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ABSTRACT

Our goal is to extract useful knowledge from demonstrations of behavior in se-
quential decision-making problems. Although it is well-known that humans com-
monly engage in risk-sensitive behaviors in the presence of stochasticity, most
Inverse Reinforcement Learning (IRL) models assume a risk-neutral agent. Be-
yond introducing model misspecification, these models do not directly capture the
risk attitude of the observed agent, which can be crucial in many applications. In
this paper, we propose a novel model of behavior in Markov Decision Processes
(MDPs) that explicitly represents the agent’s risk attitude through a utility func-
tion. We then define the Utility Learning (UL) problem as the task of inferring the
observed agent’s risk attitude, encoded via a utility function, from demonstrations
in MDPs, and we analyze the partial identifiability of the agent’s utility. Further-
more, we devise two provably efficient algorithms for UL in a finite-data regime,
and we analyze their sample complexity. We conclude with proof-of-concept ex-
periments that empirically validate both our model and our algorithms.

1 INTRODUCTION

The ultimate goal of Artificial Intelligence (AI) is to construct artificial rational autonomous agents
(Russell & Norvig, 2010). Such agents will interact with each other and with human beings to
achieve the tasks that we assign to them. In this vision, a crucial feature is being able to correctly
model the observed behavior of other agents. This allows a variety of applications: piq descriptive, to
understand the intent of the observed agent (Russell, 1998), piiq predictive, to anticipate the behavior
of the observed agent (potentially in new scenarios) (Arora & Doshi, 2021), piiiq normative, to
imitate the observed agent because they are behaving in the “right way” (Osa et al., 2018).

Nowadays, Inverse Reinforcement Learning (IRL) provides the most popular and powerful models,
i.e., simplified representations, of the behavior of the observed agent, named “expert”. Under the
so-called “reward hypothesis” (Sutton & Barto, 2018), that has been recently re-interpreted in terms
of properties of preferences over trajectories (Shakerinava & Ravanbakhsh, 2022; Bowling et al.,
2023), IRL algorithms construct reward functions representing the objectives and the desires of the
expert. Depending on the application, different models can be adopted. For instance, Ng & Russell
(2000) considers the expert as an exact expected return maximizer, while Ramachandran & Amir
(2007) and Ziebart et al. (2008) assume that the probability with which actions and trajectories,
respectively, are played is proportional to their fraction of optimality (i.e., of expected return).

All these models assume that the expert is a risk-neutral agent, i.e., an agent interested in the
maximization of the expected return. However, there are many scenarios in which rational agents
(Föllmer & Schied, 2016), as well as humans (Kahneman & Tversky, 1979; Kreps, 1988), adopt
risk-sensitive strategies in the presence of stochasticity. In the most general case, agents are not only
interested in the expected return, but in the full distribution of the return (Bellemare et al., 2023).
Popular examples in this context include agents who aim to maximize the expected return while
trying to minimize the variance (Mannor & Tsitsiklis, 2011; Tamar et al., 2012), agents interested
in the optimization of the Conditional Value-at-Risk (CVaR) (Rockafellar & Uryasev, 2000), or in
rewards volatility (Bisi et al., 2020). IRL models, thus, incur in mis-specification, which can cru-
cially affect the descriptive, predictive, and normative power of the inferred reward function (Skalse
& Abate, 2023; 2024; Chan et al., 2021).
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Related works. To overcome this limitation, some authors have analyzed the risk-sensitive IRL
problem (Ratliff & Mazumdar, 2020; Majumdar et al., 2017; Cao et al., 2024), in which either
the learner is provided with the reward function of the expert and it must infer some parameters
representing the risk attitude, or the learner must infer both the reward function and the risk attitude
from the given demonstrations (Ratliff & Mazumdar, 2020; Majumdar et al., 2017; Chen et al.,
2019; Cheng et al., 2023). Nevertheless, these works suffer from major limitations that prevent
the adoption of the proposed algorithms in real-world applications. For instance, they either make
demanding assumptions (e.g., Boltzmann policies like in Ratliff & Mazumdar (2020) and Cao et al.
(2024), which hypothesize the expert to play each action exactly proportionally to its Q-value),
or consider rather limited settings (e.g., the “prepare-react model” of Majumdar et al. (2017), that
imposes too much structure in the expert’s behavior and in the environment’s dynamics).

An analogous line of research focuses on the problem of learning the risk attitude of an agent from
demonstrations in certain decision-making settings other than Markov Decision Processes (MDPs)
(Chajewska et al., 2001; Shukla et al., 2017; Lei, 2020). Even though the powerful model of von
Neumann-Morgenstern (vNM) utility functions (von Neumann & Morgenstern, 1947; Kreps, 1988)
is adopted for representing the risk attitude of the expert, these works only focus on “coarse” se-
quential decision-making settings like decision trees (Chajewska et al., 2001), that do not provide
the rich expressivity of MDPs (there is no notion of reward function). A more detailed analysis,
along with additional related works, is provided in Appendix A.

Our proposal. In this paper, we formalize, characterize, and analyze the problem of inferring the
risk attitude of an agent, encoded with a utility function, from demonstrations of behavior in MDPs.
The main contributions of this paper are listed below. The proofs of all results are in Appendix C-E.

• Motivated by a real-world example, we propose a simple yet powerful model of behavior in MDPs,
that separates the objective (reward) from the risk attitude (utility) of an agent (Section 3).

• We introduce Utility Learning (UL) as the problem of inferring the risk attitude of an agent in
MDPs, and we characterise the partial identifiability of the expert’s utility (Section 4).

• We present and theoretically analyze two novel algorithms, CATY-UL and TRACTOR-UL, for
efficiently solving the Utility Learning problem with finite data (Section 5).

• We conclude the paper with proof-of-concept experiments that serve as an empirical validation of
both the proposed model and the presented algorithms. (Section 6).

2 PRELIMINARIES

The main paper’s notation is below. Additional notation for the supplemental is in Appendix B.

Notation. For any N P N, we write JNK :“ t1, . . . , Nu. Given set X , we denote by ∆X the
probability simplex on X . Given X Ď Rd, y P Rd, we define ΠX pyq :“ argminxPX }y ´ x}2. A
real-valued function f : R Ñ R is L-Lipschitz if, for all x, y P R, we have |fpxq´fpyq| ď L|x´y|.
f is increasing if, for all x ă y P R, it holds fpxq ď fpyq, and it is strictly-increasing if fpxq ă

fpyq. The probability distribution that puts all its mass on z P R is denoted by δz and is called the
Dirac delta. We represent probability measures on finite support as finite mixtures of Dirac deltas.

Markov Decision Processes (MDPs). A tabular episodic Markov Decision Process (MDP) (Puter-
man, 1994) is a tuple M “ pS,A, H, s0, p, rq, where S and A are the finite state (S :“ |S|) and
action (A :“ |A|) spaces, H is the time horizon, s0 P S is the initial state, p : S ˆ A ˆ JHK Ñ ∆S

is the transition model, and r : S ˆ A ˆ JHK Ñ r0, 1s is the deterministic reward function. The
interaction of an agent with M generates trajectories. Let Ωh :“ pS ˆ Aqh´1 ˆ S be the set of
state-action trajectories of length h for all h P JH ` 1K, and Ω :“ ΩH`1. A deterministic non-
Markovian policy π “ tπhuhPJHK is a sequence of functions πh : Ωh Ñ A that, given the history
up to stage h, i.e., ω “ ps1, a1 . . . , sh´1, ah´1, shq P Ωh, prescribes an action. A Markovian
policy π “ tπhuhPJHK is a sequence of functions πh : S Ñ A that depend on the current state
only. We use g :

Ť

hPt2,...,H`1u Ωh Ñ r0, Hs to denote the return of a (partial) trajectory ω P Ωh,
i.e., gpωq :“

ř

h1PJh´1K rh1 psh1 , ah1 q. With abuse of notation, we denote by Pp,r,π the probability
distribution over trajectories of any length induced by π in M (we omit s0 for simplicity), and by
Ep,r,π the expectation w.r.t. Pp,r,π . We define the return distribution ηp,r,π P ∆r0,Hs of policy π as
ηp,r,πpyq :“

ř

ωPΩ: gpωq“y Pp,r,πpωq for all y P r0, Hs. The set of possible returns at h P JH ` 1K
is Gp,rh :“ ty P r0, h ´ 1s | Dω P Ωh, Dπ : gpωq “ y ^ Pp,r,πpωq ą 0u, and Gp,r :“ Gp,rH`1.
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We remark that Gp,rh has finite cardinality for all h. The performance of policy π is given by
Jπpp, rq :“ Ep,r,πr

řH
h“1 rhpsh, ahqs, and note that Jπpp, rq “ EG„ηp,r,π rGs. We define the opti-

mal performance as J˚pp, rq :“ maxπ J
πpp, rq, and the optimal policy as π˚ P argmaxπ J

πpp, rq.

Risk-Sensitive Markov Decision Processes (RS-MDPs). A Risk-Sensitive Markov Decision Pro-
cess (RS-MDP) (Wu & Xu, 2023) is a pair MU :“ pM, Uq, where M “ pS,A, H, s0, p, rq is an
MDP, and U P U is a utility function in set U :“ tU 1 : r0, Hs Ñ r0, Hs |U 1p0q “ 0, U 1pHq “

H ^ U 1 is strictly-increasing and continuousu. Differently from Wu & Xu (2023), w.l.o.g., our util-
ities satisfy UpHq “ H to settle the scale. The interaction with MU is the same as with M,
and the notation described earlier still applies, except for the performance of policies. The per-
formance of policy π is JπpU ; p, rq :“ Ep,r,πrUp

řH
h“1 rhpsh, ahqqs, and note that JπpU ; p, rq “

EG„ηp,r,π rUpGqs. We define the optimal performance as J˚pU ; p, rq :“ maxπ J
πpU ; p, rq, the

optimal policy as π˚ P argmaxπ J
πpU ; p, rq, and the set of optimal policies for MU as Π˚

p,rpUq.

Enlarged state space approach. In MDPs, there always exists a Markovian optimal policy
(Puterman, 1994), but in RS-MDPs this does not hold. The enlarged state space approach (Wu
& Xu, 2023) is a method, proposed by Bäuerle & Rieder (2014), to compute an optimal policy
in a RS-MDP. Given RS-MDP MU“pS,A,H,s0,p,r,Uq, we construct the enlarged state space
MDP ErMU s “ ptS ˆ Gp,rh uhPJHK,A, H, ps0, 0q, p, rq, with a different state space S ˆ Gp,rh at
each h.1 For every h P JHK and ps, y, aqPSˆGp,rh ˆA, the reward function r is rhps, y, aq“

Upy`rhps, aqq1th“Hu, while the dynamics p assigns to the next state ps1, y1qPSˆGp,rh`1 the prob-
ability: phps1, y1|s, y, aq :“phps1|s, aq1ty1 “y`rhps, aqu. In words, the state space is enlarged with
a component that keeps track of the cumulative reward in the original RS-MDP, and the reward r,
bounded in r0, Hs, provides the utility of the accumulated reward at the end of the episode. A
Markovian policy ψ “ tψhuhPJHK for ErMU s is a sequence of mappings ψh : S ˆ Gp,rh Ñ A. Be-
ing an MDP, we adopt for ErMU s the same notation presented earlier for MDPs, by replacing p, r, π
with p, r, ψ. Let ψ˚ be the optimal Markovian policy for ErMU s. Then, Theorem 3.1 of Bäuerle &
Rieder (2014) shows that the (non-Markovian) policy π˚, defined for all h P t2, . . . ,Hu and ωPΩh
as π˚

hpωq :“ ψ˚
hpsh,

ř

h1PJh´1K rh1 psh1 , ah1 qq, and π˚
1 ps0q“ψ˚

1 ps0,0q, is optimal for MU .

Inverse Reinforcement Learning (IRL). IRL aims to recover the reward function of an expert
agent from demonstrations of behavior (Russell, 1998). In the literature (e.g., Ng & Russell (2000);
Ziebart et al. (2008); Ramachandran & Amir (2007)), various assumptions are made on how the
expert’s policy πE is generated from the expert’s MDP M “ pS,A, H, s0, p, rEq. Given the ex-
pert’s MDP without reward pS,A, H, s0, pq, the expert’s policy πE , and the specific assumption
considered, the IRL objective is to recover the reward rE .

Miscellaneous. For L ą 0, we write UL :“ tU P U |U is L-Lipschitzu. For any finite set X Ď

r0, Hs we define U
X

:“ tU P r0, Hs|X | | DU P U, @x P X : Upxq “ Upxqu, and U
X
L :“ tU P

U
X

| DU P UL, @x P X : Upxq “ Upxqu. We will denote by MU some RS-MDPs with U P U
X

.

3 MOTIVATION AND PROBLEM SETTING

In this section, we begin by motivating the need for a more expressive model of behavior in MDPs.
Next, we propose a risk-aware model and we justify it. We conclude with some observations.

Existing models for representing behavior. Our goal is to develop an algorithm, that permits
to learn a “good” model of behavior of an agent from demonstrations in an MDP. In this context,
the most common models present in the literature enforce a structure made of two components:
piq a reward function, that represents the objective of the agent, and piiq a planning method, that
describes how the behavior of the agent is generated given its objective. Crucially, the planning
method is assumed to be known,2 thus, all the information about the behavior must hold inside the
reward (the objective) that can be learned. Popular examples include IRL (Ng & Russell, 2000),
entropy-regularized IRL, (Ziebart et al., 2008), and Bayesian IRL (Ramachandran & Amir, 2007).

1Actually, Bäuerle & Rieder (2014) use state space S ˆ Rě0, while Wu & Xu (2023) use S ˆ rh ´ 1s for
all h P JHK. Instead, we consider sets S ˆ tGp,r

h uh to capture the minimal size required.
2Indeed, Armstrong & Mindermann (2018) have demonstrated that “it is impossible to uniquely decompose

a policy into a planning algorithm and reward function”, but we need to impose some structure to the problem.

3
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Limitations. Our insight is that these models are not expressive enough to model human behavior
in the presence of stochasticity in many common situations, as shown in the following example.
Example 3.1. Consider the MDP on the side, where you can reach state s having already earned
either 0C or 100C (in this example reward is money). From s, you can take either the “risky” action
arisky, that provides you with 200C with

. . . s

. . .

. . .

1
2δ200C ` 1

2δ0C

δ50C

0C or 100C

arisky

asafe

probability (w.p.) 1{2 or 0C otherwise, or
the “safe” action asafe, that provides you
always with 50C . What action would you
play in state s? Risk-averse (Kahneman &
Tversky, 1979) people might go with asafe
when landed on s with 0C , and with arisky
otherwise, while risk-seeking people might
always go with arisky. Simply put, the current state s is not sufficient for predicting behavior, because
people decide to take risks depending on how much money (i.e., reward) they earned so far.

In other words, people might exhibit a non-Markovian behavior dependent on both the state and the
cumulated rewards, which is not contemplated by the aforementioned IRL models.3

Our proposal. We propose to explicitly represent the risk attitude by constructing a model with
three components: piq a reward function, i.e., the objective; piiq a utility function, i.e., the risk
attitude, piiiq a (known) planning method, i.e., how the behavior of the agent is generated given its
objective and its risk-attitude. Formally, we model the expert as an optimal agent in a RS-MDP:

πE Pargmax
π

Ep,r,π
”

U
´

H
ÿ

h“1

rhpsh,ahq

¯ı

, (1)

where piq r is the reward, piiq U P U is the utility, and piiiq the principle of maximization of the
expected utility is the planning method. There are many arguments that support this model:
1. it generalizes the IRL model of Ng & Russell (2000) by modelling the risk attitude through U ;
2. it is justified by the famous expected utility theory (von Neumann & Morgenstern, 1947);4
3. it explains the existence of non-Markovian optimal policies (see Bäuerle & Rieder (2014));
4. the corresponding planning problem enjoys practical tractability (Wu & Xu, 2023).
Some considerations. If the utility U is linear, the RS-MDP MU admits a Markovian optimal
policy. Otherwise, the more U deviates from linearity, the more non-Markovian policies may out-
perform Markovian policies, which may incur in a finite loss of performance, as shown below.
Proposition 3.1. There exists a RS-MDP with horizon H “ 4 in which the difference between the
optimal performance and the performance of the best Markovian policy is 0.5.

Next, we observe that also any deterministic RS-MDP admits an optimal Markovian policy. Intu-
itively, in absence of risk (i.e., stochasticity) the utility function plays no role.
Proposition 3.2. Given any RS-MDP with deterministic transition model p and reward function r,
if the utility U is increasing, then, there exists a Markovian optimal policy.

Finally, if we restrict to Markovian policies, we note that non-stationarity (i.e., the dependence of
the policy on the stage h) and stochasticity (i.e., if the policy prescribes a lottery over actions instead
of a single action) can improve the performance even in stationary environments. Intuitively, they
permit to consider larger ranges of return distributions w.r.t. stationary deterministic policies.
Proposition 3.3. There exists a RS-MDP with stationary transition model and reward in which the
best Markovian policy is non-stationary, and the best stationary Markovian policy is stochastic.

4 UTILITY LEARNING

In this section, we formalise the Utility Learning problem, we characterise the partial identifiability
of the true utility from demonstrations, and we analyze the inferred utilities for applications.

3Re-modelling the MDP including the reward into the state would make the optimal policy Markovian. Yet,
this mathematical device would incur in various issues, as explained in Appendix C.2.

4The set of prizes is Gp,r , and each policy π is a choice that induces a lottery ηp,r,π over prizes.

4
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Figure 1: (Left) the MDP of Example 4.1. (Middle) its set of feasible utilities with a sample utility U 1. (Right)
plot of U 1 with linear interpolation; being convex, it represents a risk-lover agent (Bäuerle & Rieder, 2014).

Learning from demonstrations under the new model. In Section 3, we described a model that
parametrizes the behavior of an agent through two components: a reward r, and a utility U . Given
demonstrations of behavior in an MDP, Eq. (1) defines three different learning problems:
1. Utility Learning (UL): given r, learn U .
2. Inverse Reinforcement Learning (IRL): given U , learn r.
3. IRL + UL: learn both r and U .
Problem 3 is the most interesting (and challenging), because it makes the least assumptions, while
Problem 2 has been extensively studied in literature when U is linear (Ng & Russell, 2000) (but
not in detail for other choices of U ). In this paper, we focus on Problem 1, which we name Utility
Learning (UL), for two reasons. First, there exist relevant applications of UL per se (see the last part
of this section). Second, understanding UL represents a significant step toward solving Problem 3.

Partial identifiability in utility learning. In the exact UL setting (where s0, p, πE are known), by
definition, we are given a policy πE and an MDP M “ pS,A, H, s0, p, rq, and the goal is to find
the expert’s utility function UE P U that satisfies J˚pUE ; p, rq “ Jπ

E

pUE ; p, rq, i.e., that makes
πE optimal in RS-MDP MUE . Does the knowledge of πE and M suffice to uniquely identify UE?
Analogously to IRL (Cao et al., 2021; Kim et al., 2021; Skalse et al., 2023), the answer is negative,
as shown in the following example.
Example 4.1. Let M “ pS,A, H, s0, p, rq be the MDP in Fig. 1 (left), where H “ 2, r1ps0, a1q “

1, r1ps0, a2q “ 0.5, and all other values of p, r are drawn in the figure. Note that Gp,r “

t0, 1, 1.5, 2u. Let πE be the expert policy, that prescribes a1 in s0. Then, a utility U P U makes
πE optimal for MU if playing a1 is better than playing a2: Jπ

E

pU ; p, rq “ 0.1Up2q `0.5Up1.5q `

0.4Up1q ě 0.8Up1.5q ` 0.2Up1q. Thus, all the utilities U P U, that assign to G “ 1, G “ 1.5 any
of the values coloured in blue in Fig. 1 (middle), are equally-plausible candidates to be UE .

Example 4.1 shows that UE is just partially identifiable from demonstrations. In particular, we
cannot uniquely identify the value of UE at points in the set Gp,r, and we do not have information
on UE at the other points r0, HszGp,r. Similarly to Metelli et al. (2023), we formalize the set of
utilities “compatible” with πE in M by introducing the notion of feasible utility set:5

Definition 4.1 (Feasible Utility Set). Let M “ pS,A, H, s0, p, rq be an MDP, and let πE be the (po-
tentially non-Markovian) expert policy. The feasible utility set Up,r,πE contains all the utilities that
make πE optimal for RS-MDP MU . Formally: Up,r,πE :“ tU P U | Jπ

E

pU ; p, rq “ J˚pU ; p, rqu.

Usage and transferability of utilities. UL is a problem setting for inferring the risk attitude of
an agent. Once learned, we might “use” the computed utility pU for piq predicting the behavior of
the expert in a new environment, piiq imitating the expert, or piiiq assessing how valuable a certain
policy is from the viewpoint of the expert. However, due to partial identifiability, pU cannot be close
to UE more than the worst utility in the feasible set Up,r,πE . Is this “ambiguity” tolerated by the
applications above? The following propositions answer negatively for all piq, piiq, and piiiq of them,
but, fortunately, Proposition 4.6 shows that adding more data can solve the issue.

Let us begin with piq. In our model, a utility pU permits to predict the behavior of an agent with
utility UE in a new MDP M1 if pU and UE induce in M1 the same optimal policies. Nevertheless,
not all the utilities in the feasible set satisfy this property for all the possible MDPs, as shown below:

5In Appendix D we provide a more explicit expression of the feasible utility set.

5
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Proposition 4.1 (Transfer to a new transition model). There exist two MDPs M “

pS,A, H, s0, p, rq,M1 “ pS,A, H, s0, p1, rq, with p ‰ p1, for which there exists a policy πE and a
pair of utilities U1, U2 P U such that: U1, U2 P Up,r,πE and Π˚

p1,rpU1q X Π˚
p1,rpU2q “ tu.

Proposition 4.2 (Transfer to a new reward). There exist two MDPs M “ pS,A, H, s0, p, rq,M1 “

pS,A, H, s0, p, r1q, with r ‰ r1, for which there exists a policy πE and a pair of utilities U1, U2 P U
such that: U1, U2 P Up,r,πE and Π˚

p,r1 pU1q X Π˚
p,r1 pU2q “ tu.

Intuitively, we are saying that transferring the learned utility pU to an MDP with a different reward
or transition model might cause it to induce optimal policies other than those induced by UE there.

Consider now piiq. To perform a meaningful imitation, due to the practical difficulty of computing
optimal policies, we require that any policy with an almost optimal performance for pU has also a
“good” performance for UE , but this does not always hold:
Proposition 4.3. There exists an MDP M “ pS,A, H, s0, p, rq and a policy πE for which there
exists a pair of utilities U1, U2 P Up,r,πE such that, for any ϵ ě 0 smaller than some constant, there
exists a policy πϵ such that J˚pU1; p, rq ´ JπϵpU1; p, rq “ ϵ and J˚pU2; p, rq ´ JπϵpU2; p, rq ě 1.

Finally, concerning piiiq, the fact that pU and UE provide close values of performance for all the
policies seems a desirable requirement, i.e., asking for small dall

p,rpU
E , pUq :“maxπ

ˇ

ˇJπpUE ;p,rq´

Jπp pU ;p,rq
ˇ

ˇ Zhao et al. (2024). We note that closeness under some norm implies closeness in dall:
Proposition 4.4. Consider an arbitrary MDP with transition model p and reward function r. Then,
for any pair of utilities U1, U2 P U, it holds that dall

p,rpU1, U2q ď maxGPGp,r |U1pGq ´ U2pGq|.

Nonetheless, not all the utilities in the feasible set are close to each other in dall
p,r distance:

Proposition 4.5. There exists an MDP M “ pS,A, H, s0, p, rq and a policy πE for which there
exists a pair of utilities U1, U2 P Up,r,πE such that dall

p,rpU1, U2q “ 1.

Intuitively, Propositions 4.1-4.3, 4.5, prove that demonstrations of behavior in a single MDP do not
provide enough information on UE to obtain guarantees for applications piq, piiq, piiiq. Instead, the
following result shows that demonstrations in multiple environments permit to mitigate this issue.
Proposition 4.6 (Multiple demonstrations). Let S,A, H be, respectively, any state space, action
space, and horizon, satisfying S ě 3, A ě 2, H ě 2, and let UE P U be any utility. If, for any
possible dynamics s0, p and reward r, we are given the set of all the deterministic optimal policies
of the corresponding RS-MDP pS,A, H, s0, p, r, UEq, then we can uniquely identify utility UE .

Simply put, through a constructive proof, Proposition 4.6 provides a sufficient condition for uniquely
retrieving UE , analogously to Amin & Singh (2016); Cao et al. (2021); Büning et al. (2022).

5 ONLINE UTILITY LEARNING WITH GENERATIVE MODEL

In the previous section, we have analyzed UL in the exact setting. Here, we introduce a more realistic
setting for UL, and we describe two efficient algorithms with theoretical guarantees to address it.

We consider the online UL problem setting with demonstrations from multiple environments,6 which
we now define. Let UE P U be the utility function of the expert. Consider N MDPs Mi “

pSi,Ai, H, si0, p
i, riq, indexed by i P JNK, that share the same horizon H . For each Mi, we know

Si,Ai, H, si0, r
i, we have access to a generative sampling oracle (Azar et al., 2013) for the transition

model pi, which, given any triple s, a, h, returns a sample s1 „ pihp¨|s, aq, and we are given a dataset
DE,i “ tpsj1, a

j
1, s

j
2, . . . , s

j
H , a

j
H , s

j
H`1qujPJτE,iK of τE,i trajectories collected by executing expert

policy πE,i, which is optimal for the RS-MDP Mi
UE . Informally, the goal is to find UE .

5.1 CHALLENGES AND OUR SOLUTION

To develop efficient algorithms for learning utilities in practice, some challenges must be addressed.
6This requirement permits to alleviate the partial identifiability issues, as shown in Proposition 4.6.
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Curse of Dimensionality. Approximation techniques are needed for computing optimal policies
in RS-MDPs (the enlarged state space is too large |Gp,rh |9pSAqph´1q @h (Wu & Xu, 2023)), for
storing return distributions (whose support may grow exponentially in the horizon |Gp,r|9pSAqH

(Bellemare et al., 2023)), and for storing utilities in U (defined over the interval r0, Hs).

Finite Data. Some quantities of interest (i.e., policies and transition models) are not known exactly,
but they must be estimated from samples, introducing an estimation error.

Partial Identifiability. Even in the exact setting, demonstrations of behavior are “explained”
equally well by infinitely many utilities; thus, it is not clear which utility an algorithm should output.

To address these challenges, our algorithms (Sections 5.2- 5.3) adopt the following approaches.

Curse of Dimensionality. We combine the piq discretization approach in Wu & Xu (2023) for the
enlarged state space, with the piiq categorical representation of Bellemare et al. (2023) for return
distributions. Moreover, we consider piiiq discretized utilities.

piq Fix parameter ϵ0 ą 0, define sets R :“ t0, ϵ0, 2ϵ0, . . . , t1{ϵ0uϵ0u, Yh :“ t0, ϵ0, 2ϵ0, . . . , tph ´

1q{ϵ0uϵ0u as the ϵ0-coverings of r0, 1s and r0, h ´ 1s for all h P JH ` 1K, and let Y :“ YH`1, d :“
|Y|. Intuitively, note that the summation of h values in R provides a value in Yh`1 for all h.
Therefore, for any i P JNK, let Mi

UE :“ pSi,Ai, H, si0, p
i, ri, UEq be the RS-MDP with reward

ri, obtained from ri as rihps, aq :“ ΠRrrihps, aqs for all s, a, h. In this manner, the sets of partial
returns of Mi satisfy Gp

i,ri

h Ď Yh Ď Y for all h, thus the MDP ErMi

UE s has a state space with
cardinality at most Sd ď OpSH{ϵ0q, which is no longer exponential in the horizon. piiq Denote
as Q :“ tq P ∆JdK |

ř

jPJdK qjδyju the set of parametric probability distributions supported on Y ,
where y1 :“ 0, y2 :“ ϵ0, . . . , yd :“ tH{ϵ0uϵ0 represent the ordered items of set Y . We construct the
categorical representation ProjCpηq P Q of an arbitrary (return) distribution η P ∆r0,Hs through the
operator ProjC , defined in Eq. (4). piiiq We approximate utilities U P U with vectors U P U :“U

Y

so that Upyq “ Upyq for all y P Y .

