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ABSTRACT

Our goal is to extract useful knowledge from demonstrations of behavior in se-
quential decision-making problems. Although it is well-known that humans com-
monly engage in risk-sensitive behaviors in the presence of stochasticity, most
Inverse Reinforcement Learning (IRL) models assume a risk-neutral agent. Be-
yond introducing model misspecification, these models do not directly capture the
risk attitude of the observed agent, which can be crucial in many applications. In
this paper, we propose a novel model of behavior in Markov Decision Processes
(MDPs) that explicitly represents the agent’s risk attitude through a utility func-
tion. We then define the Utility Learning (UL) problem as the task of inferring the
observed agent’s risk attitude, encoded via a utility function, from demonstrations
in MDPs, and we analyze the partial identifiability of the agent’s utility. Further-
more, we devise two provably efficient algorithms for UL in a finite-data regime,
and we analyze their sample complexity. We conclude with proof-of-concept ex-
periments that empirically validate both our model and our algorithms.

1 INTRODUCTION

The ultimate goal of Artificial Intelligence (Al) is to construct artificial rational autonomous agents
(Russell & Norvig| [2010). Such agents will interact with each other and with human beings to
achieve the tasks that we assign to them. In this vision, a crucial feature is being able to correctly
model the observed behavior of other agents. This allows a variety of applications: () descriptive, to
understand the intent of the observed agent (Russell,|1998)), (i¢) predictive, to anticipate the behavior
of the observed agent (potentially in new scenarios) (Arora & Doshil 2021), (é#ii) normative, to
imitate the observed agent because they are behaving in the “right way” (Osa et al., 2018)).

Nowadays, Inverse Reinforcement Learning (IRL) provides the most popular and powerful models,
i.e., simplified representations, of the behavior of the observed agent, named “expert”. Under the
so-called “reward hypothesis” (Sutton & Barto, 2018]), that has been recently re-interpreted in terms
of properties of preferences over trajectories (Shakerinava & Ravanbakhsh| 2022} Bowling et al.,
2023)), IRL algorithms construct reward functions representing the objectives and the desires of the
expert. Depending on the application, different models can be adopted. For instance, Ng & Russell
(2000) considers the expert as an exact expected return maximizer, while Ramachandran & Amir
(2007) and [Ziebart et al.| (2008) assume that the probability with which actions and trajectories,
respectively, are played is proportional to their fraction of optimality (i.e., of expected return).

All these models assume that the expert is a risk-neutral agent, i.e., an agent interested in the
maximization of the expected return. However, there are many scenarios in which rational agents
(Follmer & Schied, [2016)), as well as humans (Kahneman & Tversky, [1979; Kreps| [1988), adopt
risk-sensitive strategies in the presence of stochasticity. In the most general case, agents are not only
interested in the expected return, but in the full distribution of the return (Bellemare et al., [2023)).
Popular examples in this context include agents who aim to maximize the expected return while
trying to minimize the variance (Mannor & Tsitsiklis| 2011} [Tamar et al.| |2012), agents interested
in the optimization of the Conditional Value-at-Risk (CVaR) (Rockafellar & Uryasev, |2000), or in
rewards volatility (Bisi et al.| [2020). IRL models, thus, incur in mis-specification, which can cru-
cially affect the descriptive, predictive, and normative power of the inferred reward function (Skalse
& Abatel [2023;[2024;|Chan et al., [2021)).
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Related works. To overcome this limitation, some authors have analyzed the risk-sensitive IRL
problem (Ratliff & Mazumdar, 2020; [Majumdar et al., [2017; |Cao et al., 2024), in which either
the learner is provided with the reward function of the expert and it must infer some parameters
representing the risk attitude, or the learner must infer both the reward function and the risk attitude
from the given demonstrations (Ratliff & Mazumdar, 2020; [Majumdar et al., [2017; |Chen et al.,
2019; (Cheng et al [2023). Nevertheless, these works suffer from major limitations that prevent
the adoption of the proposed algorithms in real-world applications. For instance, they either make
demanding assumptions (e.g., Boltzmann policies like in Ratliff & Mazumdar| (2020) and |Cao et al.
(2024), which hypothesize the expert to play each action exactly proportionally to its ()-value),
or consider rather limited settings (e.g., the “prepare-react model” of Majumdar et al.| (2017), that
imposes too much structure in the expert’s behavior and in the environment’s dynamics).

An analogous line of research focuses on the problem of learning the risk attitude of an agent from
demonstrations in certain decision-making settings other than Markov Decision Processes (MDPs)
(Chajewska et al., 2001; |Shukla et al., 2017} [Lei, 2020). Even though the powerful model of von
Neumann-Morgenstern (VNM) utility functions (von Neumann & Morgenstern, |1947; [Kreps, |1988))
is adopted for representing the risk attitude of the expert, these works only focus on “coarse” se-
quential decision-making settings like decision trees (Chajewska et al., [2001)), that do not provide
the rich expressivity of MDPs (there is no notion of reward function). A more detailed analysis,
along with additional related works, is provided in Appendix [A]

Our proposal. In this paper, we formalize, characterize, and analyze the problem of inferring the
risk attitude of an agent, encoded with a utility function, from demonstrations of behavior in MDPs.
The main contributions of this paper are listed below. The proofs of all results are in Appendix [CHE

* Motivated by a real-world example, we propose a simple yet powerful model of behavior in MDPs,
that separates the objective (reward) from the risk attitude (utility) of an agent (Section [3).

* We introduce Utility Learning (UL) as the problem of inferring the risk attitude of an agent in
MDPs, and we characterise the partial identifiability of the expert’s utility (Section [4).

* We present and theoretically analyze two novel algorithms, CATY-UL and TRACTOR-UL, for
efficiently solving the Utility Learning problem with finite data (Section [5).

* We conclude the paper with proof-of-concept experiments that serve as an empirical validation of
both the proposed model and the presented algorithms. (Section [6).

2 PRELIMINARIES

The main paper’s notation is below. Additional notation for the supplemental is in Appendix

Notation. For any N € N, we write [N] := {1,...,N}. Given set X, we denote by A% the
probability simplex on X. Given X < R,y € R?, we define [1x(y) := argmin, y |y — [2. A
real-valued function f : R — R is L-Lipschitz if, for all z, y € R, we have | f(z)— f(y)| < L|z—y|.
f is increasing if, for all x < y € R, it holds f(x) < f(y), and it is strictly-increasing if f(z) <
f(y). The probability distribution that puts all its mass on z € R is denoted by ¢, and is called the
Dirac delta. We represent probability measures on finite support as finite mixtures of Dirac deltas.

Markov Decision Processes (MDPs). A tabular episodic Markov Decision Process (MDP) (Puter-
man) 1994) is a tuple M = (S, A, H, so,p,r), where S and A are the finite state (S := |S]|) and
action (A := |.A|) spaces, H is the time horizon, sq € S is the initial state, p : S x A x [H] — A®
is the transition model, and r : S x A x [H] — [0, 1] is the deterministic reward function. The
interaction of an agent with M generates trajectories. Let 5, = (S x A)"~1 x S be the set of
state-action trajectories of length h for all h € [H + 1], and Q := Q1. A deterministic non-
Markovian policy m = {mp}rem] is a sequence of functions 7y, : €, — A that, given the history
up to stage h, ie., w = (s1,a1...,8,—1,0n—1,8,) € Qp, prescribes an action. A Markovian
policy m = {7 }nepny is a sequence of functions 7, : S — A that depend on the current state
only. We use g : Upeqa i1y n — [0, H] to denote the return of a (partial) trajectory w € €,
ie., g(w) = Zh’e[[h—l]] rh(8hr, aps ). With abuse of notation, we denote by PP, . » the probability
distribution over trajectories of any length induced by 7 in M (we omit sy for simplicity), and by
E, .~ the expectation w.r.t. P, . .. We define the return distribution n*™™ e Al%H] of policy  as
NPT (Y) = 2weq: gw)=y Ppore(w) for all y € [0, H]. The set of possible returns at h € [H + 1]

is Gi" = {y € [0,h —1]|3w € Qp, 37 : g(w) = y A Pprn(w) > 0}, and GP" == G}/, ,.
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We remark that GI'" has finite cardinality for all h. The performance of policy 7 is given by

J™(p,7) = ]Ep,,w[ZhH:l r1(Sn, ap)], and note that J™ (p,r) = Egyp.r~[G]. We define the opti-
mal performance as J*(p, ) := max, J™(p, ), and the optimal policy as 7* € arg max_ J™ (p,r).

Risk-Sensitive Markov Decision Processes (RS-MDPs). A Risk-Sensitive Markov Decision Pro-
cess (RS-MDP) (Wu & Xu, [2023) is a pair My = (M, U), where M = (S, A, H, sp,p,r) is an
MDP, and U € {l is a utility function in set & := {U’ : [0, H|] — [0,H]|U’(0) = 0,U'(H) =
H A U’ is strictly-increasing and continuous}. Differently from Wu & Xu(2023), w.l.o.g., our util-
ities satisfy U(H) = H to settle the scale. The interaction with My, is the same as with M,
and the notation described earlier still applies, except for the performance of policies. The per-
formance of policy 7 is J™(U;p,r) = Ilﬂpﬁmr[U(Zth1 rr(sh,an))], and note that J™(U;p,r) =
Egyrr~[U(G)]. We define the optimal performance as J*(U;p,r) = max, J™(U;p,r), the
optimal policy as 7* € arg max,. J” (U;p, r), and the set of optimal policies for M as I} . (U).

Enlarged state space approach. In MDPs, there always exists a Markovian optimal policy
(Puterman, [1994)), but in RS-MDPs this does not hold. The enlarged state space approach (Wu
& Xu, [2023) is a method, proposed by Bauerle & Rieder| (2014), to compute an optimal policy
in a RS-MDP. Given RS-MDP My =(S, A, H,so,p,,U), we construct the enlarged state space
MDP ¢[My] = ({S x QZ’r}hE[H]],.A, H, (s0,0),p,t), with a different state space S x G} at
each h For every h € [H] and (s,y,a)eSx G} x A, the reward function t is t,(s,y,a) =
U(y+rn(s,a))1{h=H}, while the dynamics p assigns to the next state (s",3') €S x G}/, the prob-
ability: pr(s’,v¥'|s,y, a):=pn(s'|s, a)1{y’ =y +rp(s,a)}. In words, the state space is enlarged with
a component that keeps track of the cumulative reward in the original RS-MDP, and the reward t,
bounded in [0, H], provides the utility of the accumulated reward at the end of the episode. A
Markovian policy 1) = {15} nery for €[ My] is a sequence of mappings ¢y, : S x G;"" — A. Be-
ing an MDP, we adopt for [ M ;] the same notation presented earlier for MDPs, by replacing p, r,
with p, t, 9. Let ©* be the optimal Markovian policy for €[ My;]. Then, Theorem 3.1 of Béuerle &
Rieder|(2014) shows that the (non-Markovian) policy 7*, defined for all h € {2, ..., H} and we(y,
as Ty, (w) = Uy (Shy Dprepp_1) "o (Snrs anr)), and 7§ (s0) =1b¥ (s0,0), is optimal for M.

Inverse Reinforcement Learning (IRL). IRL aims to recover the reward function of an expert
agent from demonstrations of behavior (Russell, |1998). In the literature (e.g.,[Ng & Russell (2000);
Ziebart et al.| (2008)); Ramachandran & Amir| (2007))), various assumptions are made on how the
expert’s policy 7% is generated from the expert’s MDP M = (S, A, H, sy, p,7?). Given the ex-
pert’s MDP without reward (S, A, H, so, p), the expert’s policy 7, and the specific assumption

considered, the IRL objective is to recover the reward rE,

Miscellaneous. For L > 0, we write {;, := {U € 4| U is L-Lipschitz}. For any finite set X <
[0, H] we define 0" = (U e [0, H]I*I|3U € U4, Vz € & : U(x) = U(x)}, and 4y = {Ue
at |3U € Uy, Vo e X : U(z) = U(x)}. We will denote by Mz some RS-MDPs with U € a’.

3  MOTIVATION AND PROBLEM SETTING

In this section, we begin by motivating the need for a more expressive model of behavior in MDPs.
Next, we propose a risk-aware model and we justify it. We conclude with some observations.

Existing models for representing behavior. Our goal is to develop an algorithm, that permits
to learn a “good” model of behavior of an agent from demonstrations in an MDP. In this context,
the most common models present in the literature enforce a structure made of two components:
(7) a reward function, that represents the objective of the agent, and (ii) a planning method, that
describes how the behavior of the agent is generated given its objective. Crucially, the planning
method is assumed to be knownE] thus, all the information about the behavior must hold inside the
reward (the objective) that can be learned. Popular examples include IRL (Ng & Russell, 2000),
entropy-regularized IRL, (Ziebart et al., 2008])), and Bayesian IRL (Ramachandran & Amir, 2007).

1Actually, Biuerle & Rieder|(2014) use state space S X Rxo, while Wu & Xu|(2023) use S x [h — 1] for
all h € [H]. Instead, we consider sets S x {G}""}, to capture the minimal size required.

*Indeed, Armstrong & Mindermann|(2018) have demonstrated that “it is impossible to uniquely decompose
a policy into a planning algorithm and reward function”, but we need to impose some structure to the problem.
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Limitations. Our insight is that these models are not expressive enough to model human behavior
in the presence of stochasticity in many common situations, as shown in the following example.

Example 3.1. Consider the MDP on the side, where you can reach state s having already earned
either 0€ or 100€ (in this example reward is money). From s, you can take either the “risky” action
Qrisky, that provides you with 200€ with
probability (w.p.) 1/2 or 0€ otherwise, or
the “safe” action aguy, that provides you
alwa).)s with 50€ . What action would you ~_ 0€o0r100€
play in state s? Risk-averse (Kahneman &
Tversky, |1979) people might go with asqp,
when landed on s with 0€ , and with a,g,
otherwise, while risk-seeking people might
always go with a,igy. Simply put, the current state s is not sufficient for predicting behavior, because
people decide to take risks depending on how much money (i.e., reward) they earned so far.

1 1
- — 50200€ + 500€

) > 5506‘

In other words, people might exhibit a non-Markovian behavior dependent on both the state and the
cumulated rewards, which is not contemplated by the aforementioned IRL modelsE]

Our proposal. We propose to explicitly represent the risk attitude by constructing a model with
three components: (i) a reward function, i.e., the objective; (i¢) a wtility function, i.e., the risk
attitude, (ii7) a (known) planning method, i.e., how the behavior of the agent is generated given its
objective and its risk-attitude. Formally, we model the expert as an optimal agent in a RS-MDP:

H
ﬂEeargmaXEpmﬁ [U(Z h(Sh,ah))]a (D

h=1

where (i) r is the reward, (i¢) U € i is the utility, and (¢4¢) the principle of maximization of the
expected utility is the planning method. There are many arguments that support this model:

1. it generalizes the IRL model of Ng & Russell (2000) by modelling the risk attitude through U;
2. itis justified by the famous expected utility theory (von Neumann & Morgenstern, |1947)

3. it explains the existence of non-Markovian optimal policies (see [Biuerle & Rieder| (2014));

4. the corresponding planning problem enjoys practical tractability (Wu & Xu, [2023)).

Some considerations. If the utility U is linear, the RS-MDP M admits a Markovian optimal
policy. Otherwise, the more U deviates from linearity, the more non-Markovian policies may out-
perform Markovian policies, which may incur in a finite loss of performance, as shown below.

Proposition 3.1. There exists a RS-MDP with horizon H = 4 in which the difference between the
optimal performance and the performance of the best Markovian policy is 0.5.

Next, we observe that also any deterministic RS-MDP admits an optimal Markovian policy. Intu-
itively, in absence of risk (i.e., stochasticity) the utility function plays no role.

Proposition 3.2. Given any RS-MDP with deterministic transition model p and reward function r,
if the utility U is increasing, then, there exists a Markovian optimal policy.

Finally, if we restrict to Markovian policies, we note that non-stationarity (i.e., the dependence of
the policy on the stage i) and stochasticity (i.e., if the policy prescribes a lottery over actions instead
of a single action) can improve the performance even in stationary environments. Intuitively, they
permit to consider larger ranges of return distributions w.r.t. stationary deterministic policies.

Proposition 3.3. There exists a RS-MDP with stationary transition model and reward in which the
best Markovian policy is non-stationary, and the best stationary Markovian policy is stochastic.

4 UTILITY LEARNING

In this section, we formalise the Utility Learning problem, we characterise the partial identifiability
of the true utility from demonstrations, and we analyze the inferred utilities for applications.

3Re-modelling the MDP including the reward into the state would make the optimal policy Markovian. Yet,
this mathematical device would incur in various issues, as explained in Appendix
*The set of prizes is G, and each policy 7 is a choice that induces a lottery 7

P over prizes.
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Figure 1: (Left) the MDP of Example (Middle) its set of feasible utilities with a sample utility U’. (Right)
plot of U’ with linear interpolation; being convex, it represents a risk-lover agent (Béuerle & Rieder, 2014).
Learning from demonstrations under the new model. In Section [3| we described a model that
parametrizes the behavior of an agent through two components: a reward r, and a utility U. Given
demonstrations of behavior in an MDP, Eq. (I)) defines three different learning problems:

1. Utility Learning (UL): given r, learn U.
2. Inverse Reinforcement Learning (IRL): given U, learn r.
3. IRL + UL: learn both r and U.

Problem 3 is the most interesting (and challenging), because it makes the least assumptions, while
Problem 2 has been extensively studied in literature when U is linear (Ng & Russell| [2000) (but
not in detail for other choices of U). In this paper, we focus on Problem 1, which we name Uftility
Learning (UL), for two reasons. First, there exist relevant applications of UL per se (see the last part
of this section). Second, understanding UL represents a significant step toward solving Problem 3.

Partial identifiability in utility learning. In the exact UL setting (where sq, p, 7 are known), by
definition, we are given a policy 7% and an MDP M = (S, A, H, s, p, ), and the goal is to find
the expert’s utility function UZ €  that satisfies J*(UZ; p,r) = J= (UZ;p,r), i.c., that makes
7F optimal in RS-MDP M, =. Does the knowledge of 7 and M suffice to uniquely identify U ?
Analogously to IRL (Cao et al., [2021} [Kim et al., 2021} |Skalse et al.||[2023), the answer is negative,
as shown in the following example.

Example 4.1. Let M = (S, A, H, s0,p, 1) be the MDP in Fig. [I|(left), where H = 2,11 (s0,a1) =
1,71(s0,a2) = 0.5, and all other values of p,r are drawn in the figure. Note that GP'" =
{0,1,1.5,2}. Let ©¥ be the expert policy, that prescribes ay in so. Then, a utility U € i makes
7 optimal for My if playing ay is better than playing az: J™ (U;p,r) =0.1U(2)+0.5U(1.5) +
0.4U(1) = 0.8U(1.5) + 0.2U(1). Thus, all the utilities U € 4, that assignto G = 1,G = 1.5 any
of the values coloured in blue in Fig. ( middle), are equally-plausible candidates to be UP.

Example shows that U is just partially identifiable from demonstrations. In particular, we
cannot uniquely identify the value of U¥ at points in the set G”", and we do not have information
on U¥ at the other points [0, H]\G?". Similarly to Metelli et al.| (2023), we formalize the set of
utilities “compatible” with 7 in M by introducing the notion of feasible utility setﬂ

Definition 4.1 (Feasible Utility Set). Let M = (S, A, H, sy, p, ) be an MDP, and let ¥ be the (po-
tentially non-Markovian) expert policy. The feasible utility set U, ,. .= contains all the utilities that

make 7% optimal for RS-MDP My. Formally: U, , e = {U e W|J™" (U;p,r) = J*(U;p,7)}.

Usage and transferability of utilities. UL is a problem setting for inferring the risk attitude of
an agent. Once learned, we might “use” the computed utility U for (i) predicting the behavior of
the expert in a new environment, (4¢) imitating the expert, or (7ii) assessing how valuable a certain
policy is from the viewpoint of the expert. However, due to partial identifiability, U cannot be close
to U more than the worst utility in the feasible set Uy, , ~&. Is this “ambiguity” tolerated by the
applications above? The following propositions answer negatively for all (), (i7), and (¢i7) of them,
but, fortunately, Proposition 4.6 shows that adding more data can solve the issue.

Let us begin with (¢). In our model, a utility U permits to predict the behavior of an agent with

utility U¥ in a new MDP M’ if U and U” induce in M’ the same optimal policies. Nevertheless,
not all the utilities in the feasible set satisfy this property for all the possible MDPs, as shown below:

’In Appendix@]we provide a more explicit expression of the feasible utility set.
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Proposition 4.1 (Transfer to a new transition model). There exist two MDPs M =
(S, A, H,s0,p,7), M' = (S, A H, s0,p',7), with p # p/, for which there exists a policy m¥ and a
pair of utilities Uy, Us € Y such that: Uy, Us € Uy, , e and 1T, (Ur) N 11%, (Uz) = {}.

Proposition 4.2 (Transfer to a new reward). There exist two MDPs M = (S, A, H, so,p,7), M’ =
(S, A, H,s0,p,7"), withr # 1/, for which there exists a policy T¥ and a pair of utilities Uy, Us €
such that: Uy, Uz € Uy, . e and IT% (Uy) 0 1% (Us) = {}.

Intuitively, we are saying that transferring the learned utility U to an MDP with a different reward
or transition model might cause it to induce optimal policies other than those induced by UF there.
Consider now (#4). To perform a meaningful imitation, due to the practical difficulty of computing

optimal policies, we require that any policy with an almost optimal performance for U has also a
“good” performance for U, but this does not always hold:

Proposition 4.3. There exists an MDP M = (S, A, H, so,p,r) and a policy ™% for which there
exists a pair of utilities U1, Us € U,, . = such that, for any € = 0 smaller than some constant, there
exists a policy w. such that J*(Uy;p,r) — J™(Uy;p,r) = e and J*(Ua; p,r) — J™<(Us; p,r) = 1.

Finally, concerning (7ii), the fact that U and UZ provide close values of performance for all the
policies seems a desirable requirement, i.e., asking for small d&' (U¥,U) :=max, |J™(U¥;p,r)—
J 7T((A] ; p,r)| Zhao et al.[(2024). We note that closeness under some norm implies closeness in M

Proposition 4.4. Consider an arbitrary MDP with transition model p and reward function r. Then,
for any pair of utilities Uy, Uy € 4, it holds that d3' (Uy, Uz) < maxgege.r |Ur(G) — Ua(G).

Nonetheless, not all the utilities in the feasible set are close to each other in d;‘,]"r distance:

Proposition 4.5. There exists an MDP M = (S, A, H, 5o, p,r) and a policy ™ for which there
exists a pair of utilities Uy, Uy € Uy, ,. = such that dZ{IT(Ul, Us) =1

Intuitively, Propositions . T{4.3] @ prove that demonstrations of behavior in a single MDP do not
provide enough information on U* to obtain guarantees for applications (), (i¢), (¢i¢). Instead, the
following result shows that demonstrations in multiple environments permit to mitigate this issue.

