MANIFOLD-MATCHING AUTOENCODERS

Anonymous authors

000

001 002 003

004

006

008 009

010

011

012

013

014

015

016

017

018

019

021

023

024

026 027

028

029

031

032

033

034

035

036

037

040

041

042

043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

We propose Manifold-Matching Autoencoders (MMAEs), a simple yet effective framework that aligns autoencoder latent spaces with precomputed geometric references. This is accomplished by using distance-based regularization to match latent and reference distance matrices, enabling the same architecture to achieve different data representations by simply changing the reference embedding. We demonstrate that MMAEs achieve scalable topological control in high-dimensional settings where existing methods become computationally intractable. One key finding is that aligning with PCA yields unexpected benefits: MMAEs achieve SOTA preservation of the original data structure, comparable to sophisticated topological autoencoders, while maintaining significantly better reconstruction quality and more efficient computation. When combining with VAEs, the present regularization has the effect of concentrating variance in fewer dimensions. This balance between structure preservation, variance concentration, and reconstruction fidelity enables superior generative capabilities, including clearer interpolations and more effective discovery of semantically meaningful latent directions for attribute manipulation.

1 Introduction

Autoencoders remain highly relevant today, playing a crucial role in various fields of machine learning and data science. Their ability to efficiently learn compressed representations of data makes them invaluable for tasks such as dimensionality reduction, anomaly detection, denoising, and unsupervised feature learning (Chen & Guo, 2023). However, their lack of ability to preserve the topology or the global structure of the input data, coupled with random weights initialization, can lead to discontinuities in the latent representations that weren't originally present in the input data. These discontinuities can negatively affect the decoder's ability to reconstruct the input (Batson et al., 2021). It is a complex problem as data is usually high-dimensional, where the curse of dimensionality causes distance concentration—pairwise distances become increasingly similar, reducing their discriminative power for capturing meaningful relationships (Aggarwal et al., 2001). This makes direct alignment between latent and input spaces ineffective. Recent approaches address this by incorporating topological data analysis (TDA) (Moor et al., 2020b; Trofimov et al., 2023), which preserves essential structural features (connected components, cycles) through persistent homology rather than preserving all distances indiscriminately. Although these approaches have succeeded in cases for visualization of the bottleneck i.e cases where the bottleneck is 2D/3D, nevertheless, the use of geometric/topological regularizations and more generally manifold learning for learning all-purpose high-dimensional representations (e.g., 128D/256D) remains an open problem (Duque et al., 2023).

Variational autoencoders (VAEs) (Kingma & Welling, 2022) typically require larger bottlenecks, allowing more information to flow through for generating synthetic images, for example. Although the latent space of VAEs is usually understood from a distributional perspective, recent studies have shown that geometric properties of the latent space, such as its shape or density, can help generate better images, an interpretation that extends to other generative models such as GANs (Chadebec & Allassonnière, 2022; Xu et al., 2024). Others advocate that isometric embeddings can help uncover directions or regions that represent the presence or addition/removal of semantically meaningful attributes while maintaining other aspects of an image intact (Kato et al., 2020). Thus, flexibly manipulating latent space geometry is desirable either for preserving the original data topology or for extending useful representations to unseen data for visualization, classification, clustering, or generation.

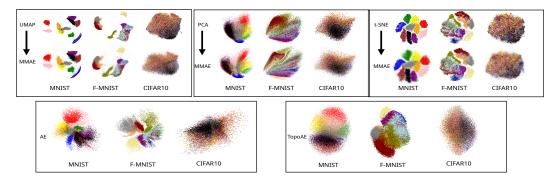


Figure 1: MMAEs copying different 2D representations of the data across three datasets. Standard AE and TopoAE for comparison. Training is unsupervised, classes (colors) are used for visualization purposes only.

We propose a simple distance-based regularization for autoencoders that aligns latent representations with reference embeddings from established dimensionality reduction methods such as PCA (Hotelling, 1933), t-SNE (van der Maaten & Hinton, 2008), and UMAP (McInnes et al., 2018). This approach enables autoencoders to embed new data points within these established geometric structures while maintaining parametric generalization capabilities.

Our method provides distinct advantages across different scenarios. In low-dimensional settings, it transforms autoencoder latent spaces into effective visualization tools that reproduce the structure of classical dimensionality reduction techniques (see Figure 1). In high-dimensional scenarios, it remains competitive with state-of-the-art topological variants (Moor et al., 2020b) while offering reduced computational complexity. Additionally, for generative applications with VAEs, our regularization produces a clear variance hierarchy within the dimensions of the bottleneck, in contrast to the traditional VAE, a useful property for tasks such as semantic interpolation and attribute manipulation (Kato et al., 2020).

We identify two critical factors for optimal generative performance: achieving high absolute variance values in the latent space and concentrating this variance across fewer dimensions. Our experiments reveal that geometric regularization choice significantly impacts both factors, enabling MMVAEs to outperform other approaches through clearer images and better separation of variation factors. For example, in 3DShapes (Burgess & Kim, 2018) we achieve single-attribute manipulation (shape, orientation, size) via linear latent directions. In CelebA (Liu et al., 2015), we similarly add or remove smiles, or other attributes, without altering other facial features. This represents important progress toward controllable image synthesis.

2 Background: Geometry, Topology, & Manifold Learning

Geometry in latent spaces concerns quantitative metric properties (distances, angles, coordinates), while topology refers to structural properties (connectivity, clustering, manifold structure) that remain invariant under continuous deformations. Multiple geometries can share identical topology—circles and ellipses have different geometries but the same topological structure. The importance of understanding data topology has been recognized since the 1960s, including by Rosenblatt, the inventor of the perceptron (Rosenblatt, 1962). Topology is fundamentally tied to the manifold hypothesis underlying modern dimensionality reduction: high-dimensional data $\mathbf{X} = \{\mathbf{x}_i\}_{i=1}^k$ with $\mathbf{x}_i \in \mathbb{R}^n$ typically lies on or near a lower-dimensional manifold $\mathcal{M} \subset \mathbb{R}^n$. Classical approaches like PCA (Hotelling, 1933; Jolliffe, 2002) find linear subspaces maximizing variance through $\mathbf{X} \approx \sum_{i=1}^{l} a_i \mathbf{v}_i$, providing computationally efficient representations that preserve the global variance structure, which is beneficial for tasks requiring interpretable features and approximate data reconstruction. Modern nonlinear methods address PCA's limitations in capturing curved manifolds. UMAP (McInnes et al., 2018) preserves the structure of the local neighborhood through fuzzy topological representations, producing embeddings that maintain the cluster relationships essential for classification and clustering tasks. t-SNE (van der Maaten & Hinton, 2008) optimizes local pairwise similarities via probability distributions, excelling at revealing local structure for visualization and exploratory

analysis. These dimensionality reduction methods provide intermediate representations that make high-dimensional relationships computationally tractable and geometrically interpretable—reducing the curse of dimensionality while preserving task-relevant structure.

Standard autoencoders (Hinton & Salakhutdinov, 2006) lack explicit topological constraints, potentially mapping similar input points to distant latent regions, creating discontinuities that affect downstream applications (Batson et al., 2021). Recent topological AE variants (Moor et al., 2020b; Chen et al., 2022; Trofimov et al., 2023) incorporate regularization using distance matrices \boldsymbol{D}^X (input space) and \boldsymbol{D}^Z (latent space) through persistence homology. However, computational complexity scales poorly with dimensionality (Moor et al., 2020a). An alternative is to directly manipulate the geometry of the latent space. This idea considers that by defining a specific geometry, the desired topology can be consequently achieved. However, for synthetic data, it is easier to define a useful geometry as the manifold is known, but for the real-world scenarios this is not the case. Additionally, as dimensionality of the bottleneck grows, imposing a geometry through direct alignment of coordinates becomes significantly more intractable (Duque et al., 2023), making these approaches ineffective in high-dimensional scenarios.

