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ABSTRACT

Despite the growing video understanding capabilities of recent Multimodal Large
Language Models (MLLMs), existing video benchmarks primarily assess under-
standing based on models’ static, internal knowledge, rather than their ability to
learn and adapt from dynamic and new contexts with minimal examples. To bridge
this gap, we present Demo-driven Video In-Context Learning, a novel task
focused on learning from in-context demonstrations to answer the target videos.
Alongside this, we propose Demo-ICL-Bench, a challenging benchmark specifi-
cally designed to evaluate demo-driven video in-context learning capabilities. The
Demo-ICL-Bench is constructed using 1200 instructional YouTube videos with
questions, from which two types of demonstrations are derived: summarizing video
subtitles for text demonstration or directly using a corresponding instructional
video as video demonstration. To effectively tackle this new challenge, we develop
Demo-ICL, an MLLM with two-stage training strategies: video-supervised fine-
tuning and information-assisted direct preference optimization, jointly enhancing
the model’s ability to learn from in-context examples. Extensive experiments with
state-of-the-art MLLMs confirm the challenges of Demo-ICL-Bench, demonstrate
the effectiveness of Demo-ICL, thereby unveiling future research directions.

1 INTRODUCTION
Video understanding has been a long-standing and significant challenge in computer vision. Recent
Multimodal Large Language Models (MLLMs) (Alayrac et al., 2022; Awadalla et al., 2023; Huang
et al., 2023; Zhao et al., 2023; Peng et al., 2023) have achieved significant progress in video
benchmarks, expanding capabilities from short-clip recognition (Fabian Caba Heilbron & Niebles,
2015; Mangalam et al., 2023; Goyal et al., 2017) to the analysis of long videos (Chandrasegaran
et al., 2024), and handling videos from daily life videos (Lei et al., 2019; Mangalam et al., 2023) to
instructional videos (Miech et al., 2019; Tang et al., 2019; Zhukov et al., 2019).

However, existing video benchmarks typically pose questions that rely on either internal, general
pre-trained knowledge (e.g., asking “what is a whisk?”) or simple facts observable within the specific
target video being evaluated (e.g., “where is the whisk?”). This is fundamentally different from the
more challenging scenario where a model must learn a new process or skill from demonstrations
(e.g., a video tutorial that teaches the model how to cook Mexican Rice) and then apply that learned
knowledge to answer questions based on a new, related target video sequence. This scenario reflects
human learning and is crucial for downstream applications like robotics, where robots can learn from
demonstrations to tackle new tasks. For instance, in Fig. 1, the model is required to watch a video
showing only the initial step of heating oil for Mexican Rice and being asked “what should you do
next?” based on in-context text instructions or video demonstrations. This question requires knowing
the specific sequence of steps for this particular version of Mexican Rice that the model is presumably
meant to understand or follow, such as based on the in-context video demonstrations.

To better encourage models to learn and adapt new skills from context, we propose a challenging
video understanding task called Demo-driven Video In-Context Learning (Demo-driven ICL).
Our task embodies this by presenting target videos and questions alongside in-context text guidelines
or video demonstrations. As shown in Fig. 1, Demo-driven ICL has three sub-settings: (1) text-demo
in-context learning, (2) video-demo in-context learning, and (3) demonstration selection. These
questions explicitly require models to use the knowledge provided within in-context examples,
rather than just their static internal knowledge. A key difference between Demo-driven ICL and
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Demo-ICL

Q: According to the video, till after heating the oil, what should I do now to cook the Mexican Rice? 

Text-demo In-Context Learning

Text Instructions

Step 1: Wash the rice; Heat the oil
Step 2: Add the tomato purée 
Step 3: Add onion and garlic; fry 
for 2 minutes

...

Video Demonstration

Video-demo In-Context Learning Video Candidates

Demonstration Selection

∫

Retrieve
Adapt

Search

…

Based on the text instructions 
of the process of making 
Mexican rice; I can see current 
video with the step of heating 
oil, and the next step could be 
adding the tomato purée.

Based on the video 
demonstration, which shows 
adding tomato purée during 
cooking, I can learn from it 
and tell that the answer to 
this question would be 
adding the tomato purée.

Based on the video candidates, 
I should select the last video 
to answer the given question. 
From the content of video, I 
can infer the final answer is 
adding the tomato purée.

Video Candidate Pool

Figure 1: Overview of the Demo-driven Video In-Context Learning Task with three distinct
settings: (1) Text-demo in-context learning, where text instructions act as the demonstrations; (2)
Video-demo in-context learning, where a video demonstration acts as the reference; and (3) Demon-
stration Selection, which requires identifying the most relevant video demonstrations among the
video candidate pool and using them to guide in-context learning.

previous in-context learning paradigms lies in the data modality and interaction type: our in-context
demonstrations could be videos, and the task involves choosing from the video candidate pool to
identify suitable in-context examples by the model itself. The Demo-driven ICL tasks mirror how
one might learn a complex skill, such as cooking, by searching related video demonstrations and
watching while also consulting supplementary visual or textual guides.

To evaluate the proposed Demo-driven ICL task, we present Demo-ICL-Bench, a benchmark that
consists of text/video demonstrations, target videos, questions, and answers. We collected instruc-
tional YouTube videos from the dataset by (Miech et al., 2019), ensuring subtitles and timestamps.
Subsequently, we used an LLM to summarize these subtitles, generating text demonstrations to serve
as in-context examples. Additionally, we employ video search ranking methods and an LLM to
identify and select videos similar to the target video to serve as in-context video demonstrations. We
also construct a video candidate pool for the model to select and learn, in order to mimic real-world
scenarios Demo-ICL-Bench is complex and challenging: answering every question demands an accu-
rate understanding of the demonstrations, resulting in frontier models like Gemini-2.5-Pro achieving
merely 46.6% and 32.0% accuracy when processing text and video demonstrations, respectively.

To further address the Demo-driven ICL task, we further present a Demo-ICL model with two-
stage training strategies: video supervised fine-tuning, and information-assisted Direct Preference
Optimization (DPO) for demo-driven video in-context learning. We design an information-assisted
DPO data generation pipeline to produce high-quality chosen responses by simplifying the task with
additional contextual information. Demo-ICL outperforms existing MLLMs on various benchmarks,
such as the proposed Demo-driven ICL, VideoMMMU for video knowledge acquisition (Hu et al.,
2025), and VideoMME (Fu et al., 2024a) for general video understanding.