Proposition 4.6 (Multiple demonstrations). Let S, A, H be, respectively, any state space, action
space, and horizon, satisfying S > 3, A > 2, H > 2, and let U¥ € \l be any utility. If. for any
possible dynamics s, p and reward r, we are given the set of all the deterministic optimal policies
of the corresponding RS-MDP (S, A, H, s, p,r, UF), then we can uniquely identify utility U”.

Simply put, through a constructive proof, Proposition[f.6]provides a sufficient condition for uniquely
retrieving Uk, analogously to/Amin & Singh| (2016}));|/Cao et al.|(2021)); |Biining et al.| (2022).

5 ONLINE UTILITY LEARNING WITH GENERATIVE MODEL

In the previous section, we have analyzed UL in the exact setting. Here, we introduce a more realistic
setting for UL, and we describe two efficient algorithms with theoretical guarantees to address it.

We consider the online UL problem setting with demonstrations from multiple environmentsE] which
we now define. Let U¥ € il be the utility function of the expert. Consider N MDPs M® =
(8, A% H, i, p',r%), indexed by i € [IN], that share the same horizon H. For each M?, we know
St A H, si, rt, we have access to a generative sampling oracle (Azar et al.L 2013) for the transition
model p?, which, given any triple s, a, h, returns a sample s’ ~ pi (-|s, a), and we are given a dataset
DE = {(s],a1,8), ..., 8y, @y, S11)}je[rei] of T trajectories collected by executing expert
policy 7+, which is optimal for the RS-MDP ./\/12] 5. Informally, the goal is to find UF.

5.1 CHALLENGES AND OUR SOLUTION

To develop efficient algorithms for learning utilities in practice, some challenges must be addressed.

SThis requirement permits to alleviate the partial identifiability issues, as shown in Proposition
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Curse of Dimensionality. Approximation techniques are needed for computing optimal policies
in RS-MDPs (the enlarged state space is too large |G} |oc(SA)P=Y Vh (Wu & Xu, 2023)), for
storing return distributions (whose support may grow exponentially in the horizon |GP"|oc(SA)H
(Bellemare et al., 2023)), and for storing utilities in 4l (defined over the interval [0, H]).

Finite Data. Some quantities of interest (i.e., policies and transition models) are not known exactly,
but they must be estimated from samples, introducing an estimation error.

Partial Identifiability. Even in the exact setting, demonstrations of behavior are “explained”
equally well by infinitely many utilities; thus, it is not clear which utility an algorithm should output.

To address these challenges, our algorithms (Sections adopt the following approaches.

Curse of Dimensionality. We combine the (i) discretization approach in[Wu & Xu|(2023)) for the
enlarged state space, with the (i¢) categorical representation of Bellemare et al.| (2023) for return
distributions. Moreover, we consider (iii) discretized utilities.

(i) Fix parameter €y > 0, define sets R := {0, e, 2¢0, . .., |1/e0]e0}, Vi = {0, €0, 2€0, ..., |(h —
1)/€0]€o} as the eg-coverings of [0,1] and [0,h — 1] forall h € [H + 1], and let Y = V41, d =
|V|. Intuitively, note that the summation of h values in R provides a value in Y, for all h.
Therefore, for any i € [N], let Myysi= (8%, A H, s§,p",7",UF) be the RS-MDP with reward
7', obtained from 7" as 7}, (s, a) = IIg[r} (s, a)] for all s, a, h. In this manner, the sets of partial
returns of W’ satisfy Qﬁl’wg Y, < Y for all h, thus the MDP QEWLE] has a state space with
cardinality at most Sd < O(SH /ey), which is no longer exponential in the horizon. (47) Denote
as Q == {g e Al | % ield] q;0y, } the set of parametric probability distributions supported on Y,
where y1 == 0,ys == €q, ..., yq = |H/eo|eo represent the ordered items of set ). We construct the
categorical representation Proj. (1) € Q of an arbitrary (return) distribution n € AlH] through the
operator Proj., defined in Eq. ({@). (iii) We approximate utilities U € [ with vectors U € &l =1
so that U(y) = U(y) forall y € Y.

In this way, we work with tractable approximations whose complexity is controlled by parameter €.

Finite Data. We introduce the notion of utility compatibility to cope with finite data. With multiple
demonstrations, the true utility U satisfies the hard constraints J= ' (U p?, ) = J*(UF; p, 1)
for all i € [N]. However, with finite data, our estimate of J="" (UF; p?, ) — J*(UP; p’,r*) might
be different from zero for some 1, thus, we might get wrong in recognizing U™ as the true expert’s
utility. Crucially, collecting more (but still finite) data does not guarantee to obtain exactly zero.
Drawing inspiration from |Lazzati et al.|(2024a), we relax these “hard” requirements by introducing

a “soft” notion of constraints satisfaction, which we name utility compatibility:
Definition 5.1. Given MDP M = (S, A, H,sq,p,r) and policy 7F, the (non)compatibility
Cprne : th— [0, H] of utility U € Uwith 7% in M is: C,, , .6 (U) :== J*(U;p, r—J""(Us p,r).

Thanks to utility compatibility, we can quantify the extent to which a utility U is (non)compatible
with the (multiple) demonstrations by computing max;epny Cpi i 75 (U).

Partial Identifiability. We propose to develop two practical algorithms to fully characterize a set
of utility functions: (7) A utility classiﬁer that “defines” the boundaries of the set, and (i) a utility
extractor, that extracts a utility from the set.

For a given accuracy threshold A > 0, define the set of A-compatible utilities as: Up = {U €
U] maxiegng Cpi i nei (U) < A} (i) We define a utility classifier algorithm as a procedure that
takes in input a utility U € 4l and outputs a boolean saying whether U € U or not. Intuitively, being
the input utility arbitrary, such algorithm permits to characterize the entire set /. Furthermore, (i%)
we define a utility extractor algorithm as a procedure that outputs an arbitrary utility U from set Ua .

5.2 CATY-UL (COMPATIBILITY FOR UTILITY LEARNING)

CATY-UL is a utility classifier algorithm. It classifies utilities U w.r.t. Ua by estimating the
(non)compatibility C*(U) ~ Cpi i #.:(U) forall i € [N], and, then, checking if max;epnjC*(U) < A.

"The notion of reward classifier can be found in|Lazzati et al[(2024a). We extend it to utilities.
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Algorithm 1: CATY-UL Algorithm 2: TRACTOR-UL

o Input: data {DF},;, ters T, K, o, Uy,
Input: data {DF};, threshold A, utility U, npu di:c?e{tiz;ti}oni aracilniaerr;i cs {Ni}a Uo
discretization o, dynamics {p" } m ation €o, yna D i
TU(y) — Uly) forallyey 1 77" «— ERD(D{,r')  forie [N]

-

2 forie {1,2,...,N} do 2f0rt:O7...7T71(io . . ~i
st | b o st
s | 97" < ERD(DF Y 4 L« PLANNING(U., 4, ')
T A CORD YN e (1 () 5 D « ROLLOUT(F, p', 7, i, K)
/A/ .Estimate J*(U;pl,l'l): ‘ 6 M) — 2D eep LG =y}, Vye Y
5 J*'(U), - « PLANNING(U,i,p") 7 end
// Estimate Cpi i rz.i(U): // Update Upyr:
6 | CU) = T U) - TPU) 5| g Ny (1 —7)
7 end N 9 Uis1 « HQL (U: — agr)
8 class < True if max;eny C*(U) < A else False 10 end

9 Return class

1 NT-177
1 Return + >, " U,

As other algorithms (Jin et al.| [2020; |Lazzati et al.,2024al), CATY—UL comprises two phases: an ex-
ploration phase (Algorithm , where we compute estimates {p’}; by collecting 7¢ samples from the
generative model of each M*, and a classification phase (Algorithm, that takes in input a utility
Uesl, estimates {P'};, and datasets {D¥%};, to construct estimates {C?(U)}; for classifying U.

Specifically, at Line [I} we discretize the utility U. Next, for all ¢ € [N], we construct estimates
JEAWU) ~ J7NU;pt ) and JRI(U) ~ J*(U;p',r') as follows. At Line we estimate
nEt ~ Projc(n”i”iv”E’i) ~ 17P7"Ti’”E‘j through the ERD (Estimate Return Distribution) subrou-
tine (Algorithm [S), and dataset D7, while at Line E| we compute J%#(U). At Line [5} we ap-
proximate the optimal performance J*(U; p*, ") in RS-MDP M}, with the optimal performance
JHUU) = J*(U;p',7) in RS-MDP €[Mg] = (S', A, H, s8,p',7,U), which is computed
through value iteration in the enlarged state space MDP G[ﬁ%] using the PLANNING subroutine
(Algorithm . Finally, at Line |§| we compute CAl(U ), and at Line |[8| we perform the classification.
CATY-UL enjoys the following guarantee:

Theorem 5.1. Lete,d € (0,1), and let U be a subset of i1, containing the utilities to classify. If we
set eg = €2/(T2HL?), and if it holds that, for all i € [N]:

tse i 80 < O 10g INEY i 5(SAIE (g 1 1o SATNY,

then, w.p. at least 1 — 6, CATY-UL correctly classifies all the U € U that satisfy either

max; Cpi i 5. (U) < A — € (inside Un) or max; Cpi yi 5.i(U) > A + € (outside Un ).

Some observations are in order. First, note that A is arbitrary in [0, H], and the sample complexity
does not depend on it. If we have one utility to classify |[U/| = 1, then oc.S queries to the generative
model suffice instead of cc.52. Note that ¢ represents a trade-off between approximation and estima-
tion error. If we re-normalize utilities so that U (H ) = 1, then some H terms in the bounds disappear.
Intuitively, the Lipschitzianity assumption is necessary for approximating continuous utilities U € U
with vectors in 4. Finally, observe that we can restrict the range of (non)compatibility [A —e, A+ €]
where CATY—UL can make mistake with high probability (w.h.p.) by collecting more data.

5.3 TRACTOR-UL (EXTRACTOR FOR UTILITY LEARNING)

For simplicity, let {7, := ﬂi} for L > 0, and let £, $L; , &, &, ;U 5 be the analogous of, respectively,
Uy, 83y U, but containing increasing functions instead of strictly-increasing functions

TRACTOR-UL is a utility extractor algorithm. For any A > 0, it aims to extract a utility U from
U A by performing online gradient descent in the space of discretized L-Lipschitz utilities 4(;. It

8Note that, for defining U A» we extend also the definition of (non)compatibility (Def. to utilities in L.
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comprises two phases: an exploration phase, that coincides with that of CATY-UL (Algorithm [3)
and aims to compute estimates {p'}; using {7'}; samples, and an extraction phase (Algorithm [2),

that takes in input estimates {5’ };, and datasets {D+*},, to construct a utility U € {; to return.

Specifically, starting from Uy € U;, we compute a sequence {U1y,...,Ur} of utilities in [,
through an online projected gradient descent scheme, where the gradient g; is computed at Line
and the update is carried out at Line E] with projection onto ;. Intuitively, we aim to min-
imize function maxe[ny Cpi i x5 (U) < 23 Cpi i z5.i(U) over set i, (we upper bound the
max with the sum to work with gradients instead of subgradients), but computing the gradient
VU Yie[ng Cpiyinpi(U) = 3,(VuJ*(U;p',r') — nP" 7"} is not simple. Thus, analogously
to Syed & Schapire, (2007); Schlaginhaufen & Kamgarpour (2024), we replace V¢ J*(U;p,rt)
with Vi Jm " (U;pi,ri)=nP" ™™ " where 7' is the (fixed) optimal policy in RS-MDP M,
(Uy € Y, satisfies Uy (y) = U, (y) for all y € ), and we prove convergence. Therefore, Lines
approximate Y., (7 —n%")~ Y, (npilri*”zk’i —npi’ri’”E‘i) for all ¢. In particular, Lines approx-
imate n?" """ by passing through ﬁ}:wnﬁiﬁﬁf’i P where 7% is the optimal policy
for the RS-MDP /(/l\%t :=(S", A" H,sb,p',7,U;). At Line 4 we compute through value iteration
(PLANNING subroutine, Algorithm the optimal policy ¢;** for MDP @[/(/l\%t]. Then, at Line ,
we collect the return of K trajectories obtained by executing ¢ in MDP & [/\//\l‘vt] (ROLLOUT sub-
routine, Algorithm @), which is equivalent to playing 7" in ﬂ%t. Finally, at Line @ we use this
data to compute the empirical estimate 7j;. TRACTOR-UL enjoys the following guarantee:
Theorem 5.2. Let €,5 € (0,1),L > 0, and assume that U¥ € ;. If we execute TRACTOR-UL
with parameters ¢y = €2/(8ON?L*H), T > O(N*H'L?/e*), K > (5(N2H2 log ML Je2) o =
N [H Jeo| — 1H/(2N~T), an arbitrary Uq € U;, and if it holds that, for all i € [N]:
4n4T2 2 5

TE”’ZO(H ];i L log N;ZL), 7120(7]\7 ifH (S-Q—logSAfN)),
then, w.p. at least 1 — 6, for any A > ¢, TRACTOR—-UL guarantees that all the utilities U € L; such
that U(y) = U(y)for all y € Y (where Ue U, is the output of TRACTOR-UL) belong to U € U 5.

Intuitively, any U € il; obtained by “interpolating” U has a small (non)compatibility w.h.p.. We
consider increasing utilities L, instead of strictly-increasing $1;, to guarantee the closedness of the
set onto which we project. As for CATY-UL, normalizing U(H ) = 1 would remove some H terms
from the bounds, and the Lipschitzianity assumption cannot be dropped. Finally, projection Il can

be implemented efficiently since set &, is made of O(H?/e2) linear constraints (Appendix [E.1)).

6 NUMERICAL SIMULATIONS

In this section, we provide proof-of-concept experiments using data collected from lab members.

The Data. We asked to 15 participants to describe the actions they would play in an MDP with
horizon H = 5 (see Appendix [F), at varying of the state, the stage, and the cumulative reward
collected. The reward has a monetary interpretation. To answer the questions, the participants have
been provided with complete information about the dynamics and the reward function of the MDPﬂ

Experiment 1 - Model validation. We aim to answer to: Is it worthy to increase the model com-
plexity using a learnable utility in Eq. (I) instead of the (fixed) linear utility as (Ng & Russell,
2000)? How much better do we fit the data? To measure the fitness of a utility U to the data
(policy 7) fairly, we consider a relative notion of (non)compatibility (we omit p, r for simplicity):
C.(U) = (J*(U) — J™(U))/J*(U). Intuitively, C,,(U) measures the quality of 7 as perceived
by the demonstrating agent, if U was its true utility function. We execute CATY—-UL (without ex-
ploration) for the 15 participants comparing the IRL risk-neutral utility Ujipeor With 3 “baselines’: A
risk-averse Usqy (concave) and a risk-lover Usguare (convex) utilities, and the utility Usg fitted through
the SG method (see Appendix[F|for details). We report the (non)compatibilities in percentage below:

“We have been allowed to collect these data because they are not personal.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15| mean

Ulinear |39 58 18 1 9 33 25 62 1 56 1 16 16 25 60 | 28+22
UM‘" 16 28 8 1 3 16 11 30 1 25 1 6 8 11 28 | 13+10

Uuae | 70 86 32 1 19 41 44 91 1 88 1 35 28 44 91 |45+32
Usg 39 76 11 0 5 28 20 34 10 2 1 8 21 17 51 | 22+21

Table 1: Values of é; of various utilities with the demonstrations of the participants in percentage.

Some observations are in order. First, this data shows that replacing Uljpe,r (i-€., IRL) in Eq. (]D
with Usgy reduces C,.(+) from 28% to 13% on the average of the participants, answering positively
to our question. Next, the (fixed) Usqx outperforms the Usg of each participant. This is due to both
the bounded rationality of humans, who can not apply the H = 1 utility Usg to H > 1 problems,
and the fact that Uy “overfits” the simple MDP considered, but it might generalize worse than
Usg to new environments. Finally, all the utilities are compatible with policies 4 and 11, providing
empirical evidence on the partial identifiability of the expert’s utility from single demonstrations.

Experiment 2 - Empirical analysis of TRACTOR-UL. We aim to empirically characterise
TRACTOR-UL. First, we execute it on the MDP described earlier with different values of step
size o and initial utility Uy to compute a compatible utility for participant 10 (chosen arbitrarily).
As shown in the figure on the side, the optimal
step size « = 100 may be very large, due to
(i) the presence of compatible utilities on the

boundaries of 4 L thus larger step sizes can 045 N~ R PR PO
converge sooner, and to (i7) the projection onto ~ S°*

e . .« . oy 0.35 — a=0.01
4, that results in minimal changes of utility - — deos
even with very large steps (see Appendix[F.4.2). %m rodiall
These observations do not change if we con- € 020 a=1000
sider other participants (Appendix [F.1.4). Next, Tous 2=10000
we run TRACTOR-UL on simulated data (see Zo10 e e
Appendix [F43). We consider MDPs gener- pss -
ated at random with larger state-actions spaces Iteration t

(increment of S, A), and also multiple environ-

ments (increment of N). To comply with the

assumption that there exists a utility function for which the expert’s policy is (almost) optimal, we
compute, in each environment, the optimal policy for an S-shaped utility function that is convex
for small returns, and concave for large returns, and then we inject some noise. The simulations
show that the number of gradient iterations necessary to achieve a certain level of performance is
affected by an increment of N, but not of S, A, as expected by Theorem[5.2} However, larger S, A
require more execution time, because of the value iteration subroutine. Moreover, we observe that
the best step size when NN increases is smaller than ov = 100 found for the experiments with NV = 1.
Intuitively, there are less compatible utilities now, thus we need smaller gradient steps to find them.

7 CONCLUSION

In this paper, we proposed a novel descriptive model of behavior in MDPs, we formalized the UL
problem as that of learning the risk attitude of an agent from demonstrations, and we characterised
the partial identifiability of the expert’s utility. In addition, we have described two provably efficient
algorithms for estimating the compatibility of a utility with demonstrations, and for extracting a
compatible utility. They have been empirically validated through two proof-of-concept experiments.

Future directions. This paper opens up many important questions. To quantify the model mis-
specification, to use function approximation, to conduct an empirical study on the horizon used by
humans for planning (Carton et all 2016), to combine demonstrations with other feedbacks (Jeon|
et all 2020), to learn both 7 and U, to extend imitation learning approaches (e.g., GAIL (Ho &
Ermon| [2016)) or the maximum entropy framework with utilities, to improve the model in Eq. ( | )
with negative rewards and prospect theory (Kahneman & Tversky, [1979)), and many others.

We believe that most of the IRL literature shall be extended under the proposed, more expressive,
framework to construct more accurate algorithms for IRL and UL.

19%(, forces utilities to be increasing, i.e., with constraints U(G1) < U(G2) YG1 < G2. The plateau in Fig.
(right) indicates that U(G1) = U(G2) VG1 < G2,G1, G2 € [1, 3], thus, it represents a boundary.

10
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the data and the analyses conducted in this study do not raise any ethical concerns.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we have included the complete code used to conduct the experiments in
the supplementary material. The folder contains a README.md file that outlines the code structure
and provides step-by-step instructions on how to replicate the experiments. Further experimental
details, including the specific values of the hyperparameters, are provided in Appendix [

REFERENCES

Alekh Agarwal, Nan Jiang, Sham M. Kakade, and Wen Sun. Reinforcement Learning: Theory and
Algorithms. 2021. URL https://rltheorybook.github.io/|

Kareem Amin and Satinder Singh. Towards resolving unidentifiability in inverse reinforcement
learning, 2016.

Stuart Armstrong and S6ren Mindermann. Occam's razor is insufficient to infer the preferences of ir-
rational agents. In Advances in Neural Information Processing Systems 31 (NeurIPS), volume 31,
2018.

Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learning: Challenges, meth-
ods and progress. Artificial Intelligence, 297:103500, 2021.

Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath. Coherent measures of risk.
Mathematical Finance, 9(3):203-228, 1999.

Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert Kappen. Minimax PAC bounds on the
sample complexity of reinforcement learning with a generative model. Machine Learning, 91(3):
325-349, 2013.

Marc G. Bellemare, Will Dabney, and Mark Rowland. Distributional Reinforcement Learning. MIT
Press, 2023.

Lorenzo Bisi, Luca Sabbioni, Edoardo Vittori, Matteo Papini, and Marcello Restelli. Risk-averse
trust region optimization for reward-volatility reduction. In International Joint Conference on
Artificial Intelligence 29 (IJCAI), pp. 45834589, 2020.

Michael Bowling, John D. Martin, David Abel, and Will Dabney. Settling the reward hypothesis. In
International Conference on Machine Learning 40 (ICML), 2023.

Thomas Kleine Biining, Anne-Marie George, and Christos Dimitrakakis. Interactive inverse rein-
forcement learning for cooperative games. In International Conference on Machine Learning 39
(ICML), volume 162, pp. 23932413, 2022.

Nicole Béauerle and Ulrich Rieder. More risk-sensitive markov decision processes. Mathematics of
Operations Research, 39(1):105-120, 2014.

Haoyang Cao, Samuel Cohen, and Lukasz Szpruch. Identifiability in inverse reinforcement learning.
In Advances in Neural Information Processing Systems 34 (NeurIPS), pp. 12362-12373, 2021.

Haoyang Cao, Zhengqi Wu, and Renyuan Xu. Inference of utilities and time preference in sequential
decision-making, 2024.

Daniel Carton, Verena Nitsch, Dominik Meinzer, and Dirk Wollherr. Towards Assessing the Human
Trajectory Planning Horizon. PLOS ONE, 11(12):1-39, 2016.

11


https://rltheorybook.github.io/

Under review as a conference paper at ICLR 2025

Urszula Chajewska, Daphne Koller, and Dirk Ormoneit. Learning an agent’s utility function by
observing behavior. In International Conference on Machine Learning 18 (ICML), pp. 35-42,
2001.

Lawrence Chan, Andrew Critch, and Anca Dragan. Human irrationality: both bad and good for
reward inference, 2021.

Rui Chen, Wenshuo Wang, Zirui Zhao, and Ding Zhao. Active learning for risk-sensitive inverse
reinforcement learning, 2019.

Ziteng Cheng, Anthony Coache, and Sebastian Jaimungal. Eliciting risk aversion with inverse rein-
forcement learning via interactive questioning, 2023.

Hans Follmer and Alexander Schied. Stochastic Finance: An Introduction in Discrete Time. De
Gruyter, 2016.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in Neural
Information Processing Systems 29 (NeurIPS), 2016.