Multidimensional scaling (MDS) (Torgerson, 1952) provides a classical approach that reconstructs coordinates directly from pairwise distance matrices. The key insight is that while points $\mathbf{x}_i, \mathbf{x}_j \in \mathbb{R}^n$ may have many coordinates, their Euclidean distance $d_{ij} = \|\mathbf{x}_i - \mathbf{x}_j\|_2$ reduces their relationship to a single scalar value. Remarkably, collecting all such pairwise distances into a matrix \mathbf{D} contains sufficient information to recover the original geometric configuration. Classical MDS formalizes this by converting distance relationships into geometric configurations through eigendecomposition of the associated Gram matrix (Borg & Groenen, 2005; Schoenberg, 1935). We will see that Manifold-Matching Autoencoders, by aligning the latent space to a known geometry through pairwise distances, and minimization of the MMLoss, are able to approximate reference geometric configurations.

3 Manifold-Matching Autoencoders

3.1 FORMULATION

Manifold-Matching Autoencoders (MMAE) extend vanilla autoencoders by adjusting their latent space shape to match that of precomputed embeddings $E = \{e_i\}_{i=1}^k$ with $e_i \in \mathbb{R}^l$ (l < n) of the input data $X = \{x_i\}_{i=1}^k$ with $x_i \in \mathbb{R}^n$, where these embeddings are obtained via a mapping $u: \mathcal{X} \to \mathcal{E}$. The key insight is to transfer the topological structure captured by pairwise distances in \mathcal{E} to constrain the latent space \mathcal{Z} through regularization. See Figure 2 for a visual overview of the approach.

MMAEs. like other autoencoders, is the composition of an encoder $g_{\theta}: \mathcal{X} \to \mathcal{Z}$ that maps input data to a latent representation $\mathbf{z}_i = g_{\theta}(\mathbf{z}_i) \in \mathbb{R}^m$ (m < n), and a decoder $h_{\varphi}: \mathcal{Z} \to \mathcal{X}$ that reconstructs the input as $\hat{\mathbf{x}}_i = h_{\varphi}(\mathbf{z}_i)$. MMAEs, however, use a training objective that combines reconstruction fidelity with topological structure preservation:

$$\mathcal{L}(\boldsymbol{\theta}, \varphi; \boldsymbol{X}, \boldsymbol{E}) = \mathcal{L}_r(\boldsymbol{X}, \hat{\boldsymbol{X}}) + \lambda \mathcal{L}_{mm}(\boldsymbol{Z}, \boldsymbol{E})$$
(1)

where \mathcal{L}_r is a reconstruction loss (e.g., Mean Squared Error), \mathcal{L}_{mm} is our manifold matching loss, and $\lambda \in \mathbb{R}^+$ is a weighting parameter controlling the regularization strength.

3.2 Manifold-Matching Loss (MM Loss)

Given batch $X \in \mathbb{R}^{p \times n}$ with latent representation $Z = g_{\theta}(X) \in \mathbb{R}^{p \times m}$ and embeddings $E \in \mathbb{R}^{p \times l}$, we define pairwise distance matrices $D^{E}, D^{Z} \in \mathbb{R}^{p \times p}$ with entries:

$$d_{ij}^{E} = \|\boldsymbol{e}_{i} - \boldsymbol{e}_{j}\|^{2}, \quad d_{ij}^{Z} = \|\boldsymbol{z}_{i} - \boldsymbol{z}_{j}\|^{2}, \quad \tilde{d}_{ij}^{E} = \frac{d_{ij}^{E}}{\|\boldsymbol{D}^{E}\|_{F}}, \quad \tilde{d}_{ij}^{Z} = \frac{d_{ij}^{Z}}{\|\boldsymbol{D}^{Z}\|_{F}}$$
(2)

Where $\tilde{d}_{ij}^E, \tilde{d}_{ij}^Z$ are normalized distances and $\|\cdot\|_F$ denotes the Frobenius norm. The manifold matching loss is:

$$\mathcal{L}_{mm}(\boldsymbol{Z}, \boldsymbol{E}) = \frac{1}{p^2} \|\tilde{\boldsymbol{D}}^E - \tilde{\boldsymbol{D}}^Z\|_F^2$$
(3)

163

164

166 167

169

170

171

172 173

174

179

180

181

183

185

186 187

188

189

190

191 192

193

194

196

197

199

200

201

202

203

208

209

210 211

212

213

214

215

The MMAE optimization problem can be formulated as:

$$(\boldsymbol{\theta}^*, \varphi^*) = \arg\min_{\boldsymbol{\theta}, \varphi} \mathbb{E}_{\boldsymbol{X} \sim p_{\text{data}}} \left[\mathcal{L}_r(\boldsymbol{X}, h_{\varphi}(g_{\boldsymbol{\theta}}(\boldsymbol{X}))) + \lambda \mathcal{L}_{mm}(g_{\boldsymbol{\theta}}(\boldsymbol{X}), \boldsymbol{E}) \right]$$
(4)

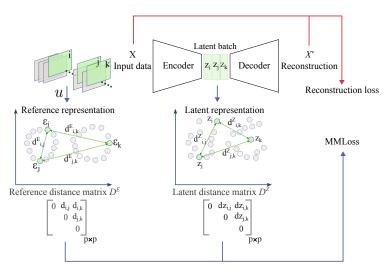


Figure 2: Overview of the current approach. One fundamental insight is that distances in the reference representation take into consideration all of the dataset points, thus incorporating into each training batch knowledge about the global structure of the full embedded dataset.

While computing distance matrices appears computationally intensive, the complexity $\mathcal{O}(p^2)$ is typically manageable for reasonably sized batches. Moreover, since the dimensionality of the spaces in which we compute distances (m and l) is substantially lower than the input dimensionality n, the computational overhead remains tractable. See Algorithm 1 for the implementation.

Algorithm 1 MMAE Training Procedure

Require: Dataset X, precomputed embeddings E, encoder g_{θ} , decoder h_{φ}

- 1: **for** each mini-batch X_b , E_b in X, E **do**
- Compute latent codes $Z_b = g_{\theta}(X_b)$ 2:
- 3: Compute reconstructions $\hat{X}_b = h_{\varphi}(Z_b)$
- Compute reconstruction loss $\mathcal{L}_r = \|\mathbf{X}_b \hat{\mathbf{X}}_b\|^2$ Compute distance matrices \mathbf{D}^E and \mathbf{D}^Z 4:
- 5:
- Compute normalized distances $\tilde{\boldsymbol{D}}^E$ and $\tilde{\boldsymbol{D}}^Z$ 6:
- 7: Compute manifold matching loss \mathcal{L}_{mm} using Equation (4)
- Compute total loss $\mathcal{L} = \mathcal{L}_r + \lambda \mathcal{L}_{mm}$ 8:
- 9: Update parameters θ and φ using gradient descent on \mathcal{L}
- 10: **end for**

COMPARISON TO MDS

Distance preservation provides a principled approach to geometric alignment. When our manifoldmatching loss minimizes $\mathcal{L}_{mm}(\mathbf{Z}, \mathbf{E}) = \frac{1}{p^2} \| \mathbf{\tilde{D}}^E - \mathbf{\tilde{D}}^Z \|_F^2$, it drives the latent space \mathbf{Z} to preserve the same pairwise distance relationships as the reference embedding $\mathcal{L}_{mm} \to 0 \Rightarrow \tilde{\mathbf{D}}^Z \approx \tilde{\mathbf{D}}^E$. This establishes that our neural encoder g_{θ} learns a parametric extension of classical MDS—enabling generalization to new data points while preserving the geometric structure captured by the reference embedding method. The key advantage is dimensionality flexibility: our distance-based approach works when $m \neq l$ (e.g., 256D latent matching 2D or 100D reference), as normalized distances are scale-invariant and independent of ambient dimensionality.

