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ABSTRACT

We propose Manifold-Matching Autoencoders (MMAEs), a simple yet effective
framework that aligns autoencoder latent spaces with precomputed geometric
references. This is accomplished by using distance-based regularization to match
latent and reference distance matrices, enabling the same architecture to achieve
different data representations by simply changing the reference embedding. We
demonstrate that MMAEs achieve scalable topological control in high-dimensional
settings where existing methods become computationally intractable. One key
finding is that aligning with PCA yields unexpected benefits: MMAEs achieve
SOTA preservation of the original data structure, comparable to sophisticated
topological autoencoders, while maintaining significantly better reconstruction
quality and more efficient computation. When combining with VAEs, the present
regularization has the effect of concentrating variance in fewer dimensions. This
balance between structure preservation, variance concentration, and reconstruction
fidelity enables superior generative capabilities, including clearer interpolations and
more effective discovery of semantically meaningful latent directions for attribute
manipulation.

1 INTRODUCTION

Autoencoders remain highly relevant today, playing a crucial role in various fields of machine
learning and data science. Their ability to efficiently learn compressed representations of data
makes them invaluable for tasks such as dimensionality reduction, anomaly detection, denoising,
and unsupervised feature learning (Chen & Guo, 2023). However, their lack of ability to preserve
the topology or the global structure of the input data, coupled with random weights initialization,
can lead to discontinuities in the latent representations that weren’t originally present in the input
data. These discontinuities can negatively affect the decoder’s ability to reconstruct the input
(Batson et al., 2021). It is a complex problem as data is usually high-dimensional, where the curse
of dimensionality causes distance concentration—pairwise distances become increasingly similar,
reducing their discriminative power for capturing meaningful relationships (Aggarwal et al., 2001).
This makes direct alignment between latent and input spaces ineffective. Recent approaches address
this by incorporating topological data analysis (TDA) (Moor et al., 2020b; Trofimov et al., 2023),
which preserves essential structural features (connected components, cycles) through persistent
homology rather than preserving all distances indiscriminately. Although these approaches have
succeeded in cases for visualization of the bottleneck i.e cases where the bottleneck is 2D/3D,
nevertheless, the use of geometric/topological regularizations and more generally manifold learning
for learning all-purpose high-dimensional representations (e.g., 128D/256D) remains an open problem
(Duque et al., 2023).

Variational autoencoders (VAEs) (Kingma & Welling, 2022) typically require larger bottlenecks,
allowing more information to flow through for generating synthetic images, for example. Although
the latent space of VAEs is usually understood from a distributional perspective, recent studies have
shown that geometric properties of the latent space, such as its shape or density, can help generate
better images, an interpretation that extends to other generative models such as GANs (Chadebec &
Allassonnière, 2022; Xu et al., 2024). Others advocate that isometric embeddings can help uncover
directions or regions that represent the presence or addition/removal of semantically meaningful
attributes while maintaining other aspects of an image intact (Kato et al., 2020). Thus, flexibly
manipulating latent space geometry is desirable either for preserving the original data topology or
for extending useful representations to unseen data for visualization, classification, clustering, or
generation.
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MMAE
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MNIST F-MNIST CIFAR10 MNIST F-MNIST CIFAR10
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MNIST F-MNIST CIFAR10

TopoAE

Figure 1: MMAEs copying different 2D representations of the data across three datasets. Standard
AE and TopoAE for comparison. Training is unsupervised, classes (colors) are used for visualization
purposes only.

We propose a simple distance-based regularization for autoencoders that aligns latent representa-
tions with reference embeddings from established dimensionality reduction methods such as PCA
(Hotelling, 1933), t-SNE (van der Maaten & Hinton, 2008), and UMAP (McInnes et al., 2018).
This approach enables autoencoders to embed new data points within these established geometric
structures while maintaining parametric generalization capabilities.

Our method provides distinct advantages across different scenarios. In low-dimensional settings, it
transforms autoencoder latent spaces into effective visualization tools that reproduce the structure of
classical dimensionality reduction techniques (see Figure 1). In high-dimensional scenarios, it remains
competitive with state-of-the-art topological variants (Moor et al., 2020b) while offering reduced
computational complexity. Additionally, for generative applications with VAEs, our regularization
produces a clear variance hierarchy within the dimensions of the bottleneck, in contrast to the
traditional VAE, a useful property for tasks such as semantic interpolation and attribute manipulation
(Kato et al., 2020).

We identify two critical factors for optimal generative performance: achieving high absolute variance
values in the latent space and concentrating this variance across fewer dimensions. Our experiments
reveal that geometric regularization choice significantly impacts both factors, enabling MMVAEs
to outperform other approaches through clearer images and better separation of variation factors.
For example, in 3DShapes (Burgess & Kim, 2018) we achieve single-attribute manipulation (shape,
orientation, size) via linear latent directions. In CelebA (Liu et al., 2015), we similarly add or remove
smiles, or other attributes, without altering other facial features. This represents important progress
toward controllable image synthesis.