Hong Jun Jeon, Smitha Milli, and Anca Dragan. Reward-rational (implicit) choice: A unifying for-
malism for reward learning. In Advances in Neural Information Processing Systems 33 (NeurIPS),
pp. 4415-4426, 2020.

Chi Jin, Akshay Krishnamurthy, Max Simchowitz, and Tiancheng Yu. Reward-free exploration for
reinforcement learning. In International Conference on Machine Learning 37 (ICML), volume
119, pp. 4870-4879, 2020.

Anders Jonsson, Emilie Kaufmann, Pierre Menard, Omar Darwiche Domingues, Edouard Leurent,
and Michal Valko. Planning in markov decision processes with gap-dependent sample complexity.
In Advances in Neural Information Processing Systems 33 (NeurIPS), pp. 1253—-1263, 2020.

Daniel Kahneman and Amos Tversky. Prospect theory: An analysis of decision under risk. Econo-
metrica, 47(2):263-291, 1979.

Kuno Kim, Shivam Garg, Kirankumar Shiragur, and Stefano Ermon. Reward identification in inverse
reinforcement learning. In International Conference on Machine Learning 38 (ICML), pp. 5496—
5505, 2021.

David M. Kreps. Notes On The Theory Of Choice. Westview Press, 1988.

Filippo Lazzati, Mirco Mutti, and Alberto Maria Metelli. How to scale inverse rl to large state
spaces? a provably efficient approach, 2024a.

Filippo Lazzati, Mirco Mutti, and Alberto Maria Metelli. Offline inverse rl: New solution concepts
and provably efficient algorithms. In International Conference on Machine Learning 41 (ICML),
2024b.

Bai Lei. Learning influence diagram utility function by observing behavior. In Advanced Multimedia
and Ubiquitous Engineering 14 (MUE), pp. 164—168, 2020.

Anirudha Majumdar, Sumeet Singh, Ajay Mandlekar, and Marco Pavone. Risk-sensitive inverse
reinforcement learning via coherent risk models. In Robotics: Science and Systems 13 (RSS),
2017.

Shie Mannor and John N. Tsitsiklis. Mean-variance optimization in markov decision processes. In
International Conference on Machine Learning 28 (ICML), pp. 177-184, 2011.

Alberto Maria Metelli, Filippo Lazzati, and Marcello Restelli. Towards theoretical understanding
of inverse reinforcement learning. In International Conference on Machine Learning 40 (ICML),
pp- 24555-24591, 2023.

Andrew Y. Ng and Stuart J. Russell. Algorithms for inverse reinforcement learning. In International
Conference on Machine Learning 17 (ICML 2000), pp. 663—670, 2000.

12



Under review as a conference paper at ICLR 2025

Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J. Andrew Bagnell, Pieter Abbeel, and Jan Peters.
An algorithmic perspective on imitation learning. Foundations and Trends® in Robotics, 7(1-2):
1-179, 2018.

Martin Lee Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, Inc., 1994.

Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement learning. In International
Joint Conference on Artifical Intelligence 20 (IJCAI), pp. 25862591, 2007.

Lillian J. Ratliff and Eric Mazumdar. Inverse risk-sensitive reinforcement learning. IEEE Transac-
tions on Automatic Control, 65(3):1256-1263, 2020.

R. Tyrrell Rockafellar and Stanislav Uryasev. Optimization of conditional value-at risk. Journal of
Risk, 3:21-41, 2000.

Mark Rowland, Marc Bellemare, Will Dabney, Remi Munos, and Yee Whye Teh. An analysis
of categorical distributional reinforcement learning. In International Conference on Artificial
Intelligence and Statistics 21 (AISTATS), volume 84, pp. 29-37, 2018.

Mark Rowland, Li Kevin Wenliang, Rémi Munos, Clare Lyle, Yunhao Tang, and Will Dabney.
Near-minimax-optimal distributional reinforcement learning with a generative model, 2024.

Stuart Russell. Learning agents for uncertain environments (extended abstract). In Proceedings of
the Eleventh Annual Conference on Computational Learning Theory 11 (COLT), pp. 101-103,
1998.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 3
edition, 2010.

Andreas Schlaginhaufen and Maryam Kamgarpour. Towards the transferability of rewards recovered
via regularized inverse reinforcement learning, 2024.

Rohin Shah, Noah Gundotra, Pieter Abbeel, and Anca Dragan. On the feasibility of learning, rather
than assuming, human biases for reward inference. In International Conference on Machine
Learning 36 (ICML), volume 97, pp. 5670-5679, 2019.

Mehran Shakerinava and Siamak Ravanbakhsh. Utility theory for sequential decision making. In
International Conference on Machine Learning 39 (ICML), volume 162, pp. 19616-19625, 2022.

Nishant Shukla, Yunzhong He, Frank Chen, and Song-Chun Zhu. Learning human utility from video
demonstrations for deductive planning in robotics. In Conference on Robot Learning 1 (CoRL),
volume 78, pp. 448-457, 2017.

Sumeet Singh, Jonathan Lacotte, Anirudha Majumdar, and Marco Pavone. Risk-sensitive inverse
reinforcement learning via semi- and non-parametric methods. The International Journal of
Robotics Research, 37(13-14):1713-1740, 2018.

Joar Skalse and Alessandro Abate. Misspecification in inverse reinforcement learning. In AAAI
Conference on Artificial Intelligence 37 (AAAI), 2023.

Joar Skalse and Alessandro Abate. Quantifying the sensitivity of inverse reinforcement learning to
misspecification. In International Conference on Learning Representations 12 (ICLR), 2024.

Joar Max Viktor Skalse, Matthew Farrugia-Roberts, Stuart Russell, Alessandro Abate, and Adam
Gleave. Invariance in policy optimisation and partial identifiability in reward learning. In Inter-
national Conference on Machine Learning 40 (ICML), volume 202, pp. 32033-32058, 2023.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford
Book, 2018.

Umar Syed and Robert E Schapire. A game-theoretic approach to apprenticeship learning. In
Advances in Neural Information Processing System 20 (NeurIPS), 2007.

13



Under review as a conference paper at ICLR 2025

Aviv Tamar, Dotan Di Castro, and Shie Mannor. Policy gradients with variance related risk criteria.
In International Coference on Machine Learning 29 (ICML), pp. 1651-1658, 2012.

Cédric Villani. Optimal Transport: Old and New. Springer Berlin, Heidelberg, 2008.

John von Neumann and Oskar Morgenstern. Theory of Games and Economic Behavior. Princeton
University Press, 1947.

Peter P. Wakker. Prospect Theory: For Risk and Ambiguity. Cambridge University Press, 2010.

Zhengqi Wu and Renyuan Xu. Risk-sensitive markov decision process and learning under general
utility functions, 2023.

Caiming Xiong, Nishant Shukla, Wenlong Xiong, and Song-Chun Zhu. Robot learning with a
spatial, temporal, and causal and-or graph. In IEEE International Conference on Robotics and
Automation 33 (ICRA), pp. 2144-2151, 2016.

Lei Zhao, Mengdi Wang, and Yu Bai. Is inverse reinforcement learning harder than standard rein-
forcement learning? In International Conference on Machine Learning 41 (ICML), 2024.

Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy inverse
reinforcement learning. In AAAI Conference on Artificial Intelligence 23 (AAAI), volume 3, pp.
1433-1438, 2008.

14



Under review as a conference paper at ICLR 2025

A ADDITIONAL RELATED WORKS

We describe here the most relevant related works. First, we describe IRL papers with risk, i.e., those
works that consider MDPs, and try to learn either the reward function or the utility or both. Next, we
analyze the works that aim to learning the risk attitude (i.e., a utility function) from demonstrations
of behavior (potentially in problems other than MDPs). Finally, we present other connected works.

Inverse Reinforcement Learning with risk. Majumdar et al.| (2017)) introduce the risk-sensitive
IRL problem in decision problems different from MDPs. Authors analyze two settings, one in which
the expert takes a single decision, and one in which there are multiple decisions in sequence. They
model the expert as a risk-aware decision-making agent acting according to a coherent risk metric
(Artzner et al.,|1999), and they consider both the case in which the reward function is known, and
they try to learn the risk attitude (coherent risk metric) of the expert, and the case in which the reward
is unknown, and they aim to estimate both the risk attitude and the reward function. Nevertheless,
the authors analyze a very simple model of environment, that they call prepare-react model, which
is much different from an MDP, since, simply put, it is equivalent to a deterministic MDP in which
the stochasticity is shared by all the state-action pairs at each stage h € [H]. Moreover, the optimal
policy is markovian in this setting.

Singh et al.| (2018)) generalizes the work of [Majumdar et al.| (2017). Specifically, the biggest im-
provement is to consider nested optimization stages. However, the model of the environment is still
much simple, and, in addition, the authors consider a maximum likelihood approach to facilitate
inference.

‘We mention also the work of |Chen et al.| (2019) who extend Majumdar et al.|(2017) by devising an
active learning framework to improve the efficiency of their learning algorithms.

Another important work is that of Ratliff & Mazumdar| (2020), who study the risk-sensitive IRL
problem in MDPs, by proposing an interesting parametric model of behavior for the expert based on
prospect theory [Kahneman & Tversky| (1979), and they devise a gradient-based inverse reinforce-
ment learning algorithm that minimizes a loss function defined on the observed behavior. However,
this work suffers from the major limitation of assuming that the expert plays actions exactly based
on a softmax distribution, which introduces enough structure to perform maximum likelihood and
to learn the parameters of the utility function. Such assumption is rather strong.

We shall mention also the recent pre-print of |Cao et al.| (2024) that proposes a novel stochastic
control framework in continuous time that includes two utility functions and a generic discounting
scheme under a time-varying rate. Assuming to know both the utilities and the discounting scheme,
the authors show that, through state augmentation, the control problem is well-posed. In addition,
the authors provide sufficient conditions for the identification of both the utilities and the discounting
scheme given demonstrations of behavior. It should be remarked that there are many differences be-
tween this work and ours. First, they consider a continuous time environment that is rather different
from an MDP. Next, when they consider MDPs to make things more concrete, they assume a utility
function on the reward instead of the return, and they also consider the entropy-regularized setting
in which the optimal policy is the Boltzmann policy, which permits to apply maximum likelihood
for inferring the parameters of the utility function and the discount factor (they assume exponential
discounting).

Learning utilities from demonstrations. |Chajewska et al.|(2001) considers an approach similar
to IRL Ng & Russell| (2000). Their goal is not to perform active preference elicitation, but, similarly
to us, to use demonstrations to infer preferences. Specifically, they aim to learn utilities in sequential
decision-making problems from demonstrations. However, they model the problems through deci-
sion trees, which are different from MDPs, and this represents the main difference between their
work and ours. Indeed, decision trees are simpler since there is no notion of reward function at
intermediate states. In this manner, they are able to devise (backward induction) algorithms to learn
utilities in decision trees through linear constraints similar to those devised by Ng & Russell| (2000)
in IRL. It is interesting to notice that they adopt a Bayesian approach to extract a single utility from
the feasible set constructed, and not an heuristic like that of Ng & Russelll (2000). They assume a
prior p(u) over the true utility function u, and approximate the posterior w.r.t. the feasible set of
utilities ¢/ using Markov Chain Monte Carlo (MCMC).
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Lei (2020) considers the problem of learning utilities from demonstrations similarly to |Chajewska
et al.| (2001)), but with the difference of considering influence diagrams instead of decision trees.
Since any influence diagram can be expanded into a decision tree, authors adopt a strategy similar
to|Chajewska et al.| (2001).

Shukla et al.|(2017) faces the problem of learning human utilities from (video) demonstrations, with
the aim of generating meaningful tasks based on the learned utilities. However, differently from us,
they consider the stochastic context-free And-Or graph (STC-AOG) framework (Xiong et al.,|2016),
instead of MDPs.

Others. Shah et al. (2019) is similar to our work in that it aims to learn the behavioral model of
the expert from demonstrations. However, they do not consider a specific model like us (i.e., Eq.
(1)), but use a differentiable planner (neural network) to learn the planner. However, their approach
requires a lot of demonstrations, even across multiple MDPs, and it does not consider the fact that
there exist interesting models of humans in behavioral economics.

B ADDITIONAL NOTATION
In this appendix, we introduce additional notation that will be used in other appendices.

Miscellaneous. For any probability distribution v € A®, we denote its cumulative density function
by F,. Let v € AR be a probability distribution on R; then, for any y € [0, 1], we define the
generalized inverse F;1(y) as:

F N (y) = inf{Fy(x) > y}.

We define the 1-Wasserstein distance wy : AR x A® — [0, 0] between two probability distributions
v, 1 as:

1
wy (v, 1) = L 1F, M (y) — F 7 (y)|dy. )

In addition, we define the Cramér distance 5 : A® x A® — [0, 0] between two probability
distributions v, i as:

) 1/2
talvon) = (| (Boly) = Euw)y) ®
R
‘We will use notation:

Vx~@[X] = Ex-q[(X — Ex~q[X])?],

to denote the variance of a random variable X ~ @ distributed as (). Given two random variables
X ~ @1,Y ~ @2, we denote their covariance as:

COVXNQl’YNQz [X, Y] = EX~Q17Y~Q2 [(X - EX~Q1 [X])(Y - EY~Q2 [Y])]

We define the categorical projection operator Proj, (mentioned in Section E]) that projects onto set
Y = {y1,92,...,ya} (the items of Y are ordered: y; < y> < ... < yq), based on Rowland et al.
(2018)). For single Dirac measures on an arbitrary y € R, we write:

5y1 lfy < Y1
Projq (dy) = yy:f:i- Oy, + yiﬁlyl Oyirr 1Y <Y <yitr, “4)
5yd ify > yq

and we extend it affinely to finite mixtures of M Dirac distributions, so that:

Projc( 3 qjézj) = 3 4Proje(3s)), )

je[M] je[M]

for some set of real values {z;} je[ar) and weights {q;} jefar]-

16



Under review as a conference paper at ICLR 2025

Value functions. Given an MDP M = (S, A, H, s, p,r) and a policy m, we define the V- and
Q-functions of policy 7 in MDP M at every (s,a, h) € S x A x [H] respectively as V;" (s;p, r) :=

Ep7r7W[ZfI:h ri(s¢, ar)|sp = s] and QF (s, a;p, 1) = ]Ep,mr[zzih re(se, at)|sp = s,ap = a]. We
define the optimal V- and Q-functions as V,*(s;p,r) := sup, V;"(s;p,r) and Qf (s,a;p,r) =
sup, Q7 (s,a;p,r).

For MDPs with an enlarged state space, e.g., ({S x Vi}n, A, H, (s0,0),p,t), and a policy ¢ =
{¢n}n, for all h € [H] and (s,y,a) € S x YV, x A we denote the V- and Q-functions respec-
tively as V,;/)(s,y;p,t) = Ep,r,w[Zf{:h ve(Se, Yt ae)|sn = s,yn = y| and Qf(s,y,a;p,t) =
Ep7t7¢[2ih ve(Se, Yt at)|Sh = S,yn = y,ap = a]. We denote the optimal V- and Q-functions
as V¥(s,y; p, t) := sup,, Vhw(s,y;p,t) and Q (s,y,a;p, t) := sup,, Q;f(s,y, a;p,t).

Observe that the notation just introduced will be extended in a straightforward manner to MDPs

(MDPs with enlarged state space) that have an estimated transition model p (ﬁ), and/or a discretized
reward function 7 ().

C ADDITIONAL RESULTS AND PROOFS FOR SECTION[3]

In Appendix [C.I] we present in more detail the MDP used in Example 3.1] In Appendix we
present an additional motivating example explaining why including the reward into the state in
Example [3.1]is not satisfactory, while in Appendix[C.3]we provide the missing proofs for Section 3]

C.1 THE MDP oF EXaAMPLE[3.1]

The MDP used in Example[3.1} We remark that the reward function is deterministic and is a function
of the state-action space only.

r = 200€

r=0€
start

r = 50€

C.2 DRAWBACKS OF RE-MODELLING THE MDP

If we re-model the MDP in Example [3.1] by including the reward into the state to make the opti-
mal policy Markovian, then we might incur in interpretability and transferability issues. To better
explain this, we make a simple example.

Consider a driving setting, where the state is the location of the car (name of the road and position
inside the road), the actions permit to change the current road (only when the car is close to another
road, otherwise no effect), and at every stage/timestep the position of the car advances on the current
road depending on the amount of traffic in the road, which is random and modelled through the
transition model of the environment.

Consider now an expert agent that aims to reach a certain goal location s, in the minimum
time/number of stages possible, and that is risk-averse, in the sense that it prefers roads that al-
ways have little traffic, even though they are, on average, slower, to roads that are usually faster but
sometimes have peaks of traffic that make them very very slow (since the traffic is random, there is
no sequence of roads that is always better than others, but it is a matter of chance).
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In our model (Eq. (I)), we can represent the expert through the reward function r¥ that is 0 in
the goal location s,, and —1 otherwise. In this manner, the faster a trajectory reaches s, the larger
the cumulative reward. Next, we can choose the utility function U £ {0 be some concave function
in order to achieve the risk-aversion property (Bauerle & Rieder, [2014), i.e., to make sure that the
expert prefers, intuitively, roads with “smaller variance” of traffic. We remark that our model permits
to capture the preferences of the expert in a very simple yet expressive manner. In fact, as shown in
this example, 7 and U¥ can be easily designed, and their meaning is easily interpretable. However,
this does not hold if we include past rewards in the state.

In the model with an extended state space, the behavior of the expert is represented through a
single reward 72 (defined on the expanded state space) instead of the pair reward-utility 7%, U*.
The intuition is that, to contain all the information present in rZ UF, the new reward 72 will be
“messy”. As such, designing it is also more complex. For instance, choosing 7Z to be —t in the
(expanded) state made of the goal location s, and of ¢ timesteps, and 0 elsewhere, represents a risk-
neutral agent that aims to reach s, as soon as possible, but it does not capture the risk-aversion of
the expert. To make 77 model the risk-aversion, we must take it to be a concave function of —t,
making it more difficult to be interpreted.

Even though the model with past rewards in the state guarantees the Markovianity of the opti-
mal/expert policy, it suffers from major drawbacks:

+ 7F has a size (i.e., it is defined on a number of states) that grows exponentially in the
horizon in the worst case, while r, UF do not.

+ 7F is more difficult to interpret (and design) than the pair 7, U, whose meaning is im-
mediate.

72 can only be transferred to problems with the same state-action (or feature) space. In-
stead, the utility U¥ can be easily transferred to other kinds of environments. E.g., in the
considered example, UZ can be used to assess how much the expert “values its time” and
takes decisions based on it. Thus, we can predict the behavior of the expert in other problem
settings where the time plays a role using U¥, even if the state-action (or feature) space is
different (e.g., if the expert travels by train instead than by car, we can predict if it prefers
taking a reliable train, or a faster train on average that sometimes makes huge delays).

C.3 PROOFS FOR SECTION[3]

Proposition 3.2. Given any RS-MDP with deterministic transition model p and reward function r,
if the utility U is increasing, then, there exists a Markovian optimal policy.

Proof. The objective in Eq. (I) coincides with that of a common MDP in absence of stochasticity
and when U is increasing. Since there always exists an optimal Markovian policy in MDPs, thus we
obtain the result. O

Proposition 3.1. There exists a RS-MDP with horizon H = 4 in which the difference between the
optimal performance and the performance of the best Markovian policy is 0.5.

Proof. For reasons that will be clear later, let us define symbol x ~ 2.6 as the solution of x — % —
0.1=1.

Consider the RS-MDP My = (S, A,H,so,p,7,U) in Figure where § =
{Sinit, 51, $2, 83, S4, S5, S6}, A = {a1,a2}, H = 4, o = Sinit, transition model p such that:

P1(51]Sinit, @) = p1(s2]sinit,a) = 1/2 VYa e A,

p2(s3ls1,a) = pa(ss|s2,a) =1 Vae A,

p3(salss,a1) = x/3.99, p3(ss5|s3,a1) = 1 — x/3.99, p3(s¢|s3,a2) = 1,
reward function r defined as:

1 (sinit,a) =0 Vae .A,
ro(s1,a) =1 Vae A,
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ro(se,a) =0 VYae A,
r3(ss,a) =0 Vae A,
r4(s4,a) =1 Vae A,
r4(s5,a) =0 Vae A,
r4(sg,a) = 0.5 Vae A,

x—01 ify=0.5
z ify=1

UW) =4, 101 ify=15"
399  ify=2
Note that this entails that:
ﬁU@) +U(1) = U(0.5) + U(1.5). ©6)

Note also that the support of the return function of this (RS-)MDP is G»" = {0,0.5,1, 1.5, 2}.

For a € [0, 1], let 7 be the generic Markovian policy that plays action a; in s3 w.p. « (the actions
played in other states are not relevant). Then, its expected utility is:

T (Usp,r) — %[a(ﬁU@) H= 2UM) + (1 - a)U(L5)]

+ %[a(&U(l) F1= S20(0) + (1 - a)U(05)]
© %[a(ﬁU@) FUM) + (1 - a)U(L5) + U05)]
o U(15) + U(0.5)
2 b

where at (1) we have used that U(0) = 0, and at (2) we have used Eq. (6).

Thus, all Markovian policies 7* have the same performance. Let us consider the non-Markovian
policy 7 that, in state s3, plays action a; w.p. 1 if s is reached with cumulative reward 1, and it
plays action ag w.p. 1 if s3 is reached with cumulative reward 0. Then, its performance is:

T (Usp,r) = %(3%9U(2) (1— ﬁ)m)) + %U(Ob).

The difference in performance between the optimal performance and that of 7 is:

J*(Usp,r) — J™ (Usp,r) = J(U;p,r) — ™ (Usp,r)

1(iU(2) +(1- i)U(l)) + %U(Ob) -

B U(1.5) + U(0.5)
~2\3.99 3.99 2

19



Under review as a conference paper at ICLR 2025

start

Figure 3: MDP for the proof of Proposition

1 x x

== 2) + (1 — ——)U(1) — U(1.
2(3.99U()+( 3.99>U(> Ul 5))
Op! I

—2<x+x 3.99 x 0.1)

1 x2

- 5(:5 T 3.99 _0'1)
©os

where at (3) we have replaced the values of utility, and at (4) we have used the definition of z.

O

Proposition 3.3. There exists a RS-MDP with stationary transition model and reward in which the
best Markovian policy is non-stationary, and the best stationary Markovian policy is stochastic.

