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Abstract

Reasoning over procedural sequences, where
the order of steps directly impacts outcomes,
is a critical capability for large language mod-
els (LLMs). In this work, we study the task
of reconstructing globally ordered sequences
from shuffled procedural steps, using a curated
dataset of food recipes, a domain where cor-
rect sequencing is essential for task success.
We evaluate several LLMs under zero-shot and
few-shot settings and present a comprehen-
sive evaluation framework that adapts estab-
lished metrics from ranking and sequence align-
ment. These include Kendall’s Tau, Normal-
ized Longest Common Subsequence (NLCS),
and Normalized Edit Distance (NED), which
capture complementary aspects of ordering
quality. Our analysis shows that model per-
formance declines with increasing sequence
length, reflecting the added complexity of
longer procedures. We also find that greater
step displacement in the input, corresponding
to more severe shuffling, leads to further degra-
dation. These findings highlight the limitations
of current LLMs in procedural reasoning, espe-
cially with longer and more disordered inputs.

1 Introduction

Understanding and generating correctly ordered ac-
tion sequences is a key aspect of reasoning. Many
real world tasks, such as cooking recipes or car-
rying out technical procedures, require steps be
completed in a precise order to achieve the in-
tended outcome. LLMs have demonstrated strong
performance on various reasoning tasks including
arithmetic computation (Imani et al., 2023; Ahn
et al., 2024), commonsense inference (Rajani et al.,
2019), and question answering (Robinson et al.,
2022). While much prior work has evaluated LLMs
on step-by-step reasoning, their ability to reason
over and reconstruct ordered procedural steps re-
mains relatively underexplored.

Recipe: Apple cheese casserole

Shuffled Steps:

1. bake 325: for about 30-45 minutes

2.serves 4-6

3.add flour and mix well-batter will be stiff

4.place apples in a buttered baking dish about 1.5 qt
size

5. cream butter and sugar in a mixing bowl , add
cheese & combine well

6. spread the cheese / flour mixture over the apples
covering the apples well

Correct Order: [5, 3, 4, 6, 1, 2]

Correctly Ordered Steps:

1. cream butter and sugar in a mixing bowl , add
cheese & combine well

2. add flour and mix well-batter will be stiff

3. place apples in a buttered baking dish about 1.5
gt size

4. spread the cheese / flour mixture over the apples
covering the apples well

5. bake 325: for about 30-45 minutes

6.serves 4-6

Figure 1: Example of the step ordering task. Given
a shuffled list of recipe instructions (top), the goal is
to recover the correct sequence (bottom) required to
successfully complete the recipe. The middle row shows
the gold permutation that reorders the input into the
correct order.

Step ordering tasks, where the correctness of the
output depends on recovering a globally coherent
sequence, pose a unique challenge. Most existing
research focuses on predicting the immediate next
step (Yong et al., 2025; Wang et al., 2023), rather
than reconstructing the full sequence from a shuf-
fled set. Moreover, prior evaluations rely only on
accuracy (Quan and Liu, 2024), measuring exact
matches between predicted and reference positions.
This limits our ability to fully understand LL.Ms
procedural reasoning. In this work, we evaluate
LLMs’ step ordering capabilities using a curated
dataset of food recipes due to their clearly defined
structure and strong ordering constraints. As il-



lustrated in Figure 1, the model receives a shuf-
fled list of recipe instructions and must recover the
correct sequence that reflects the intended prepara-
tion process. We incorporate complementary met-
rics—Kendall’s Tau for rank correlation, Normal-
ized Longest Common Subsequence (NLCS) for
subsequence preservation, and Normalized Edit
Distance (NED) for reordering cost to provide a
deeper analysis of model performance. We con-
duct a systematic evaluation across multiple LLMs
under 0-shot and few-shot settings. We further an-
alyze performance as a function of sequence com-
plexity, examining how models respond to longer
recipes and greater amounts of step shuffling. Our
main contributions are:

* We evaluate step-order reasoning in LLMs
using a structured cooking recipe dataset for
full sequence reconstruction.

* We propose a multi-metric evaluation frame-
work capturing partial correctness, subse-
quence alignment, and reordering cost.

* We analyze performance variations with step
count and shuffling difficulty, revealing gaps
and challenges in procedural reasoning.