4 RELATED WORK

Moor et al. (2020b) propose Topological Autoencoders (TopoAEs) that preserve topological structures via persistent homology using regularization:

$$\mathcal{L} := \mathcal{L}_r + \lambda \mathcal{L}_t \tag{5}$$

where \mathcal{L}_t is the topological loss and λ controls regularization strength. Like our method, TopoAEs operate on distance matrices $\mathbf{D^X}$ and $\mathbf{D^Z}$ from input and latent spaces. However, rather than preserving all pairwise distances, TopoAEs use persistent homology to identify and select only topologically significant distances through persistence pairings Π_X and Π_Z . These pairings act as filters that extract subsets of distances $\mathbf{D^X_{II}}$ and $\mathbf{D^Z_{II}}$ corresponding to edges that create or destroy topological features (e.g., the edge that closes a loop). The topological loss then matches these filtered distance sets between spaces. While this selective approach targets the most structurally important relationships, it requires complex persistent homology computation. Moor et al. (2020a) investigate alternative distance metrics but find limited benefits, while subsequent topology-aware methods (Chen et al., 2022; Trofimov et al., 2023) inherit similar computational limitations.

Duque et al. (2023) propose Geometry Regularized Autoencoders (GRAEs) with a fundamentally different approach: rather than computing topological structure during training, they rely on precomputed reference embeddings where the topological knowledge is externalized to the reference algorithm:

$$\mathcal{L} := \mathcal{L}_r + \lambda \mathcal{L}_g, \quad \mathcal{L}_g = \sum_{i=1}^k \|\boldsymbol{\epsilon}_i - g_{\theta}(\mathbf{x}_i)\|^2$$
 (6)

where \mathcal{L}_g enforces coordinate-wise alignment between latent representations and reference embeddings $\mathbf{E} = \{\epsilon_i\}_{i=1}^k$ computed using UMAP (McInnes et al., 2018) or PHATE (Moon et al., 2019). GRAE aims to exactly reproduce reference coordinates through direct alignment, requiring identical dimensionality between reference and latent spaces. In contrast, our approach preserves relative distances between points rather than absolute coordinates. The normalization in our manifold-matching loss enables the autoencoder to scale its representation freely, so long as normalized relative distances are maintained. While GRAE forces exact coordinate reproduction, our distance-based regularization acts as a geometric "compass" that guides the latent space organization without constraining absolute positioning or scale.

5 EXPERIMENTS

5.1 SETTINGS:

Datasets: We use three simple real-world image datasets **MNIST**, **Fashion-MNIST** $(28 \times 28 \times 1)$ (Lecun et al., 1998; Xiao et al., 2017), and **CIFAR10** $(32 \times 32 \times 3)$ (Krizhevsky, 2009). In the generative scenarios we explore the **dSprites** (64×64) (Matthey et al., 2017), **3DShapes** $(64 \times 64 \times 3)$ (Burgess & Kim, 2018) and **CelebA** $(256 \times 256 \times 3)$ (Liu et al., 2015).

Models & Training: In the case of CIFAR10, MNIST, and F-MNIST we use a simple MLP autoencoder based on the DeepAE architecture proposed by (Moor et al., 2020b). In the generative cases, we use convolutional layers. Details are given in A.3. All models employ batch normalization and ADAM optimizer (Kingma & Ba, 2017). Models are trained at most for 30 epochs. Reference mechanisms used are PCA (Hotelling, 1933), and UMAP (McInnes et al., 2018) (t-SNE (van der Maaten & Hinton, 2008) is limited to at most 3D for visualization purposes only). In the high-dimensional scenarios, the embeddings used have at most 100 components in MMAE (in the CelebA case, for example, this means that we use $100 \div (256 \times 256 \times 3) \approx 0.051\%$ of the original data dimensionality), while GRAE requires the embeddings to have the same dimensionality as the bottlenecks. Latent dimensionality in all cases is 256D.

5.2 EXPERIMENT: DIMENSIONALITY REDUCTION QUALITY

For large bottlenecks, the original data topology can be measured by how well relative distances and neighborhoods are preserved when moving from one space to another. In this case, our models are

evaluated comparing the latent spaces \mathcal{Z} to the input space \mathcal{X} . **Trustworthiness** and **Continuity** (Venna & Kaski, 2001) quantify local neighborhood preservation by measuring how well k-nearest neighbor relationships are maintained across spaces, where trustworthiness penalizes false neighbors appearing in \mathcal{Z} that were not neighbors in \mathcal{X} , while continuity penalizes true neighbors from \mathcal{X} that are separated in \mathcal{Z} , both yielding values in [0,1] with higher scores indicating better local structure; we average the results for different values k = [3; 5; 10; 25; 100]. We call the product of $Trust \times Cont$ "neighborhood preservation" for better visualization. **RMSE** captures global geometric consistency by comparing normalized pairwise distance matrices between spaces (not related to reconstruction error); and **MRRE** (Lee et al., 2007) assesses global topological preservation through rank correlation analysis of distance orderings.

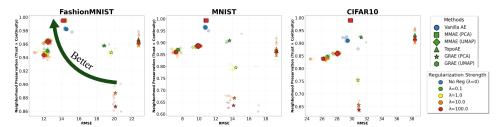


Figure 3: NLDR quality metrics for varying regularization strength λ . Comparison between MMAE, GRAE, TopoAE, and AE. Five runs per model.

Results: Figure 3 shows that MMAE (PCA) consistently outperforms all other approaches in preserving local neighborhoods, as measured by the product (Trust.× Cont.) on the y-axis, and maintaining comparable RMSE performance to the standard AE. TopoAE exhibits the highest RMSE, which remains unchanged across regularization strengths—a characteristic consistent with the authors' findings (Moor et al., 2020b). The UMAP variants achieved the lowest RMSE across all datasets, which is consistent with UMAP's focus on global structure preservation with better performance in clustering (see A.4.1). TopoAE and MMAE (PCA) also showed better robustness to different types of noise, as seen in A.4.2. In contrast, UMAP variants achieved the best clustering likely due to the more advanced capabilities of this dimensionality reduction tool to separate classes (as can be seen for the 2D case of MNIST and F-MNIST in Figure 1).