In this way, we work with tractable approximations whose complexity is controlled by parameter ϵ0.

Finite Data. We introduce the notion of utility compatibility to cope with finite data. With multiple
demonstrations, the true utility UE satisfies the hard constraints JπE,ipUE ; pi, riq “ J˚pUE ; pi, riq

for all i P JNK. However, with finite data, our estimate of JπE,ipUE ; pi, riq ´ J˚pUE ; pi, riq might
be different from zero for some i, thus, we might get wrong in recognizing UE as the true expert’s
utility. Crucially, collecting more (but still finite) data does not guarantee to obtain exactly zero.
Drawing inspiration from Lazzati et al. (2024a), we relax these “hard” requirements by introducing
a “soft” notion of constraints satisfaction, which we name utility compatibility:
Definition 5.1. Given MDP M “ pS,A, H, s0, p, rq and policy πE , the (non)compatibility
Cp,r,πE : U Ñ r0, Hs of utility U P U with πE in M is: Cp,r,πE pUq :“ J˚pU ; p, rq´Jπ

E

pU ; p, rq.

Thanks to utility compatibility, we can quantify the extent to which a utility U is (non)compatible
with the (multiple) demonstrations by computing maxiPJNK Cpi,ri,πE,ipUq.

Partial Identifiability. We propose to develop two practical algorithms to fully characterize a set
of utility functions: piq A utility classifier,7 that “defines” the boundaries of the set, and piiq a utility
extractor, that extracts a utility from the set.

For a given accuracy threshold ∆ ą 0, define the set of ∆-compatible utilities as: U∆ :“ tU P

U | maxiPJNK Cpi,ri,πE,ipUq ď ∆u. piq We define a utility classifier algorithm as a procedure that
takes in input a utilityU P U, and outputs a boolean saying whetherU P U∆ or not. Intuitively, being
the input utility arbitrary, such algorithm permits to characterize the entire set U∆. Furthermore, piiq
we define a utility extractor algorithm as a procedure that outputs an arbitrary utility U from set U∆.

5.2 CATY-UL (COMPATIBILITY FOR UTILITY LEARNING)

CATY-UL is a utility classifier algorithm. It classifies utilities U w.r.t. U∆ by estimating the
(non)compatibility pCipUq « Cpi,ri,πE,ipUq for all i P JNK, and, then, checking if maxiPJNK pCipUq ď ∆.

7The notion of reward classifier can be found in Lazzati et al. (2024a). We extend it to utilities.
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Algorithm 1: CATY-UL
Input: data tDE

i ui, threshold ∆, utility U ,
discretization ϵ0, dynamics tppiui

1 Upyq Ð Upyq for all y P Y
2 for i P t1, 2, . . . , Nu do

// Estimate JπE,i
pU ; pi, riq:

3 pηE,i
Ð ERD(DE

i , r
i)

4 pJE,i
pUq Ð

ř

yPY pηE,i
pyqUpyq

// Estimate J˚
pU ; pi, riq:

5 pJ˚,i
pUq, Ð PLANNING(U, i, ppi)

// Estimate Cpi,ri,πE,ipUq:

6 pCi
pUq Ð pJ˚,i

pUq ´ pJE,i
pUq

7 end
8 class Ð True if maxiPJNK pCi

pUq ď ∆ else False
9 Return class

Algorithm 2: TRACTOR-UL
Input: data tDE

i ui, parameters T,K, α, U0,
discretization ϵ0, dynamics tppiui

1 pηE,i
Ð ERD(DE

i , r
i) for i P JNK

2 for t “ 0, . . . , T ´ 1 do
// Compute distributions tpηitui:

3 for i in 1, 2, . . . , N do
4 , pψ˚,i

t Ð PLANNING(U t, i, ppi)
5 D Ð ROLLOUT( pψ˚,i

t , ppi, ri, i,K)
6 pηitpyq Ð 1

K

ř

GPD 1tG “ yu,@y P Y
7 end

// Update U t`1:

8 gt Ð
ř

iPJNK

`

pηit ´ pηE,i
˘

9 U t`1 Ð ΠUL
pU t ´ αgtq

10 end
11 Return 1

T

řT´1
t“0 U t

As other algorithms (Jin et al., 2020; Lazzati et al., 2024a), CATY-UL comprises two phases: an ex-
ploration phase (Algorithm 3), where we compute estimates tppiui by collecting τ i samples from the
generative model of each Mi, and a classification phase (Algorithm 1), that takes in input a utility
U PU, estimates tppiui, and datasets tDE,iui, to construct estimates t pCipUqui for classifying U .

Specifically, at Line 1, we discretize the utility U . Next, for all i P JNK, we construct estimates
pJE,ipUq « Jπ

E,i

pU ; pi, riq and pJ˚,ipUq « J˚pU ; pi, riq as follows. At Line 3, we estimate
pηE,i « ProjCpηp

i,ri,πE,iq « ηp
i,ri,πE,i through the ERD (Estimate Return Distribution) subrou-

tine (Algorithm 5), and dataset DE,i, while at Line 4 we compute pJE,ipUq. At Line 5, we ap-
proximate the optimal performance J˚pU ; pi, riq in RS-MDP Mi

U with the optimal performance
pJ˚,ipUq :“ J˚pU ; ppi, riq in RS-MDP ErxM

i

Us :“ pSi,Ai, H, si0, ppi, ri, Uq, which is computed
through value iteration in the enlarged state space MDP ErxM

i

Us using the PLANNING subroutine
(Algorithm 4). Finally, at Line 6 we compute pCipUq, and at Line 8 we perform the classification.
CATY-UL enjoys the following guarantee:
Theorem 5.1. Let ϵ, δ P p0, 1q, and let U be a subset of UL containing the utilities to classify. If we
set ϵ0 “ ϵ2{p72HL2q, and if it holds that, for all i P JNK:

if |U | “ 1 : τE,i ď rO
´H2

ϵ2
log

N

δ

¯

, τ i ď rO
´SAH4

ϵ2
log

SAHNL

δϵ

¯

,

else : τE,i ď rO
´H4L2

ϵ4
log

HNL

δϵ

¯

, τ i ď rO
´SAH5

ϵ2

´

S ` log
SAHN

δ

¯¯

,

then, w.p. at least 1 ´ δ, CATY-UL correctly classifies all the U P U that satisfy either
maxi Cpi,ri,πE,ipUq ă ∆ ´ ϵ (inside U∆) or maxi Cpi,ri,πE,ipUq ą ∆ ` ϵ (outside U∆).

Some observations are in order. First, note that ∆ is arbitrary in r0, Hs, and the sample complexity
does not depend on it. If we have one utility to classify |U | “ 1, then 9S queries to the generative
model suffice instead of 9S2. Note that ϵ0 represents a trade-off between approximation and estima-
tion error. If we re-normalize utilities so thatUpHq “ 1, then someH terms in the bounds disappear.
Intuitively, the Lipschitzianity assumption is necessary for approximating continuous utilities U P U
with vectors in U. Finally, observe that we can restrict the range of (non)compatibility r∆´ϵ,∆`ϵs
where CATY-UL can make mistake with high probability (w.h.p.) by collecting more data.

5.3 TRACTOR-UL (EXTRACTOR FOR UTILITY LEARNING)

For simplicity, let UL :“ U
Y
L for L ą 0, and let U,UL,U,UL,U∆ be the analogous of, respectively,

U,UL,U,UL,U∆, but containing increasing functions instead of strictly-increasing functions.8

TRACTOR-UL is a utility extractor algorithm. For any ∆ ą 0, it aims to extract a utility U from
U∆ by performing online gradient descent in the space of discretized L-Lipschitz utilities UL. It

8Note that, for defining U∆, we extend also the definition of (non)compatibility (Def. 5.1) to utilities in U.
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comprises two phases: an exploration phase, that coincides with that of CATY-UL (Algorithm 3)
and aims to compute estimates tppiui using tτ iui samples, and an extraction phase (Algorithm 2),
that takes in input estimates tppiui, and datasets tDE,iui, to construct a utility pU P UL to return.

Specifically, starting from U0 P UL, we compute a sequence tU1, . . . , UT u of utilities in UL
through an online projected gradient descent scheme, where the gradient gt is computed at Line
8, and the update is carried out at Line 9 with projection onto UL. Intuitively, we aim to min-
imize function maxiPJNK Cpi,ri,πE,ipUq ď

ř

i Cpi,ri,πE,ipUq over set UL (we upper bound the
max with the sum to work with gradients instead of subgradients), but computing the gradient
∇U

ř

iPJNK Cpi,ri,πE,ipUq “
ř

ip∇UJ
˚pU ; pi, riq ´ ηp

i,ri,πE,iq is not simple. Thus, analogously
to Syed & Schapire (2007); Schlaginhaufen & Kamgarpour (2024), we replace ∇UJ

˚pU ;pi,riq

with ∇UJ
π˚,i
t pU ;pi,riq“ηp

i,ri,π˚,i
t , where π˚,i

t is the (fixed) optimal policy in RS-MDP Mi
Ut

(Ut P UL satisfies Utpyq “ U tpyq for all y P Y), and we prove convergence. Therefore, Lines 1, 3-7
approximate

ř

ippηit´pηE,iq«
ř

ipη
pi,ri,π˚,i

t ´ηp
i,ri,πE,iq for all t. In particular, Lines 4-6 approx-

imate ηp
i,ri,π˚,i

t by passing through pηit«η
ppi,ri,pπ˚,i

t «ηp
i,ri,π˚,i

t , where pπ˚,i
t is the optimal policy

for the RS-MDP xMi
Ut

:“pSi,Ai,H,si0,pp
i,ri,U tq. At Line 4 we compute through value iteration

(PLANNING subroutine, Algorithm 4) the optimal policy pψ˚,i
t for MDP Er xMi

Ut
s. Then, at Line 5,

we collect the return of K trajectories obtained by executing pψ˚,i
t in MDP Er xMi

Ut
s (ROLLOUT sub-

routine, Algorithm 6), which is equivalent to playing pπ˚,i
t in xMi

Ut
. Finally, at Line 6, we use this

data to compute the empirical estimate pηit. TRACTOR-UL enjoys the following guarantee:
Theorem 5.2. Let ϵ, δ P p0, 1q, L ą 0, and assume that UE P UL. If we execute TRACTOR-UL
with parameters ϵ0 “ ϵ2{p80N2L2Hq, T ě O

`

N4H4L2{ϵ4
˘

,K ě rO
`

N2H2 log NHL
δϵ {ϵ2

˘

, α “
a

tH{ϵ0u ´ 1H{p2N
?
T q, an arbitrary U0 P UL, and if it holds that, for all i P JNK:

τE,i ě rO
´H4N4L2

ϵ4
log

NHL

δϵ

¯

, τ i ě rO
´N2SAH5

ϵ2

´

S ` log
SAHN

δ

¯¯

,

then, w.p. at least 1´ δ, for any ∆ ě ϵ, TRACTOR-UL guarantees that all the utilities U P UL such
that Upyq “ pUpyq for all y P Y (where pU P UL is the output of TRACTOR-UL) belong to U P U∆.

Intuitively, any U P UL obtained by “interpolating” pU has a small (non)compatibility w.h.p.. We
consider increasing utilities UL instead of strictly-increasing UL to guarantee the closedness of the
set onto which we project. As for CATY-UL, normalizing UpHq “ 1 would remove some H terms
from the bounds, and the Lipschitzianity assumption cannot be dropped. Finally, projection ΠUL

can
be implemented efficiently since set UL is made of OpH2{ϵ20q linear constraints (Appendix E.1).

6 NUMERICAL SIMULATIONS

In this section, we provide proof-of-concept experiments using data collected from lab members.

The Data. We asked to 15 participants to describe the actions they would play in an MDP with
horizon H “ 5 (see Appendix F), at varying of the state, the stage, and the cumulative reward
collected. The reward has a monetary interpretation. To answer the questions, the participants have
been provided with complete information about the dynamics and the reward function of the MDP.9

Experiment 1 - Model validation. We aim to answer to: Is it worthy to increase the model com-
plexity using a learnable utility in Eq. (1) instead of the (fixed) linear utility as (Ng & Russell,
2000)? How much better do we fit the data? To measure the fitness of a utility U to the data
(policy π) fairly, we consider a relative notion of (non)compatibility (we omit p, r for simplicity):
Cr
πpUq :“ pJ˚pUq ´ JπpUqq{J˚pUq. Intuitively, Cr

πpUq measures the quality of π as perceived
by the demonstrating agent, if U was its true utility function. We execute CATY-UL (without ex-
ploration) for the 15 participants comparing the IRL risk-neutral utility Ulinear with 3 “baselines”: A
risk-averseUsqrt (concave) and a risk-loverUsquare (convex) utilities, and the utilityUSG fitted through
the SG method (see Appendix F for details). We report the (non)compatibilities in percentage below:

9We have been allowed to collect these data because they are not personal.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 mean
Ulinear 39 58 18 1 9 33 25 62 1 56 1 16 16 25 60 28˘22
Usqrt 16 28 8 1 3 16 11 30 1 25 1 6 8 11 28 13˘10
Usquare 70 86 32 1 19 41 44 91 1 88 1 35 28 44 91 45˘32
USG 39 76 11 0 5 28 20 34 10 2 1 8 21 17 51 22˘21

Table 1: Values of Cr
π of various utilities with the demonstrations of the participants in percentage.

Some observations are in order. First, this data shows that replacing Ulinear (i.e., IRL) in Eq. (1)
with Usqrt reduces Cr

πp¨q from 28% to 13% on the average of the participants, answering positively
to our question. Next, the (fixed) Usqrt outperforms the USG of each participant. This is due to both
the bounded rationality of humans, who can not apply the H “ 1 utility USG to H ą 1 problems,
and the fact that Usqrt “overfits” the simple MDP considered, but it might generalize worse than
USG to new environments. Finally, all the utilities are compatible with policies 4 and 11, providing
empirical evidence on the partial identifiability of the expert’s utility from single demonstrations.

Experiment 2 - Empirical analysis of TRACTOR-UL. We aim to empirically characterise
TRACTOR-UL. First, we execute it on the MDP described earlier with different values of step
size α and initial utility U0 to compute a compatible utility for participant 10 (chosen arbitrarily).
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As shown in the figure on the side, the optimal
step size α “ 100 may be very large, due to
piq the presence of compatible utilities on the
boundaries of UL,10 thus larger step sizes can
converge sooner, and to piiq the projection onto
UL that results in minimal changes of utility
even with very large steps (see Appendix F.4.2).
These observations do not change if we con-
sider other participants (Appendix F.1.4). Next,
we run TRACTOR-UL on simulated data (see
Appendix F.4.3). We consider MDPs gener-
ated at random with larger state-actions spaces
(increment of S,A), and also multiple environ-
ments (increment of N ). To comply with the
assumption that there exists a utility function for which the expert’s policy is (almost) optimal, we
compute, in each environment, the optimal policy for an S-shaped utility function that is convex
for small returns, and concave for large returns, and then we inject some noise. The simulations
show that the number of gradient iterations necessary to achieve a certain level of performance is
affected by an increment of N , but not of S,A, as expected by Theorem 5.2. However, larger S,A
require more execution time, because of the value iteration subroutine. Moreover, we observe that
the best step size when N increases is smaller than α “ 100 found for the experiments with N “ 1.
Intuitively, there are less compatible utilities now, thus we need smaller gradient steps to find them.

7 CONCLUSION

In this paper, we proposed a novel descriptive model of behavior in MDPs, we formalized the UL
problem as that of learning the risk attitude of an agent from demonstrations, and we characterised
the partial identifiability of the expert’s utility. In addition, we have described two provably efficient
algorithms for estimating the compatibility of a utility with demonstrations, and for extracting a
compatible utility. They have been empirically validated through two proof-of-concept experiments.

Future directions. This paper opens up many important questions. To quantify the model mis-
specification, to use function approximation, to conduct an empirical study on the horizon used by
humans for planning (Carton et al., 2016), to combine demonstrations with other feedbacks (Jeon
et al., 2020), to learn both r and U , to extend imitation learning approaches (e.g., GAIL (Ho &
Ermon, 2016)) or the maximum entropy framework with utilities, to improve the model in Eq. (1)
with negative rewards and prospect theory (Kahneman & Tversky, 1979), and many others.

We believe that most of the IRL literature shall be extended under the proposed, more expressive,
framework to construct more accurate algorithms for IRL and UL.

10UL forces utilities to be increasing, i.e., with constraints UpG1q ď UpG2q @G1 ď G2. The plateau in Fig.
18 (right) indicates that UpG1q “ UpG2q @G1 ď G2, G1, G2 P r1, 3s, thus, it represents a boundary.
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Hans Föllmer and Alexander Schied. Stochastic Finance: An Introduction in Discrete Time. De
Gruyter, 2016.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in Neural
Information Processing Systems 29 (NeurIPS), 2016.

Hong Jun Jeon, Smitha Milli, and Anca Dragan. Reward-rational (implicit) choice: A unifying for-
malism for reward learning. In Advances in Neural Information Processing Systems 33 (NeurIPS),
pp. 4415–4426, 2020.

Chi Jin, Akshay Krishnamurthy, Max Simchowitz, and Tiancheng Yu. Reward-free exploration for
reinforcement learning. In International Conference on Machine Learning 37 (ICML), volume
119, pp. 4870–4879, 2020.

Anders Jonsson, Emilie Kaufmann, Pierre Menard, Omar Darwiche Domingues, Edouard Leurent,
and Michal Valko. Planning in markov decision processes with gap-dependent sample complexity.
In Advances in Neural Information Processing Systems 33 (NeurIPS), pp. 1253–1263, 2020.

Daniel Kahneman and Amos Tversky. Prospect theory: An analysis of decision under risk. Econo-
metrica, 47(2):263–291, 1979.

Kuno Kim, Shivam Garg, Kirankumar Shiragur, and Stefano Ermon. Reward identification in inverse
reinforcement learning. In International Conference on Machine Learning 38 (ICML), pp. 5496–
5505, 2021.

David M. Kreps. Notes On The Theory Of Choice. Westview Press, 1988.

Filippo Lazzati, Mirco Mutti, and Alberto Maria Metelli. How to scale inverse rl to large state
spaces? a provably efficient approach, 2024a.

Filippo Lazzati, Mirco Mutti, and Alberto Maria Metelli. Offline inverse rl: New solution concepts
and provably efficient algorithms. In International Conference on Machine Learning 41 (ICML),
2024b.

Bai Lei. Learning influence diagram utility function by observing behavior. In Advanced Multimedia
and Ubiquitous Engineering 14 (MUE), pp. 164–168, 2020.

Anirudha Majumdar, Sumeet Singh, Ajay Mandlekar, and Marco Pavone. Risk-sensitive inverse
reinforcement learning via coherent risk models. In Robotics: Science and Systems 13 (RSS),
2017.

Shie Mannor and John N. Tsitsiklis. Mean-variance optimization in markov decision processes. In
International Conference on Machine Learning 28 (ICML), pp. 177–184, 2011.

Alberto Maria Metelli, Filippo Lazzati, and Marcello Restelli. Towards theoretical understanding
of inverse reinforcement learning. In International Conference on Machine Learning 40 (ICML),
pp. 24555–24591, 2023.

Andrew Y. Ng and Stuart J. Russell. Algorithms for inverse reinforcement learning. In International
Conference on Machine Learning 17 (ICML 2000), pp. 663–670, 2000.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J. Andrew Bagnell, Pieter Abbeel, and Jan Peters.
An algorithmic perspective on imitation learning. Foundations and Trends® in Robotics, 7(1-2):
1–179, 2018.

Martin Lee Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, Inc., 1994.

Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement learning. In International
Joint Conference on Artifical Intelligence 20 (IJCAI), pp. 2586–2591, 2007.

Lillian J. Ratliff and Eric Mazumdar. Inverse risk-sensitive reinforcement learning. IEEE Transac-
tions on Automatic Control, 65(3):1256–1263, 2020.

R. Tyrrell Rockafellar and Stanislav Uryasev. Optimization of conditional value-at risk. Journal of
Risk, 3:21–41, 2000.

Mark Rowland, Marc Bellemare, Will Dabney, Remi Munos, and Yee Whye Teh. An analysis
of categorical distributional reinforcement learning. In International Conference on Artificial
Intelligence and Statistics 21 (AISTATS), volume 84, pp. 29–37, 2018.
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A ADDITIONAL RELATED WORKS

We describe here the most relevant related works. First, we describe IRL papers with risk, i.e., those
works that consider MDPs, and try to learn either the reward function or the utility or both. Next, we
analyze the works that aim to learning the risk attitude (i.e., a utility function) from demonstrations
of behavior (potentially in problems other than MDPs). Finally, we present other connected works.

Inverse Reinforcement Learning with risk. Majumdar et al. (2017) introduce the risk-sensitive
IRL problem in decision problems different from MDPs. Authors analyze two settings, one in which
the expert takes a single decision, and one in which there are multiple decisions in sequence. They
model the expert as a risk-aware decision-making agent acting according to a coherent risk metric
(Artzner et al., 1999), and they consider both the case in which the reward function is known, and
they try to learn the risk attitude (coherent risk metric) of the expert, and the case in which the reward
is unknown, and they aim to estimate both the risk attitude and the reward function. Nevertheless,
the authors analyze a very simple model of environment, that they call prepare-react model, which
is much different from an MDP, since, simply put, it is equivalent to a deterministic MDP in which
the stochasticity is shared by all the state-action pairs at each stage h P JHK. Moreover, the optimal
policy is markovian in this setting.

Singh et al. (2018) generalizes the work of Majumdar et al. (2017). Specifically, the biggest im-
provement is to consider nested optimization stages. However, the model of the environment is still
much simple, and, in addition, the authors consider a maximum likelihood approach to facilitate
inference.

We mention also the work of Chen et al. (2019) who extend Majumdar et al. (2017) by devising an
active learning framework to improve the efficiency of their learning algorithms.

Another important work is that of Ratliff & Mazumdar (2020), who study the risk-sensitive IRL
problem in MDPs, by proposing an interesting parametric model of behavior for the expert based on
prospect theory Kahneman & Tversky (1979), and they devise a gradient-based inverse reinforce-
ment learning algorithm that minimizes a loss function defined on the observed behavior. However,
this work suffers from the major limitation of assuming that the expert plays actions exactly based
on a softmax distribution, which introduces enough structure to perform maximum likelihood and
to learn the parameters of the utility function. Such assumption is rather strong.

We shall mention also the recent pre-print of Cao et al. (2024) that proposes a novel stochastic
control framework in continuous time that includes two utility functions and a generic discounting
scheme under a time-varying rate. Assuming to know both the utilities and the discounting scheme,
the authors show that, through state augmentation, the control problem is well-posed. In addition,
the authors provide sufficient conditions for the identification of both the utilities and the discounting
scheme given demonstrations of behavior. It should be remarked that there are many differences be-
tween this work and ours. First, they consider a continuous time environment that is rather different
from an MDP. Next, when they consider MDPs to make things more concrete, they assume a utility
function on the reward instead of the return, and they also consider the entropy-regularized setting
in which the optimal policy is the Boltzmann policy, which permits to apply maximum likelihood
for inferring the parameters of the utility function and the discount factor (they assume exponential
discounting).

Learning utilities from demonstrations. Chajewska et al. (2001) considers an approach similar
to IRL Ng & Russell (2000). Their goal is not to perform active preference elicitation, but, similarly
to us, to use demonstrations to infer preferences. Specifically, they aim to learn utilities in sequential
decision-making problems from demonstrations. However, they model the problems through deci-
sion trees, which are different from MDPs, and this represents the main difference between their
work and ours. Indeed, decision trees are simpler since there is no notion of reward function at
intermediate states. In this manner, they are able to devise (backward induction) algorithms to learn
utilities in decision trees through linear constraints similar to those devised by Ng & Russell (2000)
in IRL. It is interesting to notice that they adopt a Bayesian approach to extract a single utility from
the feasible set constructed, and not an heuristic like that of Ng & Russell (2000). They assume a
prior ppuq over the true utility function u, and approximate the posterior w.r.t. the feasible set of
utilities U using Markov Chain Monte Carlo (MCMC).
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Lei (2020) considers the problem of learning utilities from demonstrations similarly to Chajewska
et al. (2001), but with the difference of considering influence diagrams instead of decision trees.
Since any influence diagram can be expanded into a decision tree, authors adopt a strategy similar
to Chajewska et al. (2001).

Shukla et al. (2017) faces the problem of learning human utilities from (video) demonstrations, with
the aim of generating meaningful tasks based on the learned utilities. However, differently from us,
they consider the stochastic context-free And-Or graph (STC-AOG) framework (Xiong et al., 2016),
instead of MDPs.

Others. Shah et al. (2019) is similar to our work in that it aims to learn the behavioral model of
the expert from demonstrations. However, they do not consider a specific model like us (i.e., Eq.
(1)), but use a differentiable planner (neural network) to learn the planner. However, their approach
requires a lot of demonstrations, even across multiple MDPs, and it does not consider the fact that
there exist interesting models of humans in behavioral economics.

B ADDITIONAL NOTATION

In this appendix, we introduce additional notation that will be used in other appendices.

Miscellaneous. For any probability distribution ν P ∆R, we denote its cumulative density function
by Fν . Let ν P ∆R be a probability distribution on R; then, for any y P r0, 1s, we define the
generalized inverse F´1

ν pyq as:

F´1
ν pyq :“ inf

xPR
tFνpxq ě yu.

We define the 1-Wasserstein distancew1 : ∆Rˆ∆R Ñ r0,8s between two probability distributions
ν, µ as:

w1pν, µq :“

ż 1

0

ˇ

ˇF´1
ν pyq ´ F´1

µ pyq
ˇ

ˇdy. (2)

In addition, we define the Cramér distance ℓ2 : ∆R ˆ ∆R Ñ r0,8s between two probability
distributions ν, µ as:

ℓ2pν, µq :“
´

ż

R
pFνpyq ´ Fµpyqq2dy

¯1{2

. (3)

We will use notation:

VX„QrXs :“ EX„QrpX ´ EX„QrXsq2s,

to denote the variance of a random variable X „ Q distributed as Q. Given two random variables
X „ Q1, Y „ Q2, we denote their covariance as:

CovX„Q1,Y„Q2
rX,Y s :“ EX„Q1,Y„Q2

rpX ´ EX„Q1
rXsqpY ´ EY„Q2

rY sqs.