2 BACKGROUND: GEOMETRY, TOPOLOGY, & MANIFOLD LEARNING

Geometry in latent spaces concerns quantitative metric properties (distances, angles, coordinates),
while topology refers to structural properties (connectivity, clustering, manifold structure) that remain
invariant under continuous deformations. Multiple geometries can share identical topology—circles
and ellipses have different geometries but the same topological structure. The importance of under-
standing data topology has been recognized since the 1960s, including by Rosenblatt, the inventor
of the perceptron (Rosenblatt, 1962). Topology is fundamentally tied to the manifold hypothesis
underlying modern dimensionality reduction: high-dimensional data X = {xi}ki=1 with xi ∈ Rn

typically lies on or near a lower-dimensional manifoldM ⊂ Rn. Classical approaches like PCA
(Hotelling, 1933; Jolliffe, 2002) find linear subspaces maximizing variance through X ≈

∑l
i=1 aivi,

providing computationally efficient representations that preserve the global variance structure, which
is beneficial for tasks requiring interpretable features and approximate data reconstruction. Modern
nonlinear methods address PCA’s limitations in capturing curved manifolds. UMAP (McInnes
et al., 2018) preserves the structure of the local neighborhood through fuzzy topological represen-
tations, producing embeddings that maintain the cluster relationships essential for classification
and clustering tasks. t-SNE (van der Maaten & Hinton, 2008) optimizes local pairwise similarities
via probability distributions, excelling at revealing local structure for visualization and exploratory
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analysis. These dimensionality reduction methods provide intermediate representations that make
high-dimensional relationships computationally tractable and geometrically interpretable—reducing
the curse of dimensionality while preserving task-relevant structure.

Standard autoencoders (Hinton & Salakhutdinov, 2006) lack explicit topological constraints, po-
tentially mapping similar input points to distant latent regions, creating discontinuities that affect
downstream applications (Batson et al., 2021). Recent topological AE variants (Moor et al., 2020b;
Chen et al., 2022; Trofimov et al., 2023) incorporate regularization using distance matrices DX (input
space) and DZ (latent space) through persistence homology. However, computational complexity
scales poorly with dimensionality (Moor et al., 2020a). An alternative is to directly manipulate the
geometry of the latent space. This idea considers that by defining a specific geometry, the desired
topology can be consequently achieved. However, for synthetic data, it is easier to define a useful ge-
ometry as the manifold is known, but for the real-world scenarios this is not the case. Additionally, as
dimensionality of the bottleneck grows, imposing a geometry through direct alignment of coordinates
becomes significantly more intractable (Duque et al., 2023), making these approaches ineffective in
high-dimensional scenarios.

Multidimensional scaling (MDS) (Torgerson, 1952) provides a classical approach that reconstructs
coordinates directly from pairwise distance matrices. The key insight is that while points xi,xj ∈ Rn

may have many coordinates, their Euclidean distance dij = ∥xi − xj∥2 reduces their relationship to
a single scalar value. Remarkably, collecting all such pairwise distances into a matrix D contains
sufficient information to recover the original geometric configuration. Classical MDS formalizes this
by converting distance relationships into geometric configurations through eigendecomposition of
the associated Gram matrix (Borg & Groenen, 2005; Schoenberg, 1935). We will see that Manifold-
Matching Autoencoders, by aligning the latent space to a known geometry through pairwise distances,
and minimization of the MMLoss, are able to approximate reference geometric configurations.

3 MANIFOLD-MATCHING AUTOENCODERS

3.1 FORMULATION

Manifold-Matching Autoencoders (MMAE) extend vanilla autoencoders by adjusting their latent
space shape to match that of precomputed embeddings E = {ei}ki=1 with ei ∈ Rl (l < n) of
the input data X = {xi}ki=1 with xi ∈ Rn, where these embeddings are obtained via a mapping
u : X → E . The key insight is to transfer the topological structure captured by pairwise distances in
E to constrain the latent space Z through regularization. See Figure 2 for a visual overview of the
approach.

MMAEs. like other autoencoders, is the composition of an encoder gθ : X → Z that maps input data
to a latent representation zi = gθ(xi) ∈ Rm (m < n), and a decoder hφ : Z → X that reconstructs
the input as x̂i = hφ(zi). MMAEs, however, use a training objective that combines reconstruction
fidelity with topological structure preservation:

L(θ, φ;X,E) = Lr(X, X̂) + λLmm(Z,E) (1)

where Lr is a reconstruction loss (e.g., Mean Squared Error), Lmm is our manifold matching loss,
and λ ∈ R+ is a weighting parameter controlling the regularization strength.

3.2 MANIFOLD-MATCHING LOSS (MM LOSS)

Given batch X ∈ Rp×n with latent representation Z = gθ(X) ∈ Rp×m and embeddings E ∈ Rp×l,
we define pairwise distance matrices DE ,DZ ∈ Rp×p with entries:

dEij = ∥ei − ej∥2, dZij = ∥zi − zj∥2, d̃Eij =
dEij

∥DE∥F
, d̃Zij =

dZij
∥DZ∥F

(2)

Where d̃Eij , d̃
Z
ij are normalized distances and ∥ · ∥F denotes the Frobenius norm. The manifold

matching loss is:

Lmm(Z,E) =
1

p2
∥D̃E − D̃Z∥2F (3)

3
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The MMAE optimization problem can be formulated as:

(θ∗, φ∗) = argmin
θ,φ

EX∼pdata [Lr(X, hφ(gθ(X))) + λLmm(gθ(X),E)] (4)

Encoder Decoderzi zj zk

X
Input data 

X'
Reconstruction 
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Figure 2: Overview of the current approach. One fundamental insight is that distances in the reference
representation take into consideration all of the dataset points, thus incorporating into each training
batch knowledge about the global structure of the full embedded dataset.