5.3 EXPERIMENT: SEMANTIC INTERPOLATIONS

In 3DShapes and dSprites, the attribute vectors are computed using a mean latent difference approach. For each factor f and value v, we first compute the mean latent representation $\mu_f(v) = \frac{1}{N_v} \sum_{i=1}^{N_v} g_{\theta}(\mathbf{x}_i)$, where $\mathbf{x}_i \in \mathcal{X}$ are samples with factor f equal to value $v, g_{\theta} : \mathcal{X} \to \mathcal{Z}$ is the encoder function, and N_v is the number of such samples. The direction vectors $\mathbf{d} \in \mathbb{R}^m$ are then defined as differences between these mean latents: for discrete factors like shape transformations, $\mathbf{d}_{\text{shape}} = \mu_{\text{shape}}(v_{\text{target}}) - \mu_{\text{shape}}(v_{\text{source}})$, while for continuous factors like color or scale, $\mathbf{d}_{\text{factor}} = \mu_f(v_{\text{max}}) - \mu_f(v_{\text{min}})$. Interpolation is performed by modifying the original latent code $\mathbf{z}_i = g_{\theta}(\mathbf{x}_i)$ as $\mathbf{z}_i' = \mathbf{z}_i + \alpha \mathbf{d}$, where $\alpha \in \mathbb{R}$ controls the interpolation strength. For CelebA, the procedure is the same, however, labels have binary values (0 or 1), with no intermediate values for "smiling", "blond hair" or other attributes.

Results: MMVAE (PCA) consistently achieves superior semantic interpolation across datasets. In 3DShapes (Figure 5), it successfully manipulates individual attributes (shape, orientation, scale) without affecting others (color, background), while competing approaches exhibit factor entanglement (a); d); e)). Approaches using UMAP (c); f)) show second best approach but become more unstable for extreme values of α . For CelebA, MMVAE (PCA) produces higher-quality interpolations with better-formed details and attribute-specific control compared to standard VAE and GRVAE. The key advantage lies in variance distribution: both topological regularization and our approach concentrate variance in fewer dimensions, but MMVAE (PCA) achieves substantially higher absolute maximum variance values (≈ 4.0 for 3DShapes, ≈ 20.0 for CelebA) compared to TopoVAE's severely limited values (≈ 0.015 in both datasets) (Figure 7). GRVAE fails to achieve similar concentration despite coordinate alignment. This variance concentration advantage correlates with

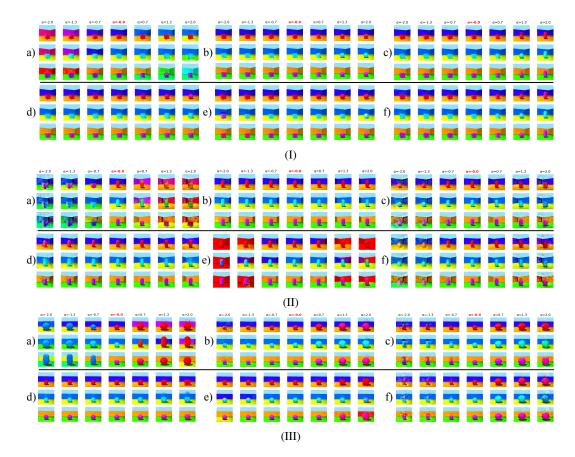


Figure 4: 3DShapes interpolation results. I Cube to sphere transformation, II pill orientation changes, III sphere scaling variations. a) Standard VAE, b) MMAE (PCA), c) MMAE (UMAP), d) TopoVAE, e) GRVAE (PCA), f) GRVAE (UMAP). $\alpha \in [-2; 2]$.

neighborhood preservation results (Figure 6I), where only MMVAE-PCA and TopoVAE maintain strong performance at larger scales k, with MMVAE-PCA providing superior reconstruction quality. GRVAE consistently degrades at higher k values, confirming that variance concentration is essential for preserving local geometric structure.

6 DISCUSSION

Manipulating latent space geometry offers significant benefits beyond 2D/3D visualization, but remains challenging for real-world datasets with unknown structure. Our MMAE method offers a flexible way to take advantage of the richness of AEs while guiding the shape of latent space via potentially simple methods. For example MMAE (PCA) produces a latent space with effective structural bias for image datasets, measured through NLDR quality metrics. The generative variant, MMVAE, also preserved this structural bias and produced distinctive variance patterns characterized by concentration in fewer dimensions and higher absolute values. In contrast to the more uniform variance distribution observed in standard VAEs (\$\approx\$ 1.0). This PCA-like hierarchical structure facilitates clearer interpretation (Kato et al., 2020; Casella et al., 2022; Pham et al., 2022) and supports effective linear interpolation. Following Bengio et al. (2013)'s point of view of a flat manifold, where linear latent interpolations yield smooth output transitions, VAE manifolds naturally exhibit minimal curvature (Shao et al., 2018). We hypothesize that our distance-based regularization enhances this property by preserving the geometric relationships from well-structured reference embeddings, resulting in more accurate attribute manipulation. Mathieu et al. (2019) introduce "decomposition", a generalization of disentanglement (Locatello et al., 2019), characterized by two requirements: (1) appropriate latent overlap controlled by encoding stochasticity (the β parameter



Figure 5: CelebA interpolations for $\alpha \in [-1; 1]$. **Top:** Standard VAE, **Middle:** MMVAE (PCA), **Bottom:** GRVAE (PCA).

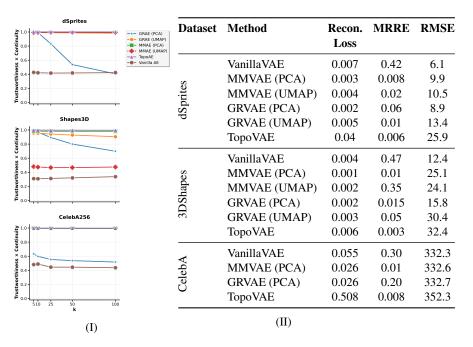


Figure 6: I NLDR quality metrics (Trustworthiness × Continuity) across different values of k for VAE variants on three datasets. II Quantitative performance metrics including reconstruction loss, MRRE, and RMSE for the same models and datasets.

in β -VAE), and (2) the aggregate posterior $q(\mathbf{z})$ matching a prior that encodes desired dependency structures among latent variables. We interpret the alignment of pairwise distances via \mathcal{L}_{mm} in VAEs as imposing a geometric prior—where the reference embedding's structure (PCA, UMAP, t-SNE) defines the desired geometric organization. Our results support this interpretation, as distance-regularized models consistently outperform standard VAEs in controlled manipulation of individual

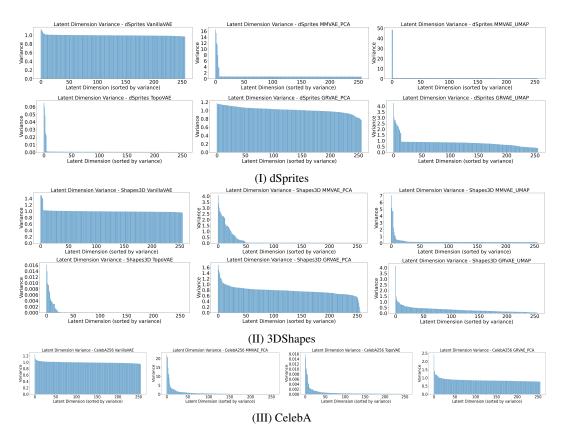


Figure 7: Latent variance per dimension (sorted).

factors. **Limitations:** The primary constraint is the computational cost to calculate low-dimensional projections, particularly for large datasets. For example, we limited CelebA experiments to PCA due to its computational efficiency and superior neighborhood preservation in other datasets. However, projections need only be computed once for a given geometry. For very large datasets, an alternative could be to train using MMLoss on a sufficiently large subset of the data, and then embed the remaining. **Future Directions:** The most promising extension involves applying Manifold Matching to other generative architectures, more suitable for generating high-quality images. For instance, Pandey et al. (2022) use VAE latent spaces as initialization for diffusion processes, but suffer from standard VAE blurriness and lack of meaningful details. Our approach could provide better-structured initializations with better control over meaningful attributes.