We define the categorical projection operator ProjC (mentioned in Section 5), that projects onto set
Y “ ty1, y2, . . . , ydu (the items of Y are ordered: y1 ď y2 ď . . . ď yd), based on Rowland et al.
(2018). For single Dirac measures on an arbitrary y P R, we write:

ProjCpδyq :“

$

’

&

’

%

δy1 if y ď y1
yi`1´y
yi`1´yi

δyi `
y´yi

yi`1´yi
δyi`1

if yi ă y ď yi`1

δyd if y ą yd

, (4)

and we extend it affinely to finite mixtures of M Dirac distributions, so that:

ProjC
´

ÿ

jPJMK

qjδzj

¯

“
ÿ

jPJMK

qjProjCpδzj q, (5)

for some set of real values tzjujPJMK and weights tqjujPJMK.
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Value functions. Given an MDP M “ pS,A, H, s0, p, rq and a policy π, we define the V - and
Q-functions of policy π in MDP M at every ps, a, hq P S ˆAˆ JHK respectively as V πh ps; p, rq :“

Ep,r,πr
řH
t“h rtpst, atq|sh “ ss and Qπhps, a; p, rq :“ Ep,r,πr

řH
t“h rtpst, atq|sh “ s, ah “ as. We

define the optimal V - and Q-functions as V ˚
h ps; p, rq :“ supπ V

π
h ps; p, rq and Q˚

hps, a; p, rq :“
supπ Q

π
hps, a; p, rq.

For MDPs with an enlarged state space, e.g., ptS ˆ Yhuh,A, H, ps0, 0q, p, rq, and a policy ψ “

tψhuh, for all h P JHK and ps, y, aq P S ˆ Yh ˆ A we denote the V - and Q-functions respec-
tively as V ψh ps, y; p, rq :“ Ep,r,ψr

řH
t“h rtpst, yt, atq|sh “ s, yh “ ys and Qψh ps, y, a; p, rq :“

Ep,r,ψr
řH
t“h rtpst, yt, atq|sh “ s, yh “ y, ah “ as. We denote the optimal V - and Q-functions

as V ˚
h ps, y; p, rq :“ supψ V

ψ
h ps, y; p, rq and Q˚

hps, y, a; p, rq :“ supψ Q
ψ
h ps, y, a; p, rq.

Observe that the notation just introduced will be extended in a straightforward manner to MDPs
(MDPs with enlarged state space) that have an estimated transition model pp (pp), and/or a discretized
reward function r (r).

C ADDITIONAL RESULTS AND PROOFS FOR SECTION 3

In Appendix C.1 we present in more detail the MDP used in Example 3.1. In Appendix C.2, we
present an additional motivating example explaining why including the reward into the state in
Example 3.1 is not satisfactory, while in Appendix C.3 we provide the missing proofs for Section 3.

C.1 THE MDP OF EXAMPLE 3.1

The MDP used in Example 3.1. We remark that the reward function is deterministic and is a function
of the state-action space only.

s0start s

s1

s2

s3

a1, r “ 0C

a2, r “ 100C

arisk
y, r

“
0

asafe , r “ 0

p “ 0.5

p “ 0.5

r “ 200C

r “ 0C

r “ 50C

C.2 DRAWBACKS OF RE-MODELLING THE MDP

If we re-model the MDP in Example 3.1 by including the reward into the state to make the opti-
mal policy Markovian, then we might incur in interpretability and transferability issues. To better
explain this, we make a simple example.

Consider a driving setting, where the state is the location of the car (name of the road and position
inside the road), the actions permit to change the current road (only when the car is close to another
road, otherwise no effect), and at every stage/timestep the position of the car advances on the current
road depending on the amount of traffic in the road, which is random and modelled through the
transition model of the environment.

Consider now an expert agent that aims to reach a certain goal location sg in the minimum
time/number of stages possible, and that is risk-averse, in the sense that it prefers roads that al-
ways have little traffic, even though they are, on average, slower, to roads that are usually faster but
sometimes have peaks of traffic that make them very very slow (since the traffic is random, there is
no sequence of roads that is always better than others, but it is a matter of chance).
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In our model (Eq. (1)), we can represent the expert through the reward function rE that is 0 in
the goal location sg , and ´1 otherwise. In this manner, the faster a trajectory reaches sg , the larger
the cumulative reward. Next, we can choose the utility function UE to be some concave function
in order to achieve the risk-aversion property (Bäuerle & Rieder, 2014), i.e., to make sure that the
expert prefers, intuitively, roads with “smaller variance” of traffic. We remark that our model permits
to capture the preferences of the expert in a very simple yet expressive manner. In fact, as shown in
this example, rE and UE can be easily designed, and their meaning is easily interpretable. However,
this does not hold if we include past rewards in the state.

In the model with an extended state space, the behavior of the expert is represented through a
single reward rE (defined on the expanded state space) instead of the pair reward-utility rE , UE .
The intuition is that, to contain all the information present in rE , UE , the new reward rE will be
“messy”. As such, designing it is also more complex. For instance, choosing rE to be ´t in the
(expanded) state made of the goal location sg and of t timesteps, and 0 elsewhere, represents a risk-
neutral agent that aims to reach sg as soon as possible, but it does not capture the risk-aversion of
the expert. To make rE model the risk-aversion, we must take it to be a concave function of ´t,
making it more difficult to be interpreted.

Even though the model with past rewards in the state guarantees the Markovianity of the opti-
mal/expert policy, it suffers from major drawbacks:

• rE has a size (i.e., it is defined on a number of states) that grows exponentially in the
horizon in the worst case, while rE , UE do not.

• rE is more difficult to interpret (and design) than the pair rE , UE , whose meaning is im-
mediate.

• rE can only be transferred to problems with the same state-action (or feature) space. In-
stead, the utility UE can be easily transferred to other kinds of environments. E.g., in the
considered example, UE can be used to assess how much the expert “values its time” and
takes decisions based on it. Thus, we can predict the behavior of the expert in other problem
settings where the time plays a role using UE , even if the state-action (or feature) space is
different (e.g., if the expert travels by train instead than by car, we can predict if it prefers
taking a reliable train, or a faster train on average that sometimes makes huge delays).

C.3 PROOFS FOR SECTION 3

Proposition 3.2. Given any RS-MDP with deterministic transition model p and reward function r,
if the utility U is increasing, then, there exists a Markovian optimal policy.

Proof. The objective in Eq. (1) coincides with that of a common MDP in absence of stochasticity
and when U is increasing. Since there always exists an optimal Markovian policy in MDPs, thus we
obtain the result.

Proposition 3.1. There exists a RS-MDP with horizon H “ 4 in which the difference between the
optimal performance and the performance of the best Markovian policy is 0.5.

Proof. For reasons that will be clear later, let us define symbol x « 2.6 as the solution of x´ x2

3.99 ´

0.1 “ 1.

Consider the RS-MDP MU “ pS,A, H, s0, p, r, Uq in Figure 2, where S “

tsinit, s1, s2, s3, s4, s5, s6u, A “ ta1, a2u, H “ 4, s0 “ sinit, transition model p such that:

p1ps1|sinit, aq “ p1ps2|sinit, aq “ 1{2 @a P A,
p2ps3|s1, aq “ p2ps3|s2, aq “ 1 @a P A,
p3ps4|s3, a1q “ x{3.99, p3ps5|s3, a1q “ 1 ´ x{3.99, p3ps6|s3, a2q “ 1,

reward function r defined as:

r1psinit, aq “ 0 @a P A,
r2ps1, aq “ 1 @a P A,
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sinitstart

s1

s2

s3

s4

s5

s6

a1, a2

1{2

1{2

r “ 1

r “ 0

a1

a2

x{3
.9
9

1
´
x{3.99

r “ 1

r “ 0

r “ 0.5

Figure 2: MDP for the proof of Proposition 3.1.

r2ps2, aq “ 0 @a P A,
r3ps3, aq “ 0 @a P A,
r4ps4, aq “ 1 @a P A,
r4ps5, aq “ 0 @a P A,
r4ps6, aq “ 0.5 @a P A,

and utility function U P U that satisfies:

Upyq “

$

’

’

&

’

’

%

x´ 0.1 if y “ 0.5

x if y “ 1

x` 0.1 if y “ 1.5

3.99 if y “ 2

.

Note that this entails that:
x

3.99
Up2q ` Up1q “ Up0.5q ` Up1.5q. (6)

Note also that the support of the return function of this (RS-)MDP is Gp,r “ t0, 0.5, 1, 1.5, 2u.

For α P r0, 1s, let πα be the generic Markovian policy that plays action a1 in s3 w.p. α (the actions
played in other states are not relevant). Then, its expected utility is:

Jπ
α

pU ; p, rq “
1

2

”

α
´ x

3.99
Up2q ` p1 ´

x

3.99
qUp1q

¯

` p1 ´ αqUp1.5q

ı

`
1

2

”

α
´ x

3.99
Up1q ` p1 ´

x

3.99
qUp0q

¯

` p1 ´ αqUp0.5q

ı

(1)
“

1

2

”

α
´ x

3.99
Up2q ` Up1q

¯

` p1 ´ αqpUp1.5q ` Up0.5qq

ı

(2)
“
Up1.5q ` Up0.5q

2
,

where at (1) we have used that Up0q “ 0, and at (2) we have used Eq. (6).

Thus, all Markovian policies πα have the same performance. Let us consider the non-Markovian
policy π that, in state s3, plays action a1 w.p. 1 if s3 is reached with cumulative reward 1, and it
plays action a2 w.p. 1 if s3 is reached with cumulative reward 0. Then, its performance is:

JπpU ; p, rq “
1

2

´ x

3.99
Up2q ` p1 ´

x

3.99
qUp1q

¯

`
1

2
Up0.5q.

The difference in performance between the optimal performance and that of πα is:

J˚pU ; p, rq ´ Jπ
α

pU ; p, rq ě JπpU ; p, rq ´ Jπ
α

pU ; p, rq

“
1

2

´ x

3.99
Up2q ` p1 ´

x

3.99
qUp1q

¯

`
1

2
Up0.5q ´

Up1.5q ` Up0.5q

2
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sinit
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s3

a2

a1 1{3

2{3

r
“

0.5

r “ 1

r “
0
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a1 1{3

2{3

r “ 0.5

r “ 1

r “ 0

Figure 3: MDP for the proof of Proposition 3.3.

“
1

2

´ x

3.99
Up2q ` p1 ´

x

3.99
qUp1q ´ Up1.5q

¯

(3)
“

1

2

´

x` x´
x2

3.99
´ x´ 0.1

¯

“
1

2

´

x´
x2

3.99
´ 0.1

¯

(4)
“ 0.5,

where at (3) we have replaced the values of utility, and at (4) we have used the definition of x.

Proposition 3.3. There exists a RS-MDP with stationary transition model and reward in which the
best Markovian policy is non-stationary, and the best stationary Markovian policy is stochastic.

Proof. Consider the stationary RS-MDP MU “ pS,A, H, s0, p, r, Uq depicted in Figure 3, where
S “ tsinit, s1, s2, s3u, A “ ta1, a2u, H “ 4, s0 “ sinit, stationary transition model p (we omit
subscript because of stationarity) such that:

pps2|sinit, a1q “ 1 ´ pps3|sinit, a1q “ 1{3,

pps1|sinit, a2q “ 1,

ppsinit|s, aq “ 1 @s P ts1, s2, s3u,@a P A,

reward function r defined as:

rpsinit, aq “ 0 @a P A,
rps1, aq “ 0.5 @a P A,
rps2, aq “ 1 @a P A,
rps3, aq “ 0 @a P A,

and utility function U P U that satisfies:

Upyq “

$

’

’

&

’

’

%

0.15 if y “ 0.5

0.2 if y “ 1

1.8 if y “ 1.5

2 if y “ 2

.

Let πα,β denote the general non-stationary policy that plays action a1 at stage 1 w.p. α P r0, 1s, and
plays action a1 at stage 2 w.p. β P r0, 1s. The performance of policy πα,β can be written as:

Jπ
α,β

pU ; p, rq “ α
!1

3

”

β
´1

3
Up2q `

2

3
Up1q

¯

` p1 ´ βqUp1.5q

ı

`
2

3

”

β
1

3
Up1q ` p1 ´ βqUp0.5q

ı)
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` p1 ´ αq

”

β
´1

3
Up1.5q `

2

3
Up0.5q

¯

` p1 ´ βqUp1q

ı

“ αβ
”1

9
Up2q `

13

9
Up1q ´

2

3
Up1.5q ´

4

3
Up0.5q

ı

` pα ` βq

”1

3
Up1.5q `

2

3
Up0.5q ´ Up1q

ı

` Up1q

“ αβ
”2

9
`

13

45
´

18

15
´

1

5

ı

` pα ` βq

”1

5
`

1

10
´

1

5

ı

`
1

5

“ ´
8

9
αβ `

1

10
pα ` βq `

1

5
.

To show that the best Markovian policy is non-stationary in this example, we show that the per-
formance of non-stationary policy π0,1 is better than the performance of all possible Markovian
policies. The performance of π0,1 is:

Jπ
0,1

pU ; p, rq “
1

10
`

1

5
“ 0.3.

Instead, the generic stationary policy is πα,α, and has performance:

Jπ
α,α

pU ; p, rq “ ´
8

9
α2 `

1

5
α `

1

5
.

The value of α P r0, 1s that maximizes this objective is:
d

dα
Jπ

α,α

pU ; p, rq “ ´
16

9
α `

1

5
“ 0 ðñ α “

9

80
,

from which we get:

Jπ
9{80,9{80

pU ; p, rq “
169

800
ď 0.22,

which is smaller than 0.3 “ Jπ
0,1

pU ; p, rq. This concludes the proof of the first part of the proposi-
tion.

For the second part, simply observe that, in the problem instance considered, we just obtained that
the best Markovian stationary policy plays action a1 w.p. 9{80, i.e., it is stochastic.

D ADDITIONAL RESULTS AND PROOFS FOR SECTION 4

In this appendix, we provide a more explicit formulation for the feasible utility set (Appendix D.1),
and then we provide the proofs of all the results presented in Section 4 (Appendix D.2).

D.1 A MORE EXPLICIT FORMULATION FOR THE FEASIBLE UTILITY SET

For any policy π, we denote by Sp,r,π the set of all ps, h, yq state-stage-cumulative reward triples
which are covered with non-zero probability by policy π in the considered (RS-)MDP.

Thanks to this definition, we can rewrite the feasible set as follows:
Proposition D.1. Let M “ pS,A, H, s0, p, rq be an MDP, and let πE be the expert policy. Then,
the feasible utility set Up,r,πE contains all and only the utility functions that make the actions played
by the expert policy optimal at all the ps, h, yq P Sp,r,πE . Formally:

Up,r,πE “

!

U P U
ˇ

ˇ

ˇ
@ps, h, yq P Sp,r,π

E

,@a P A :

Q˚
hps, y, πEh ps, yq; p, rq ě Q˚ps, y, a; p, rq,

where we used the notation introduced in Appendix B.

Proof. Based on Theorem 3.1 of Bäuerle & Rieder (2014) (or Theorem 1 of Wu & Xu (2023)), we
have that a utility U P U belongs to the feasible set if it makes the expert policy optimal even in the
enlarged state space MDP (note that it is possible to define a policy ψ for the enlarged MDP because
we are considering policies π whose non-Markovianity lies only in the cumulative reward up to
now). Therefore, the result follows thanks to a proof analogous to that of Lemma E.1 in Lazzati
et al. (2024b), since we are simply considering a common MDP with two variables per state.
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1{4

1{4

1{2

1{2

Figure 4: MDP for the proof of Proposition 4.1.

D.2 PROOFS FOR SECTION 4

Proposition 4.1 (Transfer to a new transition model). There exist two MDPs M “

pS,A, H, s0, p, rq,M1 “ pS,A, H, s0, p1, rq, with p ‰ p1, for which there exists a policy πE and a
pair of utilities U1, U2 P U such that: U1, U2 P Up,r,πE and Π˚

p1,rpU1q X Π˚
p1,rpU2q “ tu.

Proof. We will prove the guarantee stated in the proposition using two different pairs of MDPs: One
that that satisfies Gp1,r “ Gp,r, i.e., for which the support of the return function coincides, and the
other that does not. Let us begin with the former.

Consider a simple MDP M “ pS,A, H, sinit, p, rq with five states S “ tsinit, s0, s0.25, s0.75, s1u,
two actions A “ ta1, a2u, horizon H “ 2, initial state sinit, transition model p such that:

p1ps1|sinit, a1q “

$

’

’

&

’

’

%

1{4 if s1 “ s0
1{4 if s1 “ s0.25
1{4 if s1 “ s0.75
1{4 if s1 “ s1

,

p1ps1|sinit, a2q “

"

1{2 if s1 “ s0.25
1{2 if s1 “ s0.75

,

and reward function r that assigns r1psinit, a1q “ r1psinit, a2q “ 0, and:

r2ps, aq “

$

’

’

&

’

’

%

0 if s “ s0 ^ pa “ a1 _ a “ a2q

0.25 if s “ s0.25 ^ pa “ a1 _ a “ a2q

0.75 if s “ s0.75 ^ pa “ a1 _ a “ a2q

1 if s “ s1 ^ pa “ a1 _ a “ a2q

.

Note that the support of the return function is Gp,r “ t0, 0.25, 0.75, 1u. We are given an expert’s
policy πE that prescribes action a1 at stage 1 in state sinit, and arbitrary actions in other states (the
specific action is not relevant). The MDP M is represented in Figure 4.

Now, we show that utilities U1, U2 P U, defined in points of the support Gp,r as (and connected in
arbitrary continuous strictly-increasing manner between these points):

U1pGq “

$

’

’

&

’

’

%

0 if G “ 0

0.01 if G “ 0.25

0.02 if G “ 0.75

1.99 if G “ 1

, U2pGq “

$

’

’

&

’

’

%

0 if G “ 0

0.01 if G “ 0.25

0.99 if G “ 0.75

1.99 if G “ 1

,

belong to the feasible set Up,r,πE , and, when transferred to the new MDP M1 “

pS,A, H, sinit, p
1, rq, with transition model p1 ‰ p defined as:

p1
1p¨|sinit, a1q “ p1p¨|sinit, a1q,
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p1
1ps1|sinit, a2q “

"

0.7 if s1 “ s0
0.3 if s1 “ s1

,

impose different optimal policies, i.e., utility U2 keeps making action a1 optimal from state sinit even
in M1, while U1 makes action a2 optimal. This proves the thesis of the proposition.

Let us begin by showing that U1, U2 P Up,r,πE belong to the feasible set of M with policy πE . Let
π be the policy that plays action a2 in state sinit. Then, the distribution of returns induced by policies
πE and π are (we represent values only at points in Gp,r “ t0, 0.25, 0.75, 1u):

ηp,r,π
E

“ r1{4, 1{4, 1{4, 1{4s⊺

ηp,r,π “ r0, 1{2, 1{2, 0s⊺.

Thus, policy πE is optimal under some utility U if and only if the values assigned by U to points in
Gp,r “ t0, 0.25, 0.75, 1u (denoted, respectively, by U1, U2, U3, U4) satisfy:

U⊺pηp,r,π
E

´ ηp,r,πq “ r1{4,´1{4,´1{4, 1{4sU “ U1 ´ U2 ´ U3 ` U4 ě 0,

where we have overloaded the notation and denoted with U :“ rU1, U2, U3, U4s⊺ both the utility
and the vector of values assigned to points in Gp,r. By imposing normalization constraints (Up0q “

0, Up2q “ 2), we get U1 “ 0, and by imposing also the monotonicity constraints, we get that utility
U is in the feasible set Up,r,πE if and only if:

"

U4 ě U2 ` U3

0 ă U2 ă U3 ă U4 ă 2
.

Clearly, both utilities U1, U2 satisfy these constraints, thus they belong to the feasible set Up,r,πE .
Now, concerning problem M1, the performances of πE , π w.r.t. utilities U1, U2 are:

Jπ
E

pU1; p
1, rq “

1

4
U1p0q `

1

4
U1p0.25q `

1

4
U1p0.75q `

1

4
U1p1q “ 2.02{4 “ 0.505,

JπpU1; p
1, rq “ 0.7U1p0q ` 0.3U1p1q “ 0.3 ˆ 1.99 “ 0.597,

Jπ
E

pU2; p
1, rq “

1

4
U1p0q `

1

4
U1p0.25q `

1

4
U1p0.75q `

1

4
U1p1q “ 2.99{4 “ 0.7475,

JπpU2; p
1, rq “ 0.7U1p0q ` 0.3U1p1q “ 0.3 ˆ 1.99 “ 0.597.

Clearly, Jπ
E

pU1; p
1, rq ă JπpU1; p

1, rq, but Jπ
E

pU2; p
1, rq ą JπpU2; p

1, rq, thus we conclude that
the set of policies induced by utilities U1, U2 in M1 do not intersect, since they start from sinit with
different actions Π˚

p1,rpU1qXΠ˚
p1,rpU2q “ tu. This concludes the proof with an example that satisfies

Gp1,r “ Gp,r.
If we want an example that does not satisfy Gp1,r “ Gp,r, then we can consider exactly the same
example with M and M1, but using r1psinit, a2q “ 0.001. In this manner, we see that Gp,r “

t0, 0.25, 0.251, 0.75, 0.751, 1u, and Gp1,r “ t0, 0.001, 0.25, 0.75, 1, 1.001u, which are different. By
choosing U 1

1, U
1
2 as:

U 1
1pGq “

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

0 if G “ 0

0.001 if G “ 0.001

0.01 if G “ 0.25

0.011 if G “ 0.251

0.02 if G “ 0.75

0.021 if G “ 0.751

1.99 if G “ 1

1.991 if G “ 1.001

, U 1
2pGq “

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

0 if G “ 0

0.001 if G “ 0.001

0.01 if G “ 0.25

0.011 if G “ 0.251

0.99 if G “ 0.75

0.991 if G “ 0.751

1.99 if G “ 1

1.991 if G “ 1.001

,

it can be shown that U 1
1, U

1
2 belong to the (new) feasible set of M, and that induce different policies

in M1. This concludes the proof.

Proposition 4.2 (Transfer to a new reward). There exist two MDPs M “ pS,A, H, s0, p, rq,M1 “

pS,A, H, s0, p, r1q, with r ‰ r1, for which there exists a policy πE and a pair of utilities U1, U2 P U
such that: U1, U2 P Up,r,πE and Π˚

p,r1 pU1q X Π˚
p,r1 pU2q “ tu.
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sinitstart

s1

s2

a1
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a1, a2
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1{2

1{2

0.9

0.1

Figure 5: MDP for the proof of Proposition 4.2.

Proof. Similarly to the proof of Proposition 4.1, we provide two examples, one with Gp,r1

“ Gp,r,
and the other with Gp,r1

‰ Gp,r. Let us begin with the former.

Consider a simple MDP M “ pS,A, H, sinit, p, rq with three states S “ tsinit, s1, s2u, two actions
A “ ta1, a2u, horizon H “ 2, initial state sinit, transition model p such that:

p1ps1|sinit, a1q “

"

1{2 if s1 “ s1
1{2 if s1 “ s2

,

p1ps1|sinit, a2q “

"

0.9 if s1 “ s1
0.1 if s1 “ s2

,

and reward function r that assigns r1psinit, a1q “ 0, r1psinit, a2q “ 0.5, and:

r2ps, aq “

"

0 if s “ s1 ^ pa “ a1 _ a “ a2q

1 if s “ s2 ^ pa “ a1 _ a “ a2q
.

Note that the support of the return function is Gp,r “ t0, 0.5, 1, 1.5u. We are given an expert’s policy
πE that prescribes action a1 at stage 1 in state sinit, and arbitrary actions in other states (the specific
action is not relevant). The MDP M is represented in Figure 5.

Now, we show that the utilities U1, U2 P U, defined in points of the support Gp,r as (and connected
in arbitrary continuous strictly-increasing manner between these points):

U1pGq “

$

’

’

&

’

’

%

0 if G “ 0

0.1 if G “ 0.5

0.9 if G “ 1

1.5 if G “ 1.5

, U2pGq “

$

’

’

&

’

’

%

0 if G “ 0

0.1 if G “ 0.5

0.8 if G “ 1

1.5 if G “ 1.5

,

belong to the feasible set Up,r,πE , and, when transferred to the new MDP M1 “

pS,A, H, sinit, p, r
1q, with reward function r1 ‰ r defined as:

r1
1psinit, a1q “ 0.5, r1psinit, a2q “ 0,

r1
2ps, aq “

"

1 if s “ s1 ^ pa “ a1 _ a “ a2q

0 if s “ s2 ^ pa “ a1 _ a “ a2q
,

impose different optimal policies, i.e., utility U2 keeps making action a1 optimal from state sinit even
in M1, while U1 makes action a2 optimal. This will demonstrate the thesis of the proposition.

Let us begin by showing that U1, U2 P Up,r,πE belong to the feasible set of M with policy πE . Let
π be the policy that plays action a2 in state sinit. Then, the distribution of returns induced by policies
πE and π are (we represent values only at points in Gp,r “ t0, 0.5, 1, 1.5u):

ηp,r,π
E

“ r0.5, 0, 0.5, 0s⊺

ηp,r,π “ r0, 0.9, 0, 0.1s⊺.

Thus, policy πE is optimal under some utility U if and only if the values assigned by U to points in
Gp,r “ t0, 0.5, 1, 1.5u (denoted, respectively, by U1, U2, U3, U4) satisfy:

U⊺pηp,r,π
E

´ ηp,r,πq “ r0.5,´0.9, 0.5,´0.1sU “ 0.5U1 ´ 0.9U2 ` 0.5U3 ´ 0.1U4 ě 0,
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where we have overloaded the notation and denoted with U :“ rU1, U2, U3, U4s⊺ both the utility
and the vector of values assigned to points in Gp,r. By imposing normalization constraints (Up0q “

0, Up2q “ 2), we get U1 “ 0, and by imposing also the monotonicity constraints, we get that utility
U is in the feasible set Up,r,πE if and only if:

"

U4 ě 5U3 ´ 9U2

0 ă U2 ă U3 ă U4 ă 2
.

Clearly, both utilities U1, U2 satisfy these constraints, thus they belong to the feasible set Up,r,πE .
Now, concerning problem M1, the performances of πE , π w.r.t. utilities U1, U2 are:

Jπ
E

pU1; p, r
1q “ 0U1p0q ` 0.5U1p0.5q ` 0U1p1q ` 0.5U1p1.5q “ 1.6{2 “ 0.8,

JπpU1; p, r
1q “ 0.1U1p0q ` 0U1p0.5q ` 0.9U1p1q ` 0U1p1.5q “ 0.9 ˆ 0.9 “ 0.81,

Jπ
E

pU2; p, r
1q “ 0U2p0q ` 0.5U2p0.5q ` 0U2p1q ` 0.5U2p1.5q “ 1.6{2 “ 0.8,

JπpU2; p, r
1q “ 0.1U2p0q ` 0U2p0.5q ` 0.9U2p1q ` 0U2p1.5q “ 0.9 ˆ 0.8 “ 0.72.

Clearly, Jπ
E

pU1; p, r
1q ă JπpU1; p, r

1q, but Jπ
E

pU2; p, r
1q ą JπpU2; p, r

1q, thus we conclude that
the set of policies induced by utilities U1, U2 in M1 do not intersect, since they start from sinit with
different actions Π˚

p,r1 pU1qXΠ˚
p,r1 pU2q “ tu. This concludes the proof with an example that satisfies

Gp,r1

“ Gp,r.
If we want an example that does not satisfy Gp,r1

“ Gp,r, then we can consider exactly the same
example with M and M1, but using r1

1psinit, a2q “ 0.001. In this manner, we see that Gp,r “

t0, 0.5, 1, 1.5u, and Gp1,r “ t0.001, 0.5, 1.001, 1.5u, which are different. Nevertheless, by choosing
U 1
1, U

1
2 as:

U 1
1pGq “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

0 if G “ 0

0.001 if G “ 0.001

0.1 if G “ 0.5

0.9 if G “ 1

0.901 if G “ 1.001

1.5 if G “ 1.5

, U 1
2pGq “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

0 if G “ 0

0.001 if G “ 0.001

0.1 if G “ 0.5

0.8 if G “ 1

0.801 if G “ 1.001

1.5 if G “ 1.5

,

it can be shown that U 1
1, U

1
2 still belong to the feasible set of M (the constraints are the same), and

that induce different policies in M1. This concludes the proof.