Proof. Consider the stationary RS-MDP My = (S, A, H, sg, p, 7, U) depicted in Figure where
S = {Sinit, 51, 82,83}, A = {a1,a2}, H = 4, sg = Sinit, stationary transition model p (we omit
subscript because of stationarity) such that:

p(s2lsinit, a1) = 1 — p(s3|sinit, a1) = 1/3,

p(s1]8init; a2) = 1,

p(Simit|s,a) =1 Vs € {s1,s9,83},Vae A,

reward function r defined as:

r(Smi,a) =0 Vace A,
r(s1,a) =0.5 Vae A,
r(sg,a) =1 Vae A,
r(ss,a) =0 Vae A,

and utility function U € 4 that satisfies:

0.15 ify =05
0.2 ify=1

UW) =418 ify=15"
2 ify =2

Let 77 denote the general non-stationary policy that plays action a; at stage 1 w.p. a € [0,1], and
plays action a; at stage 2 w.p. 3 € [0, 1]. The performance of policy 7®” can be written as:

7 W) = o5 [8(50@) + 20 + (- HUAH)] + 25300 + (- 5)U05)]}
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+(1—a) [5(1U(1.5) + 2U(0.5)) (1— ﬂ)U(l)]

3 3
_ aﬂ[éU(?) + %311(1) - %U(l.S) - %U(Ob)]
(ot ﬁ)[%U(l.E)) + %U(O.E)) ~U]+U0)
2 13 18 1 1 1 1 1
IR CR it R G| R S B

8 1 1
To show that the best Markovian policy is non-stationary in this example, we show that the per-
formance of non-stationary policy 7! is better than the performance of all possible Markovian

policies. The performance of 7% is:

0,1 1 1
J* (U, =—+-=03.
( ’ p? T) 10 + 5
Instead, the generic stationary policy is 7*“, and has performance:
I 8, 1 1
J*™ T (U;p,r) = 5% +5oz+5.
The value of « € [0, 1] that maximizes this objective is:
d __aa 16 1 9
— T Uip,r) = ——a+==0 =,
o (U;p,r) 9a—|—5 = o=
from which we get:
9/80,9/80 169
J" U; = —° <0.22,
U:p:1) = 550

which is smaller than 0.3 = J™ (U;p, ). This concludes the proof of the first part of the proposi-
tion.

For the second part, simply observe that, in the problem instance considered, we just obtained that
the best Markovian stationary policy plays action a; w.p. 9/80, i.e., it is stochastic. [

D ADDITIONAL RESULTS AND PROOFS FOR SECTION [4]

In this appendix, we provide a more explicit formulation for the feasible utility set (Appendix [D.T),
and then we provide the proofs of all the results presented in Section 4] (Appendix [D.2).

D.1 A MORE EXPLICIT FORMULATION FOR THE FEASIBLE UTILITY SET

For any policy m, we denote by SP™™ the set of all (s, h,y) state-stage-cumulative reward triples
which are covered with non-zero probability by policy 7 in the considered (RS-)MDP.

Thanks to this definition, we can rewrite the feasible set as follows:

Proposition D.1. Let M = (S, A, H, s, p,) be an MDP, and let ©% be the expert policy. Then,
the feasible utility set U, ,. .= contains all and only the utility functions that make the actions played
by the expert policy optimal at all the (s, h,y) € spr”, Formally:

Uprre = {U € il‘ V(s,h,y) € SP’T’WE,VCL eA:

Qi (s,y, 7 (s,9); p,) = Q* (s, y,a5p,7),
where we used the notation introduced in Appendix B}

Proof. Based on Theorem 3.1 of Biuerle & Rieder| (2014} (or Theorem 1 of [Wu & Xu| (2023))), we
have that a utility U €  belongs to the feasible set if it makes the expert policy optimal even in the
enlarged state space MDP (note that it is possible to define a policy 1 for the enlarged MDP because
we are considering policies m whose non-Markovianity lies only in the cumulative reward up to
now). Therefore, the result follows thanks to a proof analogous to that of Lemma E.1 in |Lazzati
et al.| (2024b), since we are simply considering a common MDP with two variables per state. [
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Figure 4: MDP for the proof of Proposition

D.2 PROOFS FOR SECTION[4]

Proposition 4.1 (Transfer to a new transition model). There exist two MDPs M =
(S, A, H,s0,p,7), M' = (S, A, H,s0,p',7), with p # D', for which there exists a policy 7¥ and a
pair of utilities Uy, Us € th such that: Uy, Us € U, . .= and H;,,T(Ul) N H;‘,J(Ug) ={}.

Proof. We will prove the guarantee stated in the proposition using two different pairs of MDPs: One
that that satisfies Q”/”’ = GP'", i.e., for which the support of the return function coincides, and the
other that does not. Let us begin with the former.

Consider a simple MDP M = (S, A, H, Sini, p, ) with five states S = {Sinit, S0, S0.25, $0.75, S1}»
two actions A = {ay, as}, horizon H = 2, initial state ;,, transition model p such that:

1/4 ifs’ = sg

1/4 if SI = 50.25

1/4 if s = $0.75 ’

1/4 if s’ =51

1/2 if SI = 50.25

1/2 if s = S$0.75 ’

p1(3/|51nit7 al) =

p1(5/|51nit;a2) = {

and reward function r that assigns 71 (Sinit, @1) = 71 (Sinit, a2) = 0, and:

0 ifs=soA(a=a; va=a)
0.25 ifs=s8025 A (a=2a1 va=as)
0.75 ifs=s0mA(a=ayva=as)’
1 ifs=s1 A (a=a1va=as)

ro(s,a) =

Note that the support of the return function is GP" = {0,0.25,0.75,1}. We are given an expert’s
policy 7F that prescribes action a; at stage 1 in state sy, and arbitrary actions in other states (the
specific action is not relevant). The MDP M is represented in Figure 4]

Now, we show that utilities Uy, U € 4, defined in points of the support GP'" as (and connected in
arbitrary continuous strictly-increasing manner between these points):

0 ifG=0 0 ifG=0

0.01 ifG=0.25 0.01 ifG =025
Ui(@) = 0.02 ifG=0.75" Us(G) = 0.99 ifG=0.75"

1.99 ifG=1 1.99 ifG=1

belong to the feasible set Up,mrE, and, when transferred to the new MDP M’ =
(S, A, H, Sinit, o', 1), with transition model p’ # p defined as:

p&('\simt, @1) = pl(‘|51nita al);
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(5 5m, 02) = 0.7 ifs' = sy
D1 init, @2) = 0.3 ifs’:sl’

impose different optimal policies, i.e., utility U, keeps making action a; optimal from state sj,;; even
in M’, while U; makes action as optimal. This proves the thesis of the proposition.

Let us begin by showing that Uy, Uz € U, ,. .= belong to the feasible set of M with policy 7P Let
7 be the policy that plays action as in state sj,;;. Then, the distribution of returns induced by policies
7% and 7 are (we represent values only at points in G»" = {0,0.25,0.75, 1}):

P = [1/4,1/4,1/4,1/4]7
Pt =[0,1/2,1/2,0]T.

Thus, policy 7% is optimal under some utility U if and only if the values assigned by U to points in
G ={0,0.25,0.75,1} (denoted, respectively, by UL, U2, U3, U*) satisfy:

Ut — g = [1/4, —1/4, —1/4, 1/AU = U' — U2 - U + U* > 0

where we have overloaded the notation and denoted with U := [U', U? U3, U*]T both the utility
and the vector of values assigned to points in G”". By imposing normalization constraints (U (0) =
0,U(2) = 2), we get U! = 0, and by imposing also the monotonicity constraints, we get that utility
U is in the feasible set U, ,. .= if and only if:

Ut=>U0%*+U3

0<U?2<U%<U*<2
Clearly, both utilities Uy, Uz satisfy these constraints, thus they belong to the feasible set U, ;. ~5.
Now, concerning problem M’, the performances of 7%, 7 w.r.t. utilities U, Us are:

1 1 1
Jﬂ' (Ul,p ’I“) *Ul( ) + 1U1(025) + ZU1(075) + ZUl(l) = 2.02/4 = 0.505,

JT(Us;p/,7) = 0.701(0) + 0.3U1(1) = 0.3 x 1.99 = 0.597,

(
1 1 1
I (U pl, 1) = fUl( )+ JU1(0-25) + LU (0.75) + U1 (1) = 2.99/4 = 0.7475,
(

JT(Ua;p',7) = 0.7U1(0) + 0.3U3 (1) = 0.3 x 1.99 = 0.597.

E

Clearly, J™ (Uy;p',7) < J™(Uy;p',7), but g (Ug;p',r) > J™(Ug;p, 1), thus we conclude that
the set of policies induced by utilities Uy, Us in M’ do not intersect, since they start from sy, with
different actions IT%, (U1)nII%, (Uz) = {}. This concludes the proof with an example that satisfies
Ggr'r = grr, |

If we want an example that does not satisfy GP''" = GP" then we can consider exactly the same
example with M and M’, but using r1(Sinit, a2) = 0.001. In this manner, we see that GP" =

{0,0.25,0.251,0.75,0.751, 1}, and gr'r = {0,0.001,0.25,0.75, 1,1.001}, which are different. By
choosing U7, U} as:

0 ifG=0 0 ifG=0
0.001 if G = 0.001 0.001 if G = 0.001
0.01  ifG =025 0.01  ifG =025

, 0.011 if G = 0.251 , 0.011 if G = 0.251

UG =Yo002 itg=or ' 2D=Y090 itg=o075
0.021 if G = 0.751 0.991 if G = 0.751
1.99 ifG =1 1.99 ifG =1
1991 if G = 1.001 1991 if G = 1.001

it can be shown that U7, U}, belong to the (new) feasible set of M, and that induce different policies
in M’. This concludes the proof. O

Proposition 4.2 (Transfer to a new reward). There exist two MDPs M = (S, A, H, sg,p,r), M’ =
(S, A, H,s0,p,1"), withr # 1/, for which there exists a policy 7% and a pair of utilities Uy, Us €
such that: Uy, Uz € Uy, . e and IT% (Uy) 0 1% (Us) = {}.
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Figure 5: MDP for the proof of Proposition

Proof. Similarly to the proof of Proposition we provide two examples, one with grr' = grr,
and the other with g’”' # GP". Let us begin with the former.

Consider a simple MDP M = (S, A, H, Sint, p, ) With three states S = {sin, S1, S2}, two actions
A = {a1,az}, horizon H = 2, initial state s, transition model p such that:

1/2 if s’ =5
p1(5/|5init7a1) = {1/2 ifs' = sy
(5 |sini @) — 0.9 ifs' =g
PrioPinio @20 =000 it s = 55
and reward function r that assigns 71 (Sinit, @1) = 0, 71 (Sinit, a2) = 0.5, and:
ra(s, a) = 0 ifs=s1A(a=a1va=as)
22571 ifs=sy;n(a=a;va=as)’

Note that the support of the return function is G»" = {0, 0.5, 1, 1.5}. We are given an expert’s policy
7F that prescribes action a; at stage 1 in state sjy;, and arbitrary actions in other states (the specific
action is not relevant). The MDP M is represented in Figure 3]

Now, we show that the utilities Uy, U, € 4, defined in points of the support GP-" as (and connected
in arbitrary continuous strictly-increasing manner between these points):

0 ifG=0 0 ifG=0

0.1 ifG=05 0.1 ifG =05
Ui(@) = 09 ifG=1 " (@) = 08 ifG=1 "

1.5 ifG=15 1.5 ifG=15

belong to the feasible set U),, .=, and, when transferred to the new MDP M’ =
(S, A, H, Sinit, p, '), with reward function 7’ 5 r defined as:

71 (Sinie; a1) = 0.5, 71 (Sinit; az) = 0,

(5, 0) = 1 ifs=s1A(a=a;va=as)
’ 0 ifs=son(a=a1va=a)’

impose different optimal policies, i.e., utility U, keeps making action a; optimal from state sjpj; even
in M, while U; makes action ay optimal. This will demonstrate the thesis of the proposition.

Let us begin by showing that Uy, Uz € U,, ,. .= belong to the feasible set of M with policy 7P Let
7 be the policy that plays action as in state sj,;. Then, the distribution of returns induced by policies
7% and 7 are (we represent values only at points in GP" = {0,0.5,1, 1.5}):

g =10.5,0,0.5,0]7
n"" ™ =10,0.9,0,0.1]T.

Thus, policy 7% is optimal under some utility U if and only if the values assigned by U to points in
Grr ={0,0.5,1,1.5} (denoted, respectively, by U, U2 U3 U*) satisfy:

UT (P — Py = 0.5, —0.9,0.5, —0.1]U = 0.5U* — 0.9U2 + 0.5U3 — 0.1U* > 0,
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where we have overloaded the notation and denoted with U := [U*, U? U?, U*]T both the utility
and the vector of values assigned to points in G¥". By imposing normalization constraints (U (0) =
0,U(2) = 2), we get U! = 0, and by imposing also the monotonicity constraints, we get that utility
U is in the feasible set U, , .= if and only if:

U* = 503 — 9U?
0<U?<U3<U*<?2

Clearly, both utilities Uy, Uz satisfy these constraints, thus they belong to the feasible set U, ;. ~5.
Now, concerning problem M/, the performances of 7%, 7 w.r.t. utilities Uy, U, are:

I (Uy;p,r') = 0U1(0) + 0.5U1(0.5) + 0Uy (1) + 0.5U3 (1.5) = 1.6/2 = 0.8,
JT(Uy;p,7’) = 0.1U1(0) + 0U, (0.5) + 0.9U71 (1) + 0U1(1.5) = 0.9 x 0.9 = 0.81,

T (Ug; p, 1) = 0U5(0) + 0.5U3(0.5) + 0Us(1) + 0.5U5(1.5) = 1.6/2 = 0.8,
J™(Uz; p,7’) = 0.1U(0) + 0U3(0.5) + 0.9U5(1) + 0U3(1.5) = 0.9 x 0.8 = 0.72.

Clearly, J™° (Uy;p,7") < J™(Uy;p,7'), but g (Uz;p,7") > J™(Uz;p, '), thus we conclude that
the set of policies induced by utilities Uy, Us in M’ do not intersect, since they start from s;,; with
different actions IT% ,(U1)nII% (Uz) = {}. This concludes the proof with an example that satisfies

grr’ = grr,
If we want an example that does not satisfy GP™' = GP" then we can consider exactly the same

example with M and M’, but using 7} (Sinit, a2) = 0.001. In this manner, we see that GP" =

{0,0.5,1,1.5}, and GP" = {0.001,0.5,1.001, 1.5}, which are different. Nevertheless, by choosing
U;, U} as:

0 ifG=0 0 ifG=0
0.001 if G =0.001 0.001 if G =0.001
s 01 ifG=05 L]0l ifG=05
Ui(G) = 0.9 ifG=1 ’ Us(G) = 4 0.8 ifG=1 ’
0.901 if G = 1.001 0.801 if G = 1.001
15 ifG=15 15 ifG=15

it can be shown that U7, U still belong to the feasible set of M (the constraints are the same), and
that induce different policies in M’. This concludes the proof. O

Proposition 4.3. There exists an MDP M = (S, A, H, so,p,r) and a policy ™ for which there
exists a pair of utilities U1, Us € U, . = such that, for any € = 0 smaller than some constant, there
exists a policy m. such that J*(Uy;p,r) — J™(Uy;p,r) = e and J*(Ua; p,r) — J™<(Usa; p, ) = 1.

Proof. Consider a simple MDP M = (S, A, H, Sinit, p, ) with four states S = {sin, 51, S2, $3},
three actions A = {aq, as, ag}, horizon H = 2, initial state s, transition model p such that:

p1(82|Sinie; a1) = 1, p1(81]Sinit, a3) = 1,

(5 |sini @) — 091 ifs' =5
p1 init, @2) = 0.09 ifs — s3 ,

and reward function r that assigns 71 (Sinit, @1) = 71 (Sinit, a2) = 71 (Sinit, a3) = 0, and:

0 ifs=s1An(a=a1va=asVva=as)
ro(s,a) =505 ifs=sy3n(a=a;va=ayva=az).
1 ifs=s3An(a=a;va=asva=as)
Note that the support of the return function is G»" = {0, 0.5, 1}. We are given an expert’s policy

7 that prescribes action a; at stage 1 in state sjpi, and arbitrary actions in other states (the specific
action is not relevant). The MDP M is represented in Figure[6]
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Figure 6: MDP for the proof of Proposition

Now, we show that the utilities Uy, Uz € 4, defined in points of the support G>" as (and connected
in arbitrary continuous strictly-increasing manner between these points):

0 ifG =0 0 ifG =0
UL (G) =401 ifG=05, Us(G)=41.099 ifG=05,
0.1/0.09 ifG =1 1.1 ifG=1

belong to the feasible set 4,, ,. .=, and that, for any € € [0, 0.1], there exists a policy 7 for which it
holds both that J*(Uy;p,r) — J™(Uy;p, 1) = e and J*(Ug; p, 1) — J™ (U p, 1) = 1.

First, let us show that both Uy, U, belong to the feasible utility set. Let 7%, 72, 73 be the policies
that play, respectively, action a1, as, a3 in state si;; (note that 7' = 7E). Then, their performances
for arbitrary utility U are:

J* (Usp,r) = U(0.5),

J™ (Usp,r) = 0.09U(1) + 0.91U(0) = 0.09U/(1),

T (Usp,r) = U(0) = 0,
where we have used the normalization condition. Replacing U with Uy, we get J*(Uy;p,r) =
J’Tl(Ul;p, r) = 0.1=J”2(U1;p, r) =01 > J"s(Ul;p,r) = 0. Instead, replacing with Us, we
get J*(Ua;p,r) = J”I(Ug;p,r) = 1.099 > J”z(Ug;p,r) =0.09 x 1.1 > J”S(Ug;p,r) = 0.
Therefore, both Uy, Uz € Uy, ;. 5.

Now, for any « € [0, 1] let us denote by 7, the policy that, at state si,, plays action ag w.p. «, and
action ag w.p. 1 — .. We show that, for any € € [0, 0.1], policy 7/ 1 is e-optimal for utility U, and
its suboptimality is at least 1 under utility Us. For any a € [0, 1], the expected utilities of policy 7,
under U; and U, are:

JT(Uy;p,r) = (1 —a) x 0.09 x Uy (1) = (1 — a) x 0.1,
J™(Ug;p,r) = (1 — ) x 0.09 x Us(1) = (1 — a) x 0.099,
from which we derive that the suboptimalities of such policy under U; and Uy are:
J*(Uy;p,r) — J™(Uy;p,r) =01 — (1 — ) x 0.1 = 0.1¢,
J*(Ug;p,r) — J™(Ua;p,7) = 1.099 — (1 — ) x 0.099 = 1 + 0.099«.

Thus, for any € € [0, 0.1], policy 7.1 is e-optimal for utility Uy, but it is at least 1-suboptimal for
utility Us.

The intuition is that utilities U and U, assess in completely different manners the policies that play
action as, although they both describe policy 7 as optimal. This concludes the proof. O

Proposition 4.4. Consider an arbitrary MDP with transition model p and reward function r. Then,
for any pair of utilities Uy, Uy € 4, it holds that d" (Uy, Uz) < maxgege. |Ur(G) — Ua(G).

Proof. For the sake of simplicity, we denote the infinity norm and the 1-norm w.r.t. set GP" as:
[flloo := maxgegr.r [ f(G)] and | f[1 = X qegr. |f(G)]. In addition, we overload notation and use
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Figure 7: MDP for the proof of Proposition

symbols Uy, Us to denote the vectors in [0, H ]'gw| containing, respectively, the values assigned by
utility functions Uy, Us to points in set GP". Then, we can write:

&3 (Uy, Us) = sup [J™(Us; p,r) — J™ (Uz; p, 7))

well

= 50D [EG g« (U1 ()] = B [02()]
S

= sup [Egypre[U1(G) — Ua(G)]
TE

(1)

< sup  [Eg,[Ui(G) — U2(G)]|
neA9IP"

2)

< sup Eqoy|Ui(G) — U2(G)
neAGP”

) U1 — Us| oo,

where at (1) we upper bound by considering the set of all possible distributions over set GP" instead
of just those induced by some policies in the considered MDP, at (2) we apply triangle inequality,
and at (3) we have used the fact that || - |; and || - | are dual norms. O

Proposition 4.5. There exists an MDP M = (S, A, H, 5o, p,r) and a policy ™% for which there

exists a pair of utilities Uy, Uy € U,, ,. & such that dZ{IT(Ul, Usp) = 1.

Proof. Consider a simple MDP M = (S, A, H, sini, p, r) with three states S = {sin, $1, 2}, three

actions A = {a1, az, a3}, horizon H = 2, initial state s;y;;, transition model p such that:
P1(51]Sinit; a1) = 1, P1(52|8init, a2) = p1(s2|Sinit, a2) = 1,

and reward function r that assigns 71 (Sinit, @1) = 71 (Sinit, a2) = 0, 71 (Sinit, a2) = 1, and:

0 ifs=s1An(a=a1va=asvVvas)

-

ifs=sasn(a=a;va=azvaz)

Note that the support of the return function is GP" = {0, 1,2}. We are given an expert’s policy 7
that prescribes action ag at stage 1 in state sjyi, and arbitrary actions in the other states (the specific
action is not relevant). The MDP M is represented in Figure[7]

Consider two utilities Uy, Us, that take on the following values in GP'":

0 ifG=0
Uy(G) =401 ifG=1,
2 ifG =2
0 ifG=0
Uy(G) =411 ifG=1.
2 ifG =2

It is immediate that both utilities belong to the feasible set U, ,. .=. Nevertheless, if we denote by 7
the policy that plays action as in state siy, we see that J™(Uy;p, ) = 0.1, while J™(Us; p,7) = 1.1,
so that the difference is 1. O
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Figure 8: MDP for the proof of Proposition

Proposition 4.6 (Multiple demonstrations). Let S, A, H be, respectively, any state space, action
space, and horizon, satisfying S > 3, A > 2, H > 2, and let U¥ € {\l be any utility. If. for any
possible dynamics sy, p and reward r, we are given the set of all the deterministic optimal policies
of the corresponding RS-MDP (S, A, H, s, p,r, UF), then we can uniquely identify utility U .

Proof. We provide a constructive proof that shows which values of sg, p, r it is sufficient to choose
for recovering U” exactly. The construction is articulated into two parts. First, we aim to recover
the value of UE(I), i.e., for G = 1; next, we recover the utility for all other possible values of
return. The intuition is that we construct a Standard Gamble (SG) between two policies over the
entire horizon (Wakker, 2010)).