Our key contributions are: (i) New Challenging Tasks: We design three Demo-driven Video In-
Context Learning (Demo-driven ICL) tasks, which enable models to answer questions by learning
from text or video demonstrations, representing a significant step towards more human-like learning
and decision-making processes in video understanding tasks. (ii) New Benchmark and Evaluation:
We establish a new Demo-ICL-Bench that is specifically designed for evaluating demo-driven video
in-context learning capabilities. Based on Demo-ICL-Bench, we conduct comprehensive evaluations
of cutting-edge baselines, showcasing various challenges of our proposed task. (iii) New Demo-ICL
Model: We present a new model, Demo-ICL, along with a customized two-stage training strategy
that enhances a model’s ability to learn and adapt from in-context demonstrations. Compared with
SOTA models, Demo-ICL shows competitive performance across existing benchmarks (Fu et al.,
2024a; Wu et al., 2024; Hu et al., 2025), which demonstrate its superior video comprehension and
in-context knowledge acquisition capabilities.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Multimodal Video Understanding for Knowledge Acquisition. Multimodal video understanding
has increasingly shifted from low-level perception toward knowledge acquisition, which is the ability
to extract, structure, and apply information from complex instructional video data. Large-scale
instructional datasets have been created and are central to knowledge extraction. HowTo100M (Miech
et al., 2019) introduced 1.2 million narrated videos with 136 million clip–caption pairs for procedure
recognition and cross-task transfer. Other datasets (Tang et al., 2019; Zhukov et al., 2019) provide
fine-grained task annotations or support weakly supervised step parsing across diverse procedures.
More recently, Video-MMMU (Hu et al., 2025) and VideoMathQA (Rasheed et al., 2025) evaluate
models’capability to learn from educational videos, shifting emphasis from perception to knowledge
uptake and application. To further benchmark the video understanding task for knowledge acquisition
in real-world applications, we introduce Demo-driven Video In-Context Learning task and propose
Demo-ICL-Bench, where models should acquire new concepts from given demonstrations. Please
refer to Table 6 in the Appendix to see a detailed comparison between our benchmark and others.

Multimodal In-Context Learning. In-context learning (ICL) enables models to perform new tasks
by conditioning on a few examples at inference time. Initially developed for large language models
(LLMs), ICL has been extended to multimodal settings and shows consistent performance gains across
both language and image tasks (Brown et al., 2020; Min et al., 2021; Luo et al., 2024; Zhou et al.,
2024b). However, video-based ICL still remains underexplored, where current video MLLMs (Lin
et al., 2024a; Maaz et al., 2024; Zhang et al., 2025b) mainly emphasize zero-shot performance
through curated video instruction datasets, to equip models with open-ended QA, captioning, and
dialog capabilities. Recent research has begun to address the context challenges for video tasks. For
example, chain-of-thought methods for video (Wang et al., 2024b; Han et al., 2025; Arnab et al.,
2025) encourage stepwise evidence aggregation and explicit explanation, while some retrieval-based
methods (Ren et al., 2025; Tevissen et al., 2024) establish a new paradigm of retrieving video moments
and ground answers in cited segments. However, aforementioned works mainly use the context as
references, rather than adapting to and learning from the context. In our work, we address this gap
by introducing Demo-driven ICL task on instructional video datasets, supported by an optimized
training pipeline, to enhance the model’s capability to learn from the in-context demonstrations.

3 DEMO-ICL: LEARNING FROM IN-CONTEXT VIDEO DEMONSTRATIONS

In this section, we first provide a detailed overview of the proposed Demo-driven Video In-Context
Learning tasks, explaining both the task formation and dataset construction. Section 3.1 defines and
categorizes these tasks, while Section 3.2 outlines the carefully designed dataset construction process
used to generate our training and validation datasets. Finally, we demonstrate how we train our model
to achieve demo-driven video knowledge acquisition in Section 3.3.

3.1 DEMO-DRIVEN VIDEO IN-CONTEXT LEARNING

Learning from demonstrations and imitating actions are crucial skills for humans when acquiring new
abilities. Such capabilities enable individuals to rapidly master novel tasks from only a handful of
examples, thereby supporting efficient adaptation and facilitating lifelong learning. In contrast, con-
temporary video models largely depend on supervised fine-tuning to acquire task-specific capabilities
introduced by previous benchmarks, neglecting the importance of learning from in-context examples
and evaluating such capabilities for achieving human-like performance. Additionally, humans often
learn new tasks incrementally. This alignment underscores the need for models that support procedu-
ral video knowledge acquisition, enabling the incremental internalization and generalization of task
procedures in a human-like manner.

To address such problems, we propose a new set of three tasks called Demo-driven Video In-
Context Learning. These three tasks are designed to evaluate the model’s ability to learn from
in-context demonstrations. Given an instructional video VD or text demonstration TD, the model
must first interpret the example to understand how a task should be completed. It is then presented
with a test video VTest, and its ability to transfer knowledge from the demonstration is assessed by
predicting subsequent steps of an action A[t1,t2] based on the demonstration and the available context
VTest[0, t1]. Depending on the format and source of demonstrations, we define three distinct tasks:
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Figure 2: Overview of Data Construction and Training Strategy. (i) illustrates our coarse-to-fine
dataset collection pipeline (Section 3.2); (ii) presents the tailored two-stage training strategy for
training the Demo-ICL model (Section 3.3).

1) Text-demo In-Context Learning: The model answers questions from an input video (e.g., “what
should I do now to cook the Mexican Rice”) by retrieving information from the corresponding textual
instructions (e.g., “Step 1: Wash the rice; Step 2: Add the tomato; Step 3: . . . ”), which serve as the
demonstration. For example: “Based on the text instructions, the current video corresponds to Step 2.
Therefore, the next step is Step 3: add the onion.”

2) Video-demo In-Context Learning: The model answers questions about a target video by con-
ditioning on a provided video demonstration of a similar task, and using the demonstration as an
in-context exemplar. For instance: “Given the video demonstration, the target clip aligns with Step 2;
therefore, the next step is Step 3: add the onion.”

3) Demonstration Selection: The model is given the input video and a pool of video candidates (e.g.,
a pool containing “Mexican rice,” “fried rice,” and “pasta,”). The model must first select the most
relevant demonstration (e.g., “Mexican rice”) from the pool and then use it to answer the question,
simulating a scenario where a perfectly aligned demonstration is not provided.

Collectively, these three tasks constitute a systematic and comprehensive framework for demo-
driven video in-context learning. They underscore distinct model capabilities, ranging from textual
retrieval to demo-based knowledge extraction and adaptation, and correspond to successive stages of
development, spanning from idealized oracle settings to practical real-world scenarios.