Proposition 4.3. There exists an MDP M “ pS,A, H, s0, p, rq and a policy πE for which there
exists a pair of utilities U1, U2 P Up,r,πE such that, for any ϵ ě 0 smaller than some constant, there
exists a policy πϵ such that J˚pU1; p, rq ´ JπϵpU1; p, rq “ ϵ and J˚pU2; p, rq ´ JπϵpU2; p, rq ě 1.

Proof. Consider a simple MDP M “ pS,A, H, sinit, p, rq with four states S “ tsinit, s1, s2, s3u,
three actions A “ ta1, a2, a3u, horizon H “ 2, initial state sinit, transition model p such that:

p1ps2|sinit, a1q “ 1, p1ps1|sinit, a3q “ 1,

p1ps1|sinit, a2q “

"

0.91 if s1 “ s1
0.09 if s1 “ s3

,

and reward function r that assigns r1psinit, a1q “ r1psinit, a2q “ r1psinit, a3q “ 0, and:

r2ps, aq “

$

&

%

0 if s “ s1 ^ pa “ a1 _ a “ a2 _ a “ a3q

0.5 if s “ s2 ^ pa “ a1 _ a “ a2 _ a “ a3q

1 if s “ s3 ^ pa “ a1 _ a “ a2 _ a “ a3q

.

Note that the support of the return function is Gp,r “ t0, 0.5, 1u. We are given an expert’s policy
πE that prescribes action a1 at stage 1 in state sinit, and arbitrary actions in other states (the specific
action is not relevant). The MDP M is represented in Figure 6.
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sinitstart

s1

s2

s3

a1

a3

a2

a1, a2, a3

a1, a2, a3

a1, a2, a3

0.91

0.09

Figure 6: MDP for the proof of Proposition 4.3.

Now, we show that the utilities U1, U2 P U, defined in points of the support Gp,r as (and connected
in arbitrary continuous strictly-increasing manner between these points):

U1pGq “

$

&

%

0 if G “ 0

0.1 if G “ 0.5

0.1{0.09 if G “ 1

, U2pGq “

$

&

%

0 if G “ 0

1.099 if G “ 0.5

1.1 if G “ 1

,

belong to the feasible set Up,r,πE , and that, for any ϵ P r0, 0.1s, there exists a policy π for which it
holds both that J˚pU1; p, rq ´ JπpU1; p, rq “ ϵ and J˚pU2; p, rq ´ JπpU2; p, rq ě 1.

First, let us show that both U1, U2 belong to the feasible utility set. Let π1, π2, π3 be the policies
that play, respectively, action a1, a2, a3 in state sinit (note that π1 “ πE). Then, their performances
for arbitrary utility U are:

Jπ
1

pU ; p, rq “ Up0.5q,

Jπ
2

pU ; p, rq “ 0.09Up1q ` 0.91Up0q “ 0.09Up1q,

Jπ
3

pU ; p, rq “ Up0q “ 0,

where we have used the normalization condition. Replacing U with U1, we get J˚pU1; p, rq “

Jπ
1

pU1; p, rq “ 0.1“Jπ
2

pU1; p, rq “ 0.1 ą Jπ
3

pU1; p, rq “ 0. Instead, replacing with U2, we
get J˚pU2; p, rq “ Jπ

1

pU2; p, rq “ 1.099 ą Jπ
2

pU2; p, rq “ 0.09 ˆ 1.1 ą Jπ
3

pU2; p, rq “ 0.
Therefore, both U1, U2 P Up,r,πE .

Now, for any α P r0, 1s let us denote by πα the policy that, at state sinit, plays action a3 w.p. α, and
action a2 w.p. 1´α. We show that, for any ϵ P r0, 0.1s, policy πϵ{0.1 is ϵ-optimal for utility U1, and
its suboptimality is at least 1 under utility U2. For any α P r0, 1s, the expected utilities of policy πα
under U1 and U2 are:

JπαpU1; p, rq “ p1 ´ αq ˆ 0.09 ˆ U1p1q “ p1 ´ αq ˆ 0.1,

JπαpU2; p, rq “ p1 ´ αq ˆ 0.09 ˆ U2p1q “ p1 ´ αq ˆ 0.099,

from which we derive that the suboptimalities of such policy under U1 and U2 are:

J˚pU1; p, rq ´ JπαpU1; p, rq “ 0.1 ´ p1 ´ αq ˆ 0.1 “ 0.1α,

J˚pU2; p, rq ´ JπαpU2; p, rq “ 1.099 ´ p1 ´ αq ˆ 0.099 “ 1 ` 0.099α.

Thus, for any ϵ P r0, 0.1s, policy πϵ{0.1 is ϵ-optimal for utility U1, but it is at least 1-suboptimal for
utility U2.

The intuition is that utilities U1 and U2 assess in completely different manners the policies that play
action a2, although they both describe policy πE as optimal. This concludes the proof.

Proposition 4.4. Consider an arbitrary MDP with transition model p and reward function r. Then,
for any pair of utilities U1, U2 P U, it holds that dall

p,rpU1, U2q ď maxGPGp,r |U1pGq ´ U2pGq|.

Proof. For the sake of simplicity, we denote the infinity norm and the 1-norm w.r.t. set Gp,r as:
}f}8 :“ maxGPGp,r |fpGq| and }f}1 :“

ř

GPGp,r |fpGq|. In addition, we overload notation and use
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sinitstart

s1

s2

a1, a2, a3

a1, a2, a3

a1

a2, a3

Figure 7: MDP for the proof of Proposition 4.5.

symbols U1, U2 to denote the vectors in r0, Hs|Gp,r| containing, respectively, the values assigned by
utility functions U1, U2 to points in set Gp,r. Then, we can write:

dall
p,rpU1, U2q :“ sup

πPΠ
|JπpU1; p, rq ´ JπpU2; p, rq|

“ sup
πPΠ

|EG„ηp,r,π rU1pGqs ´ EG„ηp,r,π rU2pGqs|

“ sup
πPΠ

|EG„ηp,r,π rU1pGq ´ U2pGqs|

(1)
ď sup
ηP∆Gp,r

|EG„ηrU1pGq ´ U2pGqs|

(2)
ď sup
ηP∆Gp,r

EG„η|U1pGq ´ U2pGq|

(3)
“ }U1 ´ U2}8,

where at (1) we upper bound by considering the set of all possible distributions over set Gp,r instead
of just those induced by some policies in the considered MDP, at (2) we apply triangle inequality,
and at (3) we have used the fact that } ¨ }1 and } ¨ }8 are dual norms.

Proposition 4.5. There exists an MDP M “ pS,A, H, s0, p, rq and a policy πE for which there
exists a pair of utilities U1, U2 P Up,r,πE such that dall

p,rpU1, U2q “ 1.

Proof. Consider a simple MDP M “ pS,A, H, sinit, p, rq with three states S “ tsinit, s1, s2u, three
actions A “ ta1, a2, a3u, horizon H “ 2, initial state sinit, transition model p such that:

p1ps1|sinit, a1q “ 1, p1ps2|sinit, a2q “ p1ps2|sinit, a2q “ 1,

and reward function r that assigns r1psinit, a1q “ r1psinit, a2q “ 0, r1psinit, a2q “ 1, and:

r2ps, aq “

"

0 if s “ s1 ^ pa “ a1 _ a “ a2 _ a3q

1 if s “ s2 ^ pa “ a1 _ a “ a2 _ a3q
.

Note that the support of the return function is Gp,r “ t0, 1, 2u. We are given an expert’s policy πE
that prescribes action a3 at stage 1 in state sinit, and arbitrary actions in the other states (the specific
action is not relevant). The MDP M is represented in Figure 7.

Consider two utilities U1, U2, that take on the following values in Gp,r:

U1pGq “

$

&

%

0 if G “ 0

0.1 if G “ 1

2 if G “ 2

,

U2pGq “

$

&

%

0 if G “ 0

1.1 if G “ 1

2 if G “ 2

.

It is immediate that both utilities belong to the feasible set Up,r,πE . Nevertheless, if we denote by π
the policy that plays action a2 in state sinit, we see that JπpU1; p, rq “ 0.1, while JπpU2; p, rq “ 1.1,
so that the difference is 1.
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s21

s22

s23

s31

s32

s33

sH1

sH2

sH3

. . .

. . .

. . .

h “ 1 h “ 2 h “ 3 . . . h “ H

a1

a2
1 ´ q

q

Figure 8: MDP for the proof of Proposition 4.6.

Proposition 4.6 (Multiple demonstrations). Let S,A, H be, respectively, any state space, action
space, and horizon, satisfying S ě 3, A ě 2, H ě 2, and let UE P U be any utility. If, for any
possible dynamics s0, p and reward r, we are given the set of all the deterministic optimal policies
of the corresponding RS-MDP pS,A, H, s0, p, r, UEq, then we can uniquely identify utility UE .

Proof. We provide a constructive proof that shows which values of s0, p, r it is sufficient to choose
for recovering UE exactly. The construction is articulated into two parts. First, we aim to recover
the value of UEp1q, i.e., for G “ 1; next, we recover the utility for all other possible values of
return. The intuition is that we construct a Standard Gamble (SG) between two policies over the
entire horizon (Wakker, 2010).

To infer UEp1q, we use the s0, p, r values that provide the MDP described in Figure 8.

We consider a single initial state sinit. From here, action a1 (and all actions other than a1 and a2)
brings deterministically to state s21, while action a2 brings to state s23 w.p. q (to choose, for some q P

r0, 1s), and to state s22 w.p. 1´q. From state s2i , for any i P J3K, all actions bring deterministically to
state s3i , and so on, up to state sHi . We will call the trajectory tsinit, s

2
i , s

3
i , . . . , s

H
i u the ith trajectory

for all i P J3K, and we will write Gpiq to denote the sum of rewards along such trajectory. To infer
the value UEp1q, we select a reward r1 : S ˆ A ˆ JHK Ñ r0, 1s that provides return Gp1q “ 1.5
to the first trajectory, return Gp2q “ 1 to the second trajectory, and return Gp3q “ H to the third
trajectory (this is possible because H ě 2). By selecting, successively, all the values of q P r0, 1s,
we are asking to the expert to play either action a1 or action a2 from the initial state sinit (we denote
policies π1, π2, respectively, the policies that play actions a1, a2 in sinit). Since we are assuming
that the expert will demonstrate all the possible deterministic optimal policies, there exists a value
q1 P r0, 1s for which the expert demonstrates both policies π1 and π2. Indeed, the expected utilities
of policies π1, π2 for arbitrary value of q are (we write ppqq as the generic transition model):

Jπ
1

pUE ; ppqq, r1q “ UEp1.5q,

Jπ
2

pUE ; ppqq, r1q “ qUEpHq ` p1 ´ qqUEp1q “ qH ` p1 ´ qqUEp1q,

and since UE is strictly-increasing, we have UEp1q ă UEp1.5q ă UEpHq “ H , thus there must
exist q1 that permits to write UEp1.5q as a convex combination of the other two. This allows us to
write:

UEp1.5q “ q1H ` p1 ´ q1qUEp1q. (7)

Next, we select reward r2 that provides returns Gp1q “ 1, Gp2q “ 0.5, Gp3q “ 1.5. Thus, there
must exist a q2 P r0, 1s for which the expert demonstrates both policies π1 and π2, allowing us to
write:

UEp1q “ q2UEp1.5q ` p1 ´ q2qUEp0.5q. (8)
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Finally, we can repeat the same step with a third reward r3 that provides returnsGp1q “ 0.5, Gp2q “

0, Gp3q “ 1, and for some q3 P r0, 1s we obtain:

UEp0.5q “ q3UEp1q. (9)

By putting together Eq. (7), Eq. (8), and Eq. (9), we can retrieve UEp1q:
$

&

%

UEp1.5q “ q1H ` p1 ´ q1qUEp1q

UEp1q “ q2UEp1.5q ` p1 ´ q2qUEp0.5q

UEp0.5q “ q3UEp1q

.

Now that we know UEp1q, we can infer the utility for all the returns G P p1, Hq by choosing a
reward that provides returns Gp1q “ G,Gp2q “ 1, Gp3q “ H , because for some q P r0, 1s the
expert will play both policies π1 and π2, which allows us to write:

UEpGq “ qH ` p1 ´ qqUEp1q,

and to retrieve UEpGq.

Similarly, for all G P p0, 1q, we select a reward that provides returns Gp1q “ G,Gp2q “ 0, Gp3q “

1, and for some q P r0, 1s we can write:

UEpGq “ qUEp1q,

and retrieve UEpGq.

This concludes the proof. As a final remark, we stress that the initial step for inferring UEp1q cannot
be dropped because there is no reward r : S ˆAˆ JHK Ñ r0, 1s that provides returnsGp2q “ 0 and
Gp3q “ H , because both the first and second trajectories pass through action a2 in state sinit.

E ADDITIONAL RESULTS AND PROOFS FOR SECTION 5

This appendix is divided in 4 parts. First, we show the complexity of implementing operator ΠUL
(Appendix E.1). In Appendix E.2, we provide the pseudocode, along with a description, of algo-
rithms EXPLORE, PLANNING, ERD, and ROLLOUT. In Appendix E.3, we provide the proof of
Theorem 5.1. In Appendix E.4, we provide the proof of Theorem 5.2.

E.1 PROJECTING ONTO THE SET OF DISCRETIZED UTILITIES

Let us use the square brackets rs to denote the components of vectors. Then, note that set UL can be
represented more explicitly as:

UL “ tU P r0, Hsd |U r1s “ 0 ^ U rds “ H ^ U ris ď U ri` 1s @i P Jd´ 1K

^ @i, j P JdK s.t. i ă j : |U ris ´ U rjs| ď Lpj ´ iqϵ0u. (10)

Notice that set UL is closed and convex, since it is defined by linear constraints only. The amount of
constraints scales as 9d2.

E.2 MISSING ALGORITHMS AND SUB-ROUTINES

EXPLORE In Algorithm 3, we report the pseudo-code implementing subroutine EXPLORE. Sim-
ply put, we adopt a uniform-sampling strategy, i.e., we collect n “ tτ{pSAHqu samples from each
ps, a, hq P SˆAˆJHK triple, that we use to compute the empirical estimate of the transition model.
We return such estimate.

PLANNING The PLANNING sub-routine (Algorithm 4) takes in input a utility U , an en-
vironment index i, and a transition model p, that uses to construct the RS-MDP MU :“
pSi,Ai, H, si0, p, r

i, Uq. Notice that MU ‰ Mi
UE , for 3 aspects. First, it uses the input transi-

tion model p ‰ pi; next, it consider the discretized reward ri ‰ ri; finally, it has input utility
U ‰ UE .
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Algorithm 3: EXPLORE
Input: samples budget τ

1 n Ð tτ{pSAHqu

2 for i P t1, 2, . . . , Nu do
// Initialize the transition model estimate:

3 ppihps1|s, aq “ 0 for all ps, a, h, s1q P S ˆ A ˆ JHK ˆ S
// Collect samples:

4 for ps, a, hq P S ˆ A ˆ JHK do
5 for P t1, 2, . . . , nu do
6 s1 Ð sample from pihp¨|s, aq

7 ppihps1|s, aq Ð ppihps1|s, aq ` 1
8 end
9 end

10 ppihp¨|s, aq Ð ppihp¨|s, aq{n
11 end
12 Return tppiui

PLANNING outputs two items. The optimal performance J˚pU ; p, riq for RS-MDP MU , and the
optimal policy ψ˚ “ tψ˚

huh for the enlarged state space MDP ErMU s. However, it should be

remarked that, instead of computing optimal policy ψ˚ for ErMU s only at pairs ps, yq P S ˆ Gp,r
i

h
for all h P JHK, PLANNING computes the optimal policy ψ˚ at all pairs ps, yq P S ˆ Yh for all
h P JHK (note that Gp,r

i

h Ď Yh).

The algorithm implemented in PLANNING for computing both J˚pU ; p, riq and ψ˚ is value iter-
ation. The difference from common implementations of value iterations lies in the presence of an
additional variable in the state. A similar pseudocode is provided in Algorithm 1 of Wu & Xu
(2023).

Algorithm 4: PLANNING
Input: utility U , environment index i, transition model p
// Initialize the Q and value function at the last stage:

1 for ps, yq P Si ˆ YH do
2 for a P Ai do
3 QHps, y, aq Ð Upy ` riHps, aqq

4 end
5 VHps, yq Ð max

aPAi
QHps, y, aq

6 ψHps, yq Ð argmax
aPAi

QHps, y, aq /* Keep just one action */

7 end
// Backward induction:

8 for h “ H ´ 1, . . . , 2, 1 do
9 for ps, yq P Si ˆ Yh do

10 for a P Ai do
11 Qhps, y, aq Ð Es1„php¨|s,aq

”

Vh`1ps1, y ` rihps, aqq

ı

12 end
13 Vhps, yq Ð max

aPAi
Qhps, y, aq

14 ψhps, yq Ð argmax
aPAi

Qhps, y, aq /* Keep just one action */

15 end
16 end
// Return optimal performance and policy:

17 Return V1psi0, 0q, ψ
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Algorithm 5: ERD - Estimate the Return Distribution
Input: dataset DE , reward r
// Initialize pη:

1 for y P Y do
2 pηpyq Ð 0
3 end
// Loop over all trajectories in DE:

4 for ω P DE do
// Compute return of ω “ ts1, a1, . . . , sH , aH , sH`1u:

5 G Ð
řH

h“1 rhpsh, ahq

// Update estimate pη:
6 if G ď 0 then
7 pηp0q Ð pηp0q ` 1
8 end
9 else if G ą t H

ϵ0
uϵ0 then

10 pηpt H
ϵ0

uϵ0q Ð pηpt H
ϵ0

uϵ0q ` 1

11 end
12 else
13 L Ð maxyPY^yăG y
14 U Ð minyPY^yěG y

15 pηpLq Ð pηpLq ` U´G
U´L

16 pηpUq Ð pηpUq ` G´L
U´L

17 end
18 end

// Normalize:

19 pη Ð pη{|DE
|

20 Return pη

ERD (Estimate the Return Distribution) The ERD sub-routine (Algorithm 5) takes in input a
dataset DE “ tωjuj of state-action trajectories ωj P Ω and a reward function r, and it computes an
estimate of the return distribution w.r.t. r.

For every trajectory ωj P DE , ERD computes the return Gj of ωj based on the input reward r (Line
5). In the next lines, ERD simply computes the categorical projection of the mixture of Dirac deltas:

pη “ ProjC
´

ÿ

j

1

|DE |
δGj

¯

,

where the categorical projection operator ProjC is defined in Eq. (4).

ROLLOUT ROLLOUT (Algorithm 6) takes in input a Markovian policy ψ, a transition model p,
a reward r, an environment index i, and a number of trajectories K, to construct the MDP M :“
pSi,Ai, H, si0, p, rq obtained from MDP Mi by replacing the dynamics and reward pi, ri with the
input p, r.

ROLLOUT collects K trajectories by playing policy ψ in M for K times, computes the return G of
each trajectory, and then returns a dataset D containing these K returns. In other words, with abuse
of notation, we say that the outputted dataset D “ tGkukPJKK is obtained by collecting K samples
Gk from distribution ηp,r,ψ .

E.3 ANALYSIS OF CATY-UL

Theorem 5.1. Let ϵ, δ P p0, 1q, and let U be a subset of UL containing the utilities to classify. If we
set ϵ0 “ ϵ2{p72HL2q, and if it holds that, for all i P JNK:

if |U | “ 1 : τE,i ď rO
´H2

ϵ2
log

N

δ

¯

, τ i ď rO
´SAH4

ϵ2
log

SAHNL

δϵ

¯

,

else : τE,i ď rO
´H4L2

ϵ4
log

HNL

δϵ

¯

, τ i ď rO
´SAH5

ϵ2

´

S ` log
SAHN

δ

¯¯

,
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Algorithm 6: ROLLOUT
Input: policy ψ, transition model p, reward r, environment index i, number of trajectories K

1 D Ð tu

// Loop over the number of trajectories:
2 for P t1, 2, . . . ,Ku do
3 s Ð si0
4 y Ð 0 /* y keeps track of the accumulated reward */
5 for h “ 1 to H do
6 a Ð ψhps, yq

7 y Ð y ` rhps, aq

8 s Ð s1 where s1
„ php¨|s, aq

9 end
10 D Ð D Y tyu

11 end
12 Return D

then, w.p. at least 1 ´ δ, CATY-UL correctly classifies all the U P U that satisfy either
maxi Cpi,ri,πE,ipUq ă ∆ ´ ϵ (inside U∆) or maxi Cpi,ri,πE,ipUq ą ∆ ` ϵ (outside U∆).

Proof. Observe that the classification carried out by CATY-UL complies with the statement in the
theorem as long as we can demonstrate that:

P
tMiui,tπE,iui

´

sup
UPU

ˇ

ˇ

ˇ
max
iPJNK

Cpi,ri,πE,ipUq ´ max
iPJNK

pCipUq

ˇ

ˇ

ˇ
ď ϵ

¯

ě 1 ´ δ,

where PtMiui,tπE,iui represents the joint probability distribution induced by the exploration phase
of CATY-UL and the execution of each πE,i in the corresponding Mi.

We can rewrite this expression as:

sup
UPU

ˇ

ˇ

ˇ
max
iPJNK

Cpi,ri,πE,ipUq ´ max
iPJNK

pCipUq

ˇ

ˇ

ˇ

(1)
ď sup
UPU

max
iPJNK

ˇ

ˇ

ˇ
Cpi,ri,πE,ipUq ´ pCipUq

ˇ

ˇ

ˇ

“ max
iPJNK

sup
UPU

ˇ

ˇ

ˇ
Cpi,ri,πE,ipUq ´ pCipUq

ˇ

ˇ

ˇ
,

where at (1) we have upper bounded the difference of the maxima of two real-valued functions
with the maximum of their difference. This shows that we can obtain the result as long as we can
demonstrate that, for all i P JNK, it holds that:

P
pi,ri,πE,i

´

sup
UPU

ˇ

ˇ

ˇ
Cpi,ri,πE,ipUq ´ pCipUq

ˇ

ˇ

ˇ
ď ϵ

¯

ě 1 ´
δ

N
; (11)

the statement of the theorem would then follow from a union bound. Therefore, let us omit the i
index for simplicity, and let us try to obtain the bound in Eq. (11). We can write:

sup
UPU

ˇ

ˇCp,r,πE pUq ´ pCpUq
ˇ

ˇ :“ sup
UPU

ˇ

ˇ

`

J˚pU ; p, rq ´ Jπ
E

pU ; p, rq
˘

´
`

pJ˚pUq ´ pJEpUq
˘
ˇ

ˇ

(2)
ď sup
UPU

ˇ

ˇJπ
E

pU ; p, rq ´ pJEpUq
ˇ

ˇ ` sup
UPU

ˇ

ˇJ˚pU ; p, rq ´ pJ˚pUq
ˇ

ˇ

(3)
“ sup
UPU

ˇ

ˇ E
G„ηp,r,πE

rUpGqs ´ E
G„pηE

rUpGqs

˘ E
G„ProjCpηp,r,πE q

rUpGqs
ˇ

ˇ ` sup
UPU

ˇ

ˇJ˚pU ; p, rq ´ pJ˚pUq
ˇ

ˇ

(4)
ď sup
UPU

ˇ

ˇ E
G„ηp,r,πE

rUpGqs ´ E
G„ProjCpηp,r,πE q

rUpGqs
ˇ

ˇ

` sup
UPU

ˇ

ˇ E
G„ProjCpηp,r,πE q

rUpGqs ´ E
G„pηE

rUpGqs
ˇ

ˇ

` sup
UPU

ˇ

ˇJ˚pU ; p, rq ´ pJ˚pUq
ˇ

ˇ
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(5)
ď sup
f : f is L-Lipschitz

ˇ

ˇ E
G„ηp,r,πE

rfpGqs ´ E
G„ProjCpηp,r,πE q

rfpGqs
ˇ

ˇ

` sup
UPU

ˇ

ˇ E
G„ProjCpηp,r,πE q

rUpGqs ´ E
G„pηE

rUpGqs
ˇ

ˇ

` sup
UPU

ˇ

ˇJ˚pU ; p, rq ´ pJ˚pUq
ˇ

ˇ

(6)
“ L ¨ w1pηp,r,π

E

,ProjCpηp,r,π
E

qq

` sup
UPU

ˇ

ˇ E
G„ProjCpηp,r,πE q

rUpGqs ´ E
G„pηE

rUpGqs
ˇ

ˇ

sup
UPU

ˇ

ˇJ˚pU ; p, rq ´ pJ˚pUq
ˇ

ˇ,

where at (2) we have applied triangle inequality, at (3) we use the definition of Jπ
E

pU ; p, rq, and that
of pJEpUq (Line 4 of CATY-UL), and we have added and subtracted a term, where operator ProjC is
defined in Eq. (4). We remark that distribution ηp,r,π

E

may have a support that grows exponentially
in H , while both pηE and ProjCpηp,r,π

E

q are supported on Y . Note that pηE and ProjCpηp,r,π
E

q are
different distributions, since the former is the projection on Y of an estimate of ηp,r,π

E

. At (4), we
apply triangle inequality, at (5) we use the hypothesis that all utilities are L-Lipschitz U Ď UL, and
notice that UL is a subset of all L-Lipschitz functions f : r0, Hs Ñ r0, Hs, and at (6) we apply the
duality formula for the 1-Wasserstein distance w1 (see Eq. (6.3) in Chapter 6 of Villani (2008)).

Concerning the case |U | “ 1, we apply, for all i P JNK, Lemma E.3 with probability δ{p2Nq

and accuracy ϵ{3, and Lemma E.5 with probability δ{p2Nq and accuracy ϵ{3, while we bound the
1-Wasserstein distance through Lemma E.1, to obtain, through an application of the union bound,
that:

P
tMiui,tπE,iui

´

sup
UPU

ˇ

ˇ

ˇ
max
iPJNK

Cpi,ri,πE,ipUq ´ max
iPJNK

pCipUq

ˇ

ˇ

ˇ
ď

L
a

2Hϵ0 ` ϵ{3 `HLϵ0 ` ϵ{3
¯

ě 1 ´ δ,

as long as, for all i P JNK:

τE,i ě rO
ˆ

H2 log N
δ

ϵ2

˙

,

τ i ě rO
ˆ

SAH4

ϵ2
log

SAHN

δϵ0

˙

.

By setting ϵ0 “ ϵ2

72HL2 , we obtain that:

L
a

2Hϵ0 `HLϵ0 “
ϵ

6
`

ϵ2

72L
ď ϵ{3.

By putting this bound into the bound on τ i, we get the result.

