beyond
simple adjacency graphs. To enable holistic modeling, we hypothesize that nat-
ural language is an appropriate medium for interrogating experimental outcomes
and representing biological relationships. We propose PERTURBQA as a set of
real-world tasks for benchmarking large language model (LLM) reasoning for
biological discovery. PERTURBQA is comprised of three tasks: prediction of dif-
ferential expression and change of direction for unseen perturbations, and gene set
enrichment. As a proof of concept, we present SUMMER (SUMMarize, retrievE,
and answeR), a simple LLM-based framework that matches or exceeds the current
state-of-the-art on this benchmark. We compare against graph and language-based
models on differential expression and direction of change tasks, finding that SUM-
MER performs best overall. Notably, SUMMER’s outputs are easily interpretable
by domain experts, aiding in understanding model limitations and contextualizing
experimental outcomes. Finally, SUMMER excels in gene set enrichment, surpass-
ing over-representation analysis baselines in most cases and effectively summa-
rizing clusters lacking a manual annotation.

1 INTRODUCTION

Large-scale high-content genetic perturbation experiments provide insight into the function of genes
and enable the verification of biological hypotheses at an unprecedented scale (Replogle et al., 2022;
Ramezani et al., 2023; Fay et al., 2023). A highly interpretable way of performing these experiments
is Perturb-seq where genes are manipulated either at the protein- or transcription-level and single-
cell gene-expression levels are measured in a pooled format (Dixit et al., 2016; Datlinger et al.,
2017; Replogle et al., 2022). Yet, when applied at genome-scale, single-cell sequencing poses a
significant cost burden and yields datasets of varying statistical power (Nadig et al., 2024). These
challenges motivate in-silico approaches for predicting cellular responses to unseen perturbations
to guide more efficient experimental design, and methods for automatically extracting high-level
insights from perturbation screens.

Current approaches for perturbation response prediction generalize to unseen perturbations by re-
lating them to those perturbations that have been seen, often via knowledge graphs (Roohani et al.,
2023). However, converting complex biology to structured graphs inevitably leads to loss of in-
formation, as textually-rich relationships between biological entities (e.g. genes) extracted from
the literature are reduced to adjacency matrices. Furthermore, these methods are trained to regress
the change in levels of genes upon perturbation: a task that is a precursor, but does not directly
translate to downstream analyses like differential gene expression (Love et al., 2014) and gene set
enrichment (Subramanian et al., 2005). Finally, most existing methods are black-box, revealing little
about the learned biology without post-hoc probing.

We posit that language is a natural medium for traversing the structured, biological knowledge rele-
vant to perturbation experiments. To test this hypothesis, we propose PERTURBQA, a set of biologi-
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Biological relationships

Genes / pathways

Relations to other genes / pathways:
- ABCE1 enables 4 iron, 4 sulfur cluster binding, 
ATP binding, ATP hydrolysis activity, CTPase 
activity, GTPase activity, [...]
- Based on evidence from experimental evidence 
in humans, ABCE1 may physically interact with 
EIF1AX, EIF3A, EIF3B, EIF3C, EIF3D, [...]
- In the mitochondrial matrix, ABCE1 enables 
Interferon alpha/beta signaling, ABCE1 binds 
RNASEL, inhibiting it, Interferon alpha [...]

Description of gene: 
ATP binding cassette 
subfamily E member 1 
Quaternary structure: 
(Microbial infection) 
Interacts with HIV-1 
proteins Vif and Gag
Function: [...]

C) PERTURB QA

Is a knockdown of ABCE1 in K562 cells 
likely to result in differential expression 
of GABARAP?

Differential expression

Is a knockdown of ABCE1 in K562 cells 
likely to result decrease or increase of 
GABARAP?

How are the following genes related, and 
why do they respond similarly to 
perturbation? CFLAR, VIM, CAPG, …

Direction of change

Gene set enrichment

B) BIOLOGICAL KNOWLEDGE GRAPHSA) PERTURBATION EXPERIMENTS

Genes

Up
Down
N/A

Gene sets

Perturbations

Real-valued gene expression data

Differential gene 
expression analysis

Control

Gene set 
enrichment

Interpretation via discrete outcomes
2 sets of annotations

5 single-cell transcriptomics datasets

Figure 1: Overview of the input space and the PERTURBQA benchmark. A) Perturb-seq experi-
ments result in a matrix of gene expression levels, which are converted into discrete outcomes. B)
Textually-rich, biological knowledge graphs are helpful for contextualizing experimental outcomes.
C) We introduce three tasks which draw upon both sources: predicting differential expression and
direction of change for unseen perturbations, and summarizing data-driven gene clusters into cohe-
sive sets.
cal tasks that query discrete outcomes of perturbation experiments through question-answering. For
example, rather than predicting the real-valued change in gene, we might ask: “does perturbation p
cause differential expression of g?” These tasks are inspired by the standard analysis pipeline for
extracting insights from perturbation experiments and evaluated over five high-quality single-cell
RNA sequencing (scRNA-seq) datasets with CRISPR interference (CRISPRi) perturbations (Re-
plogle et al., 2022; Nadig et al., 2024). While state-of-the-art graph and language-based methods
attain reasonable performance on this benchmark, we find that these tasks are still far from solved.

To demonstrate that language-based reasoning is effective on these tasks, we develop a simple LLM-
based framework that matches or exceeds the current state-of-the-art on PERTURBQA. SUMMER
(SUMMarize, retrievE, and answeR) is an inference-time strategy that uses knowledge graph rela-
tionships and existing experimental results to guide chain-of-thought reasoning (Wei et al., 2022)
regarding perturbation outcomes. Specifically, an LLM is first asked to summarize textual descrip-
tions associated with genes or gene sets, as well as their relationships to other biological entities. In
addition to “featurizing” genes, this step can be applied iteratively to characterize clusters of genes
that exhibit similar responses or effects. Next, based on knowledge graph proximity, we retrieve re-
lated perturbation-gene pairs from existing experimental data. Inspired by retrieval-augmented gen-
eration for language, this step helps ground the LLM’s reasoning and prevent hallucinations (Gao
et al., 2024). Finally, the LLM answers the biological question via chain-of-thought prompting (Wei
et al., 2022) with respect to the knowledge graph summaries and retrieved examples. To summarize,
our contributions are three-fold.

1. PERTURBQA is a set of real-world and currently unsolved tasks that evaluate how large
language models reason over structured data and discover new biology. We hope that this
benchmark will increase the accessibility of in-silico modeling for biological perturbations.

2. SUMMER is a LLM-based proof of concept that matches or exceeds state-of-the-art ap-
proaches on PERTURBQA without any finetuning, using a lightweight 8B model, while
operating natively in biologist-interpretable language.

3. We propose that perturbations should be modeled on the level of discrete outcomes, which
reflect downstream analyses; and to use LLMs to reason about the outcomes of such exper-
iments.

2 RELATED WORK

Perturbation response prediction Following Roohani et al. (2023), a number of works have ap-
proached the task of unseen perturbation prediction, primarily through the regression objective.
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Bai et al. (2024) replaces the MLPs in GEARS with a more expressive Transformer architecture,
but maintains the same objective and evaluation. Märtens et al. (2024) utilizes language-based
GenePT (Chen & Zou, 2024) embeddings, which we consider as a baseline. A related, but distinct
line of work predicts the effect of seen perturbations in different cell populations (Bunne et al., 2023;
Lotfollahi et al., 2019). Finally, there are also works that infer the effects of combinations of pertur-
bations (Roohani et al., 2023; Gaudelet et al., 2024; Lotfollahi et al., 2023), which this work does
not address, but could be extended to.

Large language models for biology With respect to natural language, LLMs have been ap-
plied to a diverse set of areas, including but not limited to the following. Biological question-
answering (Hendrycks et al., 2021; Hao et al., 2024a) and bioinformatic coding (Laurent et al.,
2024; Hou & Ji, 2023) are common benchmarks to assess LLM reasoning, but these works primar-
ily focus on tasks that human specialists are already able to do. Hsu et al. (2024) uses LLMs to
predict Gene Ontology terms (Ashburner et al., 2000) associated with known gene sets. In contrast,
the focus of our gene set enrichment task is to characterize data-driven gene clusters, which may not
be significantly enriched for any known gene set, but are of biological interest to understand. Finally,
LLMs have been used towards active experimental design (Roohani et al., 2024; Huang et al., 2024).

More broadly, there are a number of single-cell (Rosen et al., 2024; Hao et al., 2024b; Kalfon
et al., 2024) and biological sequence (Lin et al., 2023; Nguyen et al., 2024; Schiff et al., 2024)
foundation models, trained over raw biological data (gene count matrices, protein/DNA sequences).
In this paper, we approach biological knowledge as described by natural language, but multimodal
integration of foundation models could be a promising future direction (Wang et al., 2024b).