3.2 DATASET CONSTRUCTION

In this section, we introduce a comprehensive data generation pipeline to support the proposed
demo-driven video in-context learning task. The pipeline emphasizes four key qualities: ensuring that
the video content is informative, the textual demonstration is precise, the video demonstrations are
contextually relevant, and the generated questions remain answerable. To meet these requirements,
we develop a structured step-by-step process (see Fig. 2 (i)) and detail each component below.

Video Collection and Annotation. We use video data from HowTo100M (Miech et al., 2019), a
large-scale corpus of narrated YouTube instructional videos designed for complex tasks. This dataset
is particularly suitable for demo-driven video in-context learning, as it allows models to acquire
procedural knowledge from step-by-step demonstrations. With over 100 million clips covering
23,000 activities, HowTo100M provides diverse and extensive instructional material for building
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our benchmark. After selecting this source, we first filter videos based on video length, language,
and title availability. To obtain high-quality annotations, we use ASR outputs as they offer more
detailed descriptions of demonstrated activities compared with video captions. Specifically, we
use annotations from HTM-AA (Han et al., 2022), which employs WhisperX (Bain et al., 2023) to
generate sentence and word-level timestamps.

Text Demonstration Generation. We generate textual demonstrations for each video using a
coarse-to-fine pipeline that produces step-by-step instructions. First, an LLM summarizes the ASR
transcripts into a sequence of clips, identifying the instructional steps needed to complete the task.
Next, a second LLM filters out irrelevant steps, retaining valid steps while merging redundant ones
into the nearest relevant segment to preserve continuity. This process yields a coherent, task-focused
sequence of instructions. Finally, an MLLM refines the demonstrations by jointly considering the
step descriptions and corresponding video clips, ensuring contextual accuracy and close alignment
with the depicted actions. Through this multi-stage refinement, we obtain precise and reliable textual
guidance that captures both the procedural structure of the task and its visual grounding.

Video Demonstration Selection. To enable video-based in-context learning, we construct pairs of
videos that illustrate similar tasks. These paired demonstrations serve as explicit visual guidance,
allowing the model to observe alternative executions and acquire procedural knowledge from re-
liable examples. Pair selection follows a coarse-to-fine process. We first leverage metadata from
HowTo100M, which provides YouTube search rankings for specific tasks, and discard tasks with few
relevant videos to ensure pairing quality. Next, an LLM evaluates the titles of top-ranked videos for
each task and selects the two with the highest semantic similarity. To further validate these candidates,
we generate textual instructions for both videos using the previous pipeline, after which the LLM
compares the instructions to confirm that the videos indeed demonstrate similar tasks that can be
transferred. This process ensures both accuracy and reliability of the selected video guidance.

Demo-driven Question Generation. With curated videos and corresponding instructions, we
construct questions to evaluate demo-driven video in-context learning. For text-based in-context
learning, we exclude tasks with fewer than six steps to ensure sufficient complexity. From each valid
sequence, one intermediate step (excluding the first and last) is randomly selected, and a question is
generated from this step. The model is then required to predict the next action.

For video-based in-context learning, the goal is to test whether models can effectively leverage visual
demonstrations. To this end, we employ an LLM to analyze the generated instructions for paired
videos, determining whether they represent comparable tasks suitable for question generation. If
validated, the LLM identifies the target step and its corresponding timestamp within the pair. Human
annotators then assess the generated questions, focusing on whether the visual demonstrations provide
meaningful contextual evidence for answering. To avoid trivial cases, we further filter out highly
similar video pairs, ensuring the task meaningfully tests the model’s adaptability and generalization.

For the demonstration selection task, the validated video pairs are treated as ground truth and
augmented with carefully chosen irrelevant videos. This construction requires models to distinguish
informative demonstrations from distractors, an essential capability for real-world deployment.

Dataset Partition and Benchmark Statistics. Following established protocols, we first generate
5,000/2,000/1,000 questions for text-demo ICL/video-demo ICL and demonstration selection settings.
To construct Demo-ICL-Bench, we then manually curate representative video demonstrations that
highlight the role of demo-driven video in-context learning. Specifically, we sample 500 questions
each for the text-demo and video-demo settings and 200 questions for the demonstration selection
setting, resulting in a balanced benchmark of 1,200 questions in total.

3.3 LEARNING FROM IN-CONTEXT VIDEO DEMONSTRATIONS

We further train Demo-ICL models to validate the effectiveness of the proposed demo-driven video in-
context learning task. The training pipeline is intentionally simple yet effective. As illustrated in Fig.
2 (ii), we adopt a two-stage strategy to progressively integrate demo-driven in-context learning. In the
first stage, the model is fine-tuned on a tailored dataset to enhance fine-grained video comprehension
and general in-context reasoning. In the second stage, we employ a customized DPO framework to
specifically strengthen the model’s capacity to learn from video demonstrations in context.
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3.3.1 VIDEO SUPERVISED FINE-TUNING

In this stage, our goal is to equip Demo-ICL with fine-grained video understanding and general
in-context reasoning capabilities. To this end, we compile a large-scale dataset containing millions of
samples drawn from diverse text–image pairs and video sources in open academic repositories. For
image–text data, we rely on resources such as LLaVA-OneVision (Li et al., 2024a), VisualWebInstruct
(Jia et al., 2025), and other widely used collections. For video data, we incorporate material from
open-source projects including LLaVA-Video (Zhang et al., 2024c), Oryx (Liu et al., 2024), and Ola
(Liu et al., 2025). To further enhance the model’s ability for instructional video understanding, we
additionally incorporate datasets such as COIN (Tang et al., 2019) and Cross-Task (Zhukov et al.,
2019). We carefully exclude any videos that overlap with Demo-ICL-Bench to prevent data leakage
and ensure fair evaluation. Finally, we perform subsampling on the generated dataset as described in
Section 3.2 to explicitly introduce demo-driven video in-context learning signals during this stage.
Together, these curated resources establish robust foundational capabilities and prepare the model for
subsequent stages to enhance demo-driven video in-context learning.

3.3.2 INFORMATION-ASSISTED DIRECT PREFERENCE OPTIMIZATION

Preference learning has become a critical component in the advancement of large language models,
aiming to fine-tune outputs to better align with human preferences and improve real-world applicabil-
ity. Traditional DPO algorithms generate multiple responses to the same query, after which a reward
model ranks them and identifies preferred and rejected responses for training.