To infer U (1), we use the sg, p, r values that provide the MDP described in Figure

We consider a single initial state sj,;;. From here, action a; (and all actions other than a; and as)
brings deterministically to state s2, while action as brings to state s3 w.p. ¢ (to choose, for some g €
[0, 1]), and to state s3 w.p. 1 —q. From state s?, for any i € [3], all actions bring deterministically to
state s3, and so on, up to state sI7. We will call the trajectory {sini, 52, 53, ..., s} the i trajectory
for all ¢ € [3], and we will write G(7) to denote the sum of rewards along such trajectory. To infer
the value U* (1), we select a reward v’ : S x A x [H] — [0, 1] that provides return G(1) = 1.5
to the first trajectory, return G(2) = 1 to the second trajectory, and return G(3) = H to the third
trajectory (this is possible because H > 2). By selecting, successively, all the values of ¢ € [0, 1],
we are asking to the expert to play either action a; or action ay from the initial state sj,j; (We denote
policies 7!, 72, respectively, the policies that play actions ay, as in si,;). Since we are assuming
that the expert will demonstrate all the possible deterministic optimal policies, there exists a value
q’ € [0,1] for which the expert demonstrates both policies 7! and 72. Indeed, the expected utilities
of policies 7!, 72 for arbitrary value of q are (we write p(q) as the generic transition model):

T™ (U p(q),r') = UE(L5),
T (UE;p(q), ") = qUE(H) + (1 — UF (1) = ¢H + (1 — )UF (1),

and since U” is strictly-increasing, we have UP (1) < U¥(1.5) < U¥(H) = H, thus there must
exist ¢’ that permits to write U (1.5) as a convex combination of the other two. This allows us to
write:

UF(15)=¢dH+ (1 -¢)UFQ). (7

Next, we select reward r” that provides returns G(1) = 1, G(2) = 0.5, G(3) = 1.5. Thus, there
must exist a ¢” € [0, 1] for which the expert demonstrates both policies 7! and 72, allowing us to
write:

UE(1) = ¢"UF(1.5) + (1 — ¢")UF(0.5). (8)
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Finally, we can repeat the same step with a third reward r” that provides returns G(1) = 0.5, G(2) =
0,G(3) = 1, and for some ¢ € [0, 1] we obtain:

UE0.5) = ¢"UE(1). )
By putting together Eq. (7), Eq. (8), and Eq. (@), we can retrieve U (1):
UP(1.5)=q¢H+ (1-¢)UE(Q1)

UFP(1) = q"UP(1.5) + (1 — ¢")UF(0.5)
UZ(0.5) = ¢"UE(1)

Now that we know U*(1), we can infer the utility for all the returns G € (1, H) by choosing a
reward that provides returns G(1) = G,G(2) = 1,G(3) = H, because for some g € [0,1] the
expert will play both policies 7! and 72, which allows us to write:

US(G) =qH + (1 —U" (1),
and to retrieve U (G).
Similarly, for all G € (0, 1), we select a reward that provides returns G(1) = G, G(2) = 0,G(3) =
1, and for some g € [0, 1] we can write:
UP(G) =qUu*(1),
and retrieve U?(Q).

This concludes the proof. As a final remark, we stress that the initial step for inferring U (1) cannot
be dropped because there is no reward r : S x A x [H] — [0, 1] that provides returns G(2) = 0 and
G(3) = H, because both the first and second trajectories pass through action as in state siy;. O

E ADDITIONAL RESULTS AND PROOFS FOR SECTION 3]

This appendix is divided in 4 parts. First, we show the complexity of implementing operator HHL
(Appendix [E-I). In Appendix [E.2] we provide the pseudocode, along with a description, of algo-
rithms EXPLORE, PLANNING, ERD, and ROLLOUT. In Appendix [E.3] we provide the proof of
Theorem[5.1] In Appendix we provide the proof of Theorem[5.2]

E.1 PROJECTING ONTO THE SET OF DISCRETIZED UTILITIES

Let us use the square brackets [] to denote the components of vectors. Then, note that set {[; can be
represented more explicitly as:

U, ={Ue[0,H]"|U[1]=0AU[d] =H AU} <U[i + 1] Vie [d—1]
A Viyjeld]sti<g:|U[i]—Ulj]l <L —i)eo}- (10)
Notice that set {; is closed and convex, since it is defined by linear constraints only. The amount of
constraints scales as ocd?.

E.2 MISSING ALGORITHMS AND SUB-ROUTINES

EXPLORE In Algorithm 3] we report the pseudo-code implementing subroutine EXPLORE. Sim-
ply put, we adopt a uniform-sampling strategy, i.e., we collect n = |7/(SAH)| samples from each
(s,a,h) € S x Ax [H] triple, that we use to compute the empirical estimate of the transition model.
We return such estimate.

PLANNING The PLANNING sub-routine (Algorithm [) takes in input a utility U, an en-
vironment index 4, and a transition model p, that uses to construct the RS-MDP My =
(8", A", H,sf,p,7,U). Notice that My # M; , for 3 aspects. First, it uses the input transi-
tion mchiel p # pi; next, it consider the discretized reward 7 # 7% finally, it has input utility
U#U*".
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Algorithm 3: EXPLORE
Input: samples budget 7
n < |7/(SAH)|
forie {1,2,...,N} do
// Initialize the transition model estimate:
pi(s'|s,a) = 0forall (s,a,h,s’) €S x Ax [H] xS
// Collect samples:
for (s,a,h) € S x A x [H] do
for _€{1,2,...,n}do
s' « sample from pi (-|s, a)
pi(s]s,a) < pi(s']s,a) + 1
end
end
Py (ls;a) < Py ([s,a)/n
end
Return {p*};

PLANNING outputs two items. The optimal performance J* (U;p,7?) for RS-MDP My, and the
optimal policy 1* = {1} for the enlarged state space MDP &[M;]. However, it should be

remarked that, instead of computing optimal policy ¢* for €[ M;] only at pairs (s,y) € S x g,’;fi
for all h € [H], PLANNING computes the optimal policy * at all pairs (s,y) € S x Y, for all

h € [H] (note that G*™ < V).

The algorithm implemented in PLANNING for computing both J*(U;p, %) and * is value iter-
ation. The difference from common implementations of value iterations lies in the presence of an
additional variable in the state. A similar pseudocode is provided in Algorithm 1 of [Wu & Xu
(2023)).

Algorithm 4: PLANNING
Input: utility U, environment index ¢, transition model p
// Initialize the ( and value function at the last stage:
for (s,y) € Sf' x Vi do

for a € A* do _

‘ QH(sa Y, a) A U(y + ?ZH(Sﬂ a))
end
Vi (s,y) < maxQpu(s,y,a)
ac At

Yy (s,y) « argmax Qg (s,y,a) /+* Keep just one action */
ac Al

end
// Backward induction:
forh=H —1,...,2,1do

for (s,y) € S' x Y, do
for a € A' do
Qh(sa Y, a) N Es’~ph,(~\s,a) [Vh+1(sl7 Y+ ﬂL(S7 CL))]
end
Vh(sv y) A Hé?ff Qh(sa Y, (l)
Ur(s,y) < argmax Qn(s,y,a) /* Keep just one action =*/
ac Al
end

end
// Return optimal performance and policy:

Return V; (s}, 0), ¢
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Algorithm 5: ERD - Estimate the Return Distribution

Input: dataset D, reward
// Initialize 7:
for y € Y do
| A(y) <0
end
// Loop over all trajectories in DF:
for w e D do
// Compute return of w = {s1,a1,...,5H,QH,SH+1}:
G — 3, ru(sn, an)
// Update estimate 7):
if G < 0 then
| 7(0) < 7(0) +1
end
else if G > | 7 |eo then
| A Jeo) = AL Jeo) + 1
end
else
L «— maxyeyry<a ¥y
U —mingeyny>ay
(L) — (L) + §=¢
nU) < aU) + §=¢
end

end

// Normalize:
7 < 7/|D?)
Return 7,

ERD (Estimate the Return Distribution) The ERD sub-routine (Algorithm [5)) takes in input a
dataset DX = {w;}; of state-action trajectories w; € {2 and a reward function , and it computes an
estimate of the return distribution w.r.t. r.

For every trajectory w; € DF, ERD computes the return G; of w; based on the input reward  (Line
[3). In the next lines, ERD simply computes the categorical projection of the mixture of Dirac deltas:

~ . 1
1 = Projc (Z |D7E|5Gj),
J
where the categorical projection operator Proj is defined in Eq. (@).

ROLLOUT ROLLOUT (Algorithm [f)) takes in input a Markovian policy 1, a transition model p,
a reward 7, an environment index 4, and a number of trajectories K, to construct the MDP M =
(8, A", H, s{,, p, r) obtained from MDP M" by replacing the dynamics and reward p’, r* with the
input p, r.

ROLLOUT collects K trajectories by playing policy ¥ in M for K times, computes the return G of
each trajectory, and then returns a dataset D containing these K returns. In other words, with abuse
of notation, we say that the outputted dataset D = {G } e[ is obtained by collecting K samples

G, from distribution 7P"™¥.

E.3 ANALYSIS OF CATY-UL

Theorem 5.1. Let €,d € (0,1), and let U be a subset of i1, containing the utilities to classify. If we
set eg = €2/(T2HL?), and if it holds that, for all i € [N]:
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Algorithm 6: ROLLOUT

Input: policy v, transition model p, reward 7, environment index 4, number of trajectories K
D {}
// Loop over the number of trajectories:
for _€{1,2,...,K}do
5« 5%
y<«—0 /* y keeps track of the accumulated reward =/
for h = 1t0 H do
a <« ‘l/}h (57 y)
y—y+ra(sa)
s < s’ where s’ ~ pi(-|s, a)
end
D < Du{y}

end
Return D

then, w.p. at least 1 — 6, CATY-UL correctly classifies all the U € U that satisfy either
max; Cpi pi 5. (U) < A — € (inside Un) or max; Cpi yi re.i(U) > A+ € (outside Un ).

Proof. Observe that the classification carried out by CATY-UL complies with the statement in the
theorem as long as we can demonstrate that:

P (sup
{Mi}; AmE iy, \Ueld

Coi i pmi — % < =1
iemmcp,r,ww(U) iem[[?v’ﬁc(U)‘ 6) 1—34,

where P rqiy, (5.1}, represents the joint probability distribution induced by the exploration phase
of CATY-UL and the execution of each 7! in the corresponding M?.

We can rewrite this expression as:

‘@,Mi,ﬂ,i U) - Ci(U)

_ A~ @
sup | max C,i i 2.:(U) — max C’(U)‘ < sup max
Uey li€[N] 7 ie[N] Uel i€[N]
= max sup |Cpi i 5. (U —Cl(U
eNjuey! P ©) ©)

)

where at (1) we have upper bounded the difference of the maxima of two real-valued functions
with the maximum of their difference. This shows that we can obtain the result as long as we can
demonstrate that, for all ¢ € [N, it holds that:

9.
N7

— ~

Cptrtarn (U) = C(U)| <€) 21 - (11)

P ( sup

plrt,mBi N Ueld

the statement of the theorem would then follow from a union bound. Therefore, let us omit the ¢
index for simplicity, and let us try to obtain the bound in Eq. (IT). We can write:

sup [Cp e (U) — CA(U)| = sup |(J*(U;p,7) — J”E(U;p7 ) — (f*(U) — fE(U))}
Ueld Ueld

@ nF TE * T
< sup [J7 (Usp,r) = JE(U)| + sup | J*(U; p,r) — J*(U)|

UelUd UelUd
3
Csup| E [U@)]- E [UG)]
Ued G~yp-rmt G~hE
+ E [U(G)]|+sup|J*(U;p,7‘)—j*(U)|
G~Proje (npmm ) Ueld
)
<sup| E [UG)]- E [U(G)]]
Vel Gy G~Proje (7™ ")
+ sup | E [U(G)] - E U@
Ueld G~Pr0jc(an"'=7'E) G~iF

+sup [J*(U; p,r) — J*(U)|
Ueld
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®)

< sup | E [fG)]- E [F(@&)]]
f: fis L-Lipschitz GNWP,T,WE G~Proj (npﬂ"ﬂrE)
+ sup ‘ E [U(G)] - E [U(G)]!
UeU  G~Projg (npmmF) G~nF

+sup [J*(U; p,r) — T*(U)|
Ueld

©r. wl(”lp’r’ﬂE ) Projc(Tlp’T’ﬂE))

+ sup | E [U@G)] - E [UG)]
Ueu G~Projc(nP~Tv”E) G~iF

sup |J*(U; p,r) — J*(U)),
UelUd

where at (2) we have applied triangle inequality, at (3) we use the definition of J m* (U;p,r), and that
of JE U) (LineE|of CATY-UL), and we have added and subtracted a term, where operator Proj. is
defined in Eq. (@). We remark that distribution np’Tv’TE may have a support that grows exponentially
in H, while both 7 and Proj,(1*"™" ) are supported on ). Note that 7Z and Proj.(n?™™" ) are
different distributions, since the former is the projection on ) of an estimate of 771”’"7”12. At (4), we
apply triangle inequality, at (5) we use the hypothesis that all utilities are L-Lipschitz &/ < iy, and

notice that £{y, is a subset of all L-Lipschitz functions f : [0, H] — [0, H], and at (6) we apply the
duality formula for the 1-Wasserstein distance w; (see Eq. (6.3) in Chapter 6 of |Villani| (2008))).

Concerning the case || = 1, we apply, for all i € [N], Lemma with probability §/(2N)
and accuracy €/3, and Lemma [E.5| with probability 6/(2)V) and accuracy €/3, while we bound the
1-Wasserstein distance through Lemma [E.T] to obtain, through an application of the union bound,
that:

P (sup
M} {m B0} NUel

C.i. i — % <
max Cyi o s (U) — ma C(U)|

L\/2Heo + /3 + HLey + 6/3) >1-9,

as long as, for all i € [N]:
N
B > (5(H2 lzg[s),
€

SAH* SAHN
5— log .

Ti>(5(

€ deo

. 2 .
By setting €9 = =577, we obtain that:

I\/2Heo + HLeg = % + o <¢/3.

By putting this bound into the bound on 7%, we get the result.

When U is an arbitrary subset of £(;,, we apply, for all i € [N], Lemmawith probability 6/(2NN)
and accuracy ¢/3, and Lemma with probability §/(2N) and accuracy €/3, while we bound the
1-Wasserstein distance through Lemma [E-T] to obtain, through an application of the union bound,
that:

P (sup
{Mi}; {n B}, \Ueld

Cii B — & <
max Cys o s (U) — ma C(U)|

Ly/2Heg + ¢/3 + HLeo + 6/3) >1-4,

as long as, for all ¢ € [N]:

pi_ ~(H> HN
o> O S tos ),
6260 deg

S}
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> @(S/;HS (S+log SAfN)).

. . 2 .
Again, by setting €y = 57777, We obtain that:

€ €
LA/2H HLey = — 4+ —— < ¢/3.
v2Hep + HLe 5 + L €/
By putting this bound into the bounds on 75" and 7%, we get the result. O

E.3.1 LEMMAS ON THE EXPERT’S RETURN DISTRIBUTION

Lemma E.1. Let the projection operator Proj. be defined as in Eq. (@), over set Y with discretiza-
tion €g. Then, for all i € [N], it holds that:

PrOJC(npj’ri‘”E’i)) < /2He.

Proof. For the sake of simplicity, we omit index ¢ € [IN], but the following derivation can be applied
to all the N demonstrations.

p’l"‘ﬂ'

w (n

By applying Lemma 5.2 of Rowland et al.[(2024), replacing term 1/(1 — +) with horizon H, we get:
wy (" Proje (1)) < VHE (P Projg (n” ™).

Similarly to the proof of Proposition 3 of Rowland et al.|(2018)), we can write:

TTI'E : T7TE .(1)
G Proje (1P ) = JR(FUP,T,WE (¥) = Forgj (yoromy (1)) dy
H
2
2| e () = Fong ey ()P

) y,+1 " 2
) Fop e (9) = Py oy )2y

jeld—1]

+ J\ (an rrE (y) FProjC (npn'.,‘lrE) (y))zdy

@ v+

< 2 f npiron ) FProjC (npm,wE)(y))Qdy + €0
jeld—1]

5) Yi+1

= N R T B A P KR
jeld—1] ¥

= > Wit = Y) (e W41) = Fpre (1)) + €0
jeld—1]

©

= €0 Z (F ot (Yj1) = Fpirnm (y;))? + €0

jeld—1]
) 2
<o D (Fper 0541) = Fprer (1)) + 0
jeld—-1]

® 2

= €0(Fppriw (ya) = Fpprnr (Y1) + €0

< 2607

where at (1) we have applied the definition of ¢y distance (Eq. @)), at (2) we recognize that the
two distributions np’TJE,Projc(np”“’”E) are defined on [0, H], at (3) we use the additivity prop—
erty of the integral, using notation ) := {0, ¢, 2¢, ..., |H/eoleo}, d == |Y| = |H/eo

y1 = 0,y2 = eo7y3 = 2€0,...,Yq = [H/eojeo, (notatlon introduced in Sectlon‘ At (4)
we upper boundS o Eoppore () — TONE— )y ))2dy < Syd dy =H —yq = H —|H/eoleo =
eo(H/eo — |H/eo]) < € since the difference of cumulative distribution functions is bounded by
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1. At (5), thanks to the definition of the projection operator Proj. (Eq. (@), we notice that, for
y € [yj,y;+1], it holds that FPrOjC(np)T,,rE)(y) € [Fprn (Y5), Fypporin (Yj41)], thus we can upper
bound the integrand through the maximum, constant, difference of cumulative distribution functions.
At (6) we use the definition of set ), i.e., an ep-covering of the [0, H| interval, at (7) we use the
Cauchy-Schwarz’s inequality Y (z;)* < (3; ;) for #; > 0, and noticed that the summands are
always non-negative, at (8) we apply a telescoping argument.

The result follows by taking the square root of both sides. O

Lemma E.2. Let i € [N], and let f € [0, H]? be an arbitrary d-dimensional vector. Denote by

i.i.d. (. E,i . . . .
G1,Gs,...,Ge: N nP """ the random variables representing the returns of the B4 trajecto-
ries inside dataset D¥-'. Let )% be the random output of Algorithm@ that depends on the random
variables G1,Gs, ..., G 5. Then, it holds that:

EGhGQ,---,GTE,i~?7pi’ri’"E’i |:Ey~ﬁEL [f(y)]] = EyNijC(npiwri,,,E,i) [f(y)]

Proof. We omit index 7 for simplicity, but the proof can be carried out for all ¢ € [/N] independently.
To prove the statement, we use the notation described in Appendix [E.2]for the Dirac delta, to provide

an explicit representation of both the distribution Proj, (np’“’TE) and the “random” distribution 7% .
We consider distribution nP’T’”E supported on Z = {z1, 22, ...,2zm} < [0, H], while distributions
Projc(np”"”E),ﬁE are supported on set YV = {y1,y2,...,v4a} < [0, H].

W.r.t. distribution Projc(np”"’”E ), we can write:

s 'I’ﬂ'E . T7TE
Proje (77" = Proje () 77" ()3, )
ke[M]

(1:) Z T’P”"’WE (zk)PI'OjC (5zk )
ke[M]

(i) Z np,r,wE (Zk) <5y1]].{2k < yl} =+ 5yd]]'{zk > yd}
ke[M]

Yj+1 — 2k Rk — Yj
+ Z ] iy _6%‘ + — _,] .(5%“)]1{2:;9 € (yj’yj-*-l]})
jeld—1] Yj+1 — Yj Yj+1 — Yy

E — Z
=0 25 ) (e < wd + P e ()

ke[M]
rf Yj — 2k
+ 2 5yj< 2 n"" (%)(77“ — .]l{ZkE (Yir yj+1]}
je{2,.d—1} ke[M] Yi+1 = Y;
Rk —Yj—1
TR PTERD)
e (i)
E 2l — —
+ 0y, Z nrr (Zk)(]l{zk- > ya} + kiydlll{zk € (yd—layd]})a
ke[M] Yd — Yd—-1

where at (1) we have applied the extension in Eq. (3) of the projection operator Proj, to finite
mixtures of Dirac distributions, and at (2) we have applied its definition (Eq. (@)).

Concerning distribution 7%, based on Algorithm 5} we can write:

. o, y2 — Gy
E _ %
no= B (te[[ZEH (IL{Gt <y} + — 1{G; € (yl,yg]}))
o j Yj -G
oY (Y (G o))
je{2,...,d—1} te[rE] ~PITF J

Gt —yj—1
+ mﬂ{Gt € (ygfl,yz]}))
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0y Gt — Ya—1
w3, (0w LG o))

Now, if we take the expectation of the random vector 7 w.r.t. n? 7 we get:

~E
EGth,---,GTE ~qporim [77 ]

)
= 0 GarsG e [Tgbi( [[EJE]] <]I{Gt Y1} + ]l{Gt (yl,y2]}>)
te[T
% Yo = Gy

' je{l;dl} " (te[[ZT:E}] (yﬁl —Yj {Gr € (Wi, yjl}

Gi—yj
t oy G (-1 :1}))
: iy]; ( [[Z 1 (]l{Gt > Ya} + #1{@ € (Ya-— 1,yd]})>]

te[rF

® y2 — G
=Eq yprnr [5111 (]l{G <yif+ y22 - 1{Ge (yla?JQ]})

+ 2 5, (%Ln{Ge@z,yﬁﬂ}

je{2,md—1} Yj+1 — Yy
G—yj
+ —=—1{G € (yj-1,y )
G E ()
Yd—1
+ 0y, (]l{G > ya} + ﬁﬂ{G € (Ya— 1,yd]}>]
4 T,
Lo X3 ) (Ha <) + e (o))
ke[M] Y2 =
ra® Yj+1
+ Z yj( Z n” T (2 (ﬁi_]l{zk € (Vi yj+1l}
je{2md—1} ke[M] Yi+1 = Y5
2k —Yj—1
+ Uy e (g0, m}))
Yi —Yj—1 Yi- ]
o Zk — Yd—
+ 0y, Z n’" (Zk)(]l{zk > Ya} + %Wﬂ{zk € (ydflayd]})
ke[M] Yd d—1
 proje (17"),
where at (3) we use the fact that G1,Go, ..., G = are independent and identically distributed, at

(4) we apply the linearity of the expectation, we notice that d,; does not depend on G for all
J € [d], and we notice that, for any y € J), it holds that E , - =[H{G < y}] = np””*”E (G <
y) = Zke[[M]] i (zx)1{zr < y}, where we have abused notation by writing np’”“E (G <y

to mean the probability, under distribution nP " that event {G < y} happens. Moreover,
similarly, we notice that, for any y,y’ € ), it holds that Egoppirn® =[G UG € [y,y]}] =

Zke[[M]] zEgmP T (zk)]l{zk € [y,y']}. At (5) we simply recognize PI‘O_]C(’I?p’r’ﬂE) using the pre-
vious expression.

This concludes the proof because the equality of the Dirac delta representations means that the

expectations of any function w.r.t. these two distributions coincide. O
Lemma E.3. Leti € [N] and let €,6 € (0,1). If |U| = 1, then, with probability at least 1 — §, we
have:

Sup E (UG- E [UG)<e¢

UelUd GNPrgjc(np"rl,wEﬂ) G~RE

36



Under review as a conference paper at ICLR 2025

as long as:

H?log 2
rF 2072 5,
€

where c is some positive constant.