Language-based reasoning and structured knowledge Significant research efforts have focused
on improving LLM reasoning and reliability. Chain of thought (Wei et al., 2022) first demonstrated
that explicitly instructing LLMs to reason enables them to solve much more complex tasks, com-
pared to directly asking for answers. Subsequent works have explored how to navigate the space of
“thoughts,” or in-progress generations (Yao et al., 2022; Zhang et al., 2024). Orthogonally, retrieval
augmented generation (RAG) Lewis et al. (2020) was developed to increase LLM reliability. Sets of
relevant documents are first identified from a corpus, typically based on an embedding index, to act
as source material for reasoning. Instead of querying an index, Graph RAG (Edge et al., 2024) was
recently proposed to summarize corpuses into hierarchical graph structures, for richer language-
based comparisons. While these methods have seen significant success in natural language (Gao
et al., 2024; Jiang et al., 2023), they are less straightforward to implement in biology, where the vast
majority of papers are inaccessible behind paywalls, and only abstracts are available (Wang et al.,
2024a). As a result, these methods are difficult to evaluate in this paper’s setting.

Finally, textually-rich knowledge graphs have been probed through language, both in the classical
natural language processing literature (Guu et al., 2015) and in modern LLM literature (Jin et al.,
2024; Besta et al., 2024). Language can provide embeddings to be processed by downstream graph
models, or directly serve as the medium for prediction (Chen et al., 2024; Kau et al., 2024). In this
work, we take the latter approach, which opens several design choices. Graphs can be embedded
alongside text via parameter-efficient finetuning (He et al., 2024; Perozzi et al., 2024), directly se-
rialized into language (Zhao et al., 2023), inform retrieval (Mavromatis & Karypis, 2024), or any
combination of these options. To minimize the computational cost of our proof of concept, we serial-
ize graph-based knowledge into text and also use graph structure to inform retrieval (of experimental
outcomes, rather than textual information).

3 BACKGROUND

Modeling perturbations A perturbation experiment can be represented by a matrix X ∈ RN×D,
where N is the number of perturbations, D is the number of measurable entities, and entries xp,g ∈
X represent the change in levels of entity g under perturbation p, relative to a control p0 (Figure 1A).
For example, in a CRISPRi Perturb-seq experiment (Replogle et al., 2022), the transcription of
individual genes p is suppressed and the resultant change xp,g in all genes g is measured.

Roohani et al. (2023) (GEARS) first proposed the task of predicting unseen perturbation outcomes in
Perturb-seq data. Given Xtrain ⊊ X , whose rows correspond to perturbations Ptrain, their goal was to
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complete the rows Xtest, corresponding to unseen perturbations Ptest. To generalize to Ptest, GEARS
and subsequent works leverage knowledge graphs that relate the two sets of perturbations (Fig-
ure 1B). That is, they solve a regression problem making use of a given directed graph G = (V,E),
where V is a set of biological entities (e.g., genes and pathways) and E is a set of relationships.

There are several aspects of this prevailing formulation that diverge from the insights biologists
extract from these experiments. First, when converting knowledge graphs into adjacency matrices,
the semantics of each edge are discarded, as they are typically annotated in free text (Ashburner
et al., 2000). This loss of information may negatively impact model performance, as biological
knowledge graphs often contain relationships of conflicting semantics, e.g. “enables” vs. “does
not enable.” Second, current machine learning methods are evaluated with respect to “differentially
expressed” genes, a small number of pre-selected features per perturbation, and often trained to
focus on these genes (Roohani et al., 2023; Bai et al., 2024). These genes are not known prior to
actual experimentation, and their actual identity is of high biological interest. Finally, the goal of
perturbation experiments is to understand the underlying biology, but current methods focus solely
on recapitulating the data distribution, errors in which may propagate to downstream analyses.

Statistical insights Biologists draw conclusions of the form “p impacts gene or pathway g”
through statistical techniques like differential expression (Love et al., 2014) and gene set (Subra-
manian et al., 2005) analyses. In differential expression analysis, one assumes that x ∼ Px, where
Px is often taken to be approximately normal (Cui & Churchill, 2003) or negative binomial (Love
et al., 2014; Ahlmann-Eltze & Huber, 2020). The goal is to test between

H0 : xp,g = 0 and H1 : xp,g ̸= 0, (1)

where rejection of H0 translates to “g is differentially expressed under perturbation p compared to
the control perturbation p0.” Differentially expressed genes may also be assessed by their direction
of change, i.e. xp,g ≶ 0.

Due to biological and technical noise, the measurement of individual genes may be unreliable, moti-
vating statistical analyses at the level of gene sets. A data-driven approach for identifying gene sets
is to cluster the rows and/or columns of the expression matrix X and test whether more members of
well-characterized sets are present in these clusters than expected by chance (Huang et al., 2008).
While these “enriched” gene sets serve as the basis for annotating data-driven clusters, they do not
consider the context of each experiment, e.g., the profiled cell line. Furthermore, significance cutoffs
are difficult to assess, as the inclusion or exclusion of genes in gene sets was determined manually.
As a result, data-driven clusters may exhibit consistent behavior in the experiment but fail to be
enriched for known biological phenomena, thus eluding annotation (Replogle et al., 2022).

4 CONTEXTUALIZING BIOLOGICAL PERTURBATIONS

Our hypothesis is that traversing biological knowledge through language not only enables us to
predict perturbation effects, but also to rationalize perturbation outcomes. To validate these ideas,
we develop PERTURBQA, a suite of tasks that assess language-based reasoning over structured
knowledge, in the context of biological perturbations (Section 4.1). These tasks are non-trivial, both
for graph-based methods and naive large language model (LLM) applications (Section 6). Thus, as
a proof of concept, we present SUMMER, a simple LLM-based approach that matches or exceeds
the current state-of-the-art on PERTURBQA by jointly considering the structure and semantics of
knowledge graphs (Section 4.2).

4.1 PERTURBQA

PERTURBQA is composed of three primary tasks evaluated over five real datasets (Figure 1C). These
tasks reflect the experimental and computational workflow associated with perturbation experiments.

1. Differential expression: Given a pair of entities (p, g), the goal is to predict yde
p,g ∈ {0, 1},

where 0 indicates that perturbing p results in no change to g, and 1 indicates that perturbing
p results in differential expression of g.

4
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Figure 2: PERTURBQA dataset statistics. A) Differential expression and direction of change, label
distribution across datasets. B) Distribution of genes per cluster, with examples of annotations of
gene set function. C) Knowledge graph sizes. D) Number of knowledge base entries describing each
gene, and relationships within 1-hop of each genes.

2. Direction of change: Given a pair of entities (p, g), the goal is to predict ydir
p,g ∈ {0, 1},

where 0 indicates that levels of g decrease under perturbation p, and 1 indicates that levels
of g increase. This task is only evaluated on pairs for which yde = 1.

3. Gene set enrichment: Given a set of genes P , the goal is to identify a description s that
characterizes why members of P exert a consistent effect when perturbed (“perturbation
cluster”), or respond similarly to perturbation (“gene cluster”). As ground truth, we lever-
age expert gene set annotations, published by the authors of Replogle et al. (2022) (for
example annotations, see Table 3).

Perturb-seq datasets We constructed our benchmark based on five Perturb-seq datasets, derived
from Replogle et al. (2022) and Nadig et al. (2024). For each dataset, we identified differentially-
expressed genes (DEGs) per perturbation using the Wilcoxon signed-rank test (Wilcoxon, 1945),
resulting in pairs (p, g) with associated labels yde

p,g and ydir
p,g . Datasets are split 75:25 into train and

test along the perturbation axis, with similar distribution of number of DEGs. To ensure label quality,
we set a rigorous cut-off for DEGs and non-DEGs based on consistency across biological replicates
and/or adjusted p-value (details and statistical analyses in Appendix A.2). The label distribution on
the test set is depicted in Figure 2A.

Differential expression and direction of change are assessed at the granularity of single genes (K562,
RPE1, HepG2, Jurkat) and gene sets (K562-Set), where the gene set is represented as single entities,
with the mean expression of their constituents. Gene set enrichment is evaluated over K562-Set,
where human annotations are taken as the ground truth. Figure 2B illustrates the distribution of the
cluster sizes and example annotations. For example clusters, see Table 3.

Domain knowledge PERTURBQA tests whether LLM frameworks can effectively leverage struc-
tured domain knowledge and contextual information. Thus, in addition to test examples, we provide:

1. Harmonized knowledge graphs, with identifiers aligned to the perturbation data (Fig-
ure 2C). These provide high-quality, biological insights to aid reasoning.

2. Train examples, to be used as a retrieval corpus or for downstream finetuning. These are
crucial for contextualizing the predictions on each dataset, as perturbation responses differ
by cell line (Nadig et al., 2024).

Specifically, for each gene v, we have prepared textual descriptions {tv}, as well as textual relation-
ships to other biological entities, {tv→v′} for (v, v′) ∈ E. To ensure coverage of poorly charac-
terized genes, we extracted descriptions from the union of several knowledge graphs and databases,
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Perturbed gene: ABCE1 is …
Gene of interest: GABARAP is …

Examples (from step B):
Example 1:
Perturbed gene: RPS14 is …
Gene of interest: FAM83A is …
Knockdown of RPS14 does not impact FAM83A.

Example 2: …

Chain-of-thought (CoT) prompts:
1) Which perturbed genes are most similar to ABCE1?
2) What are the downstream effects of perturbing ABCE1 or similar?
3) Which downstream genes are most similar to GABARAP?
4) What are the upstream perturbations that affect GABARAP?

Final query:
Is a knockdown of ABCE1 in K562 cells likely to result in differential 
expression of GABARAP?