While computing distance matrices appears computationally intensive, the complexity O(p2) is
typically manageable for reasonably sized batches. Moreover, since the dimensionality of the spaces
in which we compute distances (m and l) is substantially lower than the input dimensionality n, the
computational overhead remains tractable. See Algorithm 1 for the implementation.

Algorithm 1 MMAE Training Procedure

Require: Dataset X , precomputed embeddings E, encoder gθ, decoder hφ

1: for each mini-batch Xb,Eb in X,E do
2: Compute latent codes Zb = gθ(Xb)

3: Compute reconstructions X̂b = hφ(Zb)

4: Compute reconstruction loss Lr = ∥Xb − X̂b∥2
5: Compute distance matrices DE and DZ

6: Compute normalized distances D̃E and D̃Z

7: Compute manifold matching loss Lmm using Equation (4)
8: Compute total loss L = Lr + λLmm

9: Update parameters θ and φ using gradient descent on L
10: end for

3.3 COMPARISON TO MDS

Distance preservation provides a principled approach to geometric alignment. When our manifold-
matching loss minimizes Lmm(Z,E) = 1

p2 ∥D̃E − D̃Z∥2F , it drives the latent space Z to preserve
the same pairwise distance relationships as the reference embedding Lmm → 0⇒ D̃Z ≈ D̃E . This
establishes that our neural encoder gθ learns a parametric extension of classical MDS—enabling
generalization to new data points while preserving the geometric structure captured by the reference
embedding method. The key advantage is dimensionality flexibility: our distance-based approach
works when m ̸= l (e.g., 256D latent matching 2D or 100D reference), as normalized distances are
scale-invariant and independent of ambient dimensionality.
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4 RELATED WORK

Moor et al. (2020b) propose Topological Autoencoders (TopoAEs) that preserve topological structures
via persistent homology using regularization:

L := Lr + λLt (5)

where Lt is the topological loss and λ controls regularization strength. Like our method, TopoAEs
operate on distance matrices DX and DZ from input and latent spaces. However, rather than
preserving all pairwise distances, TopoAEs use persistent homology to identify and select only
topologically significant distances through persistence pairings ΠX and ΠZ. These pairings act as
filters that extract subsets of distances DX

Π and DZ
Π corresponding to edges that create or destroy

topological features (e.g., the edge that closes a loop). The topological loss then matches these
filtered distance sets between spaces. While this selective approach targets the most structurally
important relationships, it requires complex persistent homology computation. Moor et al. (2020a)
investigate alternative distance metrics but find limited benefits, while subsequent topology-aware
methods (Chen et al., 2022; Trofimov et al., 2023) inherit similar computational limitations.

Duque et al. (2023) propose Geometry Regularized Autoencoders (GRAEs) with a fundamentally
different approach: rather than computing topological structure during training, they rely on pre-
computed reference embeddings where the topological knowledge is externalized to the reference
algorithm:

L := Lr + λLg, Lg =

k∑
i=1

∥ϵi − gθ(xi)∥2 (6)

where Lg enforces coordinate-wise alignment between latent representations and reference embed-
dings E = {ϵi}ki=1 computed using UMAP (McInnes et al., 2018) or PHATE (Moon et al., 2019).
GRAE aims to exactly reproduce reference coordinates through direct alignment, requiring identical
dimensionality between reference and latent spaces. In contrast, our approach preserves relative dis-
tances between points rather than absolute coordinates. The normalization in our manifold-matching
loss enables the autoencoder to scale its representation freely, so long as normalized relative distances
are maintained. While GRAE forces exact coordinate reproduction, our distance-based regularization
acts as a geometric ”compass” that guides the latent space organization without constraining absolute
positioning or scale.

5 EXPERIMENTS

5.1 SETTINGS:

Datasets: We use three simple real-world image datasets MNIST, Fashion-MNIST (28× 28× 1)
(Lecun et al., 1998; Xiao et al., 2017), and CIFAR10 (32 × 32 × 3) (Krizhevsky, 2009). In the
generative scenarios we explore the dSprites (64×64)(Matthey et al., 2017), 3DShapes (64×64×3)
(Burgess & Kim, 2018) and CelebA (256× 256× 3) (Liu et al., 2015).