Proof. Let U be the only function inside ¢/. Let us omit index ¢ for simplicity. Then, we can write:

[W(&)] - E @) E U@~ E | E[UQ)
G~HE GNPFOJC(U”""’”E) ‘ G~AE np,,‘,wE |:G~,;]\E ]’
@ log 2
<cH o

where at (1) we have applied Lemma [E.2] and at (2) we have applied the Hoeffding’s inequality
noticing that function U is bounded in [0, H], and denoting with ¢ some positive constant.

By imposing:

and solving w.r.t. 7F, we get the result. O

LemmaE4. Leti e [N] andlet€,6 € (0,1). Then, with probability at least 1 — §, we have:

sup E  [U@)]- E ,[U(G)])ge,
UeU ' G~Projg (npt i m Bty G~RE.

as long as:

N 3
™ > O(Ij—logﬁ).
€2eg deo

Proof. Again, let us omit index ¢ for simplicity. First, for all possible functions U € U, we denote
by U € 4}, the function in &, that takes on the values that the function U assigns to the points of
set ). This permits us to write:

sup| E_[U(G)] - E [U(G)])
veu GNUE G~Projc(7]P-,7',7rE)
= sup | E_[U(G)] - E [U(G)]‘
Uelly, ' G~1 G~Projg (np-mm )
0 _ B
<_swp | E [UG)]- E [ (G)])
Uelo,H]4 G~ G~Projc(77pv7‘ﬁE)
@ — _
= sup E [UG)]- E [ ) [U(G)]] ’
Uelo,H]4 ' G~n*F pporn B LGARE

where at (1) we upper bound by considering all the possible vectors U € [0, H]?, and at (2) we
apply Lemma|[E.2]

Now, similarly to the proof of Lemma 7.2 in|Agarwal et al.[(2021), we construct an ¢ -covering of
set [0, H]?, call it Ny, with |[Ny| < (1 + 2H+/d/€')? such that, for all f € [0, H]?, there exists
[ € N for which | f — f’|2 < €. By applying a union bound over all f’ € .- and Lemma[E.3]
we have that, with probability at least 1 — d, for all f’ € Ny, it holds that:

T

dl 2(14+2H+/d/€')
E @)~ B | E [f'(G)]]\<cH\/ e (12)
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Next, for any f € [0, H]?, denote its closest points (in 2-norm) from A as f’. Then, we have:

| E F@1- £ | E 1G]]

G~TE ppirnl LG~ P
- ]GEEWG)] - E, [GEE[f@)]]i(GlEﬁE[f’(G)J - E, [GgaﬁE[f%G)]])]
2 Er@l- B [ E 1G]
+| B @-sel+| e [ B @-rol

/

< + 2€
TE

“ H\/dlog 72(1”21\/3/6/)

HdrE
(i) , dlog =5
=© E

T

where at (3) we apply triangle inequality, at (4) we apply the result in Eq. (12)), and the fact that, by
definition of ¢’-covering, | f — f'||2 < € entails that | f(y) — f(v)| < € forall y € Y; at (5) we set
¢ = 1/7F, and we simplify.

The result follows by upper bounding d < H /¢y + 1, and then by setting:

IHA\| —= 9% < ¢ (13)

and solving w.r.t. 7, and noticing that for all 7% greater than some constant, we can get rid of the
logarithmic terms in 7. O

E.3.2 LEMMAS ON THE OPTIMAL PERFORMANCE FOR SINGLE UTILITY

In this section, we will omit index ¢ € [N] since the following derivations can be carried out for
each 1.

We denote the arbitrary MDP in {M*}; as M = (S, A, H, so,p,r), and its analogous with dis-
cretized reward 7, defined at all (s,a,h) € S x A x [H] as Tp(s,a) = lg[ra(s,a)], as

M = (S, A H, sp,p, 7). We denote the analogous MDPs with empirical transition model p as

—

M = (87-’47 H7 SOaii T') andm = (87"47 H7 SOaﬁaF)’
Given any utility U € 4, we denote the corresponding RS-MDPs, respectively, as
My, My, M v, My. Concerning the discretized RS-MDPs My and M, we denote the cor-

responding enlarged state space MDPs, respectively, as €[My] = ({S x Vn}n, A, H, (50,0), p, t)

and ¢[My] = ({S x Vu}n, A, H,(s0,0),p,t), where we decided to define such enlarged state
space MDPs using the state space {S x Y}, considered by Algorithm E] (PLANNING) instead
of, respectively, {S x GI'"}; and {S x G}'"};. Thus, the transition models p and p, from any
h € [H] and (s,y,a) € S x V), x A, assign to the next state (s',y') € S x V41 the probability:
pu(s’, ¢/ 1s,y,0) = pu(s'ls,a)1{y’ = y + Ta(s,a)} and pu(s',y'ls, y,a) = pn(s']s,a)1{y’ =
y + Tr(s,a)}. Moreover, the reward function ¢, in any h € [H] and (s,y,a) € S x YV x A, is
tp(s,y,a) =0if h < H, and vy (s,y,a) = U(y + Tr(s,a)) if h = H.

We will make extensive use of notation for V- and (- functions introduced in Appendix

We are now ready to proceed with the analysis. In general, the analysis shares similarities to that
of Theorem 3 of Wu & Xu|(2023)), but we use results also from |Azar et al.| (2013)) to obtain tighter
bounds.
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Lemma E.5. Let ¢,6 € (0,1). For any fixed L-Lipschitz utility function U € iy, it suffices to
execute CATY—-UL with:

SAH* SAH)

T<(5( 5— log

€ deg

to obtain |J*(U; p,r) — j*(U)| < HLeg +ewp. 1—6.
Proof. For an arbitrary utility U € 4y, we can write:
[T* (s p.r) = THU) 2 T*(Usp,r) = THU) 2% (p. )|
LI Wsp,r) = (0,0 + 1T (p,1) = T*(U)
21T Usp,r) = T* (00| + T (0,¥) = T* (3,

4) ~
< HLeo + [ J*(p,t) — J*(p, v)|
= HLey + |V*(s0,0;p,t) — Vi*(s0,0; p, t)|

< HLey + na (s, y,a:p,t) — QF (s,y,a;p, ¢
€0 he[[H]],(s,Iy,a)}éSxyth|Qh( Yy, a;p,v) — Q@ (s, y,a:p,v)|

) )
< HLey + €,

where at (1) we add and subtract the optimal expected utility in the enlarged MDP &[ M| consid-
ered by Algorithm[4] but with the true transition model p. At (2) we apply triangle inequality, at (3)
we recognize that the estimate J*(U) used in CATY-UL and outputted by PLANNING (Algorithm
is the optimal expected utility for the discretized problem with estimated dynamics p, at (4) we
use Proposition 3 of Wu & Xu|(2023)), since U is L-Lipschitz, and at (5) we apply Lemmato
bound the distance between (Q-functions.

IH310 A4SAHd lo 16SAHd \ 3/4 lo 16SAHd
c # +CH2 <g5) +CH3g76 < €,
n n n
_

N

By setting:

<e/3 <e/3 <e¢/3
and solving w.r.t. €:
/HS log 4S/2Hd

2
8/3 16SAHd
nH7" log =257

Q

S 3 3
VARV
Q

473
3 "16SAHd
CI// H" log 5

€
Taking the largest bound, we get:
H3 log 16SAHd
n>= 6—25’
€
for some positive constant c. Since d < H /ey + 1, we can write:
SAH*log CH?J
Cl €0
2 )

T =
€

for some positive constants ¢, ¢”, where we used that 7 = SAHn. O

The proof of the following lemma is organized in many lemmas, and is based on the proof of
Theorem 1 of |Azar et al.| (2013).

Lemma E.6. Forany 0 € (0, 1), we have:

ma. *(s,y,a:p,0) — QF (s,y,a;p,¢v)| < €
heﬂHﬂ,(s,y,a))éSthXA‘Qh( » Y, 7pa ) Qh( » Y, 7pa )‘ €,
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w.p. at least 1 — &, where € is defined as:

H31lo 4SAHd lo 16SAHd \ 3/4 1o 16SAHd
I C«/#+CH <g> +cH‘3g75,
n n n

for some positive constant c.

Proof. 'We upper bound one side, and then the other. For all the h € [H], (s,y,a) € S x YV, x A, it
holds that:

QZ(Saavy;pa )7Q}ﬂ:( ayva.ﬁa )

(1 ~ .
< E [ Z Z (ph/ |Sh/ ah/) phl(8l|5h/’ah/))vle’)-r]('s,yyh/.»,_l;p,t)
poe g =h s’eS

‘sh =5Yn =Y,ap :a]

/

H P o~
(2 E |: Z C\/CIVS’N;&M('Shuah/)[vh’+1(slvyh’+17p7t):| 1 by
FRXE n

Sh = 5,Yn = Y,0an :a]

=CA[— 1/;* |: Z \/VS/~p;/( [Sprsaps )[Vh’+1(s yh'+17p7 )] Sh = 8, Yn = Y,ap = Cl:|
B,

+ Hby
CIV H? + Hby

H3lo ASAHY lo IGSAHY 3/4 lo 16SAHY
= cﬂig ° 4+ JH? (g > PG 2 bR S
n n n

=€,

where at (1) we have applied Lemr@ at (2) we have applied Lemma with §/2 of probabil-

(3)

ity, at (3) we have applied Lemma

The proof for the other side of inequality is completely analogous, and it holds w.p. 1 — §/2. The
result follows through the application of a union bound. O

Lemma E.7. For any tuple h € [H], (s,y,a) € S x YV, x A, it holds that:

H
Qs paip) Qi< E [ 3%
RV hs'eS

R *
(Ph'(5/|5hwah’) _ph/(sl‘sh’aah’))‘/;:€+l(5/ayh’+1§pvt) ‘ Sh = S,Yn = Y,an = a],

H
Qi(s.paips) - Qilsnaro = E |3 %
Pk hs'es

=N *
(ph’(3/|3h’aah’) _ph'(s/‘sh’7ah’>)V$+1(3/ayh’+1§pat) ‘ Sh = 8,Yn = Y,an = a],
where *, IZ* are the optimal policies respectively in problems p, ¢ and p, t.

Proof. Forany h € [H], (s,y,a) € S x Y x A, we can write:
Qi (s,y, a9, %) — Q5 (5,9, 0;9, )
¥ ’;* ~
= Q;/L (S,Q,a;p,t) - Q;/L (Sayaa;pat)
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D % ) ~

<Qy (s,9,0:9,0) — Q) (5,9, a:,7)

2 *

= th(S,yﬂl) + Z ph(s/ay/|87y7a)Vhw+1<sl7y/;p7t)
(8",9")ESXYn 41

~ * ~
- (th(svyva) + Z ph(s/vy,|svyva)Vh’ﬁ-l(S/?y/;pvt))

(8",9")ESXYh+1

3) *
= Z ph(s/ay/|svyaa)vl—:ﬂ+1(s/ay/;p7t)
(",y)ESX V1

~ * ~
- Z ph(slvy/‘87yaa)v}:[}+1(8/7y/;put)
(8",9")ESXYn 1
~ *
+ Z ph(slvy/|57y7a)‘/}1ﬂ-1(5/7y/;p7t)
(8",9")ESXVh+1
~ #
= Y (ml s @) =Bl Y s @) )V )
(S,,y/)GSth+1
~ * * ~
+ D Bl Y8, ya) (Vﬁpﬂ(S’, Yip,t) = Vil (5,05, t))
(s/,y/)GSxy;L+1

2 Y (sl + () = y)

(S'7y/)€s><yh+1
~ _ *
- ph(s/|37 01)1{21 + T}L(S, CL) = y/})vhw+1(sla y/; p7 t)

~ * * ~
Y By s ) (Ve ) - VL (YR )
("9 )ES X Vh 41
5) ~ _ *
(: Z (ph(5/|3, CL) _Ph(3/|5a a)) Z ]l{y + Th(sa a) = y/}V}Zerl(sla y/;pat)
s'eS Y EVh41
~ * * ~
+ Z ph(817y/‘svy7a) (V}Zil(slay/;pat) _V]Z/)+1(s/;p7t)>
(s/,y/)GSxy;L+1
6 ~ * _
DN (puls'ls.0) = (', @) ) Vi 5oy + T, 0, 0)
s'eS
~ * ok ~
+ D B Y8, ya) (Vﬂl(S’,y’;p,t) - Vhﬂl(S’,y’;p,t))
(8", y")ESXYn+1

~ * —
= 3 (pu(&/ls, @) = Bu(s'ls. @) ) Vi (5 y + (s, 0); . )

s'eS
Z ﬁh(s’,y/\s,y,a)
(s",y)ES X Yh+1

* * ~
QU U (50 ) = QU (5 i (89 B.0)),

where at (1) we have used that ¢* is the optimal policy in p,t, and thus Qf*(s,a;ﬁ, t) <

QZ’* (s,a;p,t). At (2) we apply the Bellman equation, at (3) we add and subtract the expected

under p optimal value function under p, at (4) we use the definition of transition model p, p, at (5)
we split the summations, at (6) we recognize that the indicator function takes on value 1 only when
y + Tr(s,a) = y'. Finally, we unfold the recursion to obtain the result.

Concerning the second equation, for any h € [H], (s,y,a) € S x Y, x A, we can write:

Qi (s, y,a:p,v) — Qf (5,9, as b, v)
p¥ ¥ ~
:Q;/L (S,Q,a;p,t)_Q;/L (Sayaa;pat)
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~ *
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— pu(s'ls,a)1{y +Tn(s,a) = y'})V;ﬂl(S’, y'ip,t)

~ * 7% ~
+ DI A CRTAERTN (Vﬁl(S’, Y'ip,t) = Vil (s 03B, r))
(8" " )ES X Vh i1
(pn(s'ls.0) = Buls'ls,0)) D My +7n(s,a) =y IV (s o5, )
s'eS Y'E€Vh+1

~ * 7k ~
> pr(s’y']s,y,a) (V;ZZ’H(S’, y'ip,t) — V,ﬁl(S’,y’;p,t))
(Y )ES X Vh 11
~ * —
= 3 (pn(1s,@) = P51, ) ) Vi (5 + (s, @),

‘e
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(%)

~ * * ~
Yo bl ls ) (VI e = Vi B )
(s",y)ESX Vh 41

_|_
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9) ~ * _
= (ph(5/|57 a’) - ph(8/|8, a))vlj)+1(3/a Y+ Th(sa a);pa t)

s'€S
+ D LY s, )

(8",y')ES X Yht1

QLY P (5 0)9,0) — QL (0 B (5,08,
where at (7) we have applied the Bellman equation, at (8) We have added and subtracted
a term, and at (9) we have used that V,zﬂ*l(s’,y’;p,t) = Qh+1(5 Y p (Y )p ) =
QhH(s’,y’,iZ;‘:H(s/,y’); p,t), since ¢}, (s',4) is the optimal action under p,t, and so, it can-

not be worse than action +1(8",9'). By unfolding the recursion, we obtain the result. O

Lemma E.8. Forany 6 € (0,1), w.p. at least 1 — §, it holds that:

" R , [log 284Hd
he[Hﬂ,I(gfgi/})(eSxy;L Vi (s,y;p,0) = V)2 (s,u3p,0)| < cH Té’
R ) 10g 2SAHd

hE[IH]]}&ISlz))(eSth |Vh*($’y’p,t) B Vh*(s’y’p7t)| < CH Té

where c is some positive constant.

42



Under review as a conference paper at ICLR 2025

Proof. First, we observe that, for any h € [H], (s,y) € S x M, by following passages similar to
those in the proof of Lemmal[E.7}

Vi (s, 93 b, t> — VY (5,955, 0)]
— QY (s, ¥ (5,9); 9, 0) — QY (5,9, 0 (5,): P, 0)]
o G R ACT D R SRR T COrTd PR ) A R
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—(wlsp vk + Y By sy s )V (Y8, )|

(s",y")ES X Vh 11

* !
S D N AR AR A CRTET RS

(S/,y/)GSth+1

~ *
- Z Ph(Slvy/|Syy,¢?:(3ay))V;?+1(Sl’y

("9 )ESX V41

=Y By sy e (s )V (5 s t)‘
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~ £
:’ > (Ph(s’,y/\s,y,@bi‘(s,y)) —ph(S’,y/\s,y,@bZ(s,y)))Vﬁ”’H(S’,y';m)

(8",9")ESXYnt1

D M T AR (SR (A ERTT RO B A CRa ) |

(s",y")ESXYh+1
! ~ * ! —
|3 (pn (sl (s, )) = B/l 03 5, )) ) Vil s 4 s, 07 5,0, )

s'eS
~ * ~
Y By ls v ) (Vi) — (5B

(8"9")ESXVht1

;] o~

ip,t)

~ *
IZJ* [ Z Z (ph’ |5h/ ah/) ph/(8/|5h/,ah/))vfz€+1($,7yh/+l;p’t)
Pt

=h s’'eS
]
() <l , o wE
< E Z Z (Ph/(s |shr,an) — D (s |3h’7ah’)> Vi1 (8" ynr 1159, t)
boep* L Tp | ses
Shp = S, Yn = y:|7

where at (1) we have brought the absolute value inside the expectation.

Similarly, for the other term, for any h € [H], (s,y) € S x Y, we can write:
‘Vh*(svy;p7t) - V;(S,y;ﬁ, t)|
* Tk .

= [V (s,459,0) = Vi (5,435, 0)|

(@) * e ~
= Irgea}QZ’ (s, 9, a;p,7) *I&%}Qf (8,9, a;p,7)]
(3) * b ~
< max|Q}” (s,y,0:p,v) = Q) (s,9,:9,1)]

*
= Iglea‘/i(‘th(svy7a) + Z ph(slvyl|57y7a)vhw+1(5/7y/;p7t)
(S/,y/)GSthJrl

~ b ¥ ~
S CICT RO R S A CR PR\ AN AT ) |

(s",y)ES X Vh 11
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where at (2) we have applied the Bellman optimality equation, at (3) we have upper bounded the
difference of maxima with the maximum of the difference, at (4) we denote the maximal action by
a, and we apply triangle inequality; at (5) we have unfolded the recursion and called ¢ the resulting
policy.

Now, for some € € (0, 1), let us denote by £ the event defined as:

&= {Vhe [H], (s,y,a) €S x Y x A:

|3 (on(s 15 = Pl 5, 5+ Tl i) < o

s'eS

We can write:

P(EY) = P(Elhe [H], (s,y,a) €S x YV x A:

~ % _
‘ Z (Ph(s/\saa) —Ph(slls,a)>V,f+1(s’,y + Th(S,a);p,t)‘ > 6)
s'eS
(6)
<
heﬂHﬂv(&y,G)ESth,x.A

P(1 % (15.0) = (s 15, V25 (5 7o) >
s'eS

) —2ne
< 2e w2

he[H],(s,y,a)eSxYp x.A

2
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—2ne?

=25AHde &2

where at (6) we have applied a union bound over all tuples h € [H], (s,y,a) € S x YV} x A, and at

(7) we have applied Hoeffding’s inequality, by recalling that we collect n samples (see Algorithm[3)
for any (s,a,h) € S x A x [H] triple, and that vector Vhwf1(~, y +Tn(s,a);p,t) bounded by [0, H]

is independent of the randomness in Py, (+|s, a). It should be remarked that our collection of samples

depends only on S x A x [ H], and not on Y},; such term enters the expression only through the union

bound, because we have to apply Hoeffding’s inequality for all the value functions considered, which
are as many as |V, | . Note that we use d = | V41| since it is the largest |V, | among h € [H + 1].

This probability is at most ¢ if:
2SAHd
s

2n

—2n2 log
2SAHde 52 <§ < e=> H

By plugging into the previous expressions, we obtain that, w.p. 1 — §:

* ~
‘Vh*(svy;p’t) - Vizb (Sa Z/§Pvt)|

H
<E|Y

h'=h

N *
Z (ph’ (5,|5h’; ah’) - Ph’(5/|5h/a ah/)) sz{).g_l (5,7 Yn'+1; P, t)
s'eS

Sh_sayh_y]

H 2SAHd
[lo
< R E [ 2 H gits
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Sh = 5,Yn _y:|
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H
~ *
< AE[ N (ph’(3/|5h’aah’) —ph'(8’|8huah'))V;?H(S/,yh'H;P,t)
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H 2SAHd
log #2524
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Y Lp=n n
2SAHd
_ log =245%¢ .
2n

This concludes the proof.
O

Lemma E.9. For any § € (0,1), wp. at least 1 — 6, it holds that, for all h € [H], (s,y,a) €
S x yh X -A

\/VS’NPh('lﬁa) [Vh*+1 (s',y +Tn(s,a);p, t)] <
* _ ~
\/Vs'~ﬁh(»|s,a> [VE5 (s y + Tu(s,a); b, e)] + by,
Vet Vit (810 + 75,0 p,1)] <

Vet (o [Vt (5 + Fa(s,a):3.0)] + b,
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where by is defined as:

1 4SAHY \ 1/4 1 A4SAHY
by = cH(Og> FOH2 2B

n n

for some positive constants c, c.

Proof. In the following, we will use 7 as a label for y + 71, (s, a). We begin with the first expression.
We can write, for any h € [H], (s,y,a) € S x V), x A:

Vslwph('lsya) [Vh*+1 (S/? y? p’ t)]
= V(o) Vi1 (8 70, O£V 05, (o) [Vie1 (57,759, 1)
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where at (1) we have used the common formula for the variance V[ X ] = E[X?] — E[X]?, at (2) we
have decomposed the variance of a sum as V[X + Y] = V[X] + V[Y] + 2Cov[X, Y], at (3) we
have applied Cauchy-Schwarz’s inequality to bound the covariance with the product of the variances

Cov[X, V]| < \/V[X]VIY].
Next, observe that:
Vo o) Vit (51,50 0) = Vi, (58, 0)
LBy (o [Vt (57 0,¥) = Vi, (5,72 0)°)
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= Vit (0, 0) = Vil (s o)1
where at (4) we have used V[X] = E[X?] — E[X]?, at (5) we recognize that the second term is

a square, thus always positive, and we remove it, and at (6) we have upper bounded the expected
value, an average, through the infinity norm.