When U is an arbitrary subset of UL, we apply, for all i P JNK, Lemma E.4 with probability δ{p2Nq

and accuracy ϵ{3, and Lemma E.13 with probability δ{p2Nq and accuracy ϵ{3, while we bound the
1-Wasserstein distance through Lemma E.1, to obtain, through an application of the union bound,
that:

P
tMiui,tπE,iui

´

sup
UPU

ˇ

ˇ

ˇ
max
iPJNK

Cpi,ri,πE,ipUq ´ max
iPJNK

pCipUq

ˇ

ˇ

ˇ
ď

L
a

2Hϵ0 ` ϵ{3 `HLϵ0 ` ϵ{3
¯

ě 1 ´ δ,

as long as, for all i P JNK:

τE,i ě rO
´ H3

ϵ2ϵ0
log

HN

δϵ0

¯

,
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τ i ě rO
´SAH5

ϵ2

´

S ` log
SAHN

δ

¯¯

.

Again, by setting ϵ0 “ ϵ2

72HL2 , we obtain that:

L
a

2Hϵ0 `HLϵ0 “
ϵ

6
`

ϵ2

72L
ď ϵ{3.

By putting this bound into the bounds on τE,i and τ i, we get the result.

E.3.1 LEMMAS ON THE EXPERT’S RETURN DISTRIBUTION

Lemma E.1. Let the projection operator ProjC be defined as in Eq. (4), over set Y with discretiza-
tion ϵ0. Then, for all i P JNK, it holds that:

w1pηp
i,ri,πE,i ,ProjCpηp

i,ri,πE,iqq ď
a

2Hϵ0.

Proof. For the sake of simplicity, we omit index i P JNK, but the following derivation can be applied
to all the N demonstrations.

By applying Lemma 5.2 of Rowland et al. (2024), replacing term 1{p1´γq with horizon H , we get:

w1pηp,r,π
E

,ProjCpηp,r,π
E

qq ď
?
Hℓ2pηp,r,π

E

,ProjCpηp,r,π
E

qq.

Similarly to the proof of Proposition 3 of Rowland et al. (2018), we can write:

ℓ22pηp,r,π
E

,ProjCpηp,r,π
E

qq
(1)
:“

ż

R
pFηp,r,πE pyq ´ FProjCpηp,r,πE q

pyqq2dy

(2)
“

ż H

0

pFηp,r,πE pyq ´ FProjCpηp,r,πE q
pyqq2dy

(3)
“

ÿ

jPJd´1K

ż yj`1

yj

pFηp,r,πE pyq ´ FProjCpηp,r,πE q
pyqq2dy

`

ż H

yd

pFηp,r,πE pyq ´ FProjCpηp,r,πE q
pyqq2dy

(4)
ď

ÿ

jPJd´1K

ż yj`1

yj

pFηp,r,πE pyq ´ FProjCpηp,r,πE q
pyqq2dy ` ϵ0

(5)
ď

ÿ

jPJd´1K

ż yj`1

yj

pFηp,r,πE pyj`1q ´ Fηp,r,πE pyjqq2dy ` ϵ0

“
ÿ

jPJd´1K

pyj`1 ´ yjqpFηp,r,πE pyj`1q ´ Fηp,r,πE pyjqq2 ` ϵ0

(6)
“ ϵ0

ÿ

jPJd´1K

pFηp,r,πE pyj`1q ´ Fηp,r,πE pyjqq2 ` ϵ0

(7)
ď ϵ0

´

ÿ

jPJd´1K

pFηp,r,πE pyj`1q ´ Fηp,r,πE pyjq
¯2

` ϵ0

(8)
“ ϵ0

`

Fηp,r,πE pydq ´ Fηp,r,πE py1q
˘2

` ϵ0

ď 2ϵ0,

where at (1) we have applied the definition of ℓ2 distance (Eq. (3)), at (2) we recognize that the
two distributions ηp,r,π

E

,ProjCpηp,r,π
E

q are defined on r0, Hs, at (3) we use the additivity prop-
erty of the integral, using notation Y :“ t0, ϵ0, 2ϵ0, . . . , tH{ϵ0uϵ0u, d :“ |Y| “ tH{ϵ0u ` 1,
y1 :“ 0, y2 :“ ϵ0, y3 :“ 2ϵ0, . . . , yd :“ tH{ϵ0uϵ0, (notation introduced in Section 5). At (4)
we upper bound

şH

yd
pFηp,r,πE pyq ´ FProjCpηp,r,πE q

pyqq2dy ď
şH

yd
dy “ H ´ yd “ H ´ tH{ϵ0uϵ0 “

ϵ0pH{ϵ0 ´ tH{ϵ0uq ď ϵ0 since the difference of cumulative distribution functions is bounded by
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1. At (5), thanks to the definition of the projection operator ProjC (Eq. (4)), we notice that, for
y P ryj , yj`1s, it holds that FProjCpηp,r,πE q

pyq P rFηp,r,πE pyjq, Fηp,r,πE pyj`1qs, thus we can upper
bound the integrand through the maximum, constant, difference of cumulative distribution functions.
At (6) we use the definition of set Y , i.e., an ϵ0-covering of the r0, Hs interval, at (7) we use the
Cauchy-Schwarz’s inequality

ř

jpxjq
2 ď p

ř

j xjq
2 for xj ě 0, and noticed that the summands are

always non-negative, at (8) we apply a telescoping argument.

The result follows by taking the square root of both sides.

Lemma E.2. Let i P JNK, and let f P r0, Hsd be an arbitrary d-dimensional vector. Denote by
G1, G2, . . . , GτE,i

i.i.d.
„ ηp

i,ri,πE,i the random variables representing the returns of the τE,i trajecto-
ries inside dataset DE,i. Let pηE,i be the random output of Algorithm 5 that depends on the random
variables G1, G2, . . . , GτE,i . Then, it holds that:

EG1,G2,...,GτE,i„ηpi,ri,π
E,i

„

Ey„pηE,i

”

fpyq

ı

ȷ

“ Ey„ProjCpηpi,ri,π
E,i

q

”

fpyq

ı

.

Proof. We omit index i for simplicity, but the proof can be carried out for all i P JNK independently.
To prove the statement, we use the notation described in Appendix E.2 for the Dirac delta, to provide
an explicit representation of both the distribution ProjCpηp,r,π

E

q and the “random” distribution pηE .

We consider distribution ηp,r,π
E

supported on Z :“ tz1, z2, . . . , zMu Ď r0, Hs, while distributions
ProjCpηp,r,π

E

q, pηE are supported on set Y “ ty1, y2, . . . , ydu Ď r0, Hs.

W.r.t. distribution ProjCpηp,r,π
E

q, we can write:

ProjCpηp,r,π
E

q “ ProjC
´

ÿ

kPJMK

ηp,r,π
E

pzkqδzk

¯

(1)
“

ÿ

kPJMK

ηp,r,π
E

pzkqProjCpδzkq

(2)
“

ÿ

kPJMK

ηp,r,π
E

pzkq

´

δy11tzk ď y1u ` δyd1tzk ą ydu

`
ÿ

jPJd´1K

´yj`1 ´ zk
yj`1 ´ yj

δyj `
zk ´ yj
yj`1 ´ yj

δyj`1

¯

1tzk P pyj , yj`1su

¯

“ δy1
ÿ

kPJMK

ηp,r,π
E

pzkq

´

1tzk ď y1u `
y2 ´ zk
y2 ´ y1

1tzk P py1, y2su

¯

`
ÿ

jPt2,...,d´1u

δyj

´

ÿ

kPJMK

ηp,r,π
E

pzkq

´yj`1 ´ zk
yj`1 ´ yj

1tzk P pyi, yj`1su

`
zk ´ yj´1

yi ´ yj´1
1tzk P pyj´1, yisu

¯¯

` δyd
ÿ

kPJMK

ηp,r,π
E

pzkq

´

1tzk ą ydu `
zk ´ yd´1

yd ´ yd´1
1tzk P pyd´1, ydsu

¯

,

where at (1) we have applied the extension in Eq. (5) of the projection operator ProjC to finite
mixtures of Dirac distributions, and at (2) we have applied its definition (Eq. (4)).

Concerning distribution pηE , based on Algorithm 5, we can write:

pηE “
δy1
τE

´

ÿ

tPJτEK

´

1tGt ď y1u `
y2 ´Gt
y2 ´ y1

1tGt P py1, y2su

¯¯

`
ÿ

jPt2,...,d´1u

δyj
τE

´

ÿ

tPJτEK

´yj`1 ´Gt
yj`1 ´ yj

1tGt P pyi, yj`1su

`
Gt ´ yj´1

yi ´ yj´1
1tGt P pyj´1, yisu

¯¯

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

`
δyd
τE

´

ÿ

tPJτEK

´

1tGt ą ydu `
Gt ´ yd´1

yd ´ yd´1
1tGt P pyd´1, ydsu

¯¯

.

Now, if we take the expectation of the random vector pηE w.r.t. ηp,r,π
E

, we get:

EG1,G2,...,GτE„ηp,r,πE

”

pηE
ı

“ EG1,G2,...,GτE„ηp,r,πE

„

δy1
τE

´

ÿ

tPJτEK

´

1tGt ď y1u `
y2 ´Gt
y2 ´ y1

1tGt P py1, y2su

¯¯

`
ÿ

jPt2,...,d´1u

δyj
τE

´

ÿ

tPJτEK

´yj`1 ´Gt
yj`1 ´ yj

1tGt P pyi, yj`1su

`
Gt ´ yj´1

yi ´ yj´1
1tGt P pyj´1, yisu

¯¯

`
δyd
τE

´

ÿ

tPJτEK

´

1tGt ą ydu `
Gt ´ yd´1

yd ´ yd´1
1tGt P pyd´1, ydsu

¯¯

ȷ

(3)
“ EG„ηp,r,πE

„

δy1

´

1tG ď y1u `
y2 ´G

y2 ´ y1
1tG P py1, y2su

¯

`
ÿ

jPt2,...,d´1u

δyj

´ yj`1 ´G

yj`1 ´ yj
1tG P pyi, yj`1su

`
G´ yj´1

yi ´ yj´1
1tG P pyj´1, yisu

¯

` δyd

´

1tG ą ydu `
G´ yd´1

yd ´ yd´1
1tG P pyd´1, ydsu

¯

ȷ

(4)
“ δy1

ÿ

kPJMK

ηp,r,π
E

pzkq

´

1tzk ď y1u `
y2 ´ zk
y2 ´ y1

1tzk P py1, y2su

¯

`
ÿ

jPt2,...,d´1u

δyj

´

ÿ

kPJMK

ηp,r,π
E

pzkq

´yj`1 ´ zk
yj`1 ´ yj

1tzk P pyi, yj`1su

`
zk ´ yj´1

yi ´ yj´1
1tzk P pyj´1, yisu

¯¯

` δyd
ÿ

kPJMK

ηp,r,π
E

pzkq

´

1tzk ą ydu `
zk ´ yd´1

yd ´ yd´1
1tzk P pyd´1, ydsu

¯

(5)
“ ProjCpηp,r,π

E

q,

where at (3) we use the fact that G1, G2, . . . , GτE are independent and identically distributed, at
(4) we apply the linearity of the expectation, we notice that δyj does not depend on G for all
j P JdK, and we notice that, for any y P Y , it holds that EG„ηp,r,πE

“

1tG ď yu
‰

“ ηp,r,π
E

pG ď

yq “
ř

kPJMK η
p,r,πE pzkq1tzk ď yu, where we have abused notation by writing ηp,r,π

E

pG ď yq

to mean the probability, under distribution ηp,r,π
E

, that event tG ď yu happens. Moreover,
similarly, we notice that, for any y, y1 P Y , it holds that EG„ηp,r,πE

“

G ¨ 1tG P ry, y1su
‰

“
ř

kPJMK zkη
p,r,πE pzkq1tzk P ry, y1su. At (5) we simply recognize ProjCpηp,r,π

E

q using the pre-
vious expression.

This concludes the proof because the equality of the Dirac delta representations means that the
expectations of any function w.r.t. these two distributions coincide.

Lemma E.3. Let i P JNK and let ϵ, δ P p0, 1q. If |U | “ 1, then, with probability at least 1 ´ δ, we
have:

sup
UPU

ˇ

ˇ

ˇ E
G„ProjCpηpi,ri,π

E,i
q

rUpGqs ´ E
G„pηE,i

rUpGqs

ˇ

ˇ

ˇ
ď ϵ,
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as long as:

τE ě c
H2 log 2

δ

ϵ2
,

where c is some positive constant.

Proof. Let U be the only function inside U . Let us omit index i for simplicity. Then, we can write:
ˇ

ˇ

ˇ E
G„pηE

rUpGqs ´ E
G„ProjCpηp,r,πE q

rUpGqs

ˇ

ˇ

ˇ

(1)
“

ˇ

ˇ

ˇ E
G„pηE

rUpGqs ´ E
ηp,r,πE

”

E
G„pηE

rUpGqs

ı
ˇ

ˇ

ˇ

(2)
ď cH

d

log 2
δ

τE
,

where at (1) we have applied Lemma E.2, and at (2) we have applied the Hoeffding’s inequality
noticing that function U is bounded in r0, Hs, and denoting with c some positive constant.

By imposing:

cH

d

log 2
δ

τE
ď ϵ,

and solving w.r.t. τE , we get the result.

Lemma E.4. Let i P JNK and let ϵ, δ P p0, 1q. Then, with probability at least 1 ´ δ, we have:

sup
UPU

ˇ

ˇ

ˇ E
G„ProjCpηpi,ri,π

E,i
q

rUpGqs ´ E
G„pηE,i

rUpGqs

ˇ

ˇ

ˇ
ď ϵ,

as long as:

τE ě rO
´ H3

ϵ2ϵ0
log

H

δϵ0

¯

.

Proof. Again, let us omit index i for simplicity. First, for all possible functions U P U , we denote
by U P UL the function in UL that takes on the values that the function U assigns to the points of
set Y . This permits us to write:

sup
UPU

ˇ

ˇ

ˇ E
G„pηE

rUpGqs ´ E
G„ProjCpηp,r,πE q

rUpGqs

ˇ

ˇ

ˇ

“ sup
UPUL

ˇ

ˇ

ˇ E
G„pηE

rUpGqs ´ E
G„ProjCpηp,r,πE q

rUpGqs

ˇ

ˇ

ˇ

(1)
ď sup
UPr0,Hsd

ˇ

ˇ

ˇ E
G„pηE

rUpGqs ´ E
G„ProjCpηp,r,πE q

rUpGqs

ˇ

ˇ

ˇ

(2)
“ sup
UPr0,Hsd

ˇ

ˇ

ˇ E
G„pηE

rUpGqs ´ E
ηp,r,πE

”

E
G„pηE

rUpGqs

ı
ˇ

ˇ

ˇ
,

where at (1) we upper bound by considering all the possible vectors U P r0, Hsd, and at (2) we
apply Lemma E.2.

Now, similarly to the proof of Lemma 7.2 in Agarwal et al. (2021), we construct an ϵ1-covering of
set r0, Hsd, call it Nϵ1 , with |Nϵ1 | ď p1 ` 2H

?
d{ϵ1qd such that, for all f P r0, Hsd, there exists

f 1 P Nϵ1 for which }f ´ f 1}2 ď ϵ1. By applying a union bound over all f 1 P Nϵ1 and Lemma E.3,
we have that, with probability at least 1 ´ δ, for all f 1 P Nϵ1 , it holds that:

ˇ

ˇ

ˇ E
G„pηE

rf 1pGqs ´ E
ηp,r,πE

”

E
G„pηE

rf 1pGqs

ı
ˇ

ˇ

ˇ
ď cH

d

d log 2p1`2H
?
d{ϵ1q

δ

τE
. (12)
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Next, for any f P r0, Hsd, denote its closest points (in 2-norm) from Nϵ1 as f 1. Then, we have:
ˇ

ˇ

ˇ E
G„pηE

rfpGqs ´ E
ηp,r,πE

”

E
G„pηE

rfpGqs

ı
ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ E
G„pηE

rfpGqs ´ E
ηp,r,πE

”

E
G„pηE

rfpGqs

ı

˘

´

E
G„pηE

rf 1pGqs ´ E
ηp,r,πE

”

E
G„pηE

rf 1pGqs

ı¯
ˇ

ˇ

ˇ

(3)
ď

ˇ

ˇ

ˇ E
G„pηE

rf 1pGqs ´ E
ηp,r,πE

”

E
G„pηE

rf 1pGqs

ı
ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ E
G„pηE

rfpGq ´ f 1pGqs

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ E
ηp,r,πE

”

E
G„pηE

rfpGq ´ f 1pGqs

ı
ˇ

ˇ

ˇ

(4)
ď cH

d

d log 2p1`2H
?
d{ϵ1q

δ

τE
` 2ϵ1

(5)
ď c1H

d

d log HdτE

δ

τE

where at (3) we apply triangle inequality, at (4) we apply the result in Eq. (12), and the fact that, by
definition of ϵ1-covering, }f ´ f 1}2 ď ϵ1 entails that |fpyq ´ fpy1q| ď ϵ1 for all y P Y; at (5) we set
ϵ1 “ 1{τE , and we simplify.

The result follows by upper bounding d ď H{ϵ0 ` 1, and then by setting:

c2H

d

H log HτE

δϵ0

ϵ0τE
ď ϵ, (13)

and solving w.r.t. τE , and noticing that for all τE greater than some constant, we can get rid of the
logarithmic terms in τE .

E.3.2 LEMMAS ON THE OPTIMAL PERFORMANCE FOR SINGLE UTILITY

In this section, we will omit index i P JNK since the following derivations can be carried out for
each i.

We denote the arbitrary MDP in tMiui as M “ pS,A, H, s0, p, rq, and its analogous with dis-
cretized reward r, defined at all ps, a, hq P S ˆ A ˆ JHK as rhps, aq :“ ΠRrrhps, aqs, as
M :“ pS,A, H, s0, p, rq. We denote the analogous MDPs with empirical transition model pp as
xM “ pS,A, H, s0, pp, rq and xM :“ pS,A, H, s0, pp, rq.

Given any utility U P UL, we denote the corresponding RS-MDPs, respectively, as

MU ,MU , xMU ,
xMU . Concerning the discretized RS-MDPs MU and xMU , we denote the cor-

responding enlarged state space MDPs, respectively, as ErMU s “ ptS ˆ Yhuh,A, H, ps0, 0q, p, rq

and Er
xMU s “ ptS ˆ Yhuh,A, H, ps0, 0q,pp, rq, where we decided to define such enlarged state

space MDPs using the state space tS ˆ Yhuh considered by Algorithm 4 (PLANNING) instead
of, respectively, tS ˆ Gp,rh uh and tS ˆ G pp,r

h uh. Thus, the transition models p and pp, from any
h P JHK and ps, y, aq P S ˆ Yh ˆ A, assign to the next state ps1, y1q P S ˆ Yh`1 the probability:
phps1, y1|s, y, aq :“ phps1|s, aq1ty1 “ y ` rhps, aqu and pphps1, y1|s, y, aq :“ pphps1|s, aq1ty1 “

y ` rhps, aqu. Moreover, the reward function r, in any h P JHK and ps, y, aq P S ˆ Yh ˆ A, is
rhps, y, aq “ 0 if h ă H , and rhps, y, aq “ Upy ` rhps, aqq if h “ H .

We will make extensive use of notation for V - and Q- functions introduced in Appendix B.

We are now ready to proceed with the analysis. In general, the analysis shares similarities to that
of Theorem 3 of Wu & Xu (2023), but we use results also from Azar et al. (2013) to obtain tighter
bounds.
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Lemma E.5. Let ϵ, δ P p0, 1q. For any fixed L-Lipschitz utility function U P UL, it suffices to
execute CATY-UL with:

τ ď rO
´SAH4

ϵ2
log

SAH

δϵ0

¯

,

to obtain
ˇ

ˇJ˚pU ; p, rq ´ pJ˚pUq
ˇ

ˇ ď HLϵ0 ` ϵ w.p. 1 ´ δ.

Proof. For an arbitrary utility U P UL, we can write:

|J˚pU ; p, rq ´ pJ˚pUq|
(1)
“ |J˚pU ; p, rq ´ pJ˚pUq˘J˚pp, rq|

(2)
ď |J˚pU ; p, rq ´ J˚pp, rq| ` |J˚pp, rq ´ pJ˚pUq|

(3)
“ |J˚pU ; p, rq ´ J˚pp, rq| ` |J˚pp, rq ´ J˚ppp, rq|

(4)
ď HLϵ0 ` |J˚pp, rq ´ J˚ppp, rq|

“ HLϵ0 ` |V ˚
1 ps0, 0; p, rq ´ V ˚

1 ps0, 0;pp, rq|

ď HLϵ0 ` max
hPJHK,ps,y,aqPSˆYhˆA

|Q˚
hps, y, a; p, rq ´Q˚

hps, y, a;pp, rq|

(5)
ď HLϵ0 ` ϵ1,

where at (1) we add and subtract the optimal expected utility in the enlarged MDP ErMU s consid-
ered by Algorithm 4, but with the true transition model p. At (2) we apply triangle inequality, at (3)
we recognize that the estimate pJ˚pUq used in CATY-UL and outputted by PLANNING (Algorithm
4) is the optimal expected utility for the discretized problem with estimated dynamics pp, at (4) we
use Proposition 3 of Wu & Xu (2023), since U is L-Lipschitz, and at (5) we apply Lemma E.6 to
bound the distance between Q-functions.

By setting:

c

d

H3 log 4SAHd
δ

n
loooooooooomoooooooooon

ďϵ{3

` cH2

ˆ

log 16SAHd
δ

n

˙3{4

looooooooooooomooooooooooooon

ďϵ{3

` cH3 log
16SAHd

δ

n
loooooooomoooooooon

ďϵ{3

ď ϵ,

and solving w.r.t. ϵ:
$

’

’

&

’

’

%

n ě c1H
3 log 4SAHd

δ

ϵ2

n ě c2H
8{3 log 16SAHd

δ

ϵ4{3

n ě c3H3 log 16SAHd
δ

ϵ

.

Taking the largest bound, we get:

n ě c
H3 log 16SAHd

δ

ϵ2
,

for some positive constant c. Since d ď H{ϵ0 ` 1, we can write:

τ ě c1
SAH4 log c2SAH

δϵ0

ϵ2
,

for some positive constants c1, c2, where we used that τ “ SAHn.

The proof of the following lemma is organized in many lemmas, and is based on the proof of
Theorem 1 of Azar et al. (2013).
Lemma E.6. For any δ P p0, 1q, we have:

max
hPJHK,ps,y,aqPSˆYhˆA

|Q˚
hps, y, a; p, rq ´Q˚

hps, y, a;pp, rq| ď ϵ1,
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w.p. at least 1 ´ δ, where ϵ1 is defined as:

ϵ1 :“ c

d

H3 log 4SAHd
δ

n
` cH2

ˆ

log 16SAHd
δ

n

˙3{4

` cH3 log
16SAHd

δ

n
,

for some positive constant c.

Proof. We upper bound one side, and then the other. For all the h P JHK, ps, y, aq P S ˆ Yh ˆ A, it
holds that:

Q˚
hps, a, y; p, rq ´Q˚

hps, y, a;pp, rq

(1)
ď E

pp,r,ψ˚

„ H
ÿ

h1“h

ÿ

s1PS

´

ph1 ps1|sh1 , ah1 q ´ pph1 ps1|sh1 , ah1 q

¯

V ψ
˚

h1`1ps1, yh1`1; p, rq

ˇ

ˇ

ˇ
sh “ s, yh “ y, ah “ a

ȷ

(2)
ď E

pp,r,ψ˚

„ H
ÿ

h1“h

c

d

c1Vs1„pph1 p¨|sh1 ,ah1 qrV ψ
˚

h1`1ps1, yh1`1;pp, rqs

n
` b2

ˇ

ˇ

ˇ
sh “ s, yh “ y, ah “ a

ȷ

“ c

c

c1
n

E
pp,r,ψ˚

„ H
ÿ

h1“h

b

Vs1„pph1 p¨|sh1 ,ah1 qrV ψ
˚

h1`1ps1, yh1`1;pp, rqs

ˇ

ˇ

ˇ
sh “ s, yh “ y, ah “ a

ȷ

`Hb2

(3)
ď c

c

c1
n

?
H3 `Hb2

“ c

d

H3 log 4SAHY
δ

n
` c1H2

ˆ

log 16SAHY
δ

n

˙3{4

` c2H3 log
16SAHY

δ

n

“: ϵ1,

where at (1) we have applied Lemma E.7, at (2) we have applied Lemma E.10 with δ{2 of probabil-
ity, at (3) we have applied Lemma E.12.

The proof for the other side of inequality is completely analogous, and it holds w.p. 1 ´ δ{2. The
result follows through the application of a union bound.

Lemma E.7. For any tuple h P JHK, ps, y, aq P S ˆ Yh ˆ A, it holds that:

Q˚
hps, y, a; p, rq ´Q˚

hps, y, a;pp, rq ď E
pp,r,ψ˚

„ H
ÿ

h1“h

ÿ

s1PS
´

ph1 ps1|sh1 , ah1 q ´ pph1 ps1|sh1 , ah1 q

¯

V ψ
˚

h1`1ps1, yh1`1; p, rq
ˇ

ˇ

ˇ
sh “ s, yh “ y, ah “ a

ȷ

,

Q˚
hps, y, a; p, rq ´Q˚

hps, y, a;pp, rq ě E
pp,r, pψ˚

„ H
ÿ

h1“h

ÿ

s1PS
´

ph1 ps1|sh1 , ah1 q ´ pph1 ps1|sh1 , ah1 q

¯

V ψ
˚

h1`1ps1, yh1`1; p, rq
ˇ

ˇ

ˇ
sh “ s, yh “ y, ah “ a

ȷ

,

where ψ˚, pψ˚ are the optimal policies respectively in problems p, r and pp, r.

Proof. For any h P JHK, ps, y, aq P S ˆ Yh ˆ A, we can write:

Q˚
hps, y, a; p, rq ´Q˚

hps, y, a;pp, rq

“ Qψ
˚

h ps, y, a; p, rq ´Q
pψ˚

h ps, y, a;pp, rq
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(1)
ď Qψ

˚

h ps, y, a; p, rq ´Qψ
˚

h ps, y, a;pp, rq

(2)
“ rhps, y, aq `

ÿ

ps1,y1qPSˆYh`1

phps1, y1|s, y, aqV ψ
˚

h`1ps1, y1; p, rq

´

´

rhps, y, aq `
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aqV ψ
˚

h`1ps1, y1;pp, rq
¯

(3)
“

ÿ

ps1,y1qPSˆYh`1

phps1, y1|s, y, aqV ψ
˚

h`1ps1, y1; p, rq

´
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aqV ψ
˚

h`1ps1, y1;pp, rq

˘
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aqV ψ
˚

h`1ps1, y1; p, rq

“
ÿ

ps1,y1qPSˆYh`1

´

phps1, y1|s, y, aq ´ pphps1, y1|s, y, aq

¯

V ψ
˚

h`1ps1, y1; p, rq

`
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aq

´

V ψ
˚

h`1ps1, y1; p, rq ´ V ψ
˚

h`1ps1, y1;pp, rq
¯

(4)
“

ÿ

ps1,y1qPSˆYh`1

´

phps1|s, aq1ty ` rhps, aq “ y1u

´ pphps1|s, aq1ty ` rhps, aq “ y1u

¯

V ψ
˚

h`1ps1, y1; p, rq

`
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aq

´

V ψ
˚

h`1ps1, y1; p, rq ´ V ψ
˚

h`1ps1, y1;pp, rq
¯

(5)
“

ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

ÿ

y1PYh`1

1ty ` rhps, aq “ y1uV ψ
˚

h`1ps1, y1; p, rq

`
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aq

´

V ψ
˚

h`1ps1, y1; p, rq ´ V ψ
˚

h`1ps1;pp, rq
¯

(6)
“

ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ψ
˚

h`1ps1, y ` rhps, aq; p, rq

`
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aq

´

V ψ
˚

h`1ps1, y1; p, rq ´ V ψ
˚

h`1ps1, y1;pp, rq
¯

“
ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ψ
˚

h`1ps1, y ` rhps, aq; p, rq

`
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aq

¨

´

Qψ
˚

h`1ps1, y1, ψ˚
h`1ps1, y1q; p, rq ´Qψ

˚

h`1ps1, y1, ψ˚
h`1ps1, y1q;pp, rq

¯

,

where at (1) we have used that pψ˚ is the optimal policy in pp, r, and thus Qψ
˚

h ps, a;pp, rq ď

Q
pψ˚

h ps, a;pp, rq. At (2) we apply the Bellman equation, at (3) we add and subtract the expected
under pp optimal value function under p, at (4) we use the definition of transition model p,pp, at (5)
we split the summations, at (6) we recognize that the indicator function takes on value 1 only when
y ` rhps, aq “ y1. Finally, we unfold the recursion to obtain the result.