P G

P'1 G'1

LLM
Llama3 (8B)

Retrieve summaries and experimental 
outcomes for neighboring nodes in 
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Generate summaries for
every node in the graph.
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from A & B, then query LLM.

P
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is …
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GABARAP
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LLM
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P'2
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RPS14
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G'1 

FAM83A
is …

P'1 has no impact on G'1 P'2 downregulates G'2 

P'2 
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Answer

Figure 3: Overview of SUMMER. A) Knowledge graph entries are summarized per gene as both
a perturbation p and as a downstream gene g. B) Given a new pair (p, g), sample related pairs
(p′, g′) with associated experimental outcomes. C) Concatenate summaries, examples, and guiding
questions as prompt for LLM. Depicted prompt edited for concision. Full prompts in Appendix D.

including: UniProt (Consortium, 2022), Ensembl (Martin et al., 2022), Gene Ontology (Ashburner
et al., 2000; Consortium et al., 2023), CORUM (Tsitsiridis et al., 2022), STRING (Szklarczyk et al.,
2022), Reactome (Milacic et al., 2023), and BioPlex (Huttlin et al., 2021). The first three were used
for gene-centric descriptions, while the latter five were used for relationship descriptions (Gene
Ontology used for both).

4.2 OVERVIEW OF SUMMER

SUMMER is an inference-time framework that consists of three steps which draw inspiration from
different aspects of message-passing neural networks and large language model reasoning strategies
(Figure 3). First, to “featurize” each gene, we summarize database descriptions of the gene and
its relationships to other genes/pathways. To capture directionality, we generate two summaries for
each gene: as a perturbation, and as a downstream gene. Next, we incorporate the “train” set of seen
perturbations as a retrieval corpus, where perturbation-gene pairs are selected based on knowledge
graph proximity to (p, g). Finally, we formulate a set of questions to guide the LLM’s reasoning via
chain-of-thought prompting. Full prompts may be found in Appendix D.

Neighborhood aggregation as summarization Inspired by message-passing on graphs (Kipf &
Welling, 2017), we characterize genes and their relationships to other biological entities by summa-
rizing their knowledge graph neighborhoods. Given a gene v, we extract knowledge graph entries
{tv}, describing node v, and {tv→v′}, describing its relationships with neighbors v′. As illustrated
in Figure 3A, we concatenate all entries t to generate two versions of each gene summary sv . One
asks for the downstream pathways that may be affected by the gene (v as perturbation p), and the
other focuses on the upstream pathways that may affect the gene (v as downstream gene g).

We can apply this step hierarchically to characterize gene sets. Specifically, to summarize cluster
P , we concatenate single gene summaries [sv]v∈P as input to the LLM, with an emphasis on down-
stream/upstream effects, as appropriate. A variant of this is used to address the gene-set enrichment
task, asking the LLM for both a short description (“desc”) and a “name” for the gene set.

Graph-based retrieval of relevant training samples Let N(v) represent the top k = 10 nodes
v′ that share the most neighbors with v in G. For each pair (p, g), we sample up to 15 examples
(p′, g′) from Xtrain that match the following criteria.1

1. Up to 5 examples with any g′ and where the perturbation is related to p, i.e., p′ ̸= p, p′ ∈
N(p).

1The number of examples was chosen heuristically, so that all input prompts and potential outputs fit within
the Llama3 8k token context window.
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2. Up to 5 examples with any p′ and where the downstream gene is related to g, i.e., g′ = g,
or g′ ∈ N(g).

3. Up to 5 examples where both the perturbation as well as the downstream gene are related
to p and g, resp., i.e., p′ ̸= p, p′ ∈ N(p) and g′ ̸= g, g′ ∈ N(g).

These pairs are inserted into the prompt through their respective summaries (sp′ , sg′) and the
ground-truth experimental outcome yp′,g′ (Figure 3B, and examples in Appendix D.2).

Perturbation outcome prediction as question-answering We introduce a simple strategy to en-
sure that the LLM’s reasoning incorporates both knowledge graph summaries and retrieved experi-
mental outcomes. For both p and g, we ask the LLM to identify the most similar p′ and g′ among
those sampled, and to summarize their downstream/upstream effects. Finally, we ask the LLM
to answer the overall question, while citing specific examples. A sketch of the overall prompt is
depicted in Figure 3C (for full template, see Appendix D; for an input/output pair example, see
Appendix E.2).

Implementation details We ran all experiments with Llama3 (AI@Meta, 2024) with default pa-
rameters of top p 0.9 and temperature 0.6, using the LMDeploy framework (Contributors, 2023).
Due to computational limitations, the gene summaries were generated by the 70B model, while all
other inference utilized the 8B model. To quantify uncertainty, we ran the retrieval step three times
and report the average prediction over these three trials.

5 EXPERIMENTAL SETUP

5.1 BASELINES

Differential expression and direction of change We compare against a variety of baselines for
unseen perturbation response prediction. All baselines were run with their published code and best
reported hyperparameters, where applicable. We ran hyperparameter search for our implementations
of MLP and GAT (Appendix A.4). MLP is a multi-layer perceptron with access to gene identities
only, trained with a ternary classification objective (no change, up, down). This baseline does not
consider knowledge graphs at all. GEARS (Roohani et al., 2023) is a state-of-the-art Graph At-
tention Network trained over the Gene Ontology (Ashburner et al., 2000) and gene co-expression
graphs with a regression objective that focuses on differentially expresses genes. Absolute predicted
log-fold change is normalized to (0, 1) for differential expression, and signed log-fold change is
normalized for direction of change. GAT (Veličković et al., 2018) is a Graph Attention Network
trained with a ternary classification objective over the same knowledge graphs used to generate the
prompts for SUMMER. This setup quantifies the information content contained in graph adjacencies
alone.

We also consider language-centric baselines and ablations for SUMMER. GENEPT (Chen & Zou,
2024) encodes textual descriptions of genes (-GENE) and their protein (-PROT) products using com-
mercial OpenAI embedding models, trained on natural language. These embeddings are input to a
logistic regression classifier, trained separately for differential expression and direction of change.
Recent work has reported that this baseline achieves the state-of-the-art on the regression formu-
lation (Märtens et al., 2024). LLM (No CoT) provides the LLM with two examples (one of each
label) and directly asks for the final answer without explanation. LLM (No retrieval) emulates our
chain-of-thought style questioning, but does not retrieve any experimental outcomes. Instead, we
provide the LLM with a hypothesis (each answer option is sampled twice) and ask the LLM to extract
supporting and refuting evidence from the gene summaries, before answering the question. Finally,
to understand the information content in our retrieved samples, Retrieval (No LLM) takes the mean
label over (p′, g′) without appealing to the LLM for further processing.

Gene set enrichment We compare to gene set over-expression analysis (Fang et al., 2022), run
over the gene clusters with a variety of gene set libraries – Gene Ontology, Reactome, CORUM –
as well as their union (Combined). We take the concatenation of the top k gene set names as the
predicted summary, where gene sets are ordered by the size of their intersection with each cluster.
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Table 1: Results on differential expression and direction of change as binary prediction. AUROC is
computed over the predictions associated with each gene, and averaged over perturbations. Standard
deviation is reported over 3 runs (where applicable) or 3 rounds of sub-sampling. For more details,
see Appendix A.4.

Task Model K562 RPE1 HepG2 Jurkat K562-Set

DE

MLP 0.50±.02 0.50±.01 0.51±.00 0.49±.01 0.50±.00

GAT 0.55±.02 0.57±.02 0.57±.02 0.55±.03 0.54±.01

GEARS 0.54±.01 0.50±.01 0.48±.02 0.51±.01 0.49±.01

GENEPT-GENE 0.57±.02 0.54±.00 0.55±.02 0.55±.01 0.58±.01

GENEPT-PROT 0.57±.01 0.56±.00 0.54±.01 0.55±.01 0.58±.01

LLM (No CoT) 0.52±.01 0.51±.00 0.51±.01 0.52±.00 0.50±.00

LLM (No retrieval) 0.51±.01 0.48±.00 0.49±.01 0.49±.01 0.50±.01

Retrieval (No LLM) 0.58±.02 0.58±.01 0.55±.00 0.55±.01 0.64±.00

SUMMER 0.60±.00 0.58±.00 0.61±.00 0.58±.00 0.61±.00

Dir

MLP 0.51±.02 0.52±.01 0.52±.04 0.50±.05 0.49±.02

GAT 0.58±.06 0.60±.04 0.64±.05 0.59±.04 0.53±.03

GEARS 0.64±.01 0.60±.01 0.52±.01 0.51±.01 0.59±.02

GENEPT-GENE 0.53±.05 0.57±.03 0.58±.03 0.57±.02 0.56±.02

GENEPT-PROT 0.57±.01 0.57±.02 0.55±.01 0.58±.03 0.57±.02

LLM (No CoT) 0.50±.01 0.49±.00 0.49±.00 0.50±.01 0.50±.01

LLM (No retrieval) 0.49±.04 0.52±.03 0.51±.06 0.53±.05 0.45±.18

Retrieval (No LLM) 0.50±.00 0.50±.00 0.50±.00 0.50±.00 0.50±.00

SUMMER 0.62±.01 0.64±.01 0.65±.00 0.66±.01 0.69±.01

5.2 METRICS

For differential expression and direction of change, it has been reported that gene responses tend
to be correlated across perturbations (Kernfeld et al., 2023), e.g., stress response genes respond
promiscuously. Thus, we compute binary AUROC over the predictions associated with each down-
stream gene, and take the average over downstream genes, corresponding to a macro AUROC score
over downstream genes. For gene set enrichment, our ground truth consists of short textual de-
scriptions (under 10 words), while our predictions and baseline outputs are long and vary in style.
Standard text generation metrics like BLEU (Papineni et al., 2002) or ROUGE F1 (Lin, 2004) do
not account for this difference in length as they were designed for machine translation. To assess
whether the predictions adequately cover the ground truth annotation without penalizing for longer
lengths, we report ROUGE-1 recall and BERT Score (Zhang et al., 2020), using BioBERT 1.2 (Lee
et al., 2020), which was finetuned on 1M biological texts (18B words).