Thanks to this expression, we can continue to upper bound the previous term as:
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— (X 0n(/Is,a) = Bu(s'ls, ) Vitia (8, 7:9.9))

s'eS
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4SAHd 2
(1225 AV o Vi (5620
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s'eS
(ph(s/|s,a) _ﬁh(8/|saa))vh*+1(8/7y;p7t)‘
s'eS

g 45AHd 2
LN T
(8'|s,a)

Pi(s')s, a>)vh+1<s 7i9,1)

s'eS
- ASAHd
4 9cH? log =57
n
lo g45'AHd A 2
" [CHZ 75“/% sV (s 75,0

(] 1) 4SAHd 4SAHd
9% 4+ 2cH?
llog ASAHd - — 9
+ [CH2 Té + \/VS’~I7}L(~\S,@) [Vlﬁ-l(s/ﬂ Y b, t)]]

4SAHd
= 3cH? 71053 o
n
[log 45AHd ” — 2
H? T(S + \/Vs/~ﬁh(~\s,a)[vfzp+1(sl7y;p7t)]] ;
where at (7) we have applied the common formula 2> — y?> = (z — y)(x + ), at (8) we have

applied Lemma using probability ¢’ = §/2, and noticing that, for how the discretized MDP is
constructed, we have that 4 € ), at (9) we have upper bounded the second term with the absolute
value and recognized that the value function does not exceed H and the sum of probabilities is no
greater than 2; at (10) we recognize that, in the proof of Lemma [E.8] we had already bounded that
term, thus, under the event £ which holds w.p. 1 — §/2, we have that bound; at (11) we have applied
Hoeffding’s inequality to all tuples h € [H], (s,y,a) € S x Y, x A with probability 6/(2SAHd),
and noticed that the square of the value function does not exceed H?2.

Observe that the previous formula holds for all h € [HJ, (s,y,a) € S x Y x Aw.p. 1 —§ (by
summing the two /2 through a union bound). By taking the square root of both sides, we obtain:

\/Vs/~ph(-\s,a) [Vh*+1 (S/a Yy p, t)]

4SAHd 4SAHd

log =57
n

log

< (3CH 2 + [cH 2

+ \/VS'Nﬁh('\S,a) [V (s, t>]]2)1/2
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a2 o ASAHY log 4SAHY
< HA 08T + cH? 08T
n n
=b

* o~
+ \/VS’Nﬁ;L('\s,a) [Vhw+1(sl7 i, v)]
p PN
= \/Vs’~ﬁh,(-|s,a) [V}Z/Jrl(sla yip, t)] + bla

where at (12) we have used the fact that v/a + b < \/a + NG

To prove the second formula, the passages are basically the same, the only difference is that, at

passage (1), we sum and subtract V; +1( ,7; p, v) instead of Vhw-t,-l( s',7;p,t), and that at passage (8)
we apply the other expression in Lemma[E.8] This concludes the proof. O

Lemma E.10. Forany 6 € (0, 1), define:

_ 1o, 28AHd
- Og 5 9
1 8SAHd 3/4 1 S8SAHd
@sd(og) ) C e
n n

for some positive constants ¢,c. Then, w.p. at least 1 — 6, we have, for all h € [H],(s,y,a) €

SxYn x A:
S (pn(s'[5,0) = Duls'ls, ) Vs (51,5 + (s, ),

s'eS

* _ ~
- C,/\/Clewﬁh(-s,a) [Vara(s'y + (s, )58, 0)]

n

+ b,
Z (ph(8/|87a) _ﬁh(s/|37 a))vh*+1(sl7y + Fh(& a’);pvt)

s’'eS

> —¢ \/ClVé ~pn(C15,0) Vi1 (854 + T (s, a);p,v)]

n

+ bo,
I noom
for some pOSltlve constants c ,C.

Proof. Again, we will write 7 instead of y + 71,(s, a) for simplicity. For all h € [H], (s,y,a) €
S x Y, x A, we can write:
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where at (1) we have applied the Bernstein’s inequality using §/(2SAHd) as probability for all
h e [H], (s,y,a) € Sx Yy x A, and at (2) we have applied Lemmal|E.9|with §,/2 of probability, and a
union bound to guarantee the event to hold w.p. 1—4, at (3) we use the definition of ¢; := log 25"371”,
and denoted by ¢, ¢/, ¢, ¢” some positive constants.

For the other expression, an analogous derivation can be carried out. In particular, we use the other
side of the Bernstein’s inequality, and the other expression in Lemma [E.9] O

Lemma E.11. Forany h € [H], (s,y,a) € S x Y, x A and deterministic policy ), let E}f(s, Y, a)
be defined as:

Ll 2
Z th'(sh'7 Yn', ah/) - Qf(S, y,a;p, t)'

‘ \Sh=8,yh=y7ah=a]-
h'=h

S(s,y0) = E |
ptstp

Then, function 3 satisfies the Bellman equation, i.e., for any h € [H], (s,y,a) € S x YV, x A and
deterministic policy 1:
Zﬁ(S, Y, a) =Vs’~ph('|s,a) [Vthrl (5/7 Y+ Fh(57 a); P, t)]
+ E [Ef-kl(s,ay+Fh(saa)7wh+l(slay+?h($7a)))]'

s~pn(ls,a

Proof. Forall h € [H],(s,y,a) € S x YV, x A and deterministic policy ¥, we can write (we denote
a' = Ypi1(s,y +Tr(s,a)) and § := y + 71 (s, a) for notational simplicity, and we remark that g
is not a random variable):
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£ [ Z W (Sns Yy an) — Qi1 (8,7, 059,%) [ i1 = 8, ynin = ﬂ] ]
S

=0

+ E ) [‘Q%(Say7a;p7t) - th(S,y7(l) - Ql}f.t,-l(slay, a/;pat)‘2]

~pn(ls,a

50



Under review as a conference paper at ICLR 2025

4
G [
s'~pn(-|s,a)
H 2
E H Z th/(Sh/,yh/, ah') - Q15+1(8/7y7 a/;p7t)‘ | Sh+1 = Slvyh-‘rl = y] ]
Py g S

7E}f+:(: g.a)
+ [|Qh s, y,a;p,v )_th<5ay7 ) Qh+1(s y?a P, t)}z]

9/~;Dh( |s.a)

:5VS/NP’L(.‘S,Q) [Qfﬂ(S’@a’%Px)]:Vgup,, (-|s,a) [‘/}?;1 (s",73p,v)]

= E [21}6+1(8/7y> a/)] + Vs’~ph( |s,a) [Vh+1(s ysp, t)]

s’ ~pn(-|s,a)
at (1) we add and subtract a term, at (2) we bring out the non-random reward received at h,
at (3) we compute the square and use the linearity of expectation, at (4) we use the fact that
H _
Ep T, 1/1[Zh’:h+1 th'(sh'7 Yn', CLh’) - Qq}f+1(sl7 Y, a/; p, t) | Sh+1 = 5/] = Qh+1(s Y, a’; 3Pt )
Qh +1(8",7,a’;p,t) = 0 because of linearity of expectation. O

Lemma E.12. Let 1) be any policy, and let p be any transition model associated to an arbitrary
inner dynamics p. Then, for all h € [H], (s,y,a) € S x Y x A, it holds that:

< VHS.

. tw [ Z \/Vs’~ph/ (“|sprs ah/)[Vh’Jrl(S Y +1; P, t)] Sh = 5,Yn = Y,0n = CL]

Proof. Forall h € [H], (s,y,a ) e & x Yy, x A, we can write (note that this derivation is independent
of p, p, so we might use even p, p in the proof):

’ptw[ Z \/VS e Claman) Vi1 (8 w113 0,9)] [ 30 = 8,9 = g, an = a”

o)) H .

Sl [ a Z Verap Clsnnan) Vare1 (8 Yns1ip 0] [ sn = s,yn =y, an = a]‘
Py =

©) H

<VH ptw[ Z Va "~pps (-l8prs ah/)[Vh/+1(s Yn'+15 P, t)]|8h—s yh7y7ah7a]

A ./ .
= H(p o [ Z Eh/ Sn’s Yn' Qn ) _Es'~ph/(-|sh/,ah/)I:Z;/L)/+1(517yfb’+1a¢h’+1(slayh'+1))]
h'=h

1/2
|8h =S5 Yn =Y,an = CLD

N

P
w[ Z S (S, s an) — Y1 (a1, Y1, anrg1) | Sn o= 8,yn = y,an = a]
P,

_—

“
=vVH | E [Ef(shyyh,ah) - Z%+1(5H+layH+17aH+1) |sh=s,yn =y,an = a]

p.ey
\ A

_\/7 (Syv)

¢ VEVE?
_ VI,
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where at (1) we have applied the Cauchy-Schwarz’s inequality, at (2) we have applied Jensen’s
inequality, at (3) we have applied Lemmal|E.T1] at (4) we have used telescoping, and at (5) we have

bounded %V (s,,a) < H? forall h € [H], (s,y,a) € S x Vi x A. O
E.3.3 LEMMAS ON THE OPTIMAL PERFORMANCE FOR MULTIPLE UTILITIES

To prove the following results, we will make use of the notation introduced in the previous section.
Lemma E.13. Lete€,6 € (0,1). It suffices to execute CATY—-UL with:

r < OS2 (54 10g SAHY),

)
to obtain supycy, |J*(U;p,r) — j*(U)| < HLeg +ewp. 1 —06.

Proof. Similarly to the proof of Lemma E.13, we can write:

sup |J*(Usp,r) — J*(U)|

UGU.L

= sup |J*(U;p,r) — J*(U)+J*(p, )|
Uesily,

< sup |J*(Usp,r) — J*(p,x)| + sup |J*(p,v) — J*(U)|
UGuL UGuL

= sup |J*(U;p,r) — J*(p, )| + sup |[J*(p,v) — J*(p, )|
UGL[L UGL(L

< HLeg + sup [J*(p,t) — J*(p,v)|

UELLL

%)HLEO +H2\/i(10gS§H + (S —1)log (e(1 4+ n/(S — 1))))

< HLey + ¢,
where at (1) we have applied the formula in Lemma[E.T4]

By enforcing such quantity to be smaller than €, we get:

HQ\/z(logSféH + (S —1)log (e(1 +n/(S — 1)))) <

H?,/log (e(1 +n/(S — 1))
\/ B Tn )\/2<logSA§H+(S—1)) <e
— n>213—;(10g&47H+(5—1)) log (e(1 4+ n/(S —1))).

By summing over all (s, a, h) € S x A x [H], and by applying Lemma J.3 of [Lazzati et al.| (2024b),
we obtain that:

~ [ SAH® AH
T_SAHn>(’)<S - (logs +5)>.
€ o

Lemma E.14. For any 6 € (0,1), for all utility functions U € iy, at the same time, we have:

7 (p.¥) = T ()| < Hz\/fl(logS/;H + (S = 1)log (e(1 +n/(S —1)))).

w.p. at least 1 — 0.

Proof. Let us denote by £ the event defined as:

£ = {VneN, Vh e [H], (s,y,a) €S x Vp x A:
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nKL(ﬁh('|S,a) Ipn (s, a)) < log SAH +(S—1)log (e(l +n/(S — 1))) }

We can write:

P(EY) = P(HneN, Jhe [H], (s,y,a) €S x Yy x A:

nKL(ﬁh(-|s,a)||ph(-\s,a)) > log S;lH + (S —1)log (e(l +n/(S — 1))))

(QP(EITLGN I(s,a,h) e S x A x [H] :

nKL(ﬁh(-|S,a)||ph(-\s,a)) > log SAH + (S —1)log (e(l +n/(S — 1))))

(2) ~
< Z IP’(EIn eN, nKL(p;,,(~|S, a)th(‘|s,a)) >

(s,a,h)eSx Ax[H]

SAH
log + (S —=1)log (e(1 + n/(S — 1)))>

(3) 1)
< X sam

(s,a,h)eSx Ax[H] SAH
<6,

where at (1) we realize that there is no dependence on variable y, thus we can drop it at (2) we
have applied a union bound over all triples (s,a,h) € S x A x [H], and at (3) we have applied
Proposition 1 of Jonsson et al.| (2020).

Next, for all utilities U € 41y, at the same time, for all the tuples h € [H], (s,y) € S x Yy, we can
write:

Vi (s,y3p,t) — Vi (s, 50, 1)

=N *
2 Z (ph’ (s'|Shrs anr) — Pue ([ swr, ah/)) V(8 s p,v)
pey Lp—p

s'eS

’3h=5»yh=yaah=a]

r H

) ~

<H E_| D IpwClswsan) = puClswan)li | sn = .90 = y.an = a
pe Lpi—p

® = _

<H E_| 3 VLG Clswsan)llpw (swsan) | sn = 5,50 = gy = a
pooyp Loy

o) =D SAH

<H 3 —(log7+(5—1)log (e(1+n/(S—1))))
P, L =h n Y

‘Sh:’S,yh:yaah:a]

- Hz\/z(logsism + (S =1)log (e(1+n/(S = 1)))).

where at (4) we apply the formula derived in the proof of Lemma E.§ and triangle inequality, at
(5) we have upper bounded with the 1-norm, defined as || f|1 := >, [f(z)], at (6) we have applied
Pinsker’s inequality, at (7) we assume that concentration event £ holds.

"'Therefore, differently from the event for a single utility, now there is no dependence on d in the bound.
Intuitively, d appeared in the case of a single utility because we had to apply Hoeffding’s inequality d times,
because we had, potentially, d different value functions (as many as the states). Since now we provide the
bound for all the possible value functions (1-norm bound), then the dependence on d disappears.
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We remark that the guarantee provided by this theorem holds not only for L-Lipschitz utilities, but
for all functions with the same dimensionality (since it is a bound in 1-norm). O

E.4 ANALYSIS OF TRACTOR-UL

Theorem 5.2. Let ¢, € (0,1),L > 0, and assume that U¥ € ;. If we execute TRACTOR-UL
with parameters €y = €2 /(80N2L*H), T > O(N*H*L?/¢*), K > (5(N2H2 log ML /e2) o =
V/[H Jeo| — 1H/(2N~/T), an arbitrary U € U;, and if it holds that, for all i € [N]:
apnar2 2 5
Pi s O(H Z L 1og N;ZL), 7> O(L SAH (S+10g SAfN)),
then, w.p. at least 1—0, for any A > ¢, TRACTOR-UL guarantees that all the utilities U € {; such
that U(y) = ( )forallye Y (where Ue U, is the output of TRACTOR-UL) belong to U € U A.

€

Proof. The proof draws inspiration from those of Syed & Schapire| (2007) and |Schlaginhaufen &
Kamgarpour| (2024).

Given any distribution 7 supported on ), and given any two utilities U € 8, ,U € U, (where U is

a function on [0, H] and U is a vector on ), we will abuse notation and write both U Ty and UTn,
with obvious meaning.

Moreover, for L > 0, we define operator €7, : £; — 2%z (where 2% denotes the power set of set
X) that, given vector U € U, , returns the set €1 (U) := {U e U, |Vye YV : U(y) = U(y)}.

First of all, we observe that the guarantee provided by the theorem follows directly by the following
expression:

sup max C, rigi(U) <€) =219,
(UE€ pU)Le[[N]] piri e (U) )

where P a2, v denotes the joint probability distribution obtained by the N MDPs {M"};.

Let us denote by U := ( Z:ol U,)/T the output of TRACTOR-UL. Note that U € ;. We can
write:

sup max Cpi i pe.(U)
veey (0) €IN] a

0] _
< sup 2 Cp'i’ri’ﬂ-E,i(U)
UeeL(U) ie[N]

@ sup ( (U;p', ") J”E’i(U;pi,ri)+(7TﬁE’i>
Uee (0) i€[N]
3) N .
< sup ( (U;p',r") UTﬁE’Z> + €
UGQL(U) €[N]
@ sup (max Uty — UT Nt z) + e
veer (D) Ny \"°
S T—1
© sup — Z max Z (Uf n—U,T nE’> + €1
T . nev;
UOGCL(UO) i€[N] t=0

Ur— 1E€L(UT 1)

T-1
© 1 i
<TZ sup Z (maxUtm-Utnt U, 7t >+61

t=0U:€€(Us) ie[N] N

M 1 — =T~ ~mi\, 1. = T (i A~

<5 Z ZUt(m d )+f1ng12 ZU(m*n’)HﬁEQ
=0 ie[N] Ul 120 ie[N]
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T-1
® 1 — N 2HN~/H
I (R e
4y = 0 ic[N] %\f’T_/

=l€3
(9)1 B/ o~ B,
ZZUT<1_ E1)+UET[)77T + €1 + €+ €3
tOzeﬂN]]

T—1
(10) 1 —E,T ~; P i i B
il Z Z U TninEan T UEan T 4 06l 4eg + €3

N

’ﬂ

_

an i i ioi B
E , T
<—§ E U ’T(np"“”*t—npﬁrr“ )+261+e2+63+e4
t=0 N
<0

< 261 + €2 + €3 + €4,

where at (1) we upper bound the maximum of positive terms with their sum, at (2) we apply the
definition of (non)compatibility, at (3) we first upper bound the supremum of a sum with the sum
of the supremum, and then we apply Lemma w.p. ¢/3, and denote ¢; = NL+/2Heo +

NH-E,

> cH Hki%, at (4) we denote by D, the set of possible return distributions in environ-
1€[N]
ment ¢, at (5) we use the definition of ﬁ , and realize that all functions U € €, (ﬁ ) can be constructed
based on T functions Uy € €1 (Uy),...,Ur_1 € € (Ur_1). At (6) we upper bound the maximum
of the sum with the sum of maxima, and exchange the two summations, and we add and subtract
the dot product between the (discretized) utility U; and the estimate of the return distribution com-
puted at Line [6} moreover, we bring the sup inside the summation. At (7) we upper bound the

supremum of the sum with the sum of the supremum, and we apply Lemma w.p. §/3, deﬁning
€ = cNHQ\/ (1og SAAN 4 (S —1)log (e(1 +n/(S — 1)))) + NHLey + CHN l°g ,

and we add and subtract a term, at (8) we apply Theorem H.2 from |Schlaginhaufen & Kam-
garpour| (2024) since set L, is closed and convex, where D := maxg Tet, T =T, =

= «/|H/eo| — 1H < H+/H/eq (recall that we consider increasing and not strictly-
increasing utilities) and maxg g [V Zw&[[N]] U@ — 7%, = | Die[n] i - bty <
2ie[N] %l + 7541 = 2N =: G (because 7j; and 77+ are probability distributions), with learn-
ing rate « D/(G\/7) = Hvd—2/2NVT) = +/|H/eo| — 1H/(2N+/T), at (9) we upper

bound the minimum over utilities with a specific choice of utility, U ~, and we add and subtract a

term; note that U € U, corresponds to the expert’s utility U” € &, (by hypothesis), i.e., for all
yey: UE( y=U E( ). Note that, by hypothe31s U¥ makes all the expert policies optimal, i.e.,

Vi e [[N UE7Tnp et = sup, UPTyP"7"7 At (10) we note that, under the good event of
Lemma L we can provide an upper bound using the term in Lemmau (since UP € 4;); in
addition, we sum and subtract a term that depends on some policy 7y, whose existence is guaranteed
by Lemma which we apply at the next step. At (11) we apply Lemma w.p. /3, and we
define as ¢, the upper bound times N. Finally, at (12) we use the hypothesis that utility U” makes
the expert policy optimal in all environments.

We want that 2¢; + €5 + €3 + €4 < €. We can rewrite the sum as:

2¢1 + €3+ €3+ €4

_ <2NL«/2H60 n gLNHeO) n c%
€0

">The maximum is attained by discretized utilities U, U’ that assign, respectively, U(y) = 0and U (y) = H
to all the y € Y\{y1, ya}-
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H log NHrZ" log &L
/ de " )

i€[N]

+ c’”NHQ\/i(log SAfN +(S —1)log (e(1 + n/(S — 1)))).

By imposing each term smaller than €/5, we find that it suffices that

e _ 62
0 = B0NZ?LZH

O<N2H3> > OQN“I;:‘Lz)

™

~
\Y

€g€e?

~ / H3N2 log NE ~ (H*NAL2 log NHL i
O Téo >0 # Vie [N]
N?H?log & N ( N>H?log NHL
% >0 %

7N2€§4H5 (S + log 75‘45]\') Vi e [N]

E
)

A
B

T =

e
\
o Vv

where we have used that 78 = SAHn for all i € [N], and also used Lemma J.3 of Lazzati et al.
(2024b).

The statement of the theorem follows through the application of a union bound. O

Lemma E.15. Let 6 € (0,1). Then, it holds that, w.p. at least 1 — §:

E,i
H log M7

€TE" ’

sup Z ‘UTﬁE’i—J”E’i(U;pi,ri) < NL+/2Hey + Z cH
Ueldy i) i€[N]

where c is some positive constant.

Proof. We can make the same derivation as in the proof of Theorem[5.1]to upper bound the objective
with the sum of two terms, which can then be bounded using Lemma [E.T| and the expression (Eq.
(T3)) obtained in the proof of Lemmal[E.4w.p. §/N:

sup ) ’UTﬁE’i—J”E'i(U;pi,T")

Uelly ie[N]

E,i

)

< I Z w (npi’ri’ﬂ—EvzProjc(npi’ri’ﬂ'
i€[N]

+ Z sup | E [U/(G)]_ E [U(G)H

ie[N] U'e[0,H]¢ G~Proje (np' 'm0 G~

< LN+/2Heo + Z cH

i€[N]

NHTE
H log e

erEA
The result follows through the application of the union bound. O

Lemma E.16. Let 6 € (0,1). With probability at least 1 — 6, forall t € {0,1,...,T — 1}, for all
i € [N], it holds that:

e 1 SAHN
sup maxUTn—U;n < cHQ\/<log + (S —1)log (e(1 +n/(S — 1))))
Use€r (Ty) 1891 n 0
log ¥

K )

+HLey+cH
where c, ¢’ are some positive constants.

56



Under review as a conference paper at ICLR 2025

Proof. We use the notation in Section In particular, let policy 7; " be the optimal policy in the
RS-MDP M% = (S8, AL H, 88, P, 7, Uy, e

J%Y*J(Uhﬁvfl) = J*(Utvﬁafz) = J*(Ut,ﬁ,FZL

where the last passage holds trivially for all U; € € (U;) (because there is no evaluation of utility
outside ).

Thus, forall ¢ € {0,1,...,T — 1}, we have:
sup_ max Uy — Uy ii+J* (U ', 7)
Ui, (T,) 1591
(1) . o — o i i~k
< swp UG ) = JHOGE | + [0 (7 7T
Uier(Uy)

) 1 SAHN
< HLe + cHZ\/(log
n

— . ~i —i ~k,i
SR

+(S—1)log (e(l +n/(S— 1))))

3 1 AHN
<HL60+CH2\/n(1ogS 5 —i—(S—l)log(e(l—i—n/(S—l))))
log &L
/H 4
c 7

where at (1) we have applied the triangle inequality, and realized that in the second term there is
no dependence on the value of utility outside of ); moreover, we have used that J*(Uy; p*, 7") =

UTnp ™7 by definition of policy 77", At (2) we apply Lemma (our J*(Uy; p',7°) has
the same meaning of J*(U) in the lemma, and we upper bound SUPy,ce, (T,) with supgeg ) W.p.
d/(2N )E-]and we keep the confidence bound explicit, and we upper bound d < H /e€o+1, and at (3)
we observe that 7} is the empirical estimate of distribution 7?* TR (see Line@) obtained through
the sampling of K sample returns G1,Ga, ..., Gk e nﬁlfﬁt* ", Indeed, note that the policy
¥,”*, computed at Lineand optimal for €[ML | = ({S' x Vp}n, A', H, sé,ﬁi,ti) provides
policy 7t} o through the formula in Section [2} thus Line |5|is actually simulating 7;' " in MDP M:.
Therefore, we can apply Hoeffding’s inequality (e.g., see LemmalE.3) w.p. §/(2T'N).