Models & Training: In the case of CIFAR10, MNIST, and F-MNIST we use a simple MLP
autoencoder based on the DeepAE architecture proposed by (Moor et al., 2020b). In the generative
cases, we use convolutional layers. Details are given in A.3. All models employ batch normalization
and ADAM optimizer (Kingma & Ba, 2017). Models are trained at most for 30 epochs. Reference
mechanisms used are PCA (Hotelling, 1933), and UMAP (McInnes et al., 2018) (t-SNE (van der
Maaten & Hinton, 2008) is limited to at most 3D for visualization purposes only). In the high-
dimensional scenarios, the embeddings used have at most 100 components in MMAE (in the CelebA
case, for example, this means that we use 100 ÷ (256 × 256 × 3) ≈ 0.051% of the original data
dimensionality), while GRAE requires the embeddings to have the same dimensionality as the
bottlenecks. Latent dimensionality in all cases is 256D.

5.2 EXPERIMENT: DIMENSIONALITY REDUCTION QUALITY

For large bottlenecks, the original data topology can be measured by how well relative distances and
neighborhoods are preserved when moving from one space to another. In this case, our models are
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evaluated comparing the latent spaces Z to the input space X . Trustworthiness and Continuity
(Venna & Kaski, 2001) quantify local neighborhood preservation by measuring how well k-nearest
neighbor relationships are maintained across spaces, where trustworthiness penalizes false neighbors
appearing in Z that were not neighbors in X , while continuity penalizes true neighbors from X that
are separated inZ , both yielding values in [0,1] with higher scores indicating better local structure; we
average the results for different values k = [3; 5; 10; 25; 100]. We call the product of Trust× Cont
”neighborhood preservation” for better visualization. RMSE captures global geometric consistency
by comparing normalized pairwise distance matrices between spaces (not related to reconstruction
error); and MRRE (Lee et al., 2007) assesses global topological preservation through rank correlation
analysis of distance orderings.

Better

Figure 3: NLDR quality metrics for varying regularization strength λ. Comparison between
MMAE, GRAE, TopoAE, and AE. Five runs per model.

Results: Figure 3 shows that MMAE (PCA) consistently outperforms all other approaches in
preserving local neighborhoods, as measured by the product (Trust.× Cont.) on the y-axis, and
maintaining comparable RMSE performance to the standard AE. TopoAE exhibits the highest RMSE,
which remains unchanged across regularization strengths—a characteristic consistent with the authors’
findings (Moor et al., 2020b). The UMAP variants achieved the lowest RMSE across all datasets,
which is consistent with UMAP’s focus on global structure preservation with better performance in
clustering (see A.4.1). TopoAE and MMAE (PCA) also showed better robustness to different types
of noise, as seen in A.4.2. In contrast, UMAP variants achieved the best clustering likely due to the
more advanced capabilities of this dimensionality reduction tool to separate classes (as can be seen
for the 2D case of MNIST and F-MNIST in Figure 1).

5.3 EXPERIMENT: SEMANTIC INTERPOLATIONS

In 3DShapes and dSprites, the attribute vectors are computed using a mean latent difference
approach. For each factor f and value v, we first compute the mean latent representation
µf (v) =

1
Nv

∑Nv

i=1 gθ(xi), where xi ∈ X are samples with factor f equal to value v, gθ : X → Z
is the encoder function, and Nv is the number of such samples. The direction vectors d ∈ Rm

are then defined as differences between these mean latents: for discrete factors like shape transfor-
mations, dshape = µshape(vtarget) − µshape(vsource), while for continuous factors like color or scale,
dfactor = µf (vmax) − µf (vmin). Interpolation is performed by modifying the original latent code
zi = gθ(xi) as z′i = zi + αd, where α ∈ R controls the interpolation strength. For CelebA, the
procedure is the same, however, labels have binary values (0 or 1), with no intermediate values for
”smiling”, ”blond hair” or other attributes.

Results: MMVAE (PCA) consistently achieves superior semantic interpolation across datasets.
In 3DShapes (Figure 5), it successfully manipulates individual attributes (shape, orientation, scale)
without affecting others (color, background), while competing approaches exhibit factor entanglement
(a); d); e)). Approaches using UMAP (c); f)) show second best approach but become more unstable
for extreme values of α. For CelebA, MMVAE (PCA) produces higher-quality interpolations
with better-formed details and attribute-specific control compared to standard VAE and GRVAE.
The key advantage lies in variance distribution: both topological regularization and our approach
concentrate variance in fewer dimensions, but MMVAE (PCA) achieves substantially higher absolute
maximum variance values (≈ 4.0 for 3DShapes, ≈ 20.0 for CelebA) compared to TopoVAE’s
severely limited values (≈ 0.015 in both datasets) (Figure 7). GRVAE fails to achieve similar
concentration despite coordinate alignment. This variance concentration advantage correlates with

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

d) e) f)

a) b) c)

(I)

d) e) f)

a) b) c)

(II)

a) b) c)

d) e) f)

(III)

Figure 4: 3DShapes interpolation results. I Cube to sphere transformation, II pill orientation changes,
III sphere scaling variations. a) Standard VAE, b) MMAE (PCA), c) MMAE (UMAP), d) TopoVAE,
e) GRVAE (PCA), f) GRVAE (UMAP). α ∈ [−2; 2].

neighborhood preservation results (Figure 6I), where only MMVAE-PCA and TopoVAE maintain
strong performance at larger scales k, with MMVAE-PCA providing superior reconstruction quality.
GRVAE consistently degrades at higher k values, confirming that variance concentration is essential
for preserving local geometric structure.