6 RESULTS

6.1 DIFFERENTIAL EXPRESSION AND DIRECTION OF CHANGE

We evaluated both graph and language-based models on the differential expression (DE) and di-
rection of change (Dir) tasks (Table 1). SUMMER performs well overall, while other baselines
vary in performance depending on the dataset. These results indicate that PERTURBQA tasks are
largely unsolved, and may benefit from larger models or more sophisticated reasoning strategies.
Of note, compared to models that exclusively operate on knowledge graphs without making use of
textual representations, SUMMER’s outputs are immediately interpretable by domain experts (see
AppendixE) which can help in understanding model shortcomings and contextualize the observed
experimental outcomes beyond the predictive task considered here.

GENEPT is a strong baseline, demonstrating the benefits of textual information towards these tasks.
In terms of language-based reasoning, however, we observe that LLM (No CoT) and LLM (No
retrieval) both perform no better than random guessing – highlighting that retrieving existing ex-
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Table 2: Gene set enrichment on K562 genome-wide clusters. Metrics reported are ROUGE-1 recall,
as well as BERT Score precision, recall, and F1, computed with BioBERT-1.2. Since the baselines
are statistical methods, they are not subject to stochasticity.

Gene clusters Perturbation clusters
Enrichment Top RROUGE1↑ PBERT↑ RBERT↑ FBERT↑ RROUGE1↑ PBERT↑ RBERT↑ FBERT↑
Gene Ontology 5 0.17 0.64 0.66 0.62 0.38 0.66 0.72 0.68
Gene Ontology 10 0.32 0.60 0.65 0.60 0.60 0.62 0.71 0.65
Reactome 5 0.18 0.60 0.65 0.60 0.49 0.60 0.68 0.62
Reactome 10 0.27 0.54 0.64 0.56 0.59 0.56 0.67 0.60
CORUM 5 0.07 0.63 0.45 0.42 0.45 0.64 0.63 0.60
CORUM 10 0.07 0.61 0.44 0.41 0.47 0.61 0.62 0.58
Combined 5 0.14 0.62 0.65 0.61 0.41 0.63 0.71 0.66
Combined 10 0.27 0.59 0.65 0.59 0.63 0.57 0.69 0.62

SUMMER (8b) desc 0.57 0.63 0.76 0.69 0.26 0.63 0.75 0.68
SUMMER (8b) name 0.20 0.74 0.76 0.75 0.12 0.75 0.76 0.75
SUMMER (70b) desc 0.45 0.63 0.77 0.69 0.59 0.65 0.80 0.72
SUMMER (70b) name 0.15 0.73 0.76 0.74 0.37 0.77 0.82 0.79

Table 3: Gene set enrichment on K562, example outputs. Left: Human annotation. Middle: Top
over-represented gene sets (combined). Right: Proposed gene set name in bold, followed by de-
scription. Row 1 is a gene cluster. Rows 2-3 are perturbation clusters.

Genes Annotation Gene sets
(combined)

SUMMER (8b)

SLC25A5,
EIF4B,

SLC25A3,
RPL3, . . . ,

RPL41

translation cytosol, RNA
binding, cytoplasm,
membrane, GTP
hydrolysis

Ribosomal and Translation Regulation Gene Set The
gene set is comprised of genes involved in protein syn-
thesis, translation, and ribosomal function, with a focus
on the regulation of protein synthesis and the assembly
of ribosomal subunits.

ZC3H13,
CBLL1,

METTL14,
METTL3,

PSMG1,
RBM15

m6A mRNA
methylation

nucleus, nucleo
plasm, RNA N6-
methyladenosine
methyltransferase
complex, mRNA
processing

M6A Methylation Complex-Associated Genes. The
gene set is composed of genes involved in the regulation
of N6-methyladenosine (m6A) methylation of RNAs, in-
fluencing mRNA splicing and RNA processing. These
genes are associated with the WMM complex and inter-
act with each other to modulate gene expression.

CMTR2,
RBM14-

RBM4,
RBM4,
UNCX,

WDFY3

unknown no significant sets RNA Processing and Regulation Gene Set. The gene
set is composed of genes involved in RNA processing
and regulation, including mRNA cap modification, alter-
native splicing, and RNA-binding activities. These genes
converge on pathways related to mRNA stability, trans-
lation, and cellular differentiation.

perimental outcomes and guiding LLM reasoning are both essential to completing this task. This is
also reflected in the strong performance of Retrieval (No LLM). While SUMMER is able to extract
more value than “sum of its (retrieved) parts” in 7 of 10 cases, direct access to numerical reasoning
is valuable. GEARS performance is close to random on 4 of the 5 differential expression datasets.
This may be due to the focus on differentially-expressed examples in their objective, which was
designed to recapitulate real-valued changes in DEGs, rather than distinguish between DEGs and
non-differentially expressed genes. On other hand, GEARS is decent at direction of change in 3 of 5
cases, reflecting that its directionality loss may be more effective here.

6.2 GENE SET ENRICHMENT

SUMMER is able to recapitulate human cluster annotations, exceeding over-representation analysis
baselines across the majority of cases (Table 2). In particular, SUMMER recovers the human an-
notations much better than baselines on gene clusters, which are much larger than the perturbation
clusters (Figure 2B) and are enriched for more generic gene sets (Table 3, row 1). Finally, SUM-
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MER coherently summarizes clusters for which no gene sets were enriched, and thus could not be
annotated manually (Table 3, row 3).

7 CONCLUSION

In this work, we proposed PERTURBQA, a benchmark for language-based reasoning over structured
data arising from real biological problems. We evaluated current state-of-the-art methods on these
tasks and showed that while feasible, they are far from solved. To address these tasks, we introduced
SUMMER, a LLM-based framework that draws upon both biological knowledge graphs and exist-
ing experimental data. SUMMER outperforms baselines on PERTURBQA, but leaves ample room
for future study. We hope that this work will lower the barrier of entry into computational model-
ing of biological perturbation experiments and enable richer, more interpretable methods for these
applications.
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A EXPERIMENTAL DETAILS

A.1 K562 GENE SETS

We downloaded K562 genome-wide gene sets from the supplementary data associated with Figure
4B of Replogle et al. (2022). These gene sets were obtained by “cluster[ing] genes into expres-
sion programs based on their co-regulation.” We evaluated gene set enrichment over clusters that
were manually annotated, though we provide predictions over all gene sets (regardless of annotation
status).

For differential expression analysis, we took the average of the Log(TP10k+1) values over each gene
set, for each cell, similar to a pathway activity score (Wagle et al., 2018).

A.2 DATA PROCESSING

We normalized all gene counts to Log(TP10k+1) values (log-transformed UMI count per 10k),
where the count cij of gene j in cell i is mapped to

log

(
cij∑
j cij

· 10, 000 + 1

)
. (2)

To determine differentially expressed genes (DEGs), we ran the Wilcoxon signed-rank
test (Wilcoxon, 1945) with Benjamini-Hochberg correction (Benjamini & Hochberg, 2000) between
non-targeting control (NTC) cells and perturbed cells, for each perturbation.

To focus on perturbations with phenotypic effect, we excluded all perturbations that resulted in ≤ 5
DEGs (p < 0.05), with the exception of 100 negative control perturbations (0 DEGs), sampled
uniformly at random per dataset.

Exploratory analyses revealed that DEG identities were not entirely consistent across biological
replicates, so we further restricted our selection of DEGs. For the two K562 datasets, we defined
“DE” perturbation - gene pairs as those shared between the datasets at p < 0.05. Non differentially-
expressed pairs were sampled from those that were not differentially-expressed in either dataset.
Since the remaining datasets lacked biological replicates, we defined “DE” pairs as those with p <
0.01, and sampled “non-DE” pairs from those with p > 0.1. We selected the top 20 DEGs per
perturbation ranked by adjusted p-value as “positives.” We sampled 100 non-DEGs per perturbation
as “negatives.”

To ensure similar distributions between our training and testing splits, we sorted both selected pertur-
bations and DEGs based on prevalence. We split perturbations 75:25 between training and testing.
Validation data were sampled at random during training (10% of training).

Further details regarding dataset and data split statistics may be found in Tables 4 and 5.

Table 4: Data statistics. K562∗ non-targeting control cells were subsampled due to the size of the
genome-wide dataset. K562-es⋆ (essential) was only used to filter K562 DE and non-DE genes.