7 CONCLUSION

We introduced MMAEs, a simple yet effective framework for controlling latent space geometry through distance-based alignment with precomputed references. Our key discovery is that MMAE combined with PCA achieves superior NLDR metrics in large bottleneck scenarios (256D), rivaling sophisticated topological regularizations while maintaining significantly better reconstruction quality and computational efficiency. In generative applications, our approach demonstrates a crucial advantage: the ability to concentrate variance in fewer dimensions while achieving higher absolute variance values. This combination enables superior recovery of semantically meaningful directions—such as changing shape, scale, or orientation in 3DShapes, or adding mustaches and smiles in CelebA faces. Our experiments reveal that optimal isolation of semantically meaningful attributes requires both high absolute variance accumulation and its concentration in fewer dimensions—a property that emerges naturally in our framework. This raises intriguing questions about the synergy between PCA's linear structure and autoencoders' nonlinear capacity. This work provides both theoretical insights into latent space organization and a practical tool for controllable synthetic image generation.

REFERENCES

- Charu C. Aggarwal, Alexander Hinneburg, and Daniel A. Keim. On the surprising behavior of distance metrics in high dimensional spaces. In *Proceedings of the 8th International Conference on Database Theory*, ICDT '01, pp. 420–434, Berlin, Heidelberg, 2001. Springer-Verlag. ISBN 3540414568.
- Joshua Batson, C. Grace Haaf, Yonatan Kahn, and Daniel A. Roberts. Topological obstructions to autoencoding. *Journal of High Energy Physics*, 2021(4), 2021. ISSN 1029-8479. doi: 10.1007/jhep04(2021)280. URL http://dx.doi.org/10.1007/JHEP04(2021)280.
- Yoshua Bengio, Gregoire Mesnil, Yann Dauphin, and Salah Rifai. Better mixing via deep representations. In Sanjoy Dasgupta and David McAllester (eds.), *Proceedings of the 30th International Conference on Machine Learning*, volume 28 of *Proceedings of Machine Learning Research*, pp. 552–560, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR. URL https://proceedings.mlr.press/v28/bengio13.html.
- Ingwer Borg and Patrick J. F. Groenen. *Modern Multidimensional Scaling Theory and Applications*. Springer, New York, 2005. ISBN 038728981X. doi: 10.1007/0-387-28981-X.
- Chris Burgess and Hyunjik Kim. 3d shapes dataset. https://github.com/deepmind/3dshapes-dataset/, 2018.
- Monica Casella, Pasquale Dolce, Michela Ponticorvo, and Davide Marocco. From principal component analysis to autoencoders: a comparison on simulated data from psychometric models. In 2022 IEEE International Conference on Metrology for Extended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE), pp. 377–381, 2022. doi: 10.1109/MetroXRAINE54828. 2022.9967686.
- Clément Chadebec and Stéphanie Allassonnière. A geometric perspective on variational autoencoders. *Advances in Neural Information Processing Systems*, 35:19618–19630, 2022.
- Nutan Chen, Patrick van der Smagt, and Botond Cseke. Local distance preserving auto-encoders using continuous knn graphs. In Alexander Cloninger, Timothy Doster, Tegan Emerson, Manohar Kaul, Ira Ktena, Henry Kvinge, Nina Miolane, Bastian Rieck, Sarah Tymochko, and Guy Wolf (eds.), *Proceedings of Topological, Algebraic, and Geometric Learning Workshops 2022*, volume 196 of *Proceedings of Machine Learning Research*, pp. 55–66. PMLR, 25 Feb–22 Jul 2022. URL https://proceedings.mlr.press/v196/chen22b.html.
- Shuangshuang Chen and Wei Guo. Auto-encoders in deep learning—a review with new perspectives. *Mathematics*, 11(8):1777, 2023. doi: 10.3390/math11081777. URL https://doi.org/10.3390/math11081777.
- Andres F. Duque, Sacha Morin, Guy Wolf, and Kevin R. Moon. Geometry regularized autoencoders. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(6):7381–7394, 2023. doi: 10.1109/TPAMI.2022.3222104.
- G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. *Science*, 313(5786):504–507, 2006. doi: 10.1126/science.1127647. URL https://www.science.org/doi/abs/10.1126/science.1127647.
- Harold Hotelling. Analysis of a complex of statistical variables into principal components. *Journal of Educational Psychology*, 24(6):417–441, 1933.
- I.T. Jolliffe. *Principal Component Analysis*. Springer Series in Statistics. Springer, 2002. ISBN 9780387954424. URL https://books.google.ca/books?id=_olByCrhjwIC.
- Keizo Kato, Jing Zhou, Tomotake Sasaki, and Akira Nakagawa. Rate-distortion optimization guided autoencoder for isometric embedding in Euclidean latent space. In Hal Daumé III and Aarti Singh (eds.), *Proceedings of the 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pp. 5166–5176. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/kato20a.html.

- Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL https://arxiv.org/abs/1412.6980.
- Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2022. URL https://arxiv.org/abs/1312.6114.
 - Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University of Toronto, 2009.
 - Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.
 - John A Lee, Michel Verleysen, et al. Nonlinear dimensionality reduction, volume 1. Springer, 2007.
 - Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In *Proceedings of International Conference on Computer Vision (ICCV)*, December 2015.
 - Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard Schölkopf, and Olivier Bachem. Challenging common assumptions in the unsupervised learning of disentangled representations. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 4114–4124. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/locatello19a.html.
 - Emile Mathieu, Tom Rainforth, N Siddharth, and Yee Whye Teh. Disentangling disentanglement in variational autoencoders. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th International Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*, pp. 4402–4412. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/mathieu19a.html.
 - Loic Matthey, Irina Higgins, Demis Hassabis, and Alexander Lerchner. dsprites: Disentanglement testing sprites dataset. https://github.com/deepmind/dsprites-dataset/, 2017.
 - Leland McInnes, John Healy, Nathaniel Saul, and Lukas Großberger. Umap: Uniform manifold approximation and projection. *Journal of Open Source Software*, 3(29):861, 2018. doi: 10.21105/joss.00861. URL https://doi.org/10.21105/joss.00861.
 - Kevin R Moon, David van Dijk, Zheng Wang, Scott Gigante, Derek B Burkhardt, William S Chen, Kristina Yim, Antonia van den Elzen, Matthew J Hirn, Ronald R Coifman, Natalia B Ivanova, Guy Wolf, and Smita Krishnaswamy. Visualizing structure and transitions in high-dimensional biological data. *Nature Biotechnology*, 37(12):1482–1492, 2019. doi: 10.1038/s41587-019-0336-3.
 - Michael Moor, Max Horn, Karsten Borgwardt, and Bastian Rieck. Challenging euclidean topological autoencoders. In *NeurIPS 2020 Workshop on Topological Data Analysis and Beyond*, 2020a. URL https://openreview.net/forum?id=P3dZuOUnyEY.
 - Michael Moor, Max Horn, Bastian Rieck, and Karsten Borgwardt. Topological autoencoders. In *Proceedings of the 37th International Conference on Machine Learning (ICML)*, Proceedings of Machine Learning Research. PMLR, 2020b.
 - Kushagra Pandey, Avideep Mukherjee, Piyush Rai, and Abhishek Kumar. Diffusevae: Efficient, controllable and high-fidelity generation from low-dimensional latents, 2022. URL https://arxiv.org/abs/2201.00308.
 - Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. *Advances in Neural Information Processing Systems*, 32:8024–8035, 2019.
 - Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*, 12:2825–2830, 2011.