6 DISCUSSION

Manipulating latent space geometry offers significant benefits beyond 2D/3D visualization, but
remains challenging for real-world datasets with unknown structure. Our MMAE method offers
a flexible way to take advantage of the richness of AEs while guiding the shape of latent space
via potentially simple methods. For example MMAE (PCA) produces a latent space with effective
structural bias for image datasets, measured through NLDR quality metrics. The generative variant,
MMVAE, also preserved this structural bias and produced distinctive variance patterns characterized
by concentration in fewer dimensions and higher absolute values. In contrast to the more uniform
variance distribution observed in standard VAEs (≈ 1.0). This PCA-like hierarchical structure
facilitates clearer interpretation (Kato et al., 2020; Casella et al., 2022; Pham et al., 2022) and
supports effective linear interpolation. Following Bengio et al. (2013)’s point of view of a flat
manifold, where linear latent interpolations yield smooth output transitions, VAE manifolds naturally
exhibit minimal curvature (Shao et al., 2018). We hypothesize that our distance-based regularization
enhances this property by preserving the geometric relationships from well-structured reference
embeddings, resulting in more accurate attribute manipulation. Mathieu et al. (2019) introduce
”decomposition”, a generalization of disentanglement (Locatello et al., 2019), characterized by two
requirements: (1) appropriate latent overlap controlled by encoding stochasticity (the β parameter

7
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Blond hair Smiling

Grey hair Eyeglasses

Mustache Bangs

Figure 5: CelebA interpolations for α ∈ [−1; 1]. Top: Standard VAE, Middle: MMVAE (PCA),
Bottom: GRVAE (PCA).

(I)

Dataset Method Recon. MRRE RMSE
Loss

dS
pr

ite
s

VanillaVAE 0.007 0.42 6.1
MMVAE (PCA) 0.003 0.008 9.9
MMVAE (UMAP) 0.004 0.02 10.5
GRVAE (PCA) 0.002 0.06 8.9
GRVAE (UMAP) 0.005 0.01 13.4
TopoVAE 0.04 0.006 25.9

3D
Sh

ap
es

VanillaVAE 0.004 0.47 12.4
MMVAE (PCA) 0.001 0.01 25.1
MMVAE (UMAP) 0.002 0.35 24.1
GRVAE (PCA) 0.002 0.015 15.8
GRVAE (UMAP) 0.003 0.05 30.4
TopoVAE 0.006 0.003 32.4

C
el

eb
A

VanillaVAE 0.055 0.30 332.3
MMVAE (PCA) 0.026 0.01 332.6
GRVAE (PCA) 0.026 0.20 332.7
TopoVAE 0.508 0.008 352.3

(II)

Figure 6: I NLDR quality metrics (Trustworthiness × Continuity) across different values of k for
VAE variants on three datasets. II Quantitative performance metrics including reconstruction loss,
MRRE, and RMSE for the same models and datasets.

in β-VAE), and (2) the aggregate posterior q(z) matching a prior that encodes desired dependency
structures among latent variables. We interpret the alignment of pairwise distances via Lmm in
VAEs as imposing a geometric prior—where the reference embedding’s structure (PCA, UMAP,
t-SNE) defines the desired geometric organization. Our results support this interpretation, as distance-
regularized models consistently outperform standard VAEs in controlled manipulation of individual
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(I) dSprites

(II) 3DShapes

(III) CelebA

Figure 7: Latent variance per dimension (sorted).

factors. Limitations: The primary constraint is the computational cost to calculate low-dimensional
projections, particularly for large datasets. For example, we limited CelebA experiments to PCA due
to its computational efficiency and superior neighborhood preservation in other datasets. However,
projections need only be computed once for a given geometry. For very large datasets, an alternative
could be to train using MMLoss on a sufficiently large subset of the data, and then embed the
remaining. Future Directions: The most promising extension involves applying Manifold Matching
to other generative architectures, more suitable for generating high-quality images. For instance,
Pandey et al. (2022) use VAE latent spaces as initialization for diffusion processes, but suffer from
standard VAE blurriness and lack of meaningful details. Our approach could provide better-structured
initializations with better control over meaningful attributes.

7 CONCLUSION

We introduced MMAEs, a simple yet effective framework for controlling latent space geometry
through distance-based alignment with precomputed references. Our key discovery is that MMAE
combined with PCA achieves superior NLDR metrics in large bottleneck scenarios (256D), rivaling
sophisticated topological regularizations while maintaining significantly better reconstruction quality
and computational efficiency. In generative applications, our approach demonstrates a crucial advan-
tage: the ability to concentrate variance in fewer dimensions while achieving higher absolute variance
values. This combination enables superior recovery of semantically meaningful directions—such as
changing shape, scale, or orientation in 3DShapes, or adding mustaches and smiles in CelebA faces.
Our experiments reveal that optimal isolation of semantically meaningful attributes requires both high
absolute variance accumulation and its concentration in fewer dimensions—a property that emerges
naturally in our framework. This raises intriguing questions about the synergy between PCA’s linear
structure and autoencoders’ nonlinear capacity. This work provides both theoretical insights into
latent space organization and a practical tool for controllable synthetic image generation.