However, current models struggle with demo-driven video in-context learning, limiting their ability to
generate high-quality responses. This limitation makes conventional DPO data construction pipelines
less effective. To overcome these challenges, we propose an information-assisted DPO pipeline that
integrates automatically generated assistive information, eliminating the need for manual annotation.
For text-demo ICL tasks, we supply video timestamps to better align visual inputs with textual
instructions, thereby improving accuracy. For video-demo ICL tasks, we pair video demonstrations
with corresponding textual guidance to enhance response quality. For training, we define a preference
dataset as P = {(x(i), R

(i)
c , R

(i)
r )}i=1,...,|P|, where each x(i) denotes the user request, and R

(i)
c and

R
(i)
r represent the preferred and less preferred responses. We employ a reward model r∗(x, y) to

approximate preferences, and a higher score denotes a stronger preference. Following the approach
introduced by (Rafailov et al., 2024), we can model the human preference distribution p∗ using the
Bradley-Terry (BT) model (Bradley & Terry, 1952):

p∗(y1 ≻ y2 | x) = exp(r∗((x, I), y1))
exp(r∗((x, I), y1)) + exp(r∗(x, y2))

= σ(r∗((x, I), y1)− r∗(x, y2)), (1)

where I denotes the assistive information, and σ denotes the logistic function. To estimate the
parameters of the reward model, we can formulate the problem as a binary classification task and
minimize the negative log-likelihood:

LR(rϕ,P) = −E(x,Rc,Rr)∼P [log σ(rϕ(x,Rc)− rϕ(x,Rr))], (2)

where rϕ is the reward model. This approach enables effective alignment with human preferences by
allowing the model to use additional information that can be generated automatically, thus producing
high-quality responses in an effective and scalable way. Using these responses as preferred outputs
and treating normal responses as rejected, we perform multiple training rounds to obtain a sequence
of models M1, ...,MT , where each model Mt+1 utilizes preference data Pt generated by the t-th
model. Through the information-assisted DPO and iterative training strategy, we progressively endow
Demo-ICL with strong demo-driven video in-context learning capabilities.

4 EXPERIMENTS

We conduct extensive experiments on diverse video understanding benchmarks to assess the effective-
ness of our proposed training strategies. First, we perform detailed evaluations on Demo-ICL-Bench,
with results and analyses provided in Section 4.1. We then compare our method against state-of-the-art
Video MLLMs on widely used benchmarks relevant to our tasks, as discussed in Section 4.2. Finally,
we present essential analysis experiments in Section 4.3. These experimental results systematically
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Table 1: Evaluation results on Demo-ICL-Bench. The benchmark assesses models across three
tasks. For Text-demo ICL and Video-demo ICL, we report two types of accuracy: Demo. Acc (with
demos) and w/o Demo(without demos), and the improvement (∆ICL) attributed to demonstrations.
DS refers to Demonstration Selection task. S.Acc refers to demonstration selection accuracy.

Model Size Frame Text-demo ICL Video-demo ICL DS Avg
Demo. Acc w/o Demo. ∆ICL Demo. Acc w/o Demo. ∆ICL S.Acc Acc

Human - - 84.0 - - 80.4 - - 88.0 76.0 80.1

Proprietary MLLMs

Gemini-2.5-Pro (Gemini Team, 2024) - - 54.4 - - 36.2 - - - 26.0 38.9
GPT-4o (OpenAI, 2024) - - 48.8 - - 31.4 - - - 24.5 34.9

Open-Source Video MLLMs

Qwen2-VL (Wang et al., 2024a) 7B 32 29.0 21.8 +7.2 22.4 24.0 -1.6 38.0 14.5 22.0
Ola (Liu et al., 2025) 7B 32 32.2 23.0 +9.2 24.6 26.4 -1.8 43.0 16.0 24.3
LLaVA-Video (Zhang et al., 2024c) 7B 32 31.0 25.4 +5.6 30.2 29.0 +1.2 44.5 20.5 27.2
Qwen2.5-VL (Bai et al., 2025) 7B 32 32.8 26.0 +6.8 28.0 26.2 +1.8 46.0 18.0 26.3
InternVL-2.5 (Chen et al., 2025) 8B 32 29.2 21.8 +7.4 27.4 27.8 -0.4 42.5 18.0 24.9
InternVL-3 (Zhu et al., 2025) 8B 32 31.4 26.6 +4.8 27.0 26.4 +0.6 44.0 16.5 25.0
Video-R1 (Feng et al., 2025) 7B 32 33.6 27.6 +6.0 27.4 26.6 +0.8 48.0 17.5 26.2
VideoChat-R1 (Li et al., 2025) 7B 32 34.4 27.0 +7.4 28.2 26.8 +1.4 52.0 18.5 27.0
Qwen2.5-VL (Bai et al., 2025) 72B 32 45.0 24.2 +20.8 25.6 25.2 +0.4 54.0 18.0 29.5

Demo-ICL (Ours, SFT) 7B 32 38.4 27.8 +10.6 29.4 26.0 +3.4 54.5 21.5 29.8
Demo-ICL (Ours, DPO) 7B 32 43.4 29.4 +14.0 32.0 27.6 +4.4 58.0 24.0 33.1

validate the value of Demo-ICL-Bench and the advantages of our framework in using demo-driven
video in-context learning for stronger alignment and generalization.

4.1 DEMO-ICL-BENCH

Setup. We evaluate both representative proprietary MLLMs and state-of-the-art open-source video
MLLMs, reporting performance across three tasks. In addition to standard evaluations, we design
experiments on text-demo and video-demo in-context learning tasks, including settings without
explicit guidance, in order to better characterize the current capabilities and limitations of MLLMs in
demo-driven video in-context learning. For proprietary models, we consider GPT-4o and Gemini-2.5-
Pro. For open-source video MLLMs, we benchmark a diverse set of representative models, including
InternVL-2.5 (Chen et al., 2025), InternVL-3 (Zhu et al., 2025), Qwen2-VL (Wang et al., 2024a),
Qwen2.5-VL (Bai et al., 2025), LLaVA-Video (Zhang et al., 2024c), Ola (Liu et al., 2025), and
Kimi-VL (Team & et al., 2025b). To capture the role of specialized video reasoning, we further
include Video-R1 (Li et al., 2025) and VideoChat-R1 (Feng et al., 2025). Finally, to examine the
effect of model capacity, we conduct experiments on both Qwen2.5-VL-7B and Qwen2.5-VL-72B.