- Chi-Hieu Pham, Saïd Ladjal, and Alasdair Newson. PCA-AE: Principal Component Analysis Autoencoder for Organising the Latent Space of Generative Networks. *Journal of Mathematical Imaging and Vision*, 64(5):569–585, June 2022. doi: 10.1007/s10851-022-01077-z. URL https://hal.science/hal-03713275.
- Frank Rosenblatt. *Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms*. Cornell Aeronautical Laboratory Report No. VG-1196-G-8. Spartan Books, 1962. Original from the University of Michigan, digitized on 27 Nov. 2007.
- Isaac J Schoenberg. Remarks to maurice frechet's article"sur la definition axiomatique d'une classe d'espace distances vectoriellement applicable sur l'espace de hilbert. *Annals of Mathematics*, 36 (3):724–732, 1935.
- Hang Shao, Abhishek Kumar, and P. Thomas Fletcher. The riemannian geometry of deep generative models. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 428–4288, 2018. doi: 10.1109/CVPRW.2018.00071.
- W. S. Torgerson. Multidimensional scaling: I. theory and method. *Psychometrika*, 17:401–419, 1952.
- Ilya Trofimov, Daniil Cherniavskii, Eduard Tulchinskii, Nikita Balabin, Serguei Barannikov, and Evgeny Burnaev. Learning topology-preserving data representations. In *International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=llu-ixf-Tzf.
- Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of Machine Learning Research*, 9(86):2579–2605, 2008. URL http://jmlr.org/papers/v9/vandermaaten08a.html.
- Jarkko Venna and Samuel Kaski. Neighborhood preservation in nonlinear projection methods: An experimental study. In *International conference on artificial neural networks*, pp. 485–491. Springer, 2001.
- Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms, 2017. URL https://arxiv.org/abs/1708.07747.
- Jingyi Xu, Hieu Le, and Dimitris Samaras. Assessing sample quality via the latent space of generative models. In *Computer Vision ECCV 2024: 18th European Conference, Milan, Italy, September 29–October 4, 2024, Proceedings, Part LIX*, pp. 449–464, Berlin, Heidelberg, 2024. Springer-Verlag. ISBN 978-3-031-73201-0. doi: 10.1007/978-3-031-73202-7_26. URL https://doi.org/10.1007/978-3-031-73202-7_26.

A APPENDIX

A.1 PROPERTIES OF THE MANIFOLD-MATCHING LOSS

Property 1: Scale Invariance The manifold-matching loss \mathcal{L}_{mm} is invariant to uniform scaling of either the latent space \mathbf{Z} or the reference embedding space \mathbf{E} .

Consider uniform scaling of the latent space by factor $\alpha > 0$: $\mathbf{z}_i' = \alpha \mathbf{z}_i$. Then $d_{ij}^{Z'} = \|\alpha \mathbf{z}_i - \alpha \mathbf{z}_j\|_2^2 = \alpha^2 \|\mathbf{z}_i - \mathbf{z}_j\|_2^2 = \alpha^2 d_{ij}^Z$. The normalization ensures:

$$\tilde{d}_{ij}^{Z'} = \frac{\alpha^2 d_{ij}^Z}{\|\boldsymbol{\alpha}^2 \mathbf{D}^Z\|_F} = \frac{\alpha^2 d_{ij}^Z}{\alpha^2 \|\mathbf{D}^Z\|_F} = \tilde{d}_{ij}^Z$$

Therefore, \mathcal{L}_{mm} remains unchanged under uniform scaling.

Scale invariance enables the autoencoder to concentrate absolute variance in fewer dimensions while maintaining distance relationships, as the loss function is insensitive to the magnitude scaling that occurs during variance redistribution across latent dimensions. This property explains why MMVAEs achieve superior variance accumulation compared to GRVAEs, which constrain variance through their respective regularization mechanisms.

Property 2: Dimensionality Independence The manifold-matching loss enables meaningful comparison between latent and reference spaces of different dimensionalities $(m \neq l)$ through distance preservation rather than pointwise alignment.

This independence arises because the loss operates on pairwise distance matrices $\mathbf{D}^Z \in \mathbb{R}^{p \times p}$ and $\mathbf{D}^E \in \mathbb{R}^{p \times p}$, which have identical dimensions regardless of the original space dimensionalities. For a batch of size p, both distance matrices are $p \times p$, whether the latent space \mathbf{Z} has dimension m = 256 and the reference embedding \mathbf{E} has dimension l = 2 or l = 100.

The normalization step $\tilde{d}_{ij} = d_{ij}/\|\mathbf{D}\|_F$ ensures that distance matrices from spaces of different scales become comparable, focusing the optimization on relative geometric relationships rather than absolute magnitudes. This contrasts with point wise alignment methods like GRAE, which require $\mathcal{L}_g = \sum_{i=1}^k \|\boldsymbol{\epsilon}_i - g_{\theta}(\mathbf{x}_i)\|^2$ and thus demand m = l for meaningful optimization.

A.2 Variational Autoencoder Extension

A.2.1 MMVAE FORMULATION

The manifold-matching principle extends naturally to variational autoencoders (Kingma & Welling, 2022). In standard VAEs, the encoder $q_{\phi}(\mathbf{z}|\mathbf{x})$ parameterizes a posterior distribution $\mathcal{N}(\boldsymbol{\mu}_{\phi}(\mathbf{x}), \boldsymbol{\sigma}_{\phi}^2(\mathbf{x}))$, while the decoder $p_{\theta}(\mathbf{x}|\mathbf{z})$ models the conditional likelihood. The VAE objective combines reconstruction and KL regularization:

$$\mathcal{L}_{VAE}(\theta, \phi; \mathbf{x}) = -\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] + \beta KL(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$
(7)

where $p(\mathbf{z}) = \mathcal{N}(\mathbf{0}, \mathbf{I})$ and β controls regularization strength.

Recent work (Chadebec & Allassonnière, 2022) reveals that VAEs implicitly learn geometric structure in the latent space: the learned means $\mu_{\phi}(\mathbf{x})$ and variances $\sigma_{\phi}^2(\mathbf{x})$ encode how the model measures uncertainty and relationships between encoded points. Through reconstruction training, the VAE learns that certain spatial arrangements in latent space correspond to meaningful transformations in data space.

For MMVAE, we augment the VAE objective with manifold-matching:

$$\mathcal{L}_{\text{MMVAE}}(\theta, \phi; \mathbf{X}, \mathbf{E}) = \mathcal{L}_{\text{VAE}}(\theta, \phi; \mathbf{X}) + \lambda \mathcal{L}_{mm}(\mathbf{Z}, \mathbf{E})$$
(8)

where $\mathbf{Z} = \{\mathbf{z}_i\}_{i=1}^p$ represents the reparameterized latent variables $\mathbf{z}_i = \boldsymbol{\mu}_{\phi}(\mathbf{x}_i) + \boldsymbol{\sigma}_{\phi}(\mathbf{x}_i) \odot \boldsymbol{\epsilon}_i$ with $\boldsymbol{\epsilon}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.

This approach leverages the VAE's natural tendency to learn meaningful geometric relationships: our distance-based regularization provides explicit guidance for this geometric learning process by aligning it with known good structures from reference embeddings E. This explains the superior performance of MMVAE—rather than fighting against the VAE's geometric learning, we direct it toward beneficial configurations.