Concerning the second equation, for any h P JHK, ps, y, aq P S ˆ Yh ˆ A, we can write:

Q˚
hps, y, a; p, rq ´Q˚

hps, y, a;pp, rq

“ Qψ
˚

h ps, y, a; p, rq ´Q
pψ˚

h ps, y, a;pp, rq
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(7)
“ rhps, y, aq `

ÿ

ps1,y1qPSˆYh`1

phps1, y1|s, y, aqV ψ
˚

h`1ps1, y1; p, rq

´

´

rhps, y, aq `
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aqV
pψ˚

h`1ps1, y1;pp, rq
¯

(8)
“

ÿ

ps1,y1qPSˆYh`1

phps1, y1|s, y, aqV ψ
˚

h`1ps1, y1; p, rq

´
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aqV
pψ˚

h`1ps1, y1;pp, rq

˘
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aqV ψ
˚

h`1ps1, y1; p, rq

“
ÿ

ps1,y1qPSˆYh`1

´

phps1, y1|s, y, aq ´ pphps1, y1|s, y, aq

¯

V ψ
˚

h`1ps1, y1; p, rq

`
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aq

´

V ψ
˚

h`1ps1, y1; p, rq ´ V
pψ˚

h`1ps1, y1;pp, rq
¯

“
ÿ

ps1,y1qPSˆYh`1

´

phps1|s, aq1ty ` rhps, aq “ y1u

´ pphps1|s, aq1ty ` rhps, aq “ y1u

¯

V ψ
˚

h`1ps1, y1; p, rq

`
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aq

´

V ψ
˚

h`1ps1, y1; p, rq ´ V
pψ˚

h`1ps1, y1;pp, rq
¯

“
ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

ÿ

y1PYh`1

1ty ` rhps, aq “ y1uV ψ
˚

h`1ps1, y1; p, rq

`
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aq

´

V ψ
˚

h`1ps1, y1; p, rq ´ V
pψ˚

h`1ps1, y1;pp, rq
¯

“
ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ψ
˚

h`1ps1, y ` rhps, aq; p, rq

`
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aq

´

V ψ
˚

h`1ps1, y1; p, rq ´ V
pψ˚

h`1ps1, y1;pp, rq
¯

(9)
ě

ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ψ
˚

h`1ps1, y ` rhps, aq; p, rq

`
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aq

¨

´

Qψ
˚

h`1ps1, y1, pψ˚
h`1ps1, y1q; p, rq ´Q

pψ˚

h`1ps1, y1, pψ˚
h`1ps1, y1q;pp, rq

¯

,

where at (7) we have applied the Bellman equation, at (8) we have added and subtracted
a term, and at (9) we have used that V ψ

˚

h`1ps1, y1; p, rq “ Qψ
˚

h`1ps1, y1, ψ˚
h`1ps1, y1q; p, rq ě

Qψ
˚

h`1ps1, y1, pψ˚
h`1ps1, y1q; p, rq, since ψ˚

h`1ps1, y1q is the optimal action under p, r, and so, it can-
not be worse than action pψ˚

h`1ps1, y1q. By unfolding the recursion, we obtain the result.

Lemma E.8. For any δ P p0, 1q, w.p. at least 1 ´ δ, it holds that:

max
hPJHK,ps,yqPSˆYh

|V ˚
h ps, y; p, rq ´ V ψ

˚

h ps, y;pp, rq| ď cH2

d

log 2SAHd
δ

n
,

max
hPJHK,ps,yqPSˆYh

|V ˚
h ps, y; p, rq ´ V ˚

h ps, y;pp, rq| ď cH2

d

log 2SAHd
δ

n
.

where c is some positive constant.
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Proof. First, we observe that, for any h P JHK, ps, yq P S ˆ Yh, by following passages similar to
those in the proof of Lemma E.7:

|V ˚
h ps, y; p, rq ´ V ψ

˚

h ps, y;pp, rq|

“ |Qψ
˚

h ps, y, ψ˚
hps, yq; p, rq ´Qψ

˚

h ps, y, ψ˚
hps, yq;pp, rq|

“

ˇ

ˇ

ˇ
rhps, y, ψ˚

hps, yqq `
ÿ

ps1,y1qPSˆYh`1

phps1, y1|s, y, ψ˚
hps, yqqV ψ

˚

h`1ps1, y1; p, rq

´

´

rhps, y, ψ˚
hps, yqq `

ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, ψ˚
hps, yqqV ψ

˚

h`1ps1, y1;pp, rq
¯

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ÿ

ps1,y1qPSˆYh`1

phps1, y1|s, y, ψ˚
hps, yqqV ψ

˚

h`1ps1, y1; p, rq

´
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, ψ˚
hps, yqqV ψ

˚

h`1ps1, y1;pp, rq

˘
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, ψ˚
hps, yqqV ψ

˚

h`1ps1, y1; p, rq
ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ÿ

ps1,y1qPSˆYh`1

´

phps1, y1|s, y, ψ˚
hps, yqq ´ pphps1, y1|s, y, ψ˚

hps, yqq

¯

V ψ
˚

h`1ps1, y1; p, rq

`
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, ψ˚
hps, yqq

´

V ψ
˚

h`1ps1, y1; p, rq ´ V ψ
˚

h`1ps1, y1;pp, rq
¯

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ÿ

s1PS

´

phps1|s, ψ˚
hps, yqq ´ pphps1|s, ψ˚

hps, yqq

¯

V ψ
˚

h`1ps1, y ` rhps, ψ˚
hps, yqq; p, rq

`
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, ψ˚
hps, yqq

´

V ψ
˚

h`1ps1, y1; p, rq ´ V ψ
˚

h`1ps1, y1;pp, rq
¯ˇ

ˇ

ˇ

“ . . .

“

ˇ

ˇ

ˇ

ˇ

E
pp,r,ψ˚

„ H
ÿ

h1“h

ÿ

s1PS

´

ph1 ps1|sh1 , ah1 q ´ pph1 ps1|sh1 , ah1 q

¯

V ψ
˚

h1`1ps1, yh1`1; p, rq

ˇ

ˇ

ˇ
sh “ s, yh “ y

ȷ
ˇ

ˇ

ˇ

ˇ

(1)
ď E

pp,r,ψ˚

„ H
ÿ

h1“h

ˇ

ˇ

ˇ

ˇ

ÿ

s1PS

´

ph1 ps1|sh1 , ah1 q ´ pph1 ps1|sh1 , ah1 q

¯

V ψ
˚

h1`1ps1, yh1`1; p, rq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

sh “ s, yh “ y

ȷ

,

where at (1) we have brought the absolute value inside the expectation.

Similarly, for the other term, for any h P JHK, ps, yq P S ˆ Yh, we can write:

|V ˚
h ps, y; p, rq ´ V ˚

h ps, y;pp, rq|

“ |V ψ
˚

h ps, y; p, rq ´ V
pψ˚

h ps, y;pp, rq|

(2)
“ |max

aPA
Qψ

˚

h ps, y, a; p, rq ´ max
aPA

Q
pψ˚

h ps, y, a;pp, rq|

(3)
ď max

aPA
|Qψ

˚

h ps, y, a; p, rq ´Q
pψ˚

h ps, y, a;pp, rq|

“ max
aPA

ˇ

ˇ

ˇ
rhps, y, aq `

ÿ

ps1,y1qPSˆYh`1

phps1, y1|s, y, aqV ψ
˚

h`1ps1, y1; p, rq

´

´

rhps, y, aq `
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aqV
pψ˚

h`1ps1, y1;pp, rq
¯

ˇ

ˇ

ˇ
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“ max
aPA

ˇ

ˇ

ˇ

ÿ

ps1,y1qPSˆYh`1

phps1, y1|s, y, aqV ψ
˚

h`1ps1, y1; p, rq

´
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aqV
pψ˚

h`1ps1, y1;pp, rq

˘
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aqV ψ
˚

h`1ps1, y1; p, rq
ˇ

ˇ

ˇ

“ max
aPA

ˇ

ˇ

ˇ

ÿ

ps1,y1qPSˆYh`1

´

phps1, y1|s, y, aq ´ pphps1, y1|s, y, aq

¯

V ψ
˚

h`1ps1, y1; p, rq

`
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aq

´

V ψ
˚

h`1ps1, y1; p, rq ´ V
pψ˚

h`1ps1, y1;pp, rq
¯

ˇ

ˇ

ˇ

(4)
ď

ˇ

ˇ

ˇ

ÿ

ps1,y1qPSˆYh`1

´

phps1, y1|s, y, aq ´ pphps1, y1|s, y, aq

¯

V ψ
˚

h`1ps1, y1; p, rq
ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aq

´

V ψ
˚

h`1ps1, y1; p, rq ´ V
pψ˚

h`1ps1, y1;pp, rq
¯

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ψ
˚

h`1ps1, y ` ΠRrrhps, aqs; p, rq
ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aq

´

V ψ
˚

h`1ps1, y1; p, rq ´ V
pψ˚

h`1ps1, y1;pp, rq
¯

ˇ

ˇ

ˇ

ď . . .

(5)
ď E

pp,r,ψ

„ H
ÿ

h1“h

ˇ

ˇ

ˇ

ˇ

ÿ

s1PS

´

ph1 ps1|sh1 , ah1 q ´ pph1 ps1|sh1 , ah1 q

¯

V ψ
˚

h1`1ps1, yh1`1; p, rq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

sh “ s, yh “ y

ȷ

,

where at (2) we have applied the Bellman optimality equation, at (3) we have upper bounded the
difference of maxima with the maximum of the difference, at (4) we denote the maximal action by
a, and we apply triangle inequality; at (5) we have unfolded the recursion and called ψ the resulting
policy.

Now, for some ϵ P p0, 1q, let us denote by E the event defined as:

E :“

"

@h P JHK, ps, y, aq P S ˆ Yh ˆ A :

ˇ

ˇ

ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ψ
˚

h`1ps1, y ` rhps, aq; p, rq
ˇ

ˇ ď ϵ

*

We can write:

PpEAq “ P
ˆ

Dh P JHK, ps, y, aq P S ˆ Yh ˆ A :

ˇ

ˇ

ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ψ
˚

h`1ps1, y ` rhps, aq; p, rq
ˇ

ˇ ą ϵ

˙

(6)
ď

ÿ

hPJHK,ps,y,aqPSˆYhˆA

P
ˆ

ˇ

ˇ

ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ψ
˚

h`1ps1, y ` rhps, aq; p, rq
ˇ

ˇ ą ϵ

˙

(7)
ď

ÿ

hPJHK,ps,y,aqPSˆYhˆA

2e
´2nϵ2

H2
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“ 2SAHde
´2nϵ2

H2 ,

where at (6) we have applied a union bound over all tuples h P JHK, ps, y, aq P S ˆ Yh ˆ A, and at
(7) we have applied Hoeffding’s inequality, by recalling that we collect n samples (see Algorithm 3)
for any ps, a, hq P S ˆAˆ JHK triple, and that vector V ψ

˚

h`1p¨, y` rhps, aq; p, rq bounded by r0, Hs

is independent of the randomness in pphp¨|s, aq. It should be remarked that our collection of samples
depends only on SˆAˆJHK, and not on Yh; such term enters the expression only through the union
bound, because we have to apply Hoeffding’s inequality for all the value functions considered, which
are as many as |Yh| . Note that we use d “ |YH`1| since it is the largest |Yh| among h P JH ` 1K.

This probability is at most δ if:

2SAHde
´2nϵ2

H2 ď δ ðñ ϵ ě H

d

log 2SAHd
δ

2n
.

By plugging into the previous expressions, we obtain that, w.p. 1 ´ δ:

|V ˚
h ps, y; p, rq ´ V ψ

˚

h ps, y;pp, rq|

ď E
pp,r,ψ˚

„ H
ÿ

h1“h

ˇ

ˇ

ˇ

ˇ

ÿ

s1PS

´

ph1 ps1|sh1 , ah1 q ´ pph1 ps1|sh1 , ah1 q

¯

V ψ
˚

h1`1ps1, yh1`1; p, rq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

sh “ s, yh “ y

ȷ

ď E
pp,r,ψ˚

„ H
ÿ

h1“h

H

d

log 2SAHd
δ

2n

ˇ

ˇ

ˇ

ˇ

sh “ s, yh “ y

ȷ

“ H2

d

log 2SAHd
δ

2n
,

and also:

|V ˚
h ps, y; p, rq ´ V ˚

h ps, y;pp, rq|

ď E
pp,r,ψ

„ H
ÿ

h1“h

ˇ

ˇ

ˇ

ˇ

ÿ

s1PS

´

ph1 ps1|sh1 , ah1 q ´ pph1 ps1|sh1 , ah1 q

¯

V ψ
˚

h1`1ps1, yh1`1; p, rq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

sh “ s, yh “ y

ȷ

ď E
pp,r,ψ

„ H
ÿ

h1“h

H

d

log 2SAHd
δ

2n

ˇ

ˇ

ˇ

ˇ

sh “ s, yh “ y

ȷ

“ H2

d

log 2SAHd
δ

2n
.

This concludes the proof.

Lemma E.9. For any δ P p0, 1q, w.p. at least 1 ´ δ, it holds that, for all h P JHK, ps, y, aq P

S ˆ Yh ˆ A:
b

Vs1„php¨|s,aqrV ˚
h`1ps1, y ` rhps, aq; p, rqs ď

b

Vs1„pphp¨|s,aqrV ψ
˚

h`1ps1, y ` rhps, aq;pp, rqs ` b1,
b

Vs1„php¨|s,aqrV ˚
h`1ps1, y ` rhps, aq; p, rqs ď

b

Vs1„pphp¨|s,aqrV ˚
h`1ps1, y ` rhps, aq;pp, rqs ` b1,
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where b1 is defined as:

b1 :“ cH

ˆ

log 4SAHY
δ

n

˙1{4

` c1H2

d

log 4SAHY
δ

n
,

for some positive constants c, c1.

Proof. In the following, we will use y as a label for y` rhps, aq. We begin with the first expression.
We can write, for any h P JHK, ps, y, aq P S ˆ Yh ˆ A:

Vs1„php¨|s,aqrV ˚
h`1ps1, y; p, rqs

“ Vs1„php¨|s,aqrV ˚
h`1ps1, y; p, rqs˘Vs1„pphp¨|s,aqrV ˚

h`1ps1, y; p, rqs

“

´

Vs1„php¨|s,aqrV ˚
h`1ps1, y; p, rqs ´ Vs1„pphp¨|s,aqrV ˚

h`1ps1, y; p, rqs

¯

` Vs1„pphp¨|s,aqrV ˚
h`1ps1, y; p, rqs

(1)
“

ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ˚
2

h`1ps1, y; p, rq

´

”´

ÿ

s1PS
phps1|s, aqV ˚

h`1ps1, y; p, rq
¯2

´

´

ÿ

s1PS
pphps1|s, aqV ˚

h`1ps1, y; p, rq
¯2ı

` Vs1„pphp¨|s,aqrV ˚
h`1ps1, y; p, rq˘V ψ

˚

h`1ps1, y;pp, rqs

(2)
“

ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ˚
2

h`1ps1, y; p, rq

´

”´

ÿ

s1PS
phps1|s, aqV ˚

h`1ps1, y; p, rq
¯2

´

´

ÿ

s1PS
pphps1|s, aqV ˚

h`1ps1, y; p, rq
¯2ı

` Vs1„pphp¨|s,aqrV ˚
h`1ps1, y; p, rq ´ V ψ

˚

h`1ps1, y;pp, rqs

`Vs1„pphp¨|s,aqrV ψ
˚

h`1ps1, y;pp, rqs

`2Covs1„pphp¨|s,aqrV ˚
h`1ps1, y; p, rq ´ V ψ

˚

h`1ps1, y;pp, rq,

V ψ
˚

h`1ps1, y;pp, rqs

(3)
ď

ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ˚
2

h`1ps1, y; p, rq

´

”´

ÿ

s1PS
phps1|s, aqV ˚

h`1ps1, y; p, rq
¯2

´

´

ÿ

s1PS
pphps1|s, aqV ˚

h`1ps1, y; p, rq
¯2ı

` Vs1„pphp¨|s,aqrV ˚
h`1ps1, y; p, rq ´ V ψ

˚

h`1ps1, y;pp, rqs

` Vs1„pphp¨|s,aqrV ψ
˚

h`1ps1, y;pp, rqs

` 2
´

Vs1„pphp¨|s,aqrV ˚
h`1ps1, y; p, rq ´ V ψ

˚

h`1ps1, y;pp, rqs

¨Vs1„pphp¨|s,aqrV ψ
˚

h`1ps1, y;pp, rqs

¯1{2

“
ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ˚
2

h`1ps1, y; p, rq
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´

”´

ÿ

s1PS
phps1|s, aqV ˚

h`1ps1, y; p, rq
¯2

´

´

ÿ

s1PS
pphps1|s, aqV ˚

h`1ps1, y; p, rq
¯2ı

`

”

b

Vs1„pphp¨|s,aqrV ˚
h`1ps1, y; p, rq ´ V ψ

˚

h`1ps1, y;pp, rqs

`

b

Vs1„pphp¨|s,aqrV ψ
˚

h`1ps1, y;pp, rqs

ı2

,

where at (1) we have used the common formula for the variance VrXs “ ErX2s ´ErXs2, at (2) we
have decomposed the variance of a sum as VrX ` Y s “ VrXs ` VrY s ` 2CovrX,Y s, at (3) we
have applied Cauchy-Schwarz’s inequality to bound the covariance with the product of the variances
|CovrX,Y s| ď

a

VrXsVrY s.

Next, observe that:

Vs1„pphp¨|s,aqrV ˚
h`1ps1, y; p, rq ´ V ψ

˚

h`1ps1, y;pp, rqs

(4)
“ Es1„pphp¨|s,aqrpV ˚

h`1ps1, y; p, rq ´ V ψ
˚

h`1ps1, y;pp, rqq2s

´ Es1„pphp¨|s,aqrV ˚
h`1ps1, y; p, rq ´ V ψ

˚

h`1ps1, y;pp, rqs2

(5)
ď Es1„pphp¨|s,aqrpV ˚

h`1ps1, y; p, rq ´ V ψ
˚

h`1ps1, y;pp, rqq2s

(6)
ď }pV ˚

h`1p¨, y; p, rq ´ V ψ
˚

h`1p¨, y;pp, rqq2}8

“ }V ˚
h`1p¨, y; p, rq ´ V ψ

˚

h`1p¨, y;pp, rq}28,

where at (4) we have used VrXs “ ErX2s ´ ErXs2, at (5) we recognize that the second term is
a square, thus always positive, and we remove it, and at (6) we have upper bounded the expected
value, an average, through the infinity norm.

Thanks to this expression, we can continue to upper bound the previous term as:
Vs1„php¨|s,aqrV ˚

h`1ps1, y; p, rqs

ď
ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ˚
2

h`1ps1, y; p, rq

´

”´

ÿ

s1PS
phps1|s, aqV ˚

h`1ps1, y; p, rq
¯2

´

´

ÿ

s1PS
pphps1|s, aqV ˚

h`1ps1, y; p, rq
¯2ı

`

”

}V ˚
h`1p¨, y; p, rq ´ V ψ

˚

h`1p¨, y;pp, rq}8

`

b

Vs1„pphp¨|s,aqrV ψ
˚

h`1ps1, y;pp, rqs

ı2

(7)
“

ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ˚
2

h`1ps1, y; p, rq

´

”´

ÿ

s1PS
pphps1|s, aq ´ pphps1|s, aqqV ˚

h`1ps1, y; p, rq
¯

¨

´

ÿ

s1PS
pphps1|s, aq ` pphps1|s, aqqV ˚

h`1ps1, y; p, rq
¯ı

`

”

}V ˚
h`1p¨, y; p, rq ´ V ψ

˚

h`1p¨, y;pp, rq}8

`

b

Vs1„pphp¨|s,aqrV ψ
˚

h`1ps1, y;pp, rqs

ı2

(8)
ď

ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ˚
2

h`1ps1, y; p, rq
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´

”´

ÿ

s1PS
pphps1|s, aq ´ pphps1|s, aqqV ˚

h`1ps1, y; p, rq
¯

¨

´

ÿ

s1PS
pphps1|s, aq ` pphps1|s, aqqV ˚

h`1ps1, y; p, rq
¯ı

`

”

cH2

d

log 4SAHd
δ

n
`

b

Vs1„pphp¨|s,aqrV ψ
˚

h`1ps1, y;pp, rqs

ı2

(9)
ď

ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ˚
2

h`1ps1, y; p, rq

` 2H
ˇ

ˇ

ˇ

ÿ

s1PS
pphps1|s, aq ´ pphps1|s, aqqV ˚

h`1ps1, y; p, rq
ˇ

ˇ

ˇ

`

”

cH2

d

log 4SAHd
δ

n
`

b

Vs1„pphp¨|s,aqrV ψ
˚

h`1ps1, y;pp, rqs

ı2

(10)
ď

ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ˚
2

h`1ps1, y; p, rq

` 2cH2

d

log 4SAHd
δ

n

`

”

cH2

d

log 4SAHd
δ

n
`

b

Vs1„pphp¨|s,aqrV ψ
˚

h`1ps1, y;pp, rqs

ı2

(11)
ď cH2

d

log 4SAHd
δ

n
` 2cH2

d

log 4SAHd
δ

n

`

”

cH2

d

log 4SAHd
δ

n
`

b

Vs1„pphp¨|s,aqrV ψ
˚

h`1ps1, y;pp, rqs

ı2

“ 3cH2

d

log 4SAHd
δ

n

`

”

cH2

d

log 4SAHd
δ

n
`

b

Vs1„pphp¨|s,aqrV ψ
˚

h`1ps1, y;pp, rqs

ı2

,

where at (7) we have applied the common formula x2 ´ y2 “ px ´ yqpx ` yq, at (8) we have
applied Lemma E.8 using probability δ1 “ δ{2, and noticing that, for how the discretized MDP is
constructed, we have that y P Y , at (9) we have upper bounded the second term with the absolute
value and recognized that the value function does not exceed H and the sum of probabilities is no
greater than 2; at (10) we recognize that, in the proof of Lemma E.8, we had already bounded that
term, thus, under the event E which holds w.p. 1´ δ{2, we have that bound; at (11) we have applied
Hoeffding’s inequality to all tuples h P JHK, ps, y, aq P S ˆ Yh ˆ A with probability δ{p2SAHdq,
and noticed that the square of the value function does not exceed H2.

Observe that the previous formula holds for all h P JHK, ps, y, aq P S ˆ Yh ˆ A w.p. 1 ´ δ (by
summing the two δ{2 through a union bound). By taking the square root of both sides, we obtain:

b

Vs1„php¨|s,aqrV ˚
h`1ps1, y; p, rqs

ď

´

3cH2

d

log 4SAHd
δ

n
`

”

cH2

d

log 4SAHd
δ

n

`

b

Vs1„pphp¨|s,aqrV ψ
˚

h`1ps1, y;pp, rqs

ı2¯1{2
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(12)
ď c1H

4

d

log 4SAHY
δ

n
` cH2

d

log 4SAHY
δ

n
loooooooooooooooooooooooomoooooooooooooooooooooooon

“:b1

`

b

Vs1„pphp¨|s,aqrV ψ
˚

h`1ps1, y;pp, rqs

“

b

Vs1„pphp¨|s,aqrV ψ
˚

h`1ps1, y;pp, rqs ` b1,

where at (12) we have used the fact that
?
a` b ď

?
a`

?
b.

To prove the second formula, the passages are basically the same, the only difference is that, at
passage (1), we sum and subtract V

pψ˚

h`1ps1, y;pp, rq instead of V ψ
˚

h`1ps1, y;pp, rq, and that at passage (8)
we apply the other expression in Lemma E.8. This concludes the proof.

Lemma E.10. For any δ P p0, 1q, define:

c1 :“ log
2SAHd

δ
,

b2 :“ cH

ˆ

log 8SAHd
δ

n

˙3{4

` c1H2 log
8SAHd

δ

n
,

for some positive constants c, c1. Then, w.p. at least 1 ´ δ, we have, for all h P JHK, ps, y, aq P

S ˆ Yh ˆ A:
ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ˚
h`1ps1, y ` rhps, aq; p, rq

ď c2

d

c1Vs1„pphp¨|s,aqrV ψ
˚

h`1ps1, y ` rhps, aq;pp, rqs

n
` b2,

ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ˚
h`1ps1, y ` rhps, aq; p, rq

ě ´c3

d

c1Vs1„pphp¨|s,aqrV ˚
h`1ps1, y ` rhps, aq;pp, rqs

n
` b2,

for some positive constants c2, c3.

Proof. Again, we will write y instead of y ` rhps, aq for simplicity. For all h P JHK, ps, y, aq P

S ˆ Yh ˆ A, we can write:
ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ˚
h`1ps1, y; p, rq

(1)
ď

d

2Vs1„php¨|s,aqrV ˚
h`1ps1, y; p, rqs log 2SAHd

δ

n
`

2H log 2SAHd
δ

3n

(2)
ď

d

2 log 2SAHd
δ

n

´

b

Vs1„pphp¨|s,aqrV ψ
˚

h`1ps1, y;pp, Rqs ` b1

¯

`
2H log 2SAHd

δ

3n

(3)
“ c

d

c1Vs1„pphp¨|s,aqrV ψ
˚

h`1ps1, y;pp, rqs

n
` c1

c

c1
n
H

ˆ

log 8SAHd
δ

n

˙1{4

` c2

c

c1
n
H2

d

log 8SAHd
δ

n
` c3H

c1
n

ď c

d

c1Vs1„pphp¨|s,aqrV ψ
˚

h`1ps1, y;pp, rqs

n
` c1H

ˆ

log 8SAHd
δ

n

˙3{4

` c4H2 log
8SAHd

δ

n
,
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where at (1) we have applied the Bernstein’s inequality using δ{p2SAHdq as probability for all
h P JHK, ps, y, aq P SˆYhˆA, and at (2) we have applied Lemma E.9 with δ{2 of probability, and a
union bound to guarantee the event to hold w.p. 1´δ, at (3) we use the definition of c1 :“ log 2SAHd

δ ,
and denoted by c, c1, c2, c3 some positive constants.

For the other expression, an analogous derivation can be carried out. In particular, we use the other
side of the Bernstein’s inequality, and the other expression in Lemma E.9.