Text-demo In-context Learning. As shown in Table 1, models perform poorly without demonstra-
tions, indicating that in-context learning is essential for task success. When text demonstrations are
provided, all models improve, demonstrating their ability to integrate task-specific knowledge from
in-context text demonstrations. The extent of this improvement, however, strongly depends on model
size: small models typically gain less than 10 points, whereas Qwen2.5-VL-72B improves by over 20
points, despite performing no better than smaller models without demonstrations. This highlights
model scale as a critical factor for effective in-context learning. On Demo-ICL, the SFT model
improves by over 10 points through targeted demonstration strategies, while the DPO model achieves
state-of-the-art results among models of similar size. These results confirm that well-designed
data curation, combined with preference-based training, substantially enhances generalization and
efficiency in video in-context learning.

Video-demo In-context Learning. In the Video-demo ICL task, performance diverges from text-
demo results: while some models extract information from video demonstrations, the gains are limited,
and models such as InternVL-2.5, Qwen2-VL, and Ola even suffer degradation. This highlights
the difficulty current MLLMs face in extracting and transferring temporal–visual cues for effective
in-context learning. By contrast, Demo-ICL, equipped with demo-driven video in-context learning,
consistently benefits from video demonstrations, though less pronounced compared to text-demo ICL
tasks. Our findings indicate that dedicated strategies for video demonstrations are essential to narrow
the gap between text and video guidance and to unlock further multimodal generalization.

Demonstration Selection. To approximate real-world scenarios where models must retrieve relevant
demonstrations from large video pools, we evaluate them on the demonstration selection task. This
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Table 2: General Video Understanding. Demo-ICL achieves superior performance on both general
temporal understanding and knowledge acquisition tasks, demonstrating the effectiveness of the
proposed demo-driven video in-context learning approach and the robustness of our training strategy.

Model Size General Temporal Understanding Knowledge

VideoMME
(wo / w sub)

MVBench Long
VideoBench MLVU VideoMMMU

Proprietary Models

GPT-4V (OpenAI, 2023b) - 59.9/63.3 43.7 49.2 59.1 -
GPT-4o (OpenAI, 2024) - 71.9/77.2 - 66.7 66.7 61.2
Gemini-1.5-Pro (Team & et al., 2024) - 73.2/79.8 - 64.0 - 70.4
Gemini-2.5-Pro (Comanici & et al., 2025) - 84.3/86.9 - - - 83.6

Open-Sourced Video MLLMs

VideoLLaMA2 (Cheng et al., 2024) 7B 47.9 / 50.3 54.6 36.0 - -
LLaVA-OneVision (Li et al., 2024a) 7B 58.2 / 61.5 56.7 56.3 64.7 33.9
VideoLLaMA3 (Zhang et al., 2025a) 7B 66.2 / 70.3 69.7 59.8 73.0 47.0
LLaVA-Video (Zhang et al., 2025b) 7B 63.3 / 69.7 58.6 58.2 70.8 -
Qwen2.5-VL (Bai et al., 2025) 7B 65.1 / 71.6 69.6 56.0 - 47.4
InternVL3.5 (Wang & et al., 2025) 8B 66.0 / 68.6 72.1 62.1 70.2 -

LLaVA-Next-Video (Zhang et al., 2025b) 34B 52.0 / 54.9 70.2 50.5 - -
VILA-1.5 (Lin et al., 2024b) 40B 60.1 / 61.1 - - 56.7 34.0
VideoLLaMA2 (Cheng et al., 2024) 72B 61.4 / 63.1 62.0 - - -
LLaVA-OneVision (Li et al., 2024a) 72B 66.2 / 69.5 59.4 61.3 66.4 48.3
LLaVA-Video (Zhang et al., 2025b) 72B 70.5 / 76.9 64.1 61.9 74.4 49.7
Qwen2.5-VL (Bai et al., 2025) 72B 73.3 / 79.1 70.4 60.7 74.6 60.2
GLM-4.5V (Team & et al., 2025a) 106B 74.3 / 80.0 73.4 68.8 75.3 67.5

Demo-ICL 7B 65.2 / 69.7 69.8 61.8 70.4 52.6

task assesses the ability to identify the correct reference video and answer the corresponding questions.
We report both video selection accuracy and final question accuracy conditioned on the selected video.
Results show that current models often struggle to capture global semantic information, leading
to failures in retrieving appropriate demonstrations and producing a substantial gap from human
performance. Existing approaches lack not only effective mechanisms for knowledge extraction and
transfer, but also robust search and selection capabilities essential for demo-driven video in-context
learning in real-world scenarios. Further analysis is provided in Section 4.3.

4.2 GENERAL VIDEO UNDERSTANDING

Setup. To evaluate the generalization ability of our Demo-ICL model, we conduct experiments
on several widely used video benchmarks. Our analysis focuses on two main directions. First, we
assess video knowledge acquisition using benchmarks such as VideoMMMU (Hu et al., 2025), a
representative dataset designed to test how models acquire knowledge from videos. In this setting, the
model must watch an entire video and answer questions based on its content, thereby evaluating its
ability to learn, retain, and apply information in new contexts. This directly highlights the effectiveness
of demo-driven video in-context learning, as the model uses demonstrations to generalize beyond the
training distribution. Second, we evaluate on general temporal understanding benchmarks, including
VideoMME (Fu et al., 2024a), MVBench (Li et al., 2024b), LongVideoBench (Wu et al., 2024), and
MLVU (Zhou et al., 2024a), which target diverse tasks such as common video perception, action
recognition, and long video understanding. Together, these benchmarks provide a comprehensive
evaluation of Demo-ICL, covering both its demo-driven in-context learning generalization and its
foundational video understanding capabilities.

Results. As shown in Table 2, Demo-ICL demonstrates competitive performance across all open-
source MLLMs. On the knowledge acquisition benchmark VideoMMMU, Demo-ICL performs on
par with recently released models of comparable size and even surpasses some larger counterparts.
These results highlight not only the strength of our model in visual reasoning but also the effectiveness
of demo-driven video in-context learning as a paradigm for scalable knowledge acquisition. By using
demonstrations directly within the input context, Demo-ICL generalizes beyond memorized content,
suggesting a promising direction toward more flexible and human-like video understanding. Moreover,
on general video understanding benchmarks, Demo-ICL achieves performance comparable to newly
released models of similar size, indicating that the proposed demo-driven ICL mechanism can be
seamlessly integrated without compromising common temporal understanding, while at the same
time enhancing knowledge acquisition. Our findings provide strong evidence that demo-driven video
ICL offers a scalable and robust path toward advancing video-based reasoning and understanding.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.3 ANALYSIS EXPERIMENTS

In this section, we present detailed analyses focusing on the challenges of video-demo in-context
learning and strategies for training an effective demo-driven model. We highlight the limitations of
current models and demonstrate the effectiveness of information-assisted DPO.