2 Related Work

Previous studies have explored LLMs reasoning on
procedural tasks. STEPS (Wang et al., 2023) pro-
poses a benchmark to assess models’ procedural
reasoning through two subtasks: next-step predic-
tion and multiple-choice selection of the correct
next step. While valuable, these tasks focus only on
local coherence by predicting or identifying a sin-
gle correct step rather than requiring the model to
recover an entire global sequence. ProcBench (Fu-
jisawa et al., 2024) focuses on multi-step reasoning
over structured tasks like string manipulation and
arithmetic operations. It evaluates whether LLMs
can follow explicit instructions step-by-step, mini-
mizing the need for external knowledge or path ex-
ploration. AttackSegBench (Yong et al., 2025) eval-
uates LLMs’ understanding of sequential patterns
in cybersecurity reports through a suite of question-
answering tasks. These are designed to probe mod-
els’ ability to reason about adversarial behavior
over time. However, the setting remains extractive
QA, and models are not required to reconstruct full
procedural chains. EconLogicQA (Quan and Liu,
2024) introduces a benchmark targeting sequential
reasoning over interdependent events drawn from
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Figure 2: Distribution of step movement distances
across recipes of different sequence lengths.

economic articles, emphasizing complex temporal
and logical relationships. However, like other QA-
style evaluations, it relies mainly on accuracy or
exact match at each step, missing partial correct-
ness or structural misalignment. In contrast, our
study focuses on full-sequence reconstruction and
introduces additional metrics for a more compre-
hensive assessment of procedural reasoning.

3 Problem Definition

Given a shuffled set of procedural steps S =
{s1,82,...,5n}, the goal is to find a permu-
tation S = {81, 82,...,5,} that best approxi-
mates the ground truth ordered sequence S* =
{s%,s5,...,s°}. The predicted sequence S is
aligned with S™* to assess ordering quality.

4 Dataset

Majumder et al. (2019) has introduced a dataset
containing 230K recipes from Food.com'. From
this corpus, we select 5,000 samples with 6 to 8
steps and 5 to 6 ingredients, ensuring moderate se-
quence length and complexity. Food recipes are in-
herently sequential, and prior work has treated step
ordering as critical to successful execution (Wang
et al., 2023). However, some recipes may have
some steps that may be interchangeable without
affecting the outcome (e.g., cutting onions and cut-
ting potatoes). To focus on sequences where step
order is necessary, we apply an additional cura-
tion step using a LLM to filter recipes requiring
strict ordering (see Appendix A) which yields to
1,740 recipes. Each recipe provides a coherent step
sequence S = {s1,..., Sy}, which we shuffle ran-
domly (with fixed seed) to produce S. The task
is to recover the original order from S. We gen-
erate a permutation label 7 € {1,...,n}", where
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m; denotes the original position of the i-th step in
the shuffled sequence. The dataset is balanced with
29.6% (515 samples) having 6 steps, 36.7% (638
samples) with 7 steps, and 33.7% (587 samples)
with 8 steps. We quantify the extent of step per-
mutation by measuring the average positional dis-
placement, defined as the mean absolute difference
between the original position p; and the shuffled
position s; of each step ¢ in a sequence of length
n, i.e., % 1 |pi — si|. This metric captures the
average magnitude of step movement caused by
shuffling. As shown in Figure 2, longer sequences
show higher average displacement, increasing from
1.97 for 6-step to 2.62 for 8-step recipes, indicating
greater complexity in step rearrangements. The me-
dian displacement remains at 2 across all lengths.

5 Experimental Setup

5.1 Inference Settings

We evaluate four instruction-tuned LLMs:
Llama-3.1-8B-Instruct(Grattafiori et al.,
2024), Mistral-7B-Instruct(Jiang et al.,
2024), Gemma-2-9b-it(Team et al., 2024), and
GPT-40-mini(OpenAl et al., 2024) under three
settings: zero-shot, 3-shot, and 5-shot. Model
receives task instructions, the recipe name, and
a list of shuffled steps (see Appendix B, C). It is
expected to output the reordered steps and their
corresponding indices. From 1,740 samples, we
use 1,700 for testing and the rest for few-shot
demonstrations.