9
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A APPENDIX

A.1 PROPERTIES OF THE MANIFOLD-MATCHING LOSS

Property 1: Scale Invariance The manifold-matching loss Lmm is invariant to uniform scaling of
either the latent space Z or the reference embedding space E.

Consider uniform scaling of the latent space by factor α > 0: z′i = αzi. Then dZ
′

ij = ∥αzi−αzj∥22 =

α2∥zi − zj∥22 = α2dZij . The normalization ensures:

d̃Z
′

ij =
α2dZij

∥α2DZ∥F
=

α2dZij
α2∥DZ∥F

= d̃Zij

Therefore, Lmm remains unchanged under uniform scaling.

Scale invariance enables the autoencoder to concentrate absolute variance in fewer dimensions while
maintaining distance relationships, as the loss function is insensitive to the magnitude scaling that
occurs during variance redistribution across latent dimensions. This property explains why MMVAEs
achieve superior variance accumulation compared to GRVAEs, which constrain variance through
their respective regularization mechanisms.

Property 2: Dimensionality Independence The manifold-matching loss enables meaningful com-
parison between latent and reference spaces of different dimensionalities (m ̸= l) through distance
preservation rather than pointwise alignment.

This independence arises because the loss operates on pairwise distance matrices DZ ∈ Rp×p and
DE ∈ Rp×p, which have identical dimensions regardless of the original space dimensionalities. For a
batch of size p, both distance matrices are p× p, whether the latent space Z has dimension m = 256
and the reference embedding E has dimension l = 2 or l = 100.

The normalization step d̃ij = dij/∥D∥F ensures that distance matrices from spaces of different
scales become comparable, focusing the optimization on relative geometric relationships rather than
absolute magnitudes. This contrasts with point wise alignment methods like GRAE, which require
Lg =

∑k
i=1 ∥ϵi − gθ(xi)∥2 and thus demand m = l for meaningful optimization.

A.2 VARIATIONAL AUTOENCODER EXTENSION

A.2.1 MMVAE FORMULATION

The manifold-matching principle extends naturally to variational autoencoders (Kingma &
Welling, 2022). In standard VAEs, the encoder qϕ(z|x) parameterizes a posterior distribution
N (µϕ(x),σ

2
ϕ(x)), while the decoder pθ(x|z) models the conditional likelihood. The VAE objective

combines reconstruction and KL regularization:
LVAE(θ, ϕ;x) = −Eqϕ(z|x)[log pθ(x|z)] + βKL(qϕ(z|x)∥p(z)) (7)

where p(z) = N (0, I) and β controls regularization strength.

Recent work (Chadebec & Allassonnière, 2022) reveals that VAEs implicitly learn geometric structure
in the latent space: the learned means µϕ(x) and variances σ2

ϕ(x) encode how the model measures
uncertainty and relationships between encoded points. Through reconstruction training, the VAE
learns that certain spatial arrangements in latent space correspond to meaningful transformations in
data space.

For MMVAE, we augment the VAE objective with manifold-matching:
LMMVAE(θ, ϕ;X,E) = LVAE(θ, ϕ;X) + λLmm(Z,E) (8)

where Z = {zi}pi=1 represents the reparameterized latent variables zi = µϕ(xi) + σϕ(xi)⊙ ϵi with
ϵi ∼ N (0, I).

This approach leverages the VAE’s natural tendency to learn meaningful geometric relationships:
our distance-based regularization provides explicit guidance for this geometric learning process by
aligning it with known good structures from reference embeddings E. This explains the superior
performance of MMVAE—rather than fighting against the VAE’s geometric learning, we direct it
toward beneficial configurations.
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A.2.2 TRAINING PROCEDURE

Algorithm 2 MMVAE Training Step

Require: Batch Xb, embeddings Eb, encoder qϕ, decoder pθ
1: Compute posterior: µb, logσ

2
b = qϕ(Xb)

2: Sample: zb = µb + σb ⊙ ϵ where ϵ ∼ N (0, I)

3: Reconstruct: X̂b = pθ(zb)
4: Compute losses: Lr, LKL, Lmm(µb,Eb)
5: Total: L = Lr + βLKL + λLmm

6: Update: θ, ϕ← Adam(∇θ,ϕL)

A.3 TRAINING & ARCHITECTURE SPECIFICATIONS

This section provides detailed specifications for all architectures used across our experiments. Our
implementation uses PyTorch (Paszke et al., 2019) for neural network construction and training. The
manifold learning components use scikit-learn (Pedregosa et al., 2011) for PCA implementation and
t-SNE, and UMAP-learn (McInnes et al., 2018) for UMAP embeddings.

A.3.1 DEEPAE ARCHITECTURE

Used for MNIST, Fashion-MNIST, and CIFAR-10 datasets in both 2D visualization and NLDR
quality experiments.