A.2.2 TRAINING PROCEDURE

Algorithm 2 MMVAE Training Step

Require: Batch X_b , embeddings E_b , encoder q_{ϕ} , decoder p_{θ}

- 1: Compute posterior: μ_b , $\log \sigma_b^2 = q_\phi(\mathbf{X}_b)$
- 2: Sample: $\mathbf{z}_b = \boldsymbol{\mu}_b + \boldsymbol{\sigma}_b \odot \boldsymbol{\epsilon}$ where $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 3: Reconstruct: $\hat{\mathbf{X}}_b = p_{\theta}(\mathbf{z}_b)$
- 4: Compute losses: \mathcal{L}_r , \mathcal{L}_{KL} , $\mathcal{L}_{mm}(\boldsymbol{\mu}_b, \mathbf{E}_b)$
- 5: Total: $\mathcal{L} = \mathcal{L}_r + \beta \mathcal{L}_{KL} + \lambda \mathcal{L}_{mm}$
- 6: Update: $\theta, \phi \leftarrow \operatorname{Adam}(\nabla_{\theta, \phi} \mathcal{L})$

A.3 TRAINING & ARCHITECTURE SPECIFICATIONS

This section provides detailed specifications for all architectures used across our experiments. Our implementation uses PyTorch (Paszke et al., 2019) for neural network construction and training. The manifold learning components use scikit-learn (Pedregosa et al., 2011) for PCA implementation and t-SNE, and UMAP-learn (McInnes et al., 2018) for UMAP embeddings.

A.3.1 DEEPAE ARCHITECTURE

Used for MNIST, Fashion-MNIST, and CIFAR-10 datasets in both 2D visualization and NLDR quality experiments.

Layer	Input Size	Output Size	Activation	Notes	
Encoder					
Linear	input_dim	1000	-	Flattened input	
BatchNorm1d	1000	1000	-		
ReLU	1000	1000	ReLU		
Linear	1000	500	-		
BatchNorm1d	500	500	_		
ReLU	500	500	ReLU		
Linear	500	250	_		
BatchNorm1d	250	250	_		
ReLU	250	250	ReLU		
Linear	250	latent_dim	-	Bottleneck	
		Decode	•		
Linear	latent_dim	250	-		
BatchNorm1d	250	250	_		
ReLU	250	250	ReLU		
Linear	250	500	-		
BatchNorm1d	500	500	_		
ReLU	500	500	ReLU		
Linear	500	1000	_		
BatchNorm1d	1000	1000	-		
ReLU	1000	1000	ReLU		
Linear	1000	input_dim	Tanh	Output reconstruction	

A.3.2 VAE ARCHITECTURES

A.4 EXTENDED EXPERIMENTAL RESULTS

A.4.1 CLASSIFICATION AND CLUSTERING

The latent spaces of trained autoencoders can be evaluated on downstream tasks such as clustering and classification. We assess the learned representations using a single-layer MLP classifier for class

Table 2: CelebA Convolutional VAE Architecture

7	5	7		
7	5	8		
7	5	9		
7	6	0		
7	6	1		
7	6	2		
7	6	3		
7	6	4		
7	6	5		
7	6	6		
7	6	7		
7	6	8		
7	6	9		
7	7	0		
7	7	1		
7	7	2		
7	7	3		
7	7	4		
7	7	5		
7	7	6		
7	7	7		
7	7	8		
7	7	9		

Layer	Input Size	Output Size	Kernel/Stride	Activation		
Encoder						
Conv2d	3×256×256	32×256×256	$3 \times 3/1$, pad=1	ReLU + BatchNorm		
Conv2d	32×256×256	64×128×128	$4\times4/2$, pad=1	ReLU + BatchNorm		
Conv2d	64×128×128	128×64×64	$4\times4/2$, pad=1	ReLU + BatchNorm		
Conv2d	128×64×64	256×32×32	$4\times4/2$, pad=1	ReLU + BatchNorm		
Conv2d	256×32×32	512×16×16	$4\times4/2$, pad=1	ReLU + BatchNorm		
Conv2d	512×16×16	1024×8×8	$4\times4/2$, pad=1	ReLU + BatchNorm		
Conv2d	1024×8×8	2048×4×4	$4\times4/2$, pad=1	ReLU + BatchNorm		
Conv2d	2048×4×4	4096×1×1	$4 \times 4/1$, pad=0	-		
Flatten	4096×1×1	4096	-	-		
$Linear_{\mu}$	4096	latent_dim	-	- (VAE mean)		
$\operatorname{Linear}_{\log \sigma^2}$	4096	latent_dim	-	- (VAE log variance)		
		Decoder				
Linear	latent_dim	4096	-	-		
Reshape	4096	4096×1×1	-	-		
ConvTranspose2d	4096×1×1	2048×4×4	$4\times4/1$, pad=0	ReLU + BatchNorm		
ConvTranspose2d	$2048 \times 4 \times 4$	$1024 \times 8 \times 8$	$4\times4/2$, pad=1	ReLU + BatchNorm		
ConvTranspose2d	1024×8×8	512×16×16	$4\times4/2$, pad=1	ReLU + BatchNorm		
ConvTranspose2d	512×16×16	256×32×32	$4\times4/2$, pad=1	ReLU + BatchNorm		
ConvTranspose2d	256×32×32	128×64×64	$4\times4/2$, pad=1	ReLU + BatchNorm		
ConvTranspose2d	128×64×64	64×128×128	$4\times4/2$, pad=1	ReLU + BatchNorm		
ConvTranspose2d	64×128×128	32×256×256	$4\times4/2$, pad=1	ReLU + BatchNorm		
ConvTranspose2d	32×256×256	3×256×256	$3 \times 3/1$, pad=1	Tanh		

Table 3: dSprites VAE Architecture Specifications

Layer	Input Size	Output Size	Kernel/Stride	Activation		
	Encoder					
Conv2d	1×64×64	32×32×32	4×4/2, pad=1	LeakyReLU(0.2)		
Conv2d	32×32×32	64×16×16	$4\times4/2$, pad=1	LeakyReLU(0.2) + BatchNorm		
Conv2d	64×16×16	128×8×8	$4\times4/2$, pad=1	LeakyReLU(0.2) + BatchNorm		
Conv2d	128×8×8	256×4×4	$4\times4/2$, pad=1	LeakyReLU(0.2) + BatchNorm		
Flatten	256×4×4	4096	-	-		
Linear	4096	512	-	LeakyReLU(0.2)		
$Linear_{\mu}$	512	latent_dim	-	- (VAE mean)		
Linear $_{\log \sigma^2}$	512	latent_dim	-	- (VAE log variance)		
		Dec	oder			
Linear	latent_dim	512	-	LeakyReLU(0.2)		
Linear	512	4096	-	LeakyReLU(0.2)		
Reshape	4096	256×4×4	-	-		
ConvTranspose2d	256×4×4	128×8×8	$4\times4/2$, pad=1	LeakyReLU(0.2) + BatchNorm		
ConvTranspose2d	128×8×8	64×16×16	$4 \times 4/2$, pad=1	LeakyReLU(0.2) + BatchNorm		
ConvTranspose2d	64×16×16	32×32×32	$4 \times 4/2$, pad=1	LeakyReLU(0.2) + BatchNorm		
ConvTranspose2d	32×32×32	1×64×64	4×4/2, pad=1	Tanh		

sification performance and compute silhouette scores and Adjusted Rand Index (ARI) for clustering evaluation on MNIST, Fashion-MNIST, and CIFAR-10 datasets.