Why is the Video-demo ICL task challenging? We provide deeper insights into why the Video-
demo ICL task poses significant challenges for current MLLMs, with results summarized in Table 3.

Table 3: Ablation study on eval-
uation settings.

Settings Video-demo ICL

Base(32 frames) 29.4
128 frames 30.4
+Repeat Video 38.6
+Reference Clips 35.8
+ASR & Captions 45.4

First, we test Demo-ICL with more densely sampled frames, and the
improvements demonstrate that fine-grained visual cues are critical for
demo-driven video in-context learning. Using 128 frames, we further
conduct an experiment where the reference video is identical to the
query video, thus providing the model with the full content as context.
The performance gains in this setting suggest that direct grounding
and perception are far easier than knowledge transfer through in-
context demonstrations, as the model can process visuals effectively
but struggles to adapt that knowledge to new scenarios. We further evaluate the use of reference clips
as contextual demonstrations, where only the segments depicting the immediate next-step action are
provided as in-context examples. This setting reveals a fundamental challenge for Video-demo ICL:
models struggle to accurately align and match temporal evidence across demonstrations. Moreover,
replacing clips with ASR transcripts and captions yields additional improvements, revealing that
current MLLMs still lack robust fine-grained video comprehension and often fail to abstract or
summarize clips into precise knowledge for reasoning and further adaptation.

Taken together, these findings highlight why video-demo ICL is uniquely challenging: it requires
not only perception but also temporal alignment, abstraction, and flexible knowledge transfer. This
underscores the need for models that can truly leverage demonstrations as dynamic sources of
contextual information, a critical capability for advancing video understanding and reasoning.

Table 4: Training setting ablations.
Settings Text-ICL Video-ICL DS Avg

w/o Instructional Videos 34.0 26.2 19.0 26.4
Demo-ICL (SFT) 38.4 29.4 21.5 29.8
Vanilla DPO 40.0 30.0 22.0 30.7
Demo-ICL (DPO) 1-round 41.8 30.8 22.5 31.7
Demo-ICL (DPO) 43.4 32.0 24.0 33.1

How to train a good demo-driven video in-context learn-
ing model? We perform ablation studies to assess the
effectiveness of our training strategies, with the results
summarized in Table 4. The findings indicate that incorpo-
rating instructional videos allows Demo-ICL to leverage
in-context demonstrations and adapt to novel scenarios,
yielding significant performance improvements on Demo-ICL-Bench. These results emphasize
the importance of high-quality instructional data in enabling models to generalize beyond basic
perception and toward deeper contextual video understanding.

We further investigate the impact of training algorithms. When trained with vanilla DPO, the
model struggles to produce high-quality responses, yielding noisy data pairs and only marginal
improvements. By contrast, our information-assisted DPO method provides richer feedback signals,
which significantly enhance response quality and overall performance. Through iterative training
strategy, Demo-ICL gradually learns to learn through in-context demonstrations, finally reach superior
performance. These comparisons reveal that both the quality of demo-driven video data and the
design of training strategies are essential for effective video ICL. Together, these results indicate
that building a strong video in-context understanding model requires not only carefully structured
demonstrations but also training paradigms that use contextual information.

5 CONCLUSION

In this paper, we introduce a novel task, Demo-driven Video In-Context Learning, which focuses on
learning from in-context instructional demonstrations. To facilitate evaluation, we present Demo-ICL-
Bench, a benchmark consisting of 1,200 challenging questions designed to assess demo-driven video
in-context learning capabilities. To effectively address this task, we further propose Demo-ICL, a
video MLLM equipped with enhanced in-context learning abilities. Extensive experiments reveal that
existing MLLMs struggle with Demo-driven ICL, whereas Demo-ICL overcomes these challenges,
achieving superior video understanding and in-context knowledge acquisition capabilities, thereby
paving the way for future advancements.
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ETHICS STATEMENT

This research strictly follows the ICLR Code of Ethics. We emphasize that Demo-ICL-Bench, the
Demo-ICL model, and the collected dataset are entirely non-commercial, with their development
carefully avoiding any ethical or legal issues, particularly concerning intellectual property. Our
methodology rigorously upholds copyright integrity through two protective measures: (1) all foun-
dational project descriptions are the original creations of the authors; (2) we strictly adhere to the
licenses of collected videos, ensuring no legal issues arise from data collection or release.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we have made considerable efforts to provide the necessary
details and materials. Specifically, we have included a comprehensive description of the dataset
creation process in Section 3.2. More implementation details about model training and data collection
details are described in detail in Section B.
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APPENDIX

We provide supplementary documents to support our research. The details of Large Language
Model usage are presented in Section A. Implementation details are outlined in Section B. Additional
visualization results are presented in Section C, followed by further experimental analysis in Section D.
We also provide a more comprehensive discussion of related work in Section E. Finally, we discuss
the limitations of our work in Section F.

A LARGE LANGUAGE MODEL USAGE

In this paper, we clarify that large language models (LLMs) are employed solely to support and refine
the writing process. Specifically, we use LLMs to provide sentence-level suggestions and to enhance
the overall fluency of the text.

B IMPLEMENTATION DETAILS

B.1 EXPERIMENT DETAILS

In this section, we detail the implementation of Demo-ICL. The Demo-ICL model is built upon
Ola-Video, a highly pretrained multimodal understanding model that integrates OryxViT as its visual
encoder to process native arbitrary-resolution visual inputs, alongside Qwen2.5 as the language model.
For the training process, we construct a customized dataset to establish foundational image and video
understanding capabilities. For image data, resolutions range from 768 to 1536, while for video data,
the number of frames is capped at 64, with frame resolutions varying between 288×288 pixels and
480×480 pixels. During training, the maximum token length is set to 16,384, and a learning rate of
1e-5 is used throughout both stages. In the DPO (Direct Preference Optimization) training phase, we
curate 5,000 samples using the specified pipeline and apply a learning rate of 5e-7. A batch size of
256 is maintained across both fine-tuning stages and the DPO phase, with experiments conducted
using 64 NVIDIA A800 GPUs.

B.2 DATA COLLECTION DETAILS

In the data generation process, we utilize Qwen2.5-72B as our LLM and Qwen2.5-VL-72B as our
MLLM within the pipeline. For generating text instructions, we first use Qwen2.5-72B to create
summarized instruction steps. Then, when refining these steps with the MLLM, we forward each
step along with 64 uniformly sampled frames from the corresponding video clips. For generating
questions for video-demo ICL, we provide the text instructions of paired videos and ask the LLM to
assess their reasonableness for question generation. Both the LLM and MLLM are deployed using
four NVIDIA A800 GPUs.