Dataset Cells Perturbations
Control Perturbed Total Train Test Features

K562∗ 5,000 919,124 9851 1564 267 4136
K562-es⋆ 10,691 299,645 2049 — — —
RPE1 11,485 236,164 2354 1596 406 4760
HepG2 4,976 140,497 2393 1086 278 7435
Jurkat 12,013 250,943 2392 1227 313 6842

K562-Set 5,000 919,124 9851 1401 357 20
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Table 5: Differential gene expression data split statistics. Number of perturbation - gene (set) pairs
in each setting.

Dataset Split Total non-DE Differentially expressed
Total Up Down

K562 Train 134,467 117,606 16,861 11,041 5,820
Test 23,212 20,093 3,119 2,530 589

RPE1 Train 149,147 127,860 21,287 8,381 12,906
Test 37,942 32,577 5,365 2,121 3,244

HepG2 Train 101,140 86,883 14,257 6,249 8,008
Test 25,749 22,146 3,603 1,599 2,004

Jurkat Train 113,684 97,747 15,937 5,119 10,818
Test 29,138 25,017 4,121 1,379 2,742

K562-Set Train 20,606 9,367 11,239 3,953 7,286
Test 5,235 2,403 2,832 995 1,837

Table 6: Abstain rate on differential expression (DE) and direction of change (Dir) across all
datasets.

Model DE Dir

LLM (No Retrieval) 0.02 0.36
LLM (No CoT) 3.3× 10−6 0
SUMMER 8.9× 10−4 0.03

A.3 LLM DETAILS

Due to the stochastic nature of LLM generations, we noticed that the LLM would occasionally
abstain from selecting one of the intended labels, due to insufficient evidence for either. To account
for this, we intentionally added “insufficient information” as a third answer option. We ran inference
on each input sample at least 3 times and took the mean predicted label, after removing all abstaining
outputs.

A small fraction of inputs (p, g) resulted in no predictions after this filtering, or were unable to be
parsed by our rule-based parsing. The latter is due to the insufficient capacity of Llama3 8B (rela-
tively small LLM) to follow instructions. Since these examples differed by model, we substituted the
prediction with an uninformed baseline (the mean label of g over the training set) for evaluation. The
final abstain rate varied based on LLM prompting strategy (Table 6). LLM (No Retrieval) abstained
nearly a third of the time on direction of change. In contrast, LLM (No CoT) only abstained a single
time, over all datasets. The improved instruction following may be due to the concise nature of the
expected output (only a single answer). Finally, SUMMER nearly always produced a prediction over
3 runs (e.g. 0.08% abstain on DE).

A.4 BASELINES

Table 7 documents the search space for MLP and GAT. We selected the top models based on valida-
tion performance (arbitrary 10% of train). Both models were implemented with GELU activation,
dropout of 0.1, weight decay 1e-6, learning rate 1e-4, and residual connections. GAT employed ad-
ditional edge attributes, which were learned embeddings that indicated the source knowledge graph
of each edge.

For K562-Set, we pooled the mean embedding of each gene set’s genes before the prediction head
(MLP and GAT). On GEARS, we used the mean predicted log-fold change over each gene set’s
genes (mirrors data pre-processing).
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Table 7: MLP and GAT hyperparameter search space

Model Parameter Space

MLP
Layers 0, 1, 2, 4
Hidden size 256, 512, 1024
FFN size 1024, 2048

GAT
Layers 1, 2, 4, 8
Hidden size 64, 128, 256
FFN size 1024

A small number of genes (97 out of 11,234) did not map to GENEPT embeddings. We set the
embeddings for these genes to the mean perturbation / gene embedding in their respective training
sets.

For uncertainty quantification, we used the top 3 runs for MLP and GAT. Since GEARS operates over
single cells, rather than pseudo-bulk estimates, we subsampled 80% of the single cells before taking
the average for each of 3 evaluations. For GENEPT, since logistic regression does not inherently
introduce randomness (unless it fails to converge; it always converges here), we subsampled 80% of
the training set for each of 3 runs.

B STATISTICAL ANALYSIS

We provide empirical analyses on the quality of our datasets and labels.
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Figure 4: Assessing p-value calibration over single-cell datasets. We split the non-targeting controls
(NTCs) randomly in half, and run the Wilcoxon test to compare the two halves. We would expect to
see that the (non-adjusted) p-values are uniformly distributed between 0 and 1. Here, we see that the
Wilcoxon test is slightly conservative, i.e. it leans towards reporting “non-differentially expressed.”
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Figure 5: K562 gene clusters show consistent response between biological replicates. We compute
the top k = 5, 10 significant gene clusters, sorted by adjusted p-value, for both K562 genome-
wide and K562 essential. For each perturbation, we compute the percentage of shared gene clusters
(normalizing by genome-wide and essential, respectively). We see that the clusters are relatively
consistent across both datasets, with a high fraction of perfect overlaps.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0
0

500

1000

1500
C

ou
nt

% Top 5 es DEGs in gw

0.0 0.5 1.0
0

200

400

600

800

1000

C
ou

nt

% Top 5 gw DEGs in es

0.00 0.25 0.50 0.75 1.00
% es in gw

0

200

400

600

C
ou

nt

Overlap of top 10 sets

0.00 0.25 0.50 0.75 1.00
% gw in es

0

200

400

600

C
ou

nt

Overlap of top 10 sets

0.0 0.5 1.0
0

500

1000

1500

2000

C
ou

nt

% Top 20 es DEGs in gw

0.0 0.5 1.0
0

200

400

600

C
ou

nt

% Top 20 gw DEGs in es

0.0 0.5 1.0
0

500

1000

1500

C
ou

nt

% Top 100 es DEGs in gw

0.0 0.5 1.0
0

100

200

300

400

C
ou

nt

% Top 100 gw DEGs in es

Figure 6: K562 DEGs are reasonably consistent at the top (ranked by p-value). For each perturba-
tion, we plot the percentage of shared top = 5, 10, 20, 100 DEGs (normalizing by genome-wide and
essential, respectively). In our final dataset, we took the intersection of the top 20 DEGs as “DE”
and the intersection of the negatives as “non-DE.”

C QUALITATIVE ANALYSIS

C.1 HUMAN EVALUATION OF SUMMARIZATION RESULTS

Due to the open-ended nature of the gene set task, automated evaluation methods are limited in
their ability to reflect practical utility. Since this paper focuses on providing value to biologists, we
recruited a domain specialist (molecular biologist, trained in wet lab and computational biology) for
this task. We presented them with a document formatted as follows and asked two questions.

1) Is A or B more informative, or about the same? Options: A, B, same

2) Does B capture the same biology as the bolded annotation? Options: yes, no

{ground truth label}: {list of genes}
A: {top 10 gene sets (all databases)}
B: {LLM-generated name}: {LLM-generated descriptions}

Overall, the LLM-generated summary is equal or better to the classical gene set enrichment results
in 92% of cases, and agrees with the independent annotator in 72% of cases.

1. In 21/25 cases, the biologist reported that the LLM-generated summary was more informa-
tive. In 2/25 cases, they contained the same amount of information; and in 2/25 cases, the
gene set contained more information.

2. In 18/25 cases, the biologist reported that the LLM summary captured the same biology as
the original human annotation (our ground truth labels).

We analyze the cases in which the LLM provides less information, or fails to capture the independent
human annotation.

1. In the 2 cases where the gene sets contained more information, a list of specific protein
complexes were discovered, e.g. below.

Eukaryotic Translation Termination, EIF2AK4 (GCN2) dimer autophosphorylates, EIF2AK4 (GCN2)
binds tRNA, Aminoacyl-tRNA binds to the ribosome at the A-site, 80S:Met-tRNAi:mRNA:SECISBP2:Sec-
tRNA(Sec):EEFSEC:GTP is hydrolysed to 80S:Met-tRNAi:mRNA:SECISBP2:Sec and EEFSEC:GDP by EEF-
SEC, UPF1 binds an mRNP with a termination codon preceding an Exon Junction Complex, Translocation of
ribosome by 3 bases in the 3’ direction, Translation of ROBO3.2 mRNA initiates NMD, Translation of ROBO3.2
mRNA is negatively regulated by NMD, The SRP receptor binds the SRP:nascent peptide:ribosome complex
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Table 8: Unannotated gene clusters are typically less specific and coherent. Compared to gene set
enrichment, which tends to focus on highly-specific subsets of each clusters, SUMMER tends to
identify the “greatest common denominator” among the genes.

Genes Gene sets (combined) SUMMER (8b)

HCCS,
AGPS,

FAM136A,
MTREX,
PITHD1,

KIF2A,
REXO2,
. . . , EIF6

2Fe-2S is inserted in
UQCRFS1; 39S ribosomal
subunit; 3’ incision by
ERCC5 (XPG) in
TC-NER; 55S ribosome;
1-palmitoylglycerone
phosphate + hexadecanol
=> O-hexadecylglycerone
phosphate + palmitate, . . .

Ribosomal and Mitochondrial Gene Set. The gene set is com-
posed of genes involved in various cellular processes, including
protein synthesis, translation, and regulation of gene expression.
Many of these genes are involved in the assembly and function
of ribosomes, the translation of mitochondrial DNA-encoded
genes, and the regulation of protein synthesis in response to cel-
lular signals.

ATP6AP1,
ITM2A,

NPC2,
CREG1,

UQCRB,
. . . , HEXA

keratan sulfate catabolic
process; transcription
corepressor activity;
transcription regulator
complex; dermatan sulfate
catabolic process, . . .