Our results show that MMAEs achieve comparable to slightly superior performance relative to standard (vanilla) autoencoders while maintaining similar levels of global structure preservation measure by RMSE. In contrast, TopoAE demonstrates the poorest classification and clustering performance across all metrics. The authors of TopoAE (Moor et al., 2020b) acknowledge that topological preservation can prove challenging for classification tasks, arguing that the goal of increasing class separability may conflict with preserving topological structures.

Table 4: 3DShapes VAE Architecture Specifications

8	3	1	2
8	3	1	3
8	3	1	4

81	4
81	5
81	6
81	7
81	8
81	9

Layer	Input Size	Output Size	Kernel/Stride	Activation	
Encoder					
Conv2d	3×64×64	32×32×32	$4\times4/2$, pad=1	LeakyReLU(0.2)	
Conv2d	32×32×32	64×16×16	$4 \times 4/2$, pad=1	LeakyReLU(0.2) + BatchNorm	
Conv2d	64×16×16	128×8×8	$4 \times 4/2$, pad=1	LeakyReLU(0.2) + BatchNorm	
Conv2d	128×8×8	256×4×4	$4 \times 4/2$, pad=1	LeakyReLU(0.2) + BatchNorm	
Conv2d	256×4×4	512×2×2	$4 \times 4/2$, pad=1	LeakyReLU(0.2) + BatchNorm	
Flatten	512×2×2	2048	-	-	
Linear	2048	1024	-	LeakyReLU(0.2) + Dropout(0.2)	
Linear	1024	512	-	LeakyReLU(0.2)	
$Linear_{\mu}$	512	latent_dim	-	- (VAE mean)	
$\operatorname{Linear}_{\log \sigma^2}$	512	latent_dim	-	- (VAE log variance)	
		De	coder		
Linear	latent_dim	512	-	LeakyReLU(0.2)	
Linear	512	1024	-	LeakyReLU (0.2) + Dropout (0.2)	
Linear	1024	2048	-	LeakyReLU(0.2)	
Reshape	2048	512×2×2	-	-	
ConvTranspose2d	512×2×2	256×4×4	$4 \times 4/2$, pad=1	LeakyReLU (0.2) + BatchNorm	
ConvTranspose2d	256×4×4	128×8×8	$4 \times 4/2$, pad=1	LeakyReLU(0.2) + BatchNorm	
ConvTranspose2d	128×8×8	64×16×16	$4 \times 4/2$, pad=1	LeakyReLU(0.2) + BatchNorm	
ConvTranspose2d	64×16×16	32×32×32	$4 \times 4/2$, pad=1	LeakyReLU(0.2) + BatchNorm	
ConvTranspose2d	32×32×32	3×64×64	$4\times4/2$, pad=1	Tanh	

However, our findings suggest it is possible to preserve the original data topology while maintaining or improving classification accuracy, as demonstrated in Figure 8. This indicates that geometric regularization through manifold-matching does not necessarily compromise the utility of learned representations for discriminative tasks.

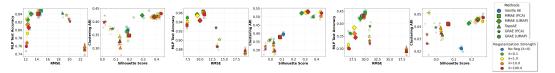


Figure 8: Classification versus RMSE, and Clustering ARI vs Silhouette score for varying λ strength on MNIST, F-MNIST, and CIFAR10.

A.4.2 CORRUPTED IMAGES

We evaluate the preservation of original data topology under three types of corruption: Gaussian noise, Gaussian blur, and brightness changes. Figure 9 shows average results across 10 runs for neighborhood preservation (trustworthiness × continuity), RMSE, and MRRE metrics.

Neighborhood preservation and MRRE results show clear performance distinctions between models on corrupted data. All regularized approaches outperform standard autoencoders, with performance correlating with regularization strength λ —higher values achieve better robustness. MMAE-PCA and TopoAE, which demonstrate the highest preservation on clean data, maintain superior performance under corruption. MRRE consistently shows that stronger regularization achieves lower error across all corruption types.

RMSE anomaly: Unexpectedly, RMSE values drop significantly for all models when moving from clean to corrupted data, with minimal differences between approaches. This contrasts sharply with the clear model distinctions observed in other metrics. We hypothesize this occurs because corruption creates more uniform distance distributions in both input and latent spaces. When corruption affects all data points similarly (e.g., adding uniform noise), it compresses the dynamic range of pairwise distances, making distance matrices more homogeneous. This artificial similarity between

corrupted input and latent distance matrices leads to lower RMSE values, even though actual topology preservation may be degraded.

This suggests that RMSE becomes less discriminative under corruption, while MRRE and neighborhood preservation metrics remain reliable indicators of model robustness to noise.

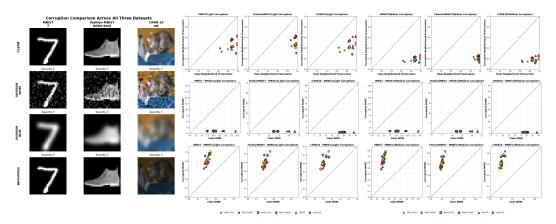


Figure 9: Examples of medium corruption (Severity 3) (Left). Corrupted vs clean NLDR metrics (Right).

A.4.3 REGULARIZATION STRENGTH ANALYSIS

The regularization strength λ controls the balance between reconstruction fidelity and geometric structure preservation. Lower values close to 0 give little weight to resemblance to the reference embeddings, while higher values more rigorously bind the autoencoder latent space to the reference. Figure 10 shows results starting with $\lambda=1$ at epoch 1 and reducing by a factor of 0.1 every 20 epochs over 200 epochs total. Even when the strength is significantly reduced, some traits from the reference are maintained.

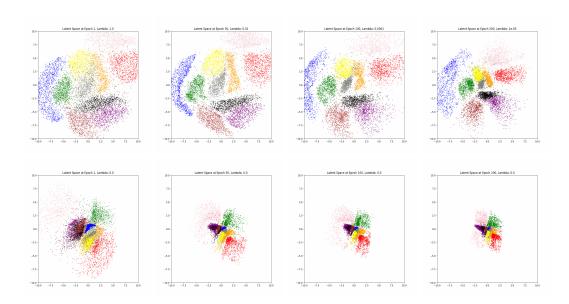


Figure 10: Comparison of latent spaces between MMAE (top row) and AE (bottom row) in MNIST. Decreasing λ by a factor of 0.1 every 20 epochs, 200 total.

A.4.4 UMAP/T-SNE HYPERPARAMETER VARIATIONS

UMAP and t-SNE have hyperparameters that can significantly alter the final embedding appearance. These are choices to be made for each use case, and in summary, it doesn't affect the training procedure as MMLoss only requires a valid distance matrix to operate. It is thus flexible to the choise of hyperparameters making it a general solution to extrapolate known representations, as can be seen in Figure 11.

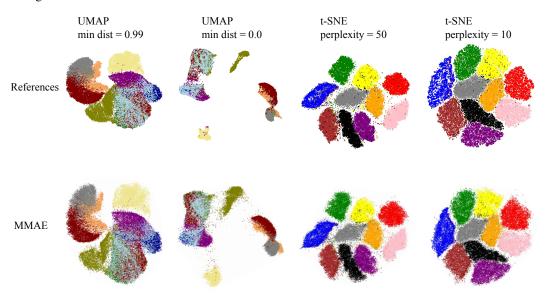


Figure 11: MMAEs copying embeddings for the MNIST and F-MNIST dataset under different hyperparameter combinations.