The result follows through the application of the union bound.

We remark that in one case we use probability 6/(2N) (without T') while in the other we use
0/(2NT) (with T), because in the former we provide a guarantee for all possible utilities w.r.t.
the optimal performance, thus all the 7" steps are already included; instead, in the latter, we provide
a guarantee for a single utility and for a single policy at a specific ¢t € {0,...,T — 1}, thus we have
to compute a union bound with 7. O

Lemma E.17. Let § € (0,1). With probability at least 1 — 6, foralli € [N] andt € {0,...,T —1},
under the good event in Lemma @ there exists a policy Ty such that:

=E, T~ E7 pi rt 10g¥
U 77t_U ’77 v QLH60/2+CH T

+ c’HQ\/i(log SA:;IN + (S —1)log (e(1 +n/(S — 1)))),

where c, ¢’ are positive constants.

13We remark that, in doing so, we can still apply Proposition 3 of[Wu & Xu|(2023) inside the proof of Lemma
[E13]even though we consider increasing utilities instead of strictly-increasing utilities; indeed, it is trivial to
observe that the proof of Proposition 3 of[Wu & Xu|(2023)) does not depend on such property.

See Section for the meaning of p and t;; we use V), for all h in the state space instead of the sets of
partial returns {g,’;’v“ }1 in order to obtain policy ;" supported on the entire S x ) space, and to make it
compliant with Algorithm 4]
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Proof. First, simply observe that 7); is the empirical estimate (see Line El) of nﬁi o thus, simi-
larly to the proof of Lemmal[E.16] forall i € [N] and t € {0, 1,...,T —1}, we can apply Hoeffding’s
inequality w.p. /(2T N):

log 5"
K

’UEyT(ﬁi_np, ﬂ;k )‘ch

. . . A o—i ~k,d *¥,1
Now, we compare distributions n” *" ™+ and 777’ TR . Through straightforward passages, we can
write:

|UE)T (7}161‘,77;,%?'1’ _ np.fl 7 l)|

= | @) T (T )
. . . ~k,i . .
L |sh, REL(S)Va (500, T)
s’eS
*1 . .
— B sh, A sV (85T
s’'eS
N N . . ~k i o
< | D (P shs AR 0)) = B (/s AT (s ) Va ' ('3, 7)
s’eS
. . . ~%k,i . .
+ Z }3%1(8/‘8077“1 SO; “/2 ;pzaFZ) _V27rt (sl;ﬁv?z)
s’'eS
<...
H o o, aki
< E [Z Z (pﬁlf(s |shryan) — phi(s |Sh/,ah/)>Vh,ﬁrl(s;pz,W)
pr At Ly ges

s1 = 56]

< H E [ Z th/ |5h’ ah/) ph,( ‘Sh/ ah/)

piT, ‘IAI':‘< h=1

51 = 36]
S1 = 80:|

where at the last passage we applied the Pinsker’s inequality. Note that the previous derivation
was possible as long as as policy 7;"* is defined over all the possible pairs state-cumulative reward
(5,y) € S x Yy forall h € [H]. Since we construct it through policy ", obtained at Line ie.,

over the entire enlarged state space {S x Y}, }1, then policy 7;" satsifies such property. Now, in the
proof of Lemma[E. 16 we used Lemma [E-T4] in which event £ bounds the KL-divergence between
transition models. Therefore, under the application of Lemma[E:T€] it holds that:

OB (g A ) < HZ\/i(log SN (s~ 1)tog (e(1+ /(5 — 1)) ).

where 7 is the number of samples takes at each (s,a,h) € S x A x [H] in the i € [N] MDP.

i w [ SR Gl 5 o)
h'=1

kL
pt,Te Ty

Therefore, we can finally write:

E, , %0 i i Ak,
UTNL UE"|'pr7r+UTpr7r, +U p’l,ﬂ"t

~i—i Ak i

_ BT (np LRR np ot ) LT (np FLaRt np’fiﬁ?"i)
%,
T ()

(<1)UE,T(77P FLEE np"ﬂ”,ﬁ‘) +cH log 5

K
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+ c'Hz\/i(log SAfN + (S5 —1)log (e(1 +n/(S — 1))))

log 55+

K

2)
< LHey/2 +cH

+ c'HQ\/Z(log SA;SHN + (S —1)log (e(1 +n/(S — 1)))),

where at (1) we have used the bounds derived earlier, and at (2) we have applied Lemma [E.T8]
noticing that we can choose policy 7 as we wish, and using that k < €y/2.

O

Lemma E.18. Let M, = (S, A, H,s0,p,r") and My = (S, A, H, s9,p,72) be two MDPs with
deterministic rewards that differ only in the reward function v* # r2, and assume that, for all
(s,a,h) € 8 x A x [H], it holds that |r}.(s,a) — 73 (s,a)| < k, for some k > 0. Let n* be
an arbitrary (potentially non-Markovian) policy that induces, in M, the distribution over returns
771’”'1’”1. Then, there exists a policy 7 that induces in Mo the distribution 771”'2’”2 such that:

sup |E 1[U(G)] - E :[U(G)]| < LHk.

Ganpir2,m
Uesl, K

Grmpirlw

Proof. A non-Markovian policy like 7!, in its most general form, prescribes ac-

tions at stages h € [H] depending on the sequence of state-action-reward
(s1,a1,71,82,G2,72, .., Sh—1,0h—1,Th—1,Sp) received so far. Since, by hypothesis, the re-
ward functions are deterministic (see also Section |Z|), then it is clear that the information contained
in the rewards received so far ({ry,r2,...,7,—1}) is already contained in the state-action pairs
received (s1,a1,$2,a2,...,8,—1,an—1,Sy) (indeed, for deterministic reward r1, we have that
r1 = ri(s1,a1),72 = r3(s2,az), and so on). This means that, for any non-Markovian policy
in the MDP M, since it coincides with M5 except for the deterministic reward function, it is
possible to construct a policy 72 that induces the same distribution over state-action trajectories,
i.e., for any state-action trajectory w = (s1,a1,82,02,...,SH—1,0H—1,SH,aH,SH+1) € €, it
holds Pp77‘177r1 (w) = ]P)p’r'z}ﬂa (w)

Therefore, we can write:

sup )EGWP,N,H [U(G)] ~ Eg_ppz.eo [U(G)]‘
Ueid;

(;) sup ‘ Z Pp’rl_’ﬂ—l (w)U( 2 T}IL(S,G))

Ueldy ' en (s,a,h)ew

-3 77_2,7r2(w)U< > 7’%(&“))‘

weN (s,a,h)ew

(i) sup ‘ Z PpJAl,ﬂ.l (w)U( Z T}L(S,a)>
Uetl, wef) (s,a,h)ew

— Z Pp’,ﬂl;ﬂ—l(W)U( Z r,%(s,a))‘

we (s,a,h)ew

sup ‘ Z Pyt p(w) (U( Z T}L(s,a)) - U( Z r,%(s,a)))‘
weQ

Ued, (s,a,h)ew (s,a,h)ew

(i) sup prvrlyﬂl(W)‘U( Z r,ﬁ(&a))—U( Z r%(s,a))’

Uelly ,eq (s,a,h)ew (s,a,h)ew

A\

SN Pnm@L Y (rh.0) -~ ri(s.0)|

weN (s,a,h)ew

(2 2 P, 1 p1(w)L 2 ‘r,ll(s,a) — r%(s,a)‘

weN (s,a,h)ew
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QEZMﬂJWAL Dok

weN (s,a,h)ew

— LHE,

where at (1) we use the fact that the expected utility w.r.t. the distribution over returns can be com-
puted using the probability distribution over state-action trajectories (since the rewards are determin-
istic), at (2) we use that policy 72 is constructed exactly to match the distribution over state-action
trajectories, at (3) we apply triangle inequality, at (4) we use the fact that all utilities U € Ll; are
L-Lipschitz, i.e., forall z,y € [0, H]: |U(x) — U(y)| < L|z — y, at (5) we apply again the triangle
inequality, and at (6) we use the hypothesis that 71, 72 are close to each other by parameter k. []

F EXPERIMENTAL DETAILS

In this appendix, we collect additional information about the experiments described in Section [6]
Appendix [FI] presents formally the MDP used for the collection of the data along with the questions
posed to the participants. Appendix [F2] describes what is a Standard Gamble (Wakker] 2010) and
how it has been used to construct the utility Usg of the participants. Finally, Appendices[F.3|and [F4]
contain, respectively, additional details on Experiment 1 and 2.

F.1 DATA DESCRIPTION

Below, we describe the data collected.

F.1.1 CONSIDERED MDP.

The 15 participants analyzed in the study have been provided with complete access to the MDP in
Figure [9] which we will denote by M. In other words, the participants know the transition model
and the reward function of M everywhere.

start

(AN AN
Figure 9: The MDP used for data collection.

Intuitively, states L (Low), M (Medium), H (High), and T (Top), represent 4 “levels” so that the re-
ceived reward increases when playing actions in “higher” states instead of “lower” states. Formally,
MDP M = (S, A, H, so,p, ) has four states S = {L, M, H,T}, and three actions for each state
A = {ag,a4,a_}. The horizon is H = 5, i.e., the agent has to take 5 actions. The initial state
is sp = M. The transition model p is stationary, i.e., it does not depend on the stage h € [H].
Specifically, p is depicted in Table[2] The intuition is that action ao keeps the agent in the same state
deterministically, while action a tries to bring the agent to the higher state with probability 1/3,
and action a_ sometimes make the agent “fall down” to the lower state with probability 1/5.
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L p [ L M H T]|
L.a) | I 0 0 0
(L,ay) |2/3 1/3 0 0
(La_) | 10 0 0
(Myag) | 0 1 0 0
(M,ar) | 0 2/3 1/3 0
(M,a_) [ 1/5 4/5 0 0
(Ha) | 0O 0 1 0
(Hay) | 0 0 2/3 1/3
(Hoa_) | 0 1/5 4/5 0
(Tyag) | 0 0 0 1
(T.ay) | 0 0 0
(Toa_) | 0 0 1/5 4/5

Table 2: The transition model p of MDP M.

The reward function r : S x A x [H] — R is deterministic, stationary, and depends only the
state-action pair played. The specific values are depicted in Table [3| Note that we have written the
reward values as numbers in [0€, 1000€], to provide a monetary interpretation. Nevertheless, we
will rescale the interval to [0, 1] during the analysis for normalization. Observe that the same actions
played in “higher” states (e.g., [ or T') provide higher rewards than when played in “lower” states
(e.g., L or M). Moreover, notice that action a, which is the only action that tries to increase the
state, does not provide reward at all, while the risky action a_, which sometimes decreases the state,
always provides double the reward than “default” action ay.

| [t M 7 T |

ao | 0€ 30€ 100€ 500€
a, | 0E 0€ 0€  0€
a_ | 0E 60€ 200€ 1000€

Table 3: The reward function » of MDP M.

F.1.2 INTUITION BEHIND AGENTS BEHAVIOR.

The reward is interpreted as money. Playing MDP M involves a trade-off between playing action
a4, which gives no money but potentially allows to collect more money in the future (by reaching
“higher” states), and action a_, which provides the greatest amount of money immediately, but
potentially reduces the amount of money which can be earned in the future. Action ag, being
deterministic, provides a reference point, so that deterministically playing action ag forall the H = 5
stages gives to the agent 30 x 5 = 150€. Thus, playing actions a.., a_ other than ag means that the
agent accepts some risk to try to increase its earnings.

F.1.3 QUESTIONS ASKED TO THE PARTICIPANTS

We remark that the participants have enough background knowledge to understand the MDP de-
scribed. To each participant, we ask which action in {ag,a+,a_} it would play if it was in a
certain state s, stage h, with cumulative reward up to now y, for many different values of triples
(s,h,y) € S x [H] x [0€,5000€]. Specifically, the values of triples s, h, y considered are:

(M, 1,0€) (M, 2,0€) (M, 2,30€) (M, 2,60€) (H,2,0€)

(M, 3,0€) (M, 3,30€) (M, 3,60€) (M, 3,200€) (H,3,0€)

(H,3,30€) (H,3,60€) (H,3,200€) (T,3,0€) (M,4,0€)

(M,4,30€) (M,4,60€) (M,4,90€) (M,4,120€) (M, 4,150€)

(M, 4,180€) (M, 4,300€) (M, 4,400€) (H,4,0€) (H,4,30€)

(H,4,60€) (H,4,100€) (H,4,130€) (H,4,200€) (H,4,300€)

(H,4,1000€) (T,4,0€) (T,4,60€).
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From state L, we assume all participants always play action a since it is the only rational strategy.
Moreover, from stage h = 5, we assume that all participants always play action a_ since, again, it

is the only rational strategy.

In all other possible combinations of values of s, h,y, we “interpolate” by considering the action

recommended by the participant in the closest ' to y, in the same s, h.

F.1.4 THE RETURN DISTRIBUTION OF THE PARTICIPANTS’ POLICIES

We now present the return distribution of the policies prescribed by the participants. Specifically,
we have simulated 10000 times the policies of the participants, and we have computed the empirical
estimate of their return distributions. Such values are reported in Figures [T0] [IT} [T2} [13] and [T4]

where we use notation 7 to denote the return distribution of participant i, with i € [15].
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Figure 13: Plot of n%, nf), and nk.

F.2 STANDARD GAMBLE DATA

Standard Gamble (SG). The Standard Gamble (SG) method (e.g., see Section 2.5 of
(2010)) is a common method for inferring the von Neumann-Morgenstern (vNM) utility function of
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Figure 14: Plot of nf}, nt%, and n1%.
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Figure 15: The SG utilities of the participants.

an agent. Observe Figure[T6] In a SG, the agent has to decide between two options: A sure option
(e.g., x = 30€), in which the prize is obtained with probability 1, and a lottery between two prizes
(e.g., 5000€and 0€), in which the best prize (5000€) is received with probability p. For any value
of x, the agent has to answer what is the probability p that, from his perspective, makes the two
options (i.e., x for sure, or the lottery) indifferent.

Y s000€
S
0€
Figure 16: The SG used for data collection.

Given the probability p, we have that the utility U of the agent for x is:
U(z) = p-U(5000) + (1 —p)-U(0) = p,
since, by normalization conditions, we have U (0) = 0 and U (5000) = 1.
Our SG. We have asked the 15 participants to the study to answer some SG questions, which

allows us to fit a vNM utility function for each of them (which we call Usg). Specifically, we have
asked to answer 8 different SG questions, in which the = value in Figure[T6 has been replaced by:

10€, 30€, 50€, 100€, 300€, 500€, 1000€, 2000€.

Next, we linearly interpolate the computed utilities, obtaining the functions in Figure[T3]

It should be remarked that this model considers single decisions (i.e., H = 1), while in MDPs there
is a sequence of decisions to be taken over time, specifically over a certain time horizon H.

F.3 DETAILS EXPERIMENT 1

The utilities Usgrt, Usquares ad Ulinear can be formally defined as: Usqn(G) = V5G, Usquare(G) =
G? /5, Ulinear(G) := G. They are depicted in Figure
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[&]

— U(G) = VG
— U(G)x G2
U(G) =G

Utility U(G)

Return G

Figure 17: A plot of utilities Usgrt, Usquare, Ulinear-

The experiment has been conducted collecting 10000 trajectories to estimate the return distribu-
tion of each participant’s policy, and 10000 trajectories for estimating the return distribution of the
optimal policy, which has been computed exactly through value iteration. We have executed 5 simu-
lations with different seeds, and the relative (non)compatibility values written in the table in Section
[6]are the average over the 5 simulations.

For the experiment, we use the true transition model, and we remark that the reward function consid-
ered, when discretized, coincides with itself, i.e., we do not incur in estimation error of the transition
model nor in approximation error for the discretization.

The experiment has been conducted in less than 1 hour on a personal computer with processor AMD
Ryzen 5 5500U with Radeon Graphics (2.10 GHz), with 8,00 GB of RAM.

F.4 DETAILS EXPERIMENT 2

Experiment 2 is made of two parts, the first in which we execute it on the MDP adopted also in
Experiment 1, and the other where we use simulated data. We describe here the former, while we
present the latter more in detail in Appendix

We consider the policy of the 10th participant to the survey, and we execute TRACTOR-UL multiple
times with varying values of the input parameters, specifically: we always use K =10000 trajecto-
ries for estimating the return distribution of the 10th participant’s policy, and the return distribution
of the optimal policies computed along the way; we make 5 runs with each combination of parame-
ters with different seeds. We execute for 7" = 70 iterations using Lipschitz constant L = 10, which
means that we consider only utilities U € 4, satisfying |U(G) — U(G")| < 10|G — G’| for all
G, G’ € [0, 5] (the horizon is 5). As initial utility Up, we try Usqrt, Usquare» and Ulinear, and as learning
rates we try 0.01, 0.5, 5,100, 1000, 10000.

The experiment has been conducted on the same personal computer as experiment 1, in some hours.

We note that the choice of U is rather irrelevant for the shape of the extracted U , but it matters for
its “location”, as shown in Fig. [T§]

To view the sequence of utilities extracted by TRACTOR-UL during the run, see Appendix [F4.1]
while in Appendix [F.4.2)we explain better why the best learning rate is large.

F.4.1 THE SEQUENCE OF UTILITIES EXTRACTED BY TRACTOR-UL

We now present some plots representing the sequence of utilities extracted by TRACTOR-UL dur-
ing its execution. Specifically, we consider initial utility Uy = Usguare, and we use learning rates
a € [0.01,0.5,5,100, 1000, 10000]. We plot the sequence of utilities considered by TRACTOR-UL
during its execution in Figures[T9] 20} and 21} where we adopt notation that U; denotes the utility
extracted at iteration ¢, and the number in the legend represents the (non)compatibility of that utility.
We consider again participant 10.
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Figure 18: Utilities computed by TRACTOR-UL starting with the Uy in the legend (ov = 100).

we observe that for smaller learning rates (e.g., & € [0.01,0.5,5]), the utilities as well as the
(non)compatibilities) do not change much (Figure [T9] and Figure [20] left), while for larger learn-
ing rates, we obtain more consistent changes (Figure [20]left and Figure 21)).

Clearly, larger learning rates require less iterations to achieve small values of (non)compatibilities.
Nevertheless, too large values (e.g., @ = 10000) are outperformed by intermediate values (e.g.,
o = 100).
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0 1 2 3 4 5 0 1 2 3 4 5
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Figure 19: (Left) « = 0.01. (Right) o = 0.5.
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Figure 20: (Left) o = 5.

65

(Right) o = 100.

Return G



Under review as a conference paper at ICLR 2025

5] — Uo, 0.26 51 — U0, 026
— U;,0.16 — U, 0.17
4 Uz, 0.12 4 Uz, 0.18
. Us, 0.086 _ Us, 0.14
Qo S
33 33
> >
£ £
=, =,
3 2 5 /'
1 1
=}
0 0
0 1 2 3 4 5 0 1 2 3 4 5
Return G Return G

Figure 21: (Left) « = 1000. (Right) o = 10000.

F.4.2 A VISUAL EXPLANATION FOR A LARGE LEARNING RATE

Now, we show that the projection update represented by operator Il crucially neglects small
2,
variations in the (non-projected) utilities, requiring us to increase the step size.

Thus, the intuition is that we need a large learning rate because the projection step neglects small
variations. To show this, we take as initial utility Uy = Usqy, two return distributions 7, n¥, where
n* coincides with the distribution of an optimal policy for Usq, and n¥ is the return distribution
of the policy played by participant 10. These distributions are plotted in Figure [22]left, and their
difference is plotted in Figure 22 right. In particular, we note that the two distributions are rather
different, with the expert’s distribution 7 that is more risk-averse, in that it provides higher prob-
ability to returns around G = 0.5, while the optimal distribution 7¢ is more risk-lover, in that it
assigns some probability to higher returns G > 1, but suffering from also high probability to small
returns G < 0.3.

o n
0.30 no

Probability n(G
o o
5 &
Difference ng (G) — nf(G)
S
o a2]

0 1 2 4 5 0 1 2 3 4 5

3
Return G Return G

Figure 22: (Left) Plot of i and n”. (Right) Plot of n¥ — n”.

We aim to perform the TRACTOR—-UL update rule:

/!

Uy < U —a(y* — 1),
with some learning rate «, and then to perform the projection:
— —
U1 «— HQL [Ul]
We execute the update with the following values of steps size: « € {0.01,0.5, 5,100, 1000, 10000},
. e T = .
and we plot the corresponding updated utilities U; and U in Figures and

As we can see from Figures and [25} the update Uy — U obtained with step sizes < 5 are
rather neglectable, so that the return distribution of the new optimal policy 7§ for U still coincides
with the previous one 7, and the gradient at the next step is the same. For & = 5, we begin to notice
some changes. See Figure [26]

Instead, with larger gradients, we observe a non-neglectable change in utility, which provides a
consistent change in the return distribution for o = 100, and a huge change for « € [1000, 10000]
(see Figure|27).
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Figure 26: (Left) Comparison of the return distributions nf obtained with o = 0.01 and « = 0.5, with 7.
(Right) Comparison of the return distribution 1 obtained with v = 5, with n¥.

Since neglectable changes in both the utility and the optimal return distribution (obtained with small
learning rates) mean that we have to update the utility many times along the same direction, then
the update is equivalent to performing a single update in that direction with a huge step size. This
justifies the use of large learning rates.
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Figure 27: (Left) Comparison of the return distribution 7§ obtained with o = 100, with 7. (Right) Compar-
ison of the return distributions 1} obtained with o = 1000 and v = 10000, with 7.

F.4.3 ANALYSIS ON SIMULATED DATA

We have executed TRACTOR-UL on MDPs generated at random. Below we report the truncated
(non)compatibility values of the utilities extracted by the algorithm as a function of the number of
iterations, in the five different experiments conducted. For the experiments, we executed for 7" = 70
gradient iterations, with parameters K = 10000 and L = 10, as in the first part of the experiment.
We found that the best learning rate is o = 1.
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Figure 28: (Left) Simulation with S = 20 and A = 5. (Right) Simulation with S = 100 and A = 10.
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Figure 29: (Left) Simulation with S = 1000 and A = 20. (Right) Simulation with N = 5.
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