Protein Processing and Trafficking Gene Set. The gene set
is comprised of genes involved in various cellular processes, in-
cluding protein transport, immune response, and cellular differ-
entiation. Common pathways among these genes include protein
processing and modification, as well as cellular trafficking and
signaling.

RALA,
STARD3NL,

AKAP8L,
ATP2B1,

. . . ,
YTHDF2

Expression of Perilipin
(PLIN); Dephosphorylation
of inactive SRC by PTPB1;
Expression of
Phosphoenolpyruvate
carboxykinase 1
(PEPCK-C), . . .

Regulatory Genes in Cellular Processes and Signaling. The
gene set is comprised of genes involved in various cellular pro-
cesses, including protein synthesis and degradation, gene ex-
pression, transcription regulation, and cellular signaling. These
genes are also involved in maintaining proper calcium home-
ostasis, regulating mitochondrial function, and facilitating pro-
tein trafficking and targeting.

However, this output is difficult to parse, compared to the LLM-generated output, which
faithfully and concisely represents the original annotation of “translation.”

Ribosomal Protein Components Involved in Translation: This gene set is comprised of components of the large
and small ribosomal subunits, which are essential for protein synthesis and translation. These genes are involved
in the assembly and function of the ribosome, facilitating the translation of messenger RNA into protein.

2. In the 7/25 cases where the LLM summary differed from the human annotation, the LLM
annotation tended to miss some high specific terms, e.g. “targets of nonsense-mediated
decay” was generalized to “stress response,” and “dysregulated lncRNA antisense tran-
scripts” was generalized to “nuclear gene regulation.” Related terms tend to be sparsely
annotated in Gene Ontology, so this indicates that it would be useful to tune the granularity
of generations in the future, or to generate multiple candidates for specific descriptions.

C.2 CAPTURING THE GREATEST COMMON DENOMINATOR

By construction, clusters of genes may vary in their degree of specificity and agreement. For ex-
ample, “translation” contains over 20 million annotations in the Gene Ontology, while variants of
“nonsense-mediated decay” vary from 27 to 74,097 annotations (as of November 2024) (Ashburner
et al., 2000).

Clusters that are smaller, or exhibit lower agreement, tend to elude manual annotation. In these
cases, gene set over-representation analysis tends to focus on highly specific gene sets, which cover
subsets of these clusters. The LLM takes the opposite approach, and its summaries tend to “lift” the
description to higher levels of hierarchy (Table 8). Neither is universally “better,” though the LLM
may be more interpretable, but the two strategies provide orthogonal information.

C.3 ERROR AND INCONSISTENCY ANALYSIS

We analyzed 300 generations (3 trials of 100 DE examples) to understand the failure modes of
SUMMER. Errors and inconsistencies primarily resulted from deductions backed by overly-generic
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information. For example, the LLM may list an excessively broad set of factors that may influence
expression.
Perturbations of genes involved in mitochondrial function, protein synthesis, or transcriptional regulation may potentially
affect CC2D1A expression.

In several instances, the LLM may be confused between concepts which are loosely connected, but
not in the same context.
The genes of interest in the examples are QKI, MT-CYB, ADA, MT-ND1, and RPL12. Among these, MT-CYB and
MT-ND1 are similar to TXNIP as they are both involved in mitochondrial function and electron transport, which is a
related process to TXNIP’s role in oxidative stress and mitochondrial function.

Here, “oxidative stress” is related to the mitochondria, but TXNIP is upstream of a number of stress
response genes and is unrelated to healthy mitochondrial function. Thus, it should not respond
similarly to MT-CYB. This aspect might be resolved with a higher-capacity model, but the 8b LLM
cannot distinguish.

Finally, we observe that there is a fine line between abstaining and predicting “no effect” due to lack
of information.
Based on the analysis above, we can see that perturbing ABCE1 or similar genes did not result in differential expression
of any genes, including CDK11A. Additionally, perturbing EIF3J resulted in differential expression of HSP90AA1, which
is similar to CDK11A. However, the relationship between ABCE1 and CDK11A is not well-represented in these examples.
Therefore, it is unlikely that a CRISPRi knockdown of ABCE1 in K562 cells will result in differential expression of
CDK11A.

Final answer: There is insufficient evidence to determine how knockdown of ABCE1 affects CDK11A.

D PROMPTS

We share the prompts used by each stage of SUMMER, as well as the LLM baselines. All text
surrounded by {...} are replaced with example-specific inputs (Appendix E).

D.1 SUMMARIZATION TEMPLATES

We generate gene summaries at two levels: single node and 1-hop knowledge graph neighborhoods.
For both levels, we use two prompts per gene (as a perturbation, and as a downstream gene). Wher-
ever gene sets are the downstream entities, we replace “gene” with “gene set.”

The following is an example of a single-node summary of a perturbed gene.
You are an expert molecular biologist who studies how genes are related using Perturb-seq.

Task: You are writing a brief overview of the human gene {gene}, with a focus on its molecular and cellular functions.
You will be provided a set of database entries about the gene. Ensure that your overview remains faithful to this domain
knowledge.

Format:

- Write one to two sentences describing the primary molecular and cellular function of gene {gene}.
- Write one sentence describing the potential downstream impact of perturbing gene {gene} via gene knockdown.

Constraints:

- Maintain a professional tone throughout.

- Do not comment on your own writing.

- Do not add any notes or references. Do not make up additional information.

- Do not discuss the importance or impact of the gene. Focus only on its function.

Domain knowledge: {description}
Brief overview of gene {gene}:

To generate downstream gene descriptions, we replace the second formatting instruction with the
following.

Write one sentence describing what types of perturbations might impact the expression of gene {gene}. For example, you
might consider pathways that are upstream of the gene or compensatory mechanisms.

Single-node summaries are input alongside additional knowledge graph relationships for 1-hop
neighborhood summaries.
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You are an expert molecular biologist who studies how genes are related using Perturb-seq.

Task: You are writing a brief overview of the human gene {gene}, with a focus on the downstream effects of perturbing
{gene} via gene knockdown (loss of function).

Inputs: You are provided

- Description of perturbed gene {gene}
- Database entries relating {gene} to other genes or pathways

Format: Write up to five sentences describing the molecular and cellular impact of perturbing gene {gene} via gene
knockdown.

Constraints:

- Remain faithful to all domain knowledge. Do not make up additional information.

- Summarize all common aspects succinctly, but point out notable differences within these sets of genes.

- Maintain a professional tone throughout. Do not comment on your own writing. Do not add any notes or references.

- Omit the importance or impact of the gene. Focus only on its function.

- Omit all non-specific information and obvious statements, e.g. “this gene is involved in cellular processes.”

Description of gene {gene}: {single-node summary}
Relations to other genes: {relationships}
Downstream effects of perturbing {gene} via gene knockdown:

To generate downstream gene descriptions, we replace the “Task” instruction with the following.

Task: You are writing a brief overview of the human gene {gene}, with a focus on molecular and cellular perturbations
that may affect the levels of gene {gene}. For example, you might consider pathways that are upstream of the gene or
compensatory mechanisms.

To generate gene set summaries (for differential expression and direction of change), we used the
following prompt, where the manual annotation is provided as input.
You are an expert molecular biologist who studies how genes and pathways are related using Perturb-seq.

Task: You are writing a brief overview of a gene set associated with {manual annotation} in human cells. You will be
provided descriptions of the constituent genes. Ensure that your overview remains faithful to this domain knowledge.

Format:

- Write one to two sentences summarizing how the given genes are related. Be sure to characterize how they are associated
with {manual annotation}.
- Write one to two sentences describing what types of perturbations might impact the expression of the genes in this gene
set. For example, you might consider pathways that are upstream of these genes or compensatory mechanisms.

Constraints:

- Maintain a professional tone throughout.

- Do not comment on your own writing.

- Do not add any notes or references. Do not make up additional information.

- Do not discuss the importance or impact of the gene set. Focus only on its function.

Descriptions of the constituent genes: {list of gene summaries}
Brief overview of gene set ({manual annotation}):

Finally, for the gene set enrichment task, we use the following prompt for hierarchical summariza-
tion of gene sets. Note that the manual annotations are not provided here. We parse the outputs of
“Brief overview of gene set” and “Name of gene set” as the description and name in our evaluation.

[Start of Prompt]

You are an expert molecular biologist who studies how genes and pathways are related using Perturb-seq.

Task: You are writing a brief overview of a gene set observed to have a similar transcriptional response when upstream
genes are perturbed.

Input: You will be provided descriptions of the constituent genes. Ensure that your overview remains faithful to this
domain knowledge.

Output format: Fill in each of these three sections.

1) Brief overview of gene set: Write one to two sentences summarizing how the given genes are related. Focus on the most
specific pathways that are common among these genes.

2) Upstream pathways may affect this gene set: Write one to two sentences describing what types of perturbations might
impact the expression of the genes in this gene set. For example, you might consider pathways that are upstream of these
genes or compensatory mechanisms.

3) Name of gene set: Summarize the gene set within ten words.

Constraints:

- Maintain a professional tone throughout.

- Do not comment on your own writing.

- Do not add any notes or references. Do not make up additional information.