Lemma E.11. For any h P JHK, ps, y, aq P S ˆ Yh ˆ A and deterministic policy ψ, let Σψh ps, y, aq

be defined as:

Σψh ps, y, aq :“ E
p,r,ψ

”ˇ

ˇ

ˇ

H
ÿ

h1“h

rh1 psh1 , yh1 , ah1 q ´Qψh ps, y, a; p, rq
ˇ

ˇ

ˇ

2

| sh “ s, yh “ y, ah “ a
ı

.

Then, function Σ satisfies the Bellman equation, i.e., for any h P JHK, ps, y, aq P S ˆ Yh ˆ A and
deterministic policy ψ:

Σψh ps, y, aq “Vs1„php¨|s,aqrV ψh`1ps1, y ` rhps, aq; p, rqs

` E
s1„php¨|s,aq

rΣψh`1ps1, y ` rhps, aq, ψh`1ps1, y ` rhps, aqqqs.

Proof. For all h P JHK, ps, y, aq P S ˆYh ˆA and deterministic policy ψ, we can write (we denote
a1 :“ ψh`1ps1, y ` rhps, aqq and y :“ y ` rhps, aq for notational simplicity, and we remark that y
is not a random variable):

Σψh ps, y, aq :“ E
p,r,ψ

”
ˇ

ˇ

ˇ

H
ÿ

h1“h

rh1 psh1 , yh1 , ah1 q ´Qψh ps, y, a; p, rq
ˇ

ˇ

ˇ

2

| sh “ s, yh “ y, ah “ a
ı

(1)
“ E
s1„php¨|s,aq

„

E
p,r,ψ

”
ˇ

ˇ

ˇ

H
ÿ

h1“h

rh1 psh1 , yh1 , ah1 q´Qψh`1ps1, y, a1; p, rq

´
`

Qψh ps, y, a; p, rq´Qψh`1ps1, y, a1; p, rq
˘

ˇ

ˇ

ˇ

2

| sh “ s, ah “ a, yh “ y, sh`1 “ s1
ı

ȷ

(2)
“ E
s1„php¨|s,aq

„

E
p,r,ψ

”
ˇ

ˇ

ˇ

H
ÿ

h1“h`1

rh1 psh1 , yh1 , ah1 q ´Qψh`1ps1, y, a1; p, rq

´
`

Qψh ps, y, a; p, rq ´ rhps, y, aq ´Qψh`1ps1, y, a1; p, rq
˘

ˇ

ˇ

ˇ

2

| sh`1 “ s1, yh`1 “ y
ı

ȷ

(3)
“ E
s1„php¨|s,aq

„

E
p,r,ψ

”
ˇ

ˇ

ˇ

H
ÿ

h1“h`1

rh1 psh1 , yh1 , ah1 q ´Qψh`1ps1, y, a1; p, rq
ˇ

ˇ

ˇ

2

| sh`1 “ s1, yh`1 “ y
ı

ȷ

´ 2 E
s1„php¨|s,aq

„

`

Qψh ps, y, a; p, rq ´ rhps, y, aq ´Qψh`1ps1, y, a1; p, rq
˘

¨ E
p,r,ψ

”

H
ÿ

h1“h`1

rh1 psh1 , yh1 , ah1 q ´Qψh`1ps1, y, a1; p, rq
ˇ

ˇ sh`1 “ s1, yh`1 “ y
ı

loooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooon

“0

ȷ

` E
s1„php¨|s,aq

”

ˇ

ˇQψh ps, y, a; p, rq ´ rhps, y, aq ´Qψh`1ps1, y, a1; p, rq
ˇ

ˇ

2
ı
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(4)
“ E
s1„php¨|s,aq

„

E
p,r,ψ

”ˇ

ˇ

ˇ

H
ÿ

h1“h`1

rh1 psh1 , yh1 , ah1 q ´Qψh`1ps1, y, a1; p, rq
ˇ

ˇ

ˇ

2

| sh`1 “ s1, yh`1 “ y
ı

loooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooon

“Σψh`1ps1,y,a1q

ȷ

` E
s1„php¨|s,aq

”

ˇ

ˇQψh ps, y, a; p, rq ´ rhps, y, aq ´Qψh`1ps1, y, a1; p, rq
ˇ

ˇ

2
ı

loooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooon

“:Vs1„php¨|s,aqrQψh`1ps1,y,a1;p,rqs“Vs1„php¨|s,aqrV ψh`1ps1,y;p,rqs

“ E
s1„php¨|s,aq

rΣψh`1ps1, y, a1qs ` Vs1„php¨|s,aqrV ψh`1ps1, y; p, rqs,

at (1) we add and subtract a term, at (2) we bring out the non-random reward received at h,
at (3) we compute the square and use the linearity of expectation, at (4) we use the fact that
Ep,r,ψ

“
řH
h1“h`1 rh1 psh1 , yh1 , ah1 q ´ Qψh`1ps1, y, a1; p, rq

ˇ

ˇ sh`1 “ s1
‰

“ Qψh`1ps1, y, a1; p, rq ´

Qψh`1ps1, y, a1; p, rq “ 0 because of linearity of expectation.

Lemma E.12. Let ψ be any policy, and let p be any transition model associated to an arbitrary
inner dynamics p. Then, for all h P JHK, ps, y, aq P S ˆ Yh ˆ A, it holds that:

ˇ

ˇ

ˇ

ˇ

E
p,r,ψ

„ H
ÿ

h1“h

b

Vs1„ph1 p¨|sh1 ,ah1 qrV ψh1`1ps1, yh1`1; p, rqs

ˇ

ˇ

ˇ

ˇ

sh “ s, yh “ y, ah “ a

ȷ
ˇ

ˇ

ˇ

ˇ

ď
?
H3.

Proof. For all h P JHK, ps, y, aq P SˆYhˆA, we can write (note that this derivation is independent
of p, p, so we might use even pp, pp in the proof):

ˇ

ˇ

ˇ E
p,r,ψ

”

H
ÿ

h1“h

b

Vs1„ph1 p¨|sh1 ,ah1 qrV ψh1`1ps1, yh1`1; p, rqs | sh “ s, yh “ y, ah “ a
ı
ˇ

ˇ

ˇ

(1)
ď

ˇ

ˇ

ˇ E
p,r,ψ

”

g

f

f

eH
H
ÿ

h1“h

Vs1„ph1 p¨|sh1 ,ah1 qrV ψh1`1ps1, yh1`1; p, rqs | sh “ s, yh “ y, ah “ a
ı
ˇ

ˇ

ˇ

(2)
ď

?
H

g

f

f

e E
p,r,ψ

”

H
ÿ

h1“h

Vs1„ph1 p¨|sh1 ,ah1 qrV ψh1`1ps1, yh1`1; p, rqs | sh “ s, yh “ y, ah “ a
ı

(3)
“

?
H

ˆ

E
p,r,ψ

”

H
ÿ

h1“h

Σψh1 psh1 , yh1 , ah1 q ´ Es1„ph1 p¨|sh1 ,ah1 q

“

Σψh1`1ps1, yh1`1, ψh1`1ps1, yh1`1qq
‰

| sh “ s, yh “ y, ah “ a
ı

˙1{2

“
?
H

g

f

f

e E
p,r,ψ

”

H
ÿ

h1“h

Σψh1 psh1 , yh1 , ah1 q ´ Σψh1`1psh1`1, yh1`1, ah1`1q | sh “ s, yh “ y, ah “ a
ı

(4)
“

?
H

g

f

f

e

E
p,r,ψ

”

Σψh psh, yh, ahq ´ ΣψH`1psH`1, yH`1, aH`1q
looooooooooooooomooooooooooooooon

“0

| sh “ s, yh “ y, ah “ a
ı

“
?
H

b

Σψh ps, y, aq

(5)
ď

?
H

?
H2

“
?
H3,
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where at (1) we have applied the Cauchy-Schwarz’s inequality, at (2) we have applied Jensen’s
inequality, at (3) we have applied Lemma E.11, at (4) we have used telescoping, and at (5) we have
bounded Σψh ps, y, aq ď H2 for all h P JHK, ps, y, aq P S ˆ Yh ˆ A.

E.3.3 LEMMAS ON THE OPTIMAL PERFORMANCE FOR MULTIPLE UTILITIES

To prove the following results, we will make use of the notation introduced in the previous section.
Lemma E.13. Let ϵ, δ P p0, 1q. It suffices to execute CATY-UL with:

τ ď rO
´SAH5

ϵ2

´

S ` log
SAH

δ

¯¯

,

to obtain supUPUL

ˇ

ˇJ˚pU ; p, rq ´ pJ˚pUq
ˇ

ˇ ď HLϵ0 ` ϵ w.p. 1 ´ δ.

Proof. Similarly to the proof of Lemma E.13, we can write:

sup
UPUL

|J˚pU ; p, rq ´ pJ˚pUq|

“ sup
UPUL

|J˚pU ; p, rq ´ pJ˚pUq˘J˚pp, rq|

ď sup
UPUL

|J˚pU ; p, rq ´ J˚pp, rq| ` sup
UPUL

|J˚pp, rq ´ pJ˚pUq|

“ sup
UPUL

|J˚pU ; p, rq ´ J˚pp, rq| ` sup
UPUL

|J˚pp, rq ´ J˚ppp, rq|

ď HLϵ0 ` sup
UPUL

|J˚pp, rq ´ J˚ppp, rq|

(1)
ď HLϵ0 `H2

c

2

n

´

log
SAH

δ
` pS ´ 1q log

`

ep1 ` n{pS ´ 1qq
˘

¯

ď HLϵ0 ` ϵ,

where at (1) we have applied the formula in Lemma E.14.

By enforcing such quantity to be smaller than ϵ, we get:

H2

c

2

n

´

log
SAH

δ
` pS ´ 1q log

`

ep1 ` n{pS ´ 1qq
˘

¯

ď

H2
b

log
`

ep1 ` n{pS ´ 1qq
˘

?
n

c

2
´

log
SAH

δ
` pS ´ 1q

¯

ď ϵ

ðñ n ě 2
H4

ϵ2

´

log
SAH

δ
` pS ´ 1q

¯

log
`

ep1 ` n{pS ´ 1qq
˘

.

By summing over all ps, a, hq P S ˆAˆ JHK, and by applying Lemma J.3 of Lazzati et al. (2024b),
we obtain that:

τ “ SAHn ě rO
ˆ

SAH5

ϵ2

´

log
SAH

δ
` S

¯

˙

.

Lemma E.14. For any δ P p0, 1q, for all utility functions U P UL at the same time, we have:

|J˚
h pp, rq ´ J˚

h ppp, rq| ď H2

c

2

n

´

log
SAH

δ
` pS ´ 1q log

`

ep1 ` n{pS ´ 1qq
˘

¯

,

w.p. at least 1 ´ δ.

Proof. Let us denote by E the event defined as:

E :“

"

@n P N, @h P JHK, ps, y, aq P S ˆ Yh ˆ A :
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nKL
`

pphp¨|s, aq}php¨|s, aq
˘

ď log
SAH

δ
` pS ´ 1q log

`

ep1 ` n{pS ´ 1qq
˘

*

.

We can write:

PpEAq “ P
ˆ

Dn P N, Dh P JHK, ps, y, aq P S ˆ Yh ˆ A :

nKL
`

pphp¨|s, aq}php¨|s, aq
˘

ą log
SAH

δ
` pS ´ 1q log

`

ep1 ` n{pS ´ 1qq
˘

˙

(1)
“ P

ˆ

Dn P N, Dps, a, hq P S ˆ A ˆ JHK :

nKL
`

pphp¨|s, aq}php¨|s, aq
˘

ą log
SAH

δ
` pS ´ 1q log

`

ep1 ` n{pS ´ 1qq
˘

˙

(2)
ď

ÿ

ps,a,hqPSˆAˆJHK

P
ˆ

Dn P N, nKL
`

pphp¨|s, aq}php¨|s, aq
˘

ą

log
SAH

δ
` pS ´ 1q log

`

ep1 ` n{pS ´ 1qq
˘

˙

(3)
ď

ÿ

ps,a,hqPSˆAˆJHK

δ

SAH

ď δ,

where at (1) we realize that there is no dependence on variable y, thus we can drop it,11 at (2) we
have applied a union bound over all triples ps, a, hq P S ˆ A ˆ JHK, and at (3) we have applied
Proposition 1 of Jonsson et al. (2020).

Next, for all utilities U P UL at the same time, for all the tuples h P JHK, ps, yq P S ˆ Yh, we can
write:

|V ˚
h ps, y; p, rq ´ V ˚

h ps, y;pp, rq|

(4)
ď E

pp,r,ψ

„ H
ÿ

h1“h

ˇ

ˇ

ˇ

ˇ

ÿ

s1PS

´

ph1 ps1|sh1 , ah1 q ´ pph1 ps1|sh1 , ah1 q

¯

V ψ
˚

h1`1ps1, yh1`1; p, rq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
sh “ s, yh “ y, ah “ a

ȷ

(5)
ď H E

pp,r,ψ

„ H
ÿ

h1“h

}ph1 p¨|sh1 , ah1 q ´ pph1 p¨|sh1 , ah1 q}1

ˇ

ˇ

ˇ
sh “ s, yh “ y, ah “ a

ȷ

(6)
ď H E

pp,r,ψ

„ H
ÿ

h1“h

a

2KLppph1 p¨|sh1 , ah1 q}ph1 p¨|sh1 , ah1 qq

ˇ

ˇ

ˇ
sh “ s, yh “ y, ah “ a

ȷ

(7)
ď H E

pp,r,ψ

„ H
ÿ

h1“h

c

2

n

´

log
SAH

δ
` pS ´ 1q log

`

ep1 ` n{pS ´ 1qq
˘

¯

ˇ

ˇ

ˇ
sh “ s, yh “ y, ah “ a

ȷ

“ H2

c

2

n

´

log
SAH

δ
` pS ´ 1q log

`

ep1 ` n{pS ´ 1qq
˘

¯

,

where at (4) we apply the formula derived in the proof of Lemma E.8 and triangle inequality, at
(5) we have upper bounded with the 1-norm, defined as }f}1 :“

ř

x |fpxq|, at (6) we have applied
Pinsker’s inequality, at (7) we assume that concentration event E holds.

11Therefore, differently from the event for a single utility, now there is no dependence on d in the bound.
Intuitively, d appeared in the case of a single utility because we had to apply Hoeffding’s inequality d times,
because we had, potentially, d different value functions (as many as the states). Since now we provide the
bound for all the possible value functions (1-norm bound), then the dependence on d disappears.

53



2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

We remark that the guarantee provided by this theorem holds not only for L-Lipschitz utilities, but
for all functions with the same dimensionality (since it is a bound in 1-norm).

E.4 ANALYSIS OF TRACTOR-UL

Theorem 5.2. Let ϵ, δ P p0, 1q, L ą 0, and assume that UE P UL. If we execute TRACTOR-UL
with parameters ϵ0 “ ϵ2{p80N2L2Hq, T ě O

`

N4H4L2{ϵ4
˘

,K ě rO
`

N2H2 log NHL
δϵ {ϵ2

˘

, α “
a

tH{ϵ0u ´ 1H{p2N
?
T q, an arbitrary U0 P UL, and if it holds that, for all i P JNK:

τE,i ě rO
´H4N4L2

ϵ4
log

NHL

δϵ

¯

, τ i ě rO
´N2SAH5

ϵ2

´

S ` log
SAHN

δ

¯¯

,

then, w.p. at least 1´ δ, for any ∆ ě ϵ, TRACTOR-UL guarantees that all the utilities U P UL such
that Upyq “ pUpyq for all y P Y (where pU P UL is the output of TRACTOR-UL) belong to U P U∆.

Proof. The proof draws inspiration from those of Syed & Schapire (2007) and Schlaginhaufen &
Kamgarpour (2024).

Given any distribution η supported on Y , and given any two utilities U P UL, U P UL (where U is
a function on r0, Hs and U is a vector on Y), we will abuse notation and write both U⊺η and U

⊺
η,

with obvious meaning.

Moreover, for L ą 0, we define operator CL : UL Ñ 2UL (where 2X denotes the power set of set
X ) that, given vector U P UL, returns the set CLpUq :“ tU P UL | @y P Y : Upyq “ Upyqu.

First of all, we observe that the guarantee provided by the theorem follows directly by the following
expression:

P
M1,M2,...,MN

´

sup
UPCLp pUq

max
iPJNK

Cpi,ri,πE,ipUq ď ϵ
¯

ě 1 ´ δ,

where PM1,M2,...,MN denotes the joint probability distribution obtained by the N MDPs tMiui.

Let us denote by pU :“ p
řT´1
t“0 U tq{T the output of TRACTOR-UL. Note that pU P UL. We can

write:

sup
UPCLp pUq

max
iPJNK

Cpi,ri,πE,ipUq

(1)
ď sup
UPCLp pUq

ÿ

iPJNK

Cpi,ri,πE,ipUq

(2)
“ sup
UPCLp pUq

ÿ

iPJNK

ˆ

J˚pU ; pi, riq ´ Jπ
E,i

pU ; pi, riq˘ pU⊺
pηE,i

˙

(3)
ď sup
UPCLp pUq

ÿ

iPJNK

ˆ

J˚pU ; pi, riq ´ pU⊺
pηE,i

˙

` ϵ1

(4)
“ sup
UPCLp pUq

ÿ

iPJNK

ˆ

max
ηPDi

U⊺η ´ pU⊺
pηE,i

˙

` ϵ1

(5)
“ sup

U0PCLpU0q,
...,

UT´1PCLpUT´1q

1

T

ÿ

iPJNK

max
ηPDi

T´1
ÿ

t“0

ˆ

Ut
⊺η ´ U t

⊺
pηE,i

˙

` ϵ1

(6)
ď

1

T

T´1
ÿ

t“0

sup
UtPCLpUtq

ÿ

iPJNK

ˆ

max
ηPDi

U⊺
t η˘U

⊺
t pηit ´ U

⊺
t pηE,i

˙

` ϵ1

(7)
ď

1

T

T´1
ÿ

t“0

ÿ

iPJNK

U
⊺
t

´

pηit ´ pηE,i
¯

˘
1

T
min
UPUL

T´1
ÿ

t“0

ÿ

iPJNK

U
⊺

´

pηit ´ pηE,i
¯

` ϵ1 ` ϵ2
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(8)
ď

1

T
min
UPUL

T´1
ÿ

t“0

ÿ

iPJNK

U
⊺

´

pηit ´ pηE,i
¯

` ϵ1 ` ϵ2 `
2HN

a

H{ϵ0
?
T

looooooomooooooon

“:ϵ3

(9)
ď

1

T

T´1
ÿ

t“0

ÿ

iPJNK

U
E,⊺

´

pηit ´ pηE,i
¯

˘UE,⊺ηp
i,ri,πE,i ` ϵ1 ` ϵ2 ` ϵ3

(10)
ď

1

T

T´1
ÿ

t“0

ÿ

iPJNK

U
E,⊺

pηit˘U
E,⊺ηp

i,ri,πit ´ UE,⊺ηp
i,ri,πE,i ` 2ϵ1 ` ϵ2 ` ϵ3

(11)
ď

1

T

T´1
ÿ

t“0

ÿ

iPJNK

UE,⊺
´

ηp
i,ri,πit ´ ηp

i,ri,πE,i
¯

looooooooooooooooomooooooooooooooooon

ď0

`2ϵ1 ` ϵ2 ` ϵ3 ` ϵ4

(12)
ď 2ϵ1 ` ϵ2 ` ϵ3 ` ϵ4,

where at (1) we upper bound the maximum of positive terms with their sum, at (2) we apply the
definition of (non)compatibility, at (3) we first upper bound the supremum of a sum with the sum
of the supremum, and then we apply Lemma E.15 w.p. δ{3, and denote ϵ1 :“ NL

?
2Hϵ0 `

ř

iPJNK
cH

c

H log NHτ
E,i

δϵ0

ϵ0τE,i
, at (4) we denote by Di the set of possible return distributions in environ-

ment i, at (5) we use the definition of pU , and realize that all functions U P CLp pUq can be constructed
based on T functions U0 P CLpU0q, . . . , UT´1 P CLpUT´1q. At (6) we upper bound the maximum
of the sum with the sum of maxima, and exchange the two summations, and we add and subtract
the dot product between the (discretized) utility Ut and the estimate of the return distribution com-
puted at Line 6; moreover, we bring the sup inside the summation. At (7) we upper bound the
supremum of the sum with the sum of the supremum, and we apply Lemma E.16 w.p. δ{3, defining

ϵ2 :“ cNH2

c

1
n

´

log SAHN
δ ` pS ´ 1q log

`

ep1 ` n{pS ´ 1qq
˘

¯

` NHLϵ0 ` c1HN

b

log NTδ
K ,

and we add and subtract a term, at (8) we apply Theorem H.2 from Schlaginhaufen & Kam-
garpour (2024) since set UL is closed and convex, where D :“ maxU,U 1

PUL
}U ´ U

1
}2 “

?
d´ 2H “

a

tH{ϵ0u ´ 1H ď H
a

H{ϵ0 (recall that we consider increasing and not strictly-
increasing utilities),12 and maxUPUL

}∇
ř

iPJNK U
⊺

ppηit ´ pηE,iq}2 “ }
ř

iPJNK pηit ´ pηE,i}2 ď
ř

iPJNK }pηit}1 ` }pηE,i}1 “ 2N “: G (because pηit and pηE,i are probability distributions), with learn-
ing rate α “ D{pG

?
T q “ H

?
d´ 2{p2N

?
T q “

a

tH{ϵ0u ´ 1H{p2N
?
T q, at (9) we upper

bound the minimum over utilities with a specific choice of utility, U
E

, and we add and subtract a
term; note that U

E
P UL corresponds to the expert’s utility UE P UL (by hypothesis), i.e., for all

y P Y : U
E

pyq “ UEpyq. Note that, by hypothesis, UE makes all the expert policies optimal, i.e.,
@i P JNK : UE,⊺ηp

i,ri,πE,i “ supπ U
E,⊺ηp

i,ri,π . At (10) we note that, under the good event of
Lemma E.15, we can provide an upper bound using the term in Lemma E.15 (since UE P UL); in
addition, we sum and subtract a term that depends on some policy πit, whose existence is guaranteed
by Lemma E.17, which we apply at the next step. At (11) we apply Lemma E.17 w.p. δ{3, and we
define as ϵ4 the upper bound times N . Finally, at (12) we use the hypothesis that utility UE makes
the expert policy optimal in all environments.

We want that 2ϵ1 ` ϵ2 ` ϵ3 ` ϵ4 ď ϵ. We can rewrite the sum as:

2ϵ1 ` ϵ2 ` ϵ3 ` ϵ4

“

´

2NL
a

2Hϵ0 `
3

2
LNHϵ0

¯

` c
HN

?
H

?
ϵ0T

12The maximum is attained by discretized utilities U,U
1
that assign, respectively, Upyq “ 0 and U

1
pyq “ H

to all the y P Yzty1, ydu.
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` c1
ÿ

iPJNK

H

d

H log NHτE,i

δϵ0

ϵ0τE,i
` c2NH

d

log NT
δ

K

` c3NH2

c

1

n

´

log
SAHN

δ
` pS ´ 1q log

`

ep1 ` n{pS ´ 1qq
˘

¯

.

By imposing each term smaller than ϵ{5, we find that it suffices that
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

ϵ0 “ ϵ2

80N2L2H

T ě O
´

N2H3

ϵ0ϵ2

¯

ě O
´

N4H4L2

ϵ4

¯

τE,i ě rO
´

H3N2 log NHδϵ0
ϵ0ϵ2

¯

ě rO
´

H4N4L2 log NHLδϵ
ϵ4

¯

@i P JNK

K ě rO
´

N2H2 log NTδ
ϵ2

¯

ě rO
´

N2H2 log NHLδϵ
ϵ2

¯

τ i ě rO
´

N2SAH5

ϵ2

´

S ` log SAHN
δ

¯

@i P JNK

,

where we have used that τ i “ SAHn for all i P JNK, and also used Lemma J.3 of Lazzati et al.
(2024b).

The statement of the theorem follows through the application of a union bound.

Lemma E.15. Let δ P p0, 1q. Then, it holds that, w.p. at least 1 ´ δ:

sup
UPUL

ÿ

iPJNK

ˇ

ˇ

ˇ

ˇ

U⊺
pηE,i ´ Jπ

E,i

pU ; pi, riq

ˇ

ˇ

ˇ

ˇ

ď NL
a

2Hϵ0 `
ÿ

iPJNK

cH

d

H log NHτE,i

δϵ0

ϵ0τE,i
,

where c is some positive constant.

Proof. We can make the same derivation as in the proof of Theorem 5.1 to upper bound the objective
with the sum of two terms, which can then be bounded using Lemma E.1 and the expression (Eq.
(13)) obtained in the proof of Lemma E.4 w.p. δ{N :

sup
UPUL

ÿ

iPJNK

ˇ

ˇ

ˇ

ˇ

U⊺
pηE,i ´ Jπ

E,i

pU ; pi, riq

ˇ

ˇ

ˇ

ˇ

ď L
ÿ

iPJNK

w1pηp
i,ri,πE,i ,ProjCpηp

i,ri,πE,iqq

`
ÿ

iPJNK

sup
U

1
Pr0,Hsd

ˇ

ˇ E
G„ProjCpηpi,ri,π

E,i
q

rU
1
pGqs ´ E

G„pηE,i
rU

1
pGqs

ˇ

ˇ

ď LN
a

2Hϵ0 `
ÿ

iPJNK

cH

d

H log NHτE,i

δϵ0

ϵ0τE,i
.

The result follows through the application of the union bound.

Lemma E.16. Let δ P p0, 1q. With probability at least 1 ´ δ, for all t P t0, 1, . . . , T ´ 1u, for all
i P JNK, it holds that:

sup
UtPCLpUtq

max
ηPDi

U⊺
t η ´ U

⊺
t pηit ď cH2

c

1

n

´

log
SAHN

δ
` pS ´ 1q log

`

ep1 ` n{pS ´ 1qq
˘

¯

`HLϵ0 ` c1H

d

log NT
δ

K
,

where c, c1 are some positive constants.
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Proof. We use the notation in Section 5. In particular, let policy pπ˚,i
t be the optimal policy in the

RS-MDP xMi
Ut

:“ pSi,Ai, H, si0, ppi, ri, U tq, i.e.:

J pπ˚,i
t pU t; ppi, riq “ J˚pU t; ppi, riq “ J˚pUt; ppi, riq,

where the last passage holds trivially for all Ut P CLpU tq (because there is no evaluation of utility
outside Y).

Thus, for all t P t0, 1, . . . , T ´ 1u, we have:

sup
UtPCLpUtq

max
ηPDi

U⊺
t η ´ U

⊺
t pηit˘J

˚pUt; ppi, riq

(1)
ď sup
UtPCLpUtq

ˇ

ˇ

ˇ
J˚pUt; p

i, riq ´ J˚pUt; ppi, riq
ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
U t

⊺
´

pηit ´ ηppi,ri,pπ˚,i
t

¯
ˇ

ˇ

ˇ

(2)
ď HLϵ0 ` cH2

c

1

n

´

log
SAHN

δ
` pS ´ 1q log

`

ep1 ` n{pS ´ 1qq
˘

¯

`

ˇ

ˇ

ˇ
U

⊺
t

´

pηit ´ ηppi,ri,pπ˚,i
t

¯
ˇ

ˇ

ˇ

(3)
ď HLϵ0 ` cH2

c

1

n

´

log
SAHN

δ
` pS ´ 1q log

`

ep1 ` n{pS ´ 1qq
˘

¯

` c1H

d

log NT
δ

K
,

where at (1) we have applied the triangle inequality, and realized that in the second term there is
no dependence on the value of utility outside of Y; moreover, we have used that J˚pUt; ppi, riq “

U
⊺
t η

ppi,ri,pπ˚,i
t by definition of policy pπ˚,i

t . At (2) we apply Lemma E.13 (our J˚pUt; ppi, riq has
the same meaning of pJ˚pUq in the lemma, and we upper bound supUtPCLpUtq

with supUPUL
) w.p.