Table 1: DeepAE Architecture Specifications

Layer Input Size Output Size Activation Notes

Encoder

Linear input dim 1000 - Flattened input
BatchNorm1d 1000 1000 -
ReLU 1000 1000 ReLU
Linear 1000 500 -
BatchNorm1d 500 500 -
ReLU 500 500 ReLU
Linear 500 250 -
BatchNorm1d 250 250 -
ReLU 250 250 ReLU
Linear 250 latent dim - Bottleneck

Decoder

Linear latent dim 250 -
BatchNorm1d 250 250 -
ReLU 250 250 ReLU
Linear 250 500 -
BatchNorm1d 500 500 -
ReLU 500 500 ReLU
Linear 500 1000 -
BatchNorm1d 1000 1000 -
ReLU 1000 1000 ReLU
Linear 1000 input dim Tanh Output reconstruction

A.3.2 VAE ARCHITECTURES

A.4 EXTENDED EXPERIMENTAL RESULTS

A.4.1 CLASSIFICATION AND CLUSTERING

The latent spaces of trained autoencoders can be evaluated on downstream tasks such as clustering
and classification. We assess the learned representations using a single-layer MLP classifier for clas-
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Table 2: CelebA Convolutional VAE Architecture

Layer Input Size Output Size Kernel/Stride Activation

Encoder

Conv2d 3×256×256 32×256×256 3×3/1, pad=1 ReLU + BatchNorm
Conv2d 32×256×256 64×128×128 4×4/2, pad=1 ReLU + BatchNorm
Conv2d 64×128×128 128×64×64 4×4/2, pad=1 ReLU + BatchNorm
Conv2d 128×64×64 256×32×32 4×4/2, pad=1 ReLU + BatchNorm
Conv2d 256×32×32 512×16×16 4×4/2, pad=1 ReLU + BatchNorm
Conv2d 512×16×16 1024×8×8 4×4/2, pad=1 ReLU + BatchNorm
Conv2d 1024×8×8 2048×4×4 4×4/2, pad=1 ReLU + BatchNorm
Conv2d 2048×4×4 4096×1×1 4×4/1, pad=0 -
Flatten 4096×1×1 4096 - -
Linearµ 4096 latent dim - - (VAE mean)
Linearlog σ2 4096 latent dim - - (VAE log variance)

Decoder

Linear latent dim 4096 - -
Reshape 4096 4096×1×1 - -
ConvTranspose2d 4096×1×1 2048×4×4 4×4/1, pad=0 ReLU + BatchNorm
ConvTranspose2d 2048×4×4 1024×8×8 4×4/2, pad=1 ReLU + BatchNorm
ConvTranspose2d 1024×8×8 512×16×16 4×4/2, pad=1 ReLU + BatchNorm
ConvTranspose2d 512×16×16 256×32×32 4×4/2, pad=1 ReLU + BatchNorm
ConvTranspose2d 256×32×32 128×64×64 4×4/2, pad=1 ReLU + BatchNorm
ConvTranspose2d 128×64×64 64×128×128 4×4/2, pad=1 ReLU + BatchNorm
ConvTranspose2d 64×128×128 32×256×256 4×4/2, pad=1 ReLU + BatchNorm
ConvTranspose2d 32×256×256 3×256×256 3×3/1, pad=1 Tanh

Table 3: dSprites VAE Architecture Specifications

Layer Input Size Output Size Kernel/Stride Activation

Encoder

Conv2d 1×64×64 32×32×32 4×4/2, pad=1 LeakyReLU(0.2)
Conv2d 32×32×32 64×16×16 4×4/2, pad=1 LeakyReLU(0.2) + BatchNorm
Conv2d 64×16×16 128×8×8 4×4/2, pad=1 LeakyReLU(0.2) + BatchNorm
Conv2d 128×8×8 256×4×4 4×4/2, pad=1 LeakyReLU(0.2) + BatchNorm
Flatten 256×4×4 4096 - -
Linear 4096 512 - LeakyReLU(0.2)
Linearµ 512 latent dim - - (VAE mean)
Linearlog σ2 512 latent dim - - (VAE log variance)

Decoder

Linear latent dim 512 - LeakyReLU(0.2)
Linear 512 4096 - LeakyReLU(0.2)
Reshape 4096 256×4×4 - -
ConvTranspose2d 256×4×4 128×8×8 4×4/2, pad=1 LeakyReLU(0.2) + BatchNorm
ConvTranspose2d 128×8×8 64×16×16 4×4/2, pad=1 LeakyReLU(0.2) + BatchNorm
ConvTranspose2d 64×16×16 32×32×32 4×4/2, pad=1 LeakyReLU(0.2) + BatchNorm
ConvTranspose2d 32×32×32 1×64×64 4×4/2, pad=1 Tanh

sification performance and compute silhouette scores and Adjusted Rand Index (ARI) for clustering
evaluation on MNIST, Fashion-MNIST, and CIFAR-10 datasets.