- Do not discuss the importance or impact of the gene set. Focus only on its function.
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[End of Prompt]

[Start of Input] {list of gene summaries} [End of Input]

D.2 QUESTION-ANSWERING TEMPLATES

For differential expression and direction of change, we used the following template for SUMMER.

[Start of Prompt]

You are an expert molecular biologist who studies how genes are related using Perturb-seq. Your goal is to determine:
Does a CRISPRi knockdown of {perturbation} in {cell line} result in differential expression of {gene}?
You are given as input:

- Description of perturbed gene ({perturbation}): description of gene that is perturbed via CRISPRi knockdown

- Description of gene of interest ({gene}): description of gene, the impact on which you wish to infer

- Context: description of cell line in which the genes are expressed

- Examples: set of experimental observations that describe the impact of CRISPRi perturbations on related genes

Output: Please extract the most relevant parts of the examples that address these five questions. Be specific.

1) Which of the observed perturbed genes are most similar to {perturbation} (if any, including {perturbation} itself)?

2) When perturbing {perturbation} or similar genes, what downstream pathways or genes are differentially expressed?
Justify your answer with the observed outcomes.

3) Which of the observed genes of interest are most similar to {gene} (if any, including {gene} itself)?

4) What perturbations of upstream pathways or genes result in differential expression of {gene} or similar genes (if any)?
Justify your answer with the observed outcomes.

5) Is a CRISPRi knockdown of {perturbation} in {cell line} likely to result in differential expression of {gene}? For
example, if 2) and 4) are unrelated or only indirectly related, it is unlikely we will observe differential expression. On the
other hand, if 2) and 4) significantly overlap in specific genes or pathways, we may observe differential expression. Your
final answer should end with one of these three options and nothing else.

- No. Knockdown of {perturbation} does not impact {gene}.
- Yes. Knockdown of {perturbation} results in differential expression of {gene}.
- There is insufficient evidence to determine how knockdown of {perturbation} affects {gene}.
[End of Prompt]

[Start of Input]

- Description of perturbed gene ({perturbation}): {summary of perturbation}
- Description of gene of interest ({gene}): {summary of downstream gene}
- Context: {sentence describing cell line}
- Examples: {list of examples}
[End of Input]

For direction of change, we change the answer options to the following.

A) Knockdown of {perturbation} results in a decrease in expression of {gene}.
B) Knockdown of {perturbation} results in an increase in expression of {gene}.

The following template was used for the LLM (No CoT) baseline on differential expression.
You are an expert molecular biologist who studies how genes are related using Perturb-seq.

You are given as Input:

- Perturbed gene: description of gene that is perturbed via CRISPRi knockdown

- Gene of interest: description of gene, the impact on which you wish to infer

Context: {sentence describing cell line}
Question: If you knockdown the perturbed gene using CRISPRi, how does the gene of interest’s expression change?

Answer: Your answer must end with one of these two choices and nothing else.

A) Knockdown of the perturbed gene does not impact the gene of interest.

B) Knockdown of the perturbed gene results in differential expression of the gene of interest.

Format: Follow the same format as Examples 1 and 2, and complete Example 3.

Example 1.

Input:

- Perturbed gene: {summary of perturbation}
- Gene of interest: {summary of downstream gene}
Answer: {either A) ... or B) ...}
Example 2. {same format as Example 1, opposite Answer}
Example 3. {same format as Example 1, empty Answer}

The following template was used for the LLM (No retrieval) baseline on differential expression.
Both answer options are provided twice each as hypotheses, regardless of the ground truth answer.
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You are an expert molecular biologist who studies how genes are related using Perturb-seq.

You are given as Input:

- Perturbed gene: description of gene that is perturbed via CRISPRi knockdown

- Gene of interest: description of gene, the impact on which you wish to infer

- Hypothesis: hypothesis regarding how the specified perturbation affects the gene of interest

Context: {sentence describing cell line}
Question: If you knockdown the perturbed gene using CRISPRi, how does the gene of interest’s expression change?

Task: Your goal is to identify evidence in the input that supports or refutes the hypothesis, and explain whether the
hypothesis is likely to be true.

Output format: Please fill in the following four sections. Preserve the formatting and add the corresponding content.

1) Supporting evidence: Identify all relevant parts of the input that support the hypothesis.

2) Refuting evidence: Identify all relevant parts of the input that refute the hypothesis.

3) Explanation: Based on the evidence, explain how to answer the question, step by step. In particular,

- if there is a causal relationship from the perturbed gene to the gene of interest, explain how biological mechanisms relate
the perturbed gene to the gene of interest.

- if there is no causal relationship from the perturbed gene to the gene of interest, explain why. For example, the perturbed
gene may be downstream of the gene of interest, or there may be no relationship between the two genes.

- if there is insufficient evidence to answer the question, say so.

4) Answer: Your answer must end with one of these three choices and nothing else.

A) Knockdown of the perturbed gene does not impact the gene of interest.

B) Knockdown of the perturbed gene results in differential expression of the gene of interest.

C) There is insufficient evidence to determine how knockdown of the perturbed gene affects the gene of interest.

Input:

- Perturbed gene: {summary of perturbation}
- Gene of interest: {summary of downstream gene}
- Hypothesis: {either A) ... or B) ...}

For direction of change, we change the answer options to the following.

A) Knockdown of the perturbed gene results in down-regulation of the gene of interest.

B) Knockdown of the perturbed gene results in up-regulation of the gene of interest.

E EXAMPLES

Full LLM outputs are available in our data distribution. We sample real inputs/outputs for illustrative
purposes.

E.1 SUMMARIZATION EXAMPLES

Here is an example of the knowledge-base description for ABCE1, used as the {description} in the
single-node summary.
Description of gene: ATP binding cassette subfamily E member 1

Gene products: ATP-binding cassette sub-family E member 1

Functions: (Microbial infection) May act as a chaperone for post-translational events during HIV-1 capsid assembly.,
(Microbial infection) Plays a role in the down-regulation of the 2-5A/RNASEL pathway during encephalomyocarditis virus
(EMCV) and HIV-1 infections., Nucleoside-triphosphatase (NTPase) involved in ribosome recycling by mediating ribosome
disassembly.

Quaternary structure: (Microbial infection) Interacts with HIV-1 proteins Vif and Gag. (Microbial infection) Interacts
with HIV-2 protein Gag. Interacts with PINK1.

Interacts with: ABCE1, EIF3J, GAG HV1B1, MATRX CHAV, PHOSP RABVE

Biological process: enables endoribonuclease inhibitor activity (Binds to and stops, prevents or reduces the activity of
endoribonuclease.)

Here is the unedited output for the single-node summary, which is used as input to the 1-hop neigh-
borhood summary.
The primary molecular and cellular function of gene ABCE1 is to facilitate ribosome recycling by mediating ribosome
disassembly through its nucleoside-triphosphatase (NTPase) activity, and to act as a chaperone for post-translational
events during HIV-1 capsid assembly. Additionally, ABCE1 plays a role in the down-regulation of the 2-5A/RNASEL
pathway during viral infections. Perturbing gene ABCE1 via gene knockdown may disrupt ribosome recycling and viral
capsid assembly, potentially leading to aberrant protein synthesis and altered viral replication dynamics.

Here is an example of the knowledge graph relationships for ABCE1.
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Relations to other genes:

- ABCE1 enables 4 iron, 4 sulfur cluster binding, ATP binding, ATP hydrolysis activity, CTPase activity, GTPase activity,
endoribonuclease inhibitor activity, iron ion binding, ribonucleoside triphosphate phosphatase activity, ribosomal small
subunit binding.

- ABCE1 is active in cytosolic ribosome

- ABCE1 is involved in negative regulation of endoribonuclease activity, regulation of translation, rescue of stalled ribosome,
ribosomal subunit export from nucleus, ribosome disassembly, translational initiation, translational termination, cytoplasm,
cytosol, membrane, mitochondrial matrix, mitochondrion.

- Based on evidence from experimental evidence in humans, database evidence in humans, ABCE1 may physically interact
with RNASEL.

- Based on evidence from experimental evidence in humans, experimental evidence in other animals, ABCE1 may physically
interact with EIF1AX, EIF3A, EIF3B, EIF3C, EIF3D, EIF3E, EIF3F, EIF3G, EIF3H, EIF3I, EIF3K, EIF3L, EIF3M,
G3BP2, LTO1, MFGE8, PSMD14, RACK1, RPL12, RPL23, RPL4, RPL7A, RPL9, RPL9P7, RPL9P8, RPL9P9, RPS10,
RPS10-NUDT3, RPS11, RPS12, RPS13, RPS14, RPS15, RPS15A, RPS16, RPS17, RPS18, RPS19, RPS2, RPS20, RPS21,
RPS24, RPS25, RPS26, RPS27, RPS27A, RPS28, RPS29, RPS3, RPS3A, RPS4X, RPS5, RPS6, RPS7, RPS8, RPS9,
RPSA, YAE1.

- Based on evidence from experimental evidence in humans, experimental evidence in other animals, literature evidence
in humans, ABCE1 may physically interact with EIF5, RPS23.

- Based on evidence from experimental evidence in humans, experimental evidence in other animals, literature evidence
in humans, literature evidence in other animals, ABCE1 may physically interact with EIF1, ETF1.

- Based on evidence from experimental evidence in humans, experimental evidence in other animals, literature evidence
in other animals, ABCE1 may physically interact with EIF3J, RPLP0.