δ{p2Nq,13 and we keep the confidence bound explicit, and we upper bound d ď H{ϵ0 `1, and at (3)
we observe that pηit is the empirical estimate of distribution ηppi,ri,pπ˚,i

t (see Line 6) obtained through
the sampling of K sample returns G1, G2, . . . , GK

i.i.d.
„ ηppi,ri,pπ˚,i

t . Indeed, note that the policy
pψ˚,i
t , computed at Line 4 and optimal for Er xMi

Ut
s “ ptSi ˆ Yhuh,Ai, H, si0,pp

i, ritq,14 provides

policy pπ˚,i
t through the formula in Section 2, thus Line 5 is actually simulating pπ˚,i

t in MDP xMi.
Therefore, we can apply Hoeffding’s inequality (e.g., see Lemma E.3) w.p. δ{p2TNq.

The result follows through the application of the union bound.

We remark that in one case we use probability δ{p2Nq (without T ) while in the other we use
δ{p2NT q (with T ), because in the former we provide a guarantee for all possible utilities w.r.t.
the optimal performance, thus all the T steps are already included; instead, in the latter, we provide
a guarantee for a single utility and for a single policy at a specific t P t0, . . . , T ´ 1u, thus we have
to compute a union bound with T .

Lemma E.17. Let δ P p0, 1q. With probability at least 1´ δ, for all i P JNK and t P t0, . . . , T ´1u,
under the good event in Lemma E.16, there exists a policy πit such that:

U
E,⊺

pηit ´ UE,⊺ηp
i,ri,πi ď LHϵ0{2 ` cH

d

log NT
δ

K

` c1H2

c

1

n

´

log
SAHN

δ
` pS ´ 1q log

`

ep1 ` n{pS ´ 1qq
˘

¯

,

where c, c1 are positive constants.
13We remark that, in doing so, we can still apply Proposition 3 of Wu & Xu (2023) inside the proof of Lemma

E.13 even though we consider increasing utilities instead of strictly-increasing utilities; indeed, it is trivial to
observe that the proof of Proposition 3 of Wu & Xu (2023) does not depend on such property.

14See Section 2 for the meaning of ppi and rit; we use Yh for all h in the state space instead of the sets of
partial returns tG ppi,ri

h uh in order to obtain policy pψ˚,i
t supported on the entire S ˆ Yh space, and to make it

compliant with Algorithm 4
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Proof. First, simply observe that pηit is the empirical estimate (see Line 6) of ηppi,ri,pπ˚,i
t , thus, simi-

larly to the proof of Lemma E.16, for all i P JNK and t P t0, 1, . . . , T´1u, we can apply Hoeffding’s
inequality w.p. δ{p2TNq:

ˇ

ˇ

ˇ
U
E,⊺

´

pηit ´ ηppi,ri,pπ˚,i
t

¯
ˇ

ˇ

ˇ
ď cH

d

log NT
δ

K
.

Now, we compare distributions ηppi,ri,pπ˚,i
t and ηp

i,ri,pπ˚,i
t . Through straightforward passages, we can

write:

|UE,⊺
´

ηppi,ri,pπ˚,i
t ´ ηp

i,ri,pπ˚,i
t

¯

|

“ |J pπ˚,i
t pU

E
; ppi, riq ´ J pπ˚,i

t pU
E
; pi, riq|

“

ˇ

ˇ

ˇ

ÿ

s1PS
pi1ps1|si0, pπ

˚,i
t,1 psi0qqV

pπ˚,i
t

2 ps1; pi, riq

´
ÿ

s1PS
ppi1ps1|si0, pπ

˚,i
t,1 psi0qqV

pπ˚,i
t

2 ps1; ppi, riq
ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ÿ

s1PS

´

pi1ps1|si0, pπ
˚,i
t,1 psi0qq ´ ppi1ps1|si0, pπ

˚,i
t,1 psi0qq

¯

V
pπ˚,i
t

2 ps1; pi, riq

ˇ

ˇ

ˇ

ˇ

`
ÿ

s1PS
ppi1ps1|si0, pπ

˚,i
t,1 psi0, 0qq

ˇ

ˇ

ˇ
V

pπ˚,i
t

2 ps1; pi, riq ´ V
pπ˚,i
t

2 ps1; ppi, riq
ˇ

ˇ

ˇ

ď . . .

ď E
ppi,ri,pπ˚,i

t

„ H
ÿ

h1“1

ˇ

ˇ

ˇ

ˇ

ÿ

s1PS

´

pih1 ps1|sh1 , ah1 q ´ ppih1 ps1|sh1 , ah1 q

¯

V
pπ˚,i
t

h1`1ps1; pi, riq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

s1 “ si0

ȷ

ď H E
ppi,ri,pπ˚,i

t

„ H
ÿ

h1“1

›

›

›
pih1 p¨|sh1 , ah1 q ´ ppih1 p¨|sh1 , ah1 q

›

›

›

1

ˇ

ˇ

ˇ

ˇ

s1 “ si0

ȷ

ď H E
ppi,ri,pπ˚,i

t

„ H
ÿ

h1“1

b

2KLppih1 p¨|sh1 , ah1 q}ppih1 p¨|sh1 , ah1 qq

ˇ

ˇ

ˇ

ˇ

s1 “ si0

ȷ

,

where at the last passage we applied the Pinsker’s inequality. Note that the previous derivation
was possible as long as as policy pπ˚,i

t is defined over all the possible pairs state-cumulative reward
ps, yq P S ˆ Yh for all h P JHK. Since we construct it through policy pψ˚,i

t , obtained at Line 4, i.e.,
over the entire enlarged state space tS ˆ Yhuh, then policy pπ˚,i

t satsifies such property. Now, in the
proof of Lemma E.16 we used Lemma E.14, in which event E bounds the KL-divergence between
transition models. Therefore, under the application of Lemma E.16, it holds that:

|UE,⊺
´

ηppi,ri,pπ˚,i
t ´ ηp

i,ri,pπ˚,i
t

¯

| ď H2

c

2

n

´

log
SAHN

δ
` pS ´ 1q log

`

ep1 ` n{pS ´ 1qq
˘

¯

,

where n is the number of samples takes at each ps, a, hq P S ˆ A ˆ JHK in the i P JNK MDP.

Therefore, we can finally write:

U
E,⊺

pηit ´ UE,⊺ηp
i,ri,πi˘U

E,⊺
ηppi,ri,pπ˚,i

t ˘ U
E,⊺

ηp
i,ri,pπ˚,i

t

“ UE,⊺
´

ηp
i,ri,pπ˚,i

t ´ ηp
i,ri,πi

¯

` U
E,⊺

´

ηppi,ri,pπ˚,i
t ´ ηp

i,ri,pπ˚,i
t

¯

` U
E,⊺

´

pηit ´ ηppi,ri,pπ˚,i
t

¯

(1)
ď UE,⊺

´

ηp
i,ri,pπ˚,i

t ´ ηp
i,ri,πi

¯

` cH

d

log NT
δ

K
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` c1H2

c

2

n

´

log
SAHN

δ
` pS ´ 1q log

`

ep1 ` n{pS ´ 1qq
˘

¯

(2)
ď LHϵ0{2 ` cH

d

log NT
δ

K

` c1H2

c

2

n

´

log
SAHN

δ
` pS ´ 1q log

`

ep1 ` n{pS ´ 1qq
˘

¯

,

where at (1) we have used the bounds derived earlier, and at (2) we have applied Lemma E.18,
noticing that we can choose policy πi as we wish, and using that k ď ϵ0{2.

Lemma E.18. Let M1 “ pS,A, H, s0, p, r1q and M2 “ pS,A, H, s0, p, r2q be two MDPs with
deterministic rewards that differ only in the reward function r1 ‰ r2, and assume that, for all
ps, a, hq P S ˆ A ˆ JHK, it holds that |r1hps, aq ´ r2hps, aq| ď k, for some k ě 0. Let π1 be
an arbitrary (potentially non-Markovian) policy that induces, in M1, the distribution over returns
ηp,r

1,π1

. Then, there exists a policy π2 that induces in M2 the distribution ηp,r
2,π2

such that:

sup
UPUL

ˇ

ˇ

ˇ
EG„ηp,r1,π1 rUpGqs ´ EG„ηp,r2,π2 rUpGqs

ˇ

ˇ

ˇ
ď LHk.

Proof. A non-Markovian policy like π1, in its most general form, prescribes ac-
tions at stages h P JHK depending on the sequence of state-action-reward
ps1, a1, r1, s2, a2, r2, . . . , sh´1, ah´1, rh´1, shq received so far. Since, by hypothesis, the re-
ward functions are deterministic (see also Section 2), then it is clear that the information contained
in the rewards received so far (tr1, r2, . . . , rh´1u) is already contained in the state-action pairs
received ps1, a1, s2, a2, . . . , sh´1, ah´1, shq (indeed, for deterministic reward r1, we have that
r1 “ r11ps1, a1q, r2 “ r12ps2, a2q, and so on). This means that, for any non-Markovian policy
in the MDP M1, since it coincides with M2 except for the deterministic reward function, it is
possible to construct a policy π2 that induces the same distribution over state-action trajectories,
i.e., for any state-action trajectory ω “ ps1, a1, s2, a2, . . . , sH´1, aH´1, sH , aH , sH`1q P Ω, it
holds Pp,r1,π1pωq “ Pp,r2,π2pωq.

Therefore, we can write:

sup
UPUL

ˇ

ˇ

ˇ
EG„ηp,r1,π1 rUpGqs ´ EG„ηp,r2,π2 rUpGqs

ˇ

ˇ

ˇ

(1)
“ sup
UPUL

ˇ

ˇ

ˇ

ÿ

ωPΩ

Pp,r1,π1pωqU
´

ÿ

ps,a,hqPω

r1hps, aq

¯

´
ÿ

ωPΩ

Pp,r2,π2pωqU
´

ÿ

ps,a,hqPω

r2hps, aq

¯
ˇ

ˇ

ˇ

(2)
“ sup
UPUL

ˇ

ˇ

ˇ

ÿ

ωPΩ

Pp,r1,π1pωqU
´

ÿ

ps,a,hqPω

r1hps, aq

¯

´
ÿ

ωPΩ

Pp,r1,π1pωqU
´

ÿ

ps,a,hqPω

r2hps, aq

¯ˇ

ˇ

ˇ

“ sup
UPUL

ˇ

ˇ

ˇ

ÿ

ωPΩ

Pp,r1,π1pωq

´

U
´

ÿ

ps,a,hqPω

r1hps, aq

¯

´ U
´

ÿ

ps,a,hqPω

r2hps, aq

¯¯
ˇ

ˇ

ˇ

(3)
ď sup
UPUL

ÿ

ωPΩ

Pp,r1,π1pωq

ˇ

ˇ

ˇ
U

´

ÿ

ps,a,hqPω

r1hps, aq

¯

´ U
´

ÿ

ps,a,hqPω

r2hps, aq

¯
ˇ

ˇ

ˇ

(4)
ď

ÿ

ωPΩ

Pp,r1,π1pωqL
ˇ

ˇ

ˇ

ÿ

ps,a,hqPω

pr1hps, aq ´ r2hps, aqq

ˇ

ˇ

ˇ

(5)
ď

ÿ

ωPΩ

Pp,r1,π1pωqL
ÿ

ps,a,hqPω

ˇ

ˇ

ˇ
r1hps, aq ´ r2hps, aq

ˇ

ˇ

ˇ
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(6)
ď

ÿ

ωPΩ

Pp,r1,π1pωqL
ÿ

ps,a,hqPω

k

“ LHk,

where at (1) we use the fact that the expected utility w.r.t. the distribution over returns can be com-
puted using the probability distribution over state-action trajectories (since the rewards are determin-
istic), at (2) we use that policy π2 is constructed exactly to match the distribution over state-action
trajectories, at (3) we apply triangle inequality, at (4) we use the fact that all utilities U P UL are
L-Lipschitz, i.e., for all x, y P r0, Hs: |Upxq ´Upyq| ď L|x´ y|, at (5) we apply again the triangle
inequality, and at (6) we use the hypothesis that r1, r2 are close to each other by parameter k.

F EXPERIMENTAL DETAILS

In this appendix, we collect additional information about the experiments described in Section 6.
Appendix F.1 presents formally the MDP used for the collection of the data along with the questions
posed to the participants. Appendix F.2 describes what is a Standard Gamble (Wakker, 2010) and
how it has been used to construct the utility USG of the participants. Finally, Appendices F.3 and F.4
contain, respectively, additional details on Experiment 1 and 2.

F.1 DATA DESCRIPTION

Below, we describe the data collected.

F.1.1 CONSIDERED MDP.

The 15 participants analyzed in the study have been provided with complete access to the MDP in
Figure 9, which we will denote by M. In other words, the participants know the transition model
and the reward function of M everywhere.

Mstart M

L

H

T

L

M

H

T

L

M

H

T

L

M

H

T

h “ 1 h “ 2 h “ 3 h “ 4 h “ 5

Figure 9: The MDP used for data collection.

Intuitively, states L (Low), M (Medium), H (High), and T (Top), represent 4 “levels” so that the re-
ceived reward increases when playing actions in “higher” states instead of “lower” states. Formally,
MDP M “ pS,A, H, s0, p, rq has four states S “ tL,M,H, T u, and three actions for each state
A “ ta0, a`, a´u. The horizon is H “ 5, i.e., the agent has to take 5 actions. The initial state
is s0 “ M . The transition model p is stationary, i.e., it does not depend on the stage h P JHK.
Specifically, p is depicted in Table 2. The intuition is that action a0 keeps the agent in the same state
deterministically, while action a` tries to bring the agent to the higher state with probability 1{3,
and action a´ sometimes make the agent “fall down” to the lower state with probability 1{5.
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p L M H T

pL, a0q 1 0 0 0
pL, a`q 2{3 1{3 0 0
pL, a´q 1 0 0 0
pM,a0q 0 1 0 0
pM,a`q 0 2{3 1{3 0
pM,a´q 1{5 4{5 0 0
pH, a0q 0 0 1 0
pH, a`q 0 0 2{3 1{3
pH, a´q 0 1{5 4{5 0
pT, a0q 0 0 0 1
pT, a`q 0 0 0 1
pT, a´q 0 0 1{5 4{5

Table 2: The transition model p of MDP M.

The reward function r : S ˆ A ˆ JHK Ñ R is deterministic, stationary, and depends only the
state-action pair played. The specific values are depicted in Table 3. Note that we have written the
reward values as numbers in r0C, 1000Cs, to provide a monetary interpretation. Nevertheless, we
will rescale the interval to r0, 1s during the analysis for normalization. Observe that the same actions
played in “higher” states (e.g., H or T ) provide higher rewards than when played in “lower” states
(e.g., L or M ). Moreover, notice that action a`, which is the only action that tries to increase the
state, does not provide reward at all, while the risky action a´, which sometimes decreases the state,
always provides double the reward than “default” action a0.

L M H T

a0 0C 30C 100C 500C
a` 0C 0C 0C 0C
a´ 0C 60C 200C 1000C

Table 3: The reward function r of MDP M.

F.1.2 INTUITION BEHIND AGENTS BEHAVIOR.

The reward is interpreted as money. Playing MDP M involves a trade-off between playing action
a`, which gives no money but potentially allows to collect more money in the future (by reaching
“higher” states), and action a´, which provides the greatest amount of money immediately, but
potentially reduces the amount of money which can be earned in the future. Action a0, being
deterministic, provides a reference point, so that deterministically playing action a0 for all theH “ 5
stages gives to the agent 30ˆ 5 “ 150C. Thus, playing actions a`, a´ other than a0 means that the
agent accepts some risk to try to increase its earnings.

F.1.3 QUESTIONS ASKED TO THE PARTICIPANTS

We remark that the participants have enough background knowledge to understand the MDP de-
scribed. To each participant, we ask which action in ta0, a`, a´u it would play if it was in a
certain state s, stage h, with cumulative reward up to now y, for many different values of triples
ps, h, yq P S ˆ JHK ˆ r0C, 5000Cs. Specifically, the values of triples s, h, y considered are:

pM, 1, 0Cq pM, 2, 0Cq pM, 2, 30Cq pM, 2, 60Cq pH, 2, 0Cq

pM, 3, 0Cq pM, 3, 30Cq pM, 3, 60Cq pM, 3, 200Cq pH, 3, 0Cq

pH, 3, 30Cq pH, 3, 60Cq pH, 3, 200Cq pT, 3, 0Cq pM, 4, 0Cq

pM, 4, 30Cq pM, 4, 60Cq pM, 4, 90Cq pM, 4, 120Cq pM, 4, 150Cq

pM, 4, 180Cq pM, 4, 300Cq pM, 4, 400Cq pH, 4, 0Cq pH, 4, 30Cq

pH, 4, 60Cq pH, 4, 100Cq pH, 4, 130Cq pH, 4, 200Cq pH, 4, 300Cq

pH, 4, 1000Cq pT, 4, 0Cq pT, 4, 60Cq.
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From state L, we assume all participants always play action a` since it is the only rational strategy.
Moreover, from stage h “ 5, we assume that all participants always play action a´ since, again, it
is the only rational strategy.

In all other possible combinations of values of s, h, y, we “interpolate” by considering the action
recommended by the participant in the closest y1 to y, in the same s, h.

F.1.4 THE RETURN DISTRIBUTION OF THE PARTICIPANTS’ POLICIES

We now present the return distribution of the policies prescribed by the participants. Specifically,
we have simulated 10000 times the policies of the participants, and we have computed the empirical
estimate of their return distributions. Such values are reported in Figures 10, 11, 12, 13, and 14,
where we use notation ηEi to denote the return distribution of participant i, with i P J15K.
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Figure 10: Plot of ηE1 , ηE2 , and ηE3 .
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Figure 11: Plot of ηE4 , ηE5 , and ηE6 .

0 1 2 3 4 5
Return G

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y 
(G

) E
7

0 1 2 3 4 5
Return G

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y 
(G

) E
8

0 1 2 3 4 5
Return G

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Pr
ob

ab
ilit

y 
(G

) E
9

Figure 12: Plot of ηE7 , ηE8 , and ηE9 .
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Figure 13: Plot of ηE10, ηE11, and ηE12.

F.2 STANDARD GAMBLE DATA

Standard Gamble (SG). The Standard Gamble (SG) method (e.g., see Section 2.5 of Wakker
(2010)) is a common method for inferring the von Neumann-Morgenstern (vNM) utility function of
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Figure 14: Plot of ηE13, ηE14, and ηE15.
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Figure 15: The SG utilities of the participants.

an agent. Observe Figure 16. In a SG, the agent has to decide between two options: A sure option
(e.g., x “ 30C), in which the prize is obtained with probability 1, and a lottery between two prizes
(e.g., 5000Cand 0C), in which the best prize (5000C) is received with probability p. For any value
of x, the agent has to answer what is the probability p that, from his perspective, makes the two
options (i.e., x for sure, or the lottery) indifferent.

x „
5000C

0C

p

1 ´ p

Figure 16: The SG used for data collection.

Given the probability p, we have that the utility U of the agent for x is:

Upxq “ p ¨ Up5000q ` p1 ´ pq ¨ Up0q “ p,

since, by normalization conditions, we have Up0q “ 0 and Up5000q “ 1.

Our SG. We have asked the 15 participants to the study to answer some SG questions, which
allows us to fit a vNM utility function for each of them (which we call USG). Specifically, we have
asked to answer 8 different SG questions, in which the x value in Figure 16 has been replaced by:

10C, 30C, 50C, 100C, 300C, 500C, 1000C, 2000C.

Next, we linearly interpolate the computed utilities, obtaining the functions in Figure 15.

It should be remarked that this model considers single decisions (i.e., H “ 1), while in MDPs there
is a sequence of decisions to be taken over time, specifically over a certain time horizon H .

F.3 DETAILS EXPERIMENT 1

The utilities Usqrt, Usquare, and Ulinear can be formally defined as: UsqrtpGq :“
?
5G, UsquarepGq :“

G2{5, UlinearpGq :“ G. They are depicted in Figure 17.
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Figure 17: A plot of utilities Usqrt, Usquare, Ulinear.

The experiment has been conducted collecting 10000 trajectories to estimate the return distribu-
tion of each participant’s policy, and 10000 trajectories for estimating the return distribution of the
optimal policy, which has been computed exactly through value iteration. We have executed 5 simu-
lations with different seeds, and the relative (non)compatibility values written in the table in Section
6 are the average over the 5 simulations.

For the experiment, we use the true transition model, and we remark that the reward function consid-
ered, when discretized, coincides with itself, i.e., we do not incur in estimation error of the transition
model nor in approximation error for the discretization.

The experiment has been conducted in less than 1 hour on a personal computer with processor AMD
Ryzen 5 5500U with Radeon Graphics (2.10 GHz), with 8,00 GB of RAM.

F.4 DETAILS EXPERIMENT 2

Experiment 2 is made of two parts, the first in which we execute it on the MDP adopted also in
Experiment 1, and the other where we use simulated data. We describe here the former, while we
present the latter more in detail in Appendix F.4.3.

We consider the policy of the 10th participant to the survey, and we execute TRACTOR-UL multiple
times with varying values of the input parameters, specifically: we always use K “10000 trajecto-
ries for estimating the return distribution of the 10th participant’s policy, and the return distribution
of the optimal policies computed along the way; we make 5 runs with each combination of parame-
ters with different seeds. We execute for T “ 70 iterations using Lipschitz constant L “ 10, which
means that we consider only utilities U P UL satisfying |UpGq ´ UpG1q| ď 10|G ´ G1| for all
G,G1 P r0, 5s (the horizon is 5). As initial utility U0, we try Usqrt, Usquare, and Ulinear, and as learning
rates we try 0.01, 0.5, 5, 100, 1000, 10000.

The experiment has been conducted on the same personal computer as experiment 1, in some hours.

We note that the choice of U0 is rather irrelevant for the shape of the extracted pU , but it matters for
its “location”, as shown in Fig. 18.

To view the sequence of utilities extracted by TRACTOR-UL during the run, see Appendix F.4.1,
while in Appendix F.4.2 we explain better why the best learning rate is large.

F.4.1 THE SEQUENCE OF UTILITIES EXTRACTED BY TRACTOR-UL

We now present some plots representing the sequence of utilities extracted by TRACTOR-UL dur-
ing its execution. Specifically, we consider initial utility U0 “ Usquare, and we use learning rates
α P r0.01, 0.5, 5, 100, 1000, 10000s. We plot the sequence of utilities considered by TRACTOR-UL
during its execution in Figures 19, 20, and 21, where we adopt notation that Ut denotes the utility
extracted at iteration t, and the number in the legend represents the (non)compatibility of that utility.
We consider again participant 10.
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Figure 18: Utilities computed by TRACTOR-UL starting with the U0 in the legend (α “ 100).

we observe that for smaller learning rates (e.g., α P r0.01, 0.5, 5s), the utilities as well as the
(non)compatibilities) do not change much (Figure 19 and Figure 20 left), while for larger learn-
ing rates, we obtain more consistent changes (Figure 20 left and Figure 21).

Clearly, larger learning rates require less iterations to achieve small values of (non)compatibilities.
Nevertheless, too large values (e.g., α “ 10000) are outperformed by intermediate values (e.g.,
α “ 100).
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Figure 19: (Left) α “ 0.01. (Right) α “ 0.5.
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Figure 20: (Left) α “ 5. (Right) α “ 100.
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Figure 21: (Left) α “ 1000. (Right) α “ 10000.

F.4.2 A VISUAL EXPLANATION FOR A LARGE LEARNING RATE

Now, we show that the projection update represented by operator ΠUL
crucially neglects small

variations in the (non-projected) utilities, requiring us to increase the step size.

Thus, the intuition is that we need a large learning rate because the projection step neglects small
variations. To show this, we take as initial utility U0 “ Usqrt, two return distributions η˚

0 , η
E , where

η˚ coincides with the distribution of an optimal policy for Usqrt, and ηE is the return distribution
of the policy played by participant 10. These distributions are plotted in Figure 22 left, and their
difference is plotted in Figure 22 right. In particular, we note that the two distributions are rather
different, with the expert’s distribution ηE that is more risk-averse, in that it provides higher prob-
ability to returns around G “ 0.5, while the optimal distribution η˚

0 is more risk-lover, in that it
assigns some probability to higher returns G ě 1, but suffering from also high probability to small
returns G ď 0.3.
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Figure 22: (Left) Plot of η˚
0 and ηE . (Right) Plot of η˚

0 ´ ηE .

We aim to perform the TRACTOR-UL update rule:

U
1

1 Ð U0 ´ αpη˚ ´ ηEq,

with some learning rate α, and then to perform the projection:

U1 Ð ΠUL
rU

1

1s.

We execute the update with the following values of steps size: α P t0.01, 0.5, 5, 100, 1000, 10000u,
and we plot the corresponding updated utilities U

1

1 and U1 in Figures 23, 24, and 25.

As we can see from Figures 23, 24, and 25, the update U0 Ñ U1 obtained with step sizes ă 5 are
rather neglectable, so that the return distribution of the new optimal policy η˚

1 for U1 still coincides
with the previous one η˚

0 , and the gradient at the next step is the same. For α “ 5, we begin to notice
some changes. See Figure 26.

Instead, with larger gradients, we observe a non-neglectable change in utility, which provides a
consistent change in the return distribution for α “ 100, and a huge change for α P r1000, 10000s

(see Figure 27).
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Figure 23: (Left) α “ 0.01. (Right) α “ 0.5.
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Figure 24: (Left) α “ 5. (Right) α “ 100.
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Figure 25: (Left) α “ 1000. (Right) α “ 10000.
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Figure 26: (Left) Comparison of the return distributions η˚
1 obtained with α “ 0.01 and α “ 0.5, with η˚

0 .
(Right) Comparison of the return distribution η˚

1 obtained with α “ 5, with η˚
0 .

Since neglectable changes in both the utility and the optimal return distribution (obtained with small
learning rates) mean that we have to update the utility many times along the same direction, then
the update is equivalent to performing a single update in that direction with a huge step size. This
justifies the use of large learning rates.
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Figure 27: (Left) Comparison of the return distribution η˚
1 obtained with α “ 100, with η˚

0 . (Right) Compar-
ison of the return distributions η˚

1 obtained with α “ 1000 and α “ 10000, with η˚
0 .

F.4.3 ANALYSIS ON SIMULATED DATA

We have executed TRACTOR-UL on MDPs generated at random. Below we report the truncated
(non)compatibility values of the utilities extracted by the algorithm as a function of the number of
iterations, in the five different experiments conducted. For the experiments, we executed for T “ 70
gradient iterations, with parameters K “ 10000 and L “ 10, as in the first part of the experiment.
We found that the best learning rate is α “ 1.
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Figure 28: (Left) Simulation with S “ 20 and A “ 5. (Right) Simulation with S “ 100 and A “ 10.
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Figure 29: (Left) Simulation with S “ 1000 and A “ 20. (Right) Simulation with N “ 5.
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Figure 30: Simulation with N “ 20.
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