Our results show that MMAEs achieve comparable to slightly superior performance relative to
standard (vanilla) autoencoders while maintaining similar levels of global structure preservation
measure by RMSE. In contrast, TopoAE demonstrates the poorest classification and clustering
performance across all metrics. The authors of TopoAE (Moor et al., 2020b) acknowledge that
topological preservation can prove challenging for classification tasks, arguing that the goal of
increasing class separability may conflict with preserving topological structures.
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Table 4: 3DShapes VAE Architecture Specifications

Layer Input Size Output Size Kernel/Stride Activation

Encoder

Conv2d 3×64×64 32×32×32 4×4/2, pad=1 LeakyReLU(0.2)
Conv2d 32×32×32 64×16×16 4×4/2, pad=1 LeakyReLU(0.2) + BatchNorm
Conv2d 64×16×16 128×8×8 4×4/2, pad=1 LeakyReLU(0.2) + BatchNorm
Conv2d 128×8×8 256×4×4 4×4/2, pad=1 LeakyReLU(0.2) + BatchNorm
Conv2d 256×4×4 512×2×2 4×4/2, pad=1 LeakyReLU(0.2) + BatchNorm
Flatten 512×2×2 2048 - -
Linear 2048 1024 - LeakyReLU(0.2) + Dropout(0.2)
Linear 1024 512 - LeakyReLU(0.2)
Linearµ 512 latent dim - - (VAE mean)
Linearlog σ2 512 latent dim - - (VAE log variance)

Decoder

Linear latent dim 512 - LeakyReLU(0.2)
Linear 512 1024 - LeakyReLU(0.2) + Dropout(0.2)
Linear 1024 2048 - LeakyReLU(0.2)
Reshape 2048 512×2×2 - -
ConvTranspose2d 512×2×2 256×4×4 4×4/2, pad=1 LeakyReLU(0.2) + BatchNorm
ConvTranspose2d 256×4×4 128×8×8 4×4/2, pad=1 LeakyReLU(0.2) + BatchNorm
ConvTranspose2d 128×8×8 64×16×16 4×4/2, pad=1 LeakyReLU(0.2) + BatchNorm
ConvTranspose2d 64×16×16 32×32×32 4×4/2, pad=1 LeakyReLU(0.2) + BatchNorm
ConvTranspose2d 32×32×32 3×64×64 4×4/2, pad=1 Tanh

However, our findings suggest it is possible to preserve the original data topology while maintaining
or improving classification accuracy, as demonstrated in Figure 8. This indicates that geometric
regularization through manifold-matching does not necessarily compromise the utility of learned
representations for discriminative tasks.

Figure 8: Classification versus RMSE, and Clustering ARI vs Silhouette score for varying λ strength
on MNIST, F-MNIST, and CIFAR10.

A.4.2 CORRUPTED IMAGES

We evaluate the preservation of original data topology under three types of corruption: Gaussian
noise, Gaussian blur, and brightness changes. Figure 9 shows average results across 10 runs for
neighborhood preservation (trustworthiness × continuity), RMSE, and MRRE metrics.

Neighborhood preservation and MRRE results show clear performance distinctions between models
on corrupted data. All regularized approaches outperform standard autoencoders, with performance
correlating with regularization strength λ—higher values achieve better robustness. MMAE-PCA and
TopoAE, which demonstrate the highest preservation on clean data, maintain superior performance
under corruption. MRRE consistently shows that stronger regularization achieves lower error across
all corruption types.

RMSE anomaly: Unexpectedly, RMSE values drop significantly for all models when moving from
clean to corrupted data, with minimal differences between approaches. This contrasts sharply with
the clear model distinctions observed in other metrics. We hypothesize this occurs because corruption
creates more uniform distance distributions in both input and latent spaces. When corruption
affects all data points similarly (e.g., adding uniform noise), it compresses the dynamic range of
pairwise distances, making distance matrices more homogeneous. This artificial similarity between
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corrupted input and latent distance matrices leads to lower RMSE values, even though actual topology
preservation may be degraded.

This suggests that RMSE becomes less discriminative under corruption, while MRRE and neighbor-
hood preservation metrics remain reliable indicators of model robustness to noise.

Figure 9: Examples of medium corruption (Severity 3) (Left). Corrupted vs clean NLDR metrics
(Right).

A.4.3 REGULARIZATION STRENGTH ANALYSIS

The regularization strength λ controls the balance between reconstruction fidelity and geometric
structure preservation. Lower values close to 0 give little weight to resemblance to the reference
embeddings, while higher values more rigorously bind the autoencoder latent space to the reference.
Figure 10 shows results starting with λ = 1 at epoch 1 and reducing by a factor of 0.1 every 20
epochs over 200 epochs total. Even when the strength is significantly reduced, some traits from the
reference are maintained.

Figure 10: Comparison of latent spaces between MMAE (top row) and AE (bottom row) in MNIST.
Decreasing λ by a factor of 0.1 every 20 epochs, 200 total.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.4.4 UMAP/T-SNE HYPERPARAMETER VARIATIONS

UMAP and t-SNE have hyperparameters that can significantly alter the final embedding appearance.
These are choices to be made for each use case, and in summary, it doesn’t affect the training
procedure as MMLoss only requires a valid distance matrix to operate. It is thus flexible to the choise
of hyperparameters making it a general solution to extrapolate known representations, as can be seen
in Figure 11.

MMAE

References

UMAP
min dist = 0.99

UMAP
min dist = 0.0

t-SNE
perplexity = 50

t-SNE
perplexity = 10

Figure 11: MMAEs copying embeddings for the MNIST and F-MNIST dataset under different
hyperparameter combinations.
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