C VISUALIZATIONS

We present visualization results to clarify the task design of Demo-ICL-Bench. These results are
shown in Fig. 3 and Fig. 4.

D MORE ANALYSIS EXPERIMENTS

D.1 GENERAL VIDEO UNDERSTANDING ON VIDEO-MME

We further evaluate the Demo-ICL model on general video understanding tasks of varying lengths
and scenarios. Specifically, we employ the VideoMME benchmark to highlight its offline video
comprehension capabilities, providing a broader assessment beyond domain-specific settings.

Setup. To further evaluate the generalization ability of Demo-ICL on diverse video understanding
tasks, we adopt the Video-MME benchmark (Fu et al., 2024a). The dataset consists of 900 videos
(254 hours) covering 6 visual domains and 30 subfields, with durations ranging from 11 seconds
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Setting 1: Text-demo In-Context Learning

A. Cook pancake for about 2 minutes, check browning, flip.
B. Heat griddle, add butter or oil, pour batter, nudge into 

circle.
C. Prepare wet ingredients: milk, vinegar, oil, egg, pumpkin 

puree, grated ginger, mix well.
D. Serve with butter and maple syrup or honey.

Question: What to do after pouring batter?

TEXT INSTRUCTIONS:
1. Dry mix: Combine flour, sugar, salt, baking powder, and cloves.
2. Wet mix: Whisk together oil, egg, pumpkin puree, and grated ginger.
3. Combine: Pour wet mixture into dry ingredients, stir until just 

blended.
4. Heat griddle: Preheat and grease with butter or oil.
5. Portion: Pour batter and gently shape into rounds.
6. Cook first side: 2 minutes until golden, then flip.
7. Cook second side: 1–2 minutes until springy to the touch.
8. Serve: Top with butter and maple syrup or honey.

Based on the text demonstrations, after pouring batter, the
next action should be cook side by side. Current video shows
procedure illustrated as step 6, the next step could be **A**.

(i) Example 1

A. Put tomato in boiling water until skin cracks, then cool.
B. Put chicken in boiling water, then remove.
C. Cut and peel tomato, discard part, dice.
D. Soak dried mushrooms in water for 1 hour, then slice.

TEXT INSTRUCTIONS:
1. Parboil chicken: Boil then drain.
2. Simmer chicken: Transfer to a pot, cover, cook on low for 1 hour.
3. Soak mushrooms: Rehydrate dried mushrooms in water for 1 hour, then 

slice.
4. Blanch tomato: Boil until skin splits, cool.
5. Prep tomato: Peel, discard core, and dice.
6. Boil base: Combine chicken broth, mushrooms, and salt; bring to a boil.
7. Finish soup: Add tomato, season with salt and white pepper, then stir in 

beaten egg and chopped green onion.

(ii) Example 2

Question: What to do after simmering chicken?

Based on the text demonstrations, after simmering the
chicken, the next action should be soaking mushrooms. Current
video shows procedure illustrated in step 3, hence, the
answer to the question could be **D**.

Figure 3: Visualization of Text-demo In-Context Learning. This figure provides 2 examples to
illustrate the text-demo in-context learning task, where the text instructions will be provided along
with the target video as the inputs.

Setting 2: Video-demo In-Context Learning

Question: What to do to create a storybook after creating 
shot list?

(i) Example 1 (ii) Example 2

The video demonstration shows that after creating the shot
list, the person creates the drawing of shots. Based on the
knowledge of creating story book I have acquired from the
video demonstration the answer could be **C**.

A. Outline the Plot
B. Storyboard Your Pages
C. Develop Your Characters & Setting
D. Decide on Style & Layout

Question: What is next step to design artificial lawn after 
laying out the artificial grass?

A. Add sharp sand, compact, and screed to level
B. Roll out Grono lawn, face pile towards home, trim edges
C. Cover area with MOT, compact to 75mm for drainage
D. Join grass pieces with tape and glue, add nails for 

security

VIDEO REFERENCE: VIDEO REFERENCE:

After setting up the lawn, the person in video demo joined the
grass pieces. Based on the knowledge learned from the video
demo, the answer could be **C**.

Figure 4: Visualization of Video-demo In-Context Learning. This figure provides 2 examples to
illustrate the video-demo in-context learning task, where a video demonstration will be provided
together with the target video input.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 5: Performance of Demo-ICL compared to previous MLLMs on Video-MME across short,
medium, and long durations, under without "subtitles” and with "subtitles” settings.

Models LLM Params Short (%) Medium (%) Long (%) Overall (%)
w/o subs w/ subs w/o subs w/ subs w/o subs w/ subs w/o subs w/ subs

Commercial MLLMs

GPT-4V (OpenAI, 2023a) - 70.5 73.2 55.8 59.7 53.5 56.9 59.9 63.3
GPT-4o (OpenAI, 2024) - 80.0 82.8 70.3 76.6 65.3 72.1 71.9 77.2
Gemini 1.5 Flash (Gemini Team, 2024) - 79.7 83.6 68.4 74.7 61.1 68.8 70.3 75.0
Gemini 1.5 Pro (Gemini Team, 2024) - 81.7 84.5 74.3 81.0 67.4 77.4 75.0 81.3

Open-source Video MLLMs

LongVA (Zhang et al., 2024a) 7B 61.1 61.6 50.4 53.6 46.2 47.6 52.6 54.3
VITA 1.5 (Fu et al., 2025) 7B 67.0 69.9 54.2 55.7 47.1 50.4 56.1 58.7
mPLUG-Owl3 (Ye et al., 2024) 7B 70.0 72.8 57.7 66.9 50.1 64.5 59.3 68.1
TimeMarker (Chen et al., 2024a) 8B 71.0 75.8 54.4 60.7 46.4 51.9 57.3 62.8
MiniCPM-V 2.6 (Yao et al., 2024) 8B 71.3 73.5 59.4 61.1 51.8 56.3 60.9 63.7

VILA-1.5 (Lin et al., 2024b) 34B 68.1 68.9 58.1 57.4 50.8 52.0 59.0 59.4
Oryx-1.5 (Liu et al., 2024) 34B 77.3 80.6 65.3 74.3 59.3 69.9 67.3 74.9
Qwen2-VL (Wang et al., 2024a) 72B 80.1 82.2 71.3 76.8 62.2 74.3 71.2 77.8
LLaVA-Video (Zhang et al., 2024b) 72B 81.4 82.8 68.9 75.6 61.5 72.5 70.6 76.9

Demo-ICL 7B 78.6 79.1 63.9 68.8 53.2 61.1 65.2 69.7

to 1 hour, categorized into Short, Medium, and Long. In addition to visual content, VideoMME
provides audio and subtitles, enabling a multimodal and comprehensive evaluation of video MLLMs.
Under this setting, the model is required to watch an entire video and then answer corresponding
questions, which allows us to systematically assess robustness across varying durations, modalities,
and domains, in comparison with both open-source and commercial MLLMs.