- Based on evidence from experimental evidence in humans, literature evidence in humans, ABCE1 may physically interact
with DCP2, EIF2S3, FDPS, PSMD1, PSMD4.

- Based on evidence from experimental evidence in humans, literature evidence in humans, literature evidence in other
animals, ABCE1 may physically interact with EIF2S1, EIF2S2.

- Based on evidence from experimental evidence in other animals, literature evidence in humans, ABCE1 may physically
interact with UBL4A.

- Based on evidence from experimental evidence in other animals, literature evidence in other animals, ABCE1 may
physically interact with DENR, EIF1B, MRTO4.

- In 293T cells, ABCE1 may form a complex with IGF2R

- In the cytosol, ABCE1 enables OAS antiviral response, RNASEL binds 2’-5’ oligoadenylate, ABCE1 binds RNASEL,
OAS antiviral response, RNASEL binds 2’-5’ oligoadenylate, ABCE1 binds RNASEL

- In the mitochondrial matrix, ABCE1 enables Interferon alpha/beta signaling, ABCE1 binds RNASEL, inhibiting it,
Interferon alpha/beta signaling, ABCE1 binds RNASEL, inhibiting it

Here is the unedited output for the 1-hop neighborhood summary.

Perturbations that may impact the levels of ABCE1 include alterations in the 2-5A/RNASEL pathway, HIV-1 capsid
assembly, or ribosome recycling, as well as changes in the interactions with its binding partners, such as HIV-1 proteins
Vif and Gag, HIV-2 protein Gag, PINK1, EIF3J, and MATRX CHAV. Additionally, perturbations in the regulation of
translation, translational initiation, and translational termination may also affect ABCE1 levels. Furthermore, changes in
the activity of its binding partners, such as EIF1AX, EIF3A, EIF3B, and RPL12, may also impact ABCE1 expression.

E.2 QUESTION-ANSWERING EXAMPLES

Here is an example of the {list of examples} used in the QA template (D.2), retrieved to predict
the impact of AARS2 knockdown on AAK1.
Example 1: Impact of knocking down MTIF2 on SPHK1

Description of perturbed gene (MTIF2): The primary molecular and cellular function of gene MTIF2 is to facilitate the
initiation of protein synthesis in mitochondria by protecting formylmethionyl-tRNA from spontaneous hydrolysis and
promoting its binding to the 30S ribosomal subunits, ultimately leading to the formation of the 70S ribosomal complex.
This process is crucial for the translation of mitochondrial DNA into functional proteins. Perturbing gene MTIF2 via
gene knockdown would likely disrupt the initiation of protein synthesis in mitochondria, potentially leading to impaired
mitochondrial function and protein synthesis.

Description of gene of interest (SPHK1): The primary molecular and cellular function of gene SPHK1 is to catalyze
the phosphorylation of sphingosine to form sphingosine 1-phosphate, a lipid mediator with both intra- and extracellular
functions, and to interact with various proteins to regulate downstream cellular processes. Additionally, SPHK1 plays a
role in the sphingosine-1-phosphate receptor signaling pathway, which regulates transcription and other cellular processes.
Perturbations that might impact the expression of gene SPHK1 include alterations in the sphingosine-1-phosphate receptor
signaling pathway, changes in calmodulin binding, or disruptions to its interactions with other proteins such as ACY1,
CATB, EF1A1, FHL2, LAMP2, SHLB1, SPHKAP, or TRAF6.

Outcome: A) Knockdown of MTIF2 does not impact SPHK1.

Example 2: Impact of knocking down CLPX on PTCD1

Description of perturbed gene (CLPX): The primary molecular and cellular function of gene CLPX is to act as an ATP-
dependent specificity component of the Clp protease complex, hydrolyzing ATP and forming a homohexamer ring structure
that assembles with CLPP rings to form the Clp complex. This complex is involved in protein degradation and quality
control in the mitochondrial matrix. Perturbing gene CLPX via gene knockdown may disrupt the proper functioning of
the Clp protease complex, leading to impaired protein degradation and potential accumulation of misfolded or damaged
proteins in the mitochondrial matrix.
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Description of gene of interest (PTCD1): The primary molecular and cellular function of gene PTCD1 is to negatively
regulate leucine tRNA levels, mitochondria-encoded proteins, and COX activity, while also affecting the 3’-processing of
mitochondrial tRNAs, thereby influencing mitochondrial protein synthesis. As a mitochondrial protein, PTCD1 associates
with mitochondrial leucine tRNAs and interacts with various proteins, including ELAC2, to modulate its functions.
Perturbations that might impact the expression of gene PTCD1 include disruptions to mitochondrial tRNA metabolism,
alterations in COX activity, or changes in the levels of interacting proteins, such as ELAC2, which could in turn affect
PTCD1’s regulatory roles in mitochondrial protein synthesis.

Outcome: A) Knockdown of CLPX does not impact PTCD1.

{...}
Example 12: Impact of knocking down NARS2 on REPS1

Description of perturbed gene (NARS2): The primary molecular and cellular function of gene NARS2 is to encode a
mitochondrial aminoacyl-tRNA synthetase that catalyzes the attachment of asparagine to its cognate tRNA, thereby
participating in protein synthesis. This enzyme enables asparagine-tRNA ligase activity, facilitating the formation of
Asn-tRNA(Asn) from L-asparagine and tRNA(Asn). Perturbing gene NARS2 via gene knockdown may disrupt the proper
charging of tRNA with asparagine, potentially leading to aberrant protein synthesis and mitochondrial dysfunction.

Description of gene of interest (REPS1): The primary molecular and cellular function of gene REPS1 is to coordinate the
cellular actions of activated EGF receptors and Ral-GTPases, potentially linking them to an EGF-responsive tyrosine kinase
through its interactions with CRK and GRB2. Additionally, REPS1 may be involved in clathrin-mediated endocytosis
through its interactions with AMPH, ITSN1, and SGIP1. Perturbations to the EGF signaling pathway, Ral-GTPase
activity, or clathrin-mediated endocytosis may impact the expression of gene REPS1.

Outcome: A) Knockdown of NARS2 does not impact REPS1.

Here is the unedited output for the above prompt.

[Start of Output]

Based on the provided examples, I will extract the most relevant parts to address the five questions.

1. Which of the observed perturbed genes are most similar to AARS2 (if any, including AARS2 itself)?

From the examples, we can see that AARS2 is a mitochondrial aminoacyl-tRNA synthetase, specifically responsible for
attaching alanine to tRNA(Ala). The most similar genes to AARS2 are likely to be other mitochondrial aminoacyl-tRNA
synthetases, such as TARS2 (threonine-tRNA ligase), RARS2 (arginine-tRNA ligase), and NARS2 (asparagine-tRNA
ligase). These genes share similar functions and are also involved in protein synthesis.

2. When perturbing AARS2 or similar genes, what downstream pathways or genes are differentially expressed? Justify
your answer with the observed outcomes.

From the examples, we can see that perturbing AARS2 or similar genes does not impact the expression of downstream
genes. For instance, knocking down AARS2 does not affect the expression of SPHK1, PTCD1, SLC35G2, LYRM7, RTN2,
AAK1, or NECAP2. Similarly, knocking down TARS2, RARS2, or NARS2 does not impact the expression of SLC35G2,
REPS1, or NECAP2, respectively. This suggests that the perturbation of AARS2 or similar genes does not significantly
affect downstream pathways or genes.

3. Which of the observed genes of interest are most similar to AAK1 (if any, including AAK1 itself)?

From the examples, we can see that AAK1 is a gene involved in regulating clathrin-mediated endocytosis and interacts with
clathrin and other proteins. The most similar genes to AAK1 are likely to be other genes involved in clathrin-mediated
endocytosis, such as NECAP2, which facilitates endocytosis through its interactions with adapter protein complexes AP-1
and AP-2. Other genes that interact with clathrin, such as RTN2, may also be similar to AAK1.

4. What perturbations of upstream pathways or genes result in differential expression of AAK1 or similar genes (if any)?
Justify your answer with the observed outcomes.

From the examples, we can see that perturbing genes involved in clathrin-mediated endocytosis, such as NECAP2, does
not impact the expression of AAK1. Similarly, perturbing genes involved in protein synthesis, such as RPL10, does not
affect the expression of AAK1. This suggests that the perturbation of upstream pathways or genes does not significantly
affect the expression of AAK1 or similar genes.

5. Is a CRISPRi knockdown of AARS2 in K562 cells likely to result in differential expression of AAK1?

Based on the observed outcomes, it is unlikely that a CRISPRi knockdown of AARS2 in K562 cells will result in differential
expression of AAK1. The perturbation of AARS2 or similar genes does not impact the expression of downstream genes,
including AAK1. Therefore, the answer is:

No. Knockdown of AARS2 does not impact AAK1.

[End of Output]

E.3 OTHER EXAMPLES

We use the following for {sentence describing cell line}, derived from Wikipedia.

K562 cells are immortalised myelogenous leukemia cells of the erythroleukemia type.

RPE1 cells are a non-cancerous, hTERT-immortalized, near-euploid, adherent, and p53-positive cell line.

Jurkat cells are an immortalized line of human T lymphocyte cells.

HepG2 cells are a human liver cancer cell line, derived from a patient with a well-differentiated hepatocellular carcinoma.
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