Results. Table 5 summarizes the overall performance of Demo-ICL across short, medium, and
long video tracks. Demo-ICL achieves strong results on all three tracks, demonstrating robust
capabilities across different temporal lengths. It surpasses open-source video MLLMs with similar
parameter sizes (7B), achieves comparable results to larger models (34B), and competes closely with
some commercial MLLMs. Notably, on long-duration videos, which pose greater challenges due to
extended temporal dependencies, Demo-ICL demonstrates its long video understanding capabilities,
maintaining consistent performance over time.

E MORE DISCUSSION ON RELATED WORKS

In this section, we will include more details of related works.

Multimodal Video Understanding for Knowledge Acquisition. Recent research in video un-
derstanding has moved beyond low-level perception towards extracting structured knowledge from
videos, like procedural steps, events, and concepts. Large-scale instructional datasets have been
instrumental in this shift. For example, as mentioned in 2, a lot of instructional datasets (Miech
et al., 2019; Tang et al., 2019; Zhukov et al., 2019) have driven the development of models that seek
to learn high-level knowledge from video, rather than just recognize objects or actions. Moreover,
VidSitu (Sadhu et al., 2021) addresses video situation recognition by densely annotating 10-second
movie clips with semantic role labels, which provides a symbolic knowledge representation of the
video. By learning to predict such structured representations, models can acquire a form of event
knowledge from videos. Similarly, HT-Step (Afouras et al., 2023) aligns the textual instructions from
wikiHow (Koupaee & Wang, 2018) with corresponding segments in instructional videos. It provides
116k temporal segment annotations in 20k how-to videos, each labeled with a step description from
wikiHow, enabling models to learn to ground declarative knowledge in procedural video footage.

To better learn from such knowledge-intensive data, early multimodal learning approaches applied
language-modeling techniques to video data. For example, VideoBERT (Sun et al., 2019) quantizes
video frames into discrete “visual words” and then uses a BERT-like transformer to learn joint repre-
sentations of sequences of visual tokens and narration text. Following models such as ActBERT (Zhu
& Yang, 2020) extended this masked language modeling paradigm to action recognition data, and
ClipBERT (Lei et al., 2021) improved efficiency by sampling sparse key frames for end-to-end
video-text pretraining. By learning from millions of narrated video clips, these models demonstrate
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an ability to embed procedural and commonsense knowledge implicitly in their representations. Zhou
et al. (2023) proposed the model Paprika used PKG-based pre-trainng procedure to generate psuedo
labels for instructional video to train. StepFormer (Dvornik et al., 2023) addresses the problem of
discovering and localizing key procedure steps in instructional videos without human supervision. It
uses video with subtitles (ASR) only, with a transformer decoder that attends to video frames via
learnable queries to produce a sequence of key steps. Chen et al. (2024b) proposes a framework
MPTVA, that aligns video segments with procedure steps derived via LLM from narration text via
long-term semantic similarity and short-term fine-grained similarity.

Table 6: Related Work for Demo-ICL-Bench. Demo-ICL-Bench stands out due to its demo-driven
video in-context learning settings, setting it apart from previous video benchmarks.

Benchmark Video Domain #Videos #QAs Video-ICL Annotation

ActivityNet-QA (Fabian Caba Heilbron & Niebles, 2015) Human Activities 800 8000 ✗ Manual
How2QA (Li et al., 2020) Instructional Videos 1166 2852 ✗ Manual
KnowIT-VQA (Garcia et al., 2020) TV Show 207 24k ✗ Manual
NExT-QA (Xiao et al., 2021) Web Videos (Causal/Temporal) 5.4k 52k ✗ Manual
MVBench (Li et al., 2024b) Benchmark Videos 3641 4000 ✗ Auto
VideoMME (Fu et al., 2024b) YouTube Videos 900 2700 ✗ Manual
VideoMathQA (Rasheed et al., 2025) Instructional Videos 420 420 ✗ Manual
VideoMMMU (Hu et al., 2025) Lectures 300 900 ✗ Manual

Demo-ICL-Bench Instructional Videos 1200 1200 ✓ Mixed

Multimodal In-Context Learning. Inspired by the textual CoT prompting, recent works curate
multimodal datasets with human-written rationales to encourage step-by-step prompting. Video-
CoT (Wang et al., 2024b) provides video QA examples paired with detailed explanations, while
Video-Espresso (Han et al., 2025) scales this approach to large collections of reasoning exemplars.
Beyond data-centric methods, Arnab et al. (2025) propose Temporal Chain-of-Thought, an inference
strategy for long videos where the model iteratively selects relevant clips and reasons over them,
enabling efficient multi-step reasoning over extended sequences. A complementary line of work
extends retrieval-augmented generation (RAG) to video. VideoRAG (Ren et al., 2025) and related
work (Tevissen et al., 2024) index long videos into databases of visual and textual descriptors. At
query time, relevant segments and transcripts are retrieved and passed to the language model as
context, grounding answers in explicit video evidence. This improves factual accuracy, transparency,
and scalability, especially for long videos where direct end-to-end processing is infeasible.

F LIMITATIONS AND FUTURE DIRECTIONS

In this section, we discuss the limitations of our work. The Demo-ICL model does not include a
specialized architecture for demo-driven video in-context learning. Instead, we employ a customized
training strategy to achieve this functionality. Our goal is to equip current MLLMs with demo-driven
video in-context learning capability without requiring architectural modifications, thereby simplifying
the integration of these new capabilities and the maintenance of previous multimodal understanding.

Additionally, we did not explore how models can effectively learn from diverse contexts, such as
different modalities or resources. This ability is more similar to the natural human learning process,
where individuals can draw on a wide range of resources, such as text instructions and instructional
videos, to enhance understanding simultaneously. Combining various types of contextual information
to improve in-context learning and ultimately enhance a model’s performance on new tasks remains a
significant challenge.
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