5.2 Evaluation Metrics

We use four complementary metrics:

Step Accuracy (Acc). We report accuracy at the
step level: Acc = 13" | (#; = m;). This metric
measures the fraction of steps placed at the correct
positions provides an measure of how often the
model recovers the exact step location.

Kendall’s Tau (7) (KTau). Kendall’s tau is a
rank correlation metric (Lapata, 2006) that evalu-
ates the relative order of all possible step pairs be-
tween the predicted permutation 7 and the ground
truth 7. It is computed as 7 = %, where C is
the number of concordant pairQS and D is the num-
ber of discordant pairs. It is suitable for assessing
whether the predicted step sequence agrees with the
ground truth in terms of relative step precedence,
regardless of their absolute positions.

Normalized Edit Distance (NED). Edit distance
counts the number of insertions, deletions, or swaps
required to convert the predicted order into the gold
sequence. We use its normalized form (Marzal
and Vidal, 2002), NED = ZditDistance(®.x) pjg
metric measures the total transformation cost and
is particularly sensitive to local misplacements.

Normalized Longest Common Subsequence
(NLCS). We compute the length of the longest
common subsequence (LCS) between 7 and 7, nor-
malized by the length of the reference: NLC'S =
%(””) This metric rewards the preservation
of correct subsequences and reflects the extent to
which a model recovers partial ordering structure.
It is robust to small local reorderings and has been

widely used in structured sequence evaluation.

Model Shots | Acc | NLCS | KTau | NED
Llama-3.1 | O-shot | 0.33 0.62 0.70 0.56
3-shot | 0.45 0.73 0.83 0.42
5-shot | 0.44 0.73 0.83 0.43
Mistral 0-shot | 0.29 0.61 0.73 0.55
3-shot | 0.32 0.66 0.79 0.51
5-shot | 0.31 0.66 0.79 0.51
Gemma-2 | O-shot | 0.59 0.81 0.87 0.32
3-shot | 0.62 0.84 0.90 0.28
5-shot | 0.61 0.84 0.90 0.28
GPT-40 0-shot | 0.63 0.83 0.89 0.29
3-shot | 0.64 0.85 0.90 0.27
5-shot | 0.64 0.84 0.90 0.27

Table 1: Performance of different models across few-
shot settings (0, 3, 5) using Accuracy (Acc), Normalized
Longest Common Subsequence (NLCS), Kendall Tau
(KTau), and Normalized Edit Distance (NED). Best
values are bolded (lowest for NED).

6 Results and Analysis

6.1 Performance in Zero-Shot and Few-Shot
Settings

Table 1 reports LLMs performance in 0-shot and
few settings. All models show notable improve-
ments from 0-shot to 3-shot prompting, with no
gains beyond 3-shot. This suggests that a small
number of demonstrations helps models learn struc-
tural reordering patterns, but further they do not
add additional value. GPT-40 consistently achieves
the best performance across all metrics. In the 3-
shot setting, it reaches the highest accuracy (0.64),
NLCS (0.85), and KTau (0.90), and the lowest
NED (0.27), indicating better absolute positioning,
strong preservation of subsequences, and minimal
local reordering. Gemma-2 performs competitively
whereas Mistral and Llama-3.1 fall behind across
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Figure 3: 3-shot performance of models (Acc, NLCS,
KTau, NED) across varying numbers of steps.

all metrics, often producing more fragmented se-
quences (lower NLCS) and higher reordering costs
(higher NED), despite moderate KTau scores.

KTau values show that even when models make
positional errors, they may still preserve correct rel-
ative ordering. For example, Llama-3.1 in 3-shot
achieves 0.83 KTau despite only 0.45 accuracy, in-
dicating good understanding of step precedence
even with absolute misplacements. NED values
further expose models’ tendency to make local mis-
orderings— GPT-40 and Gemma-2B consistently
yield the lowest values. NLCS emphasizes preser-
vation of long subsequences; GPT-40 and Gemma-
2B again score highest, indicating better retention
of step continuity. Despite overall improvements
in few-shot settings, all models exhibit gaps in fine-
grained step-level reasoning.

6.2 Impact of Number of Steps on Ordering
Performance

We analyze model performance by the number of
steps in the sequence (n), where longer sequences
indicate increased complexity. As shown in Fig-
ure 3, with n increasing from 6 to 8, a general
performance decline is observed across all models,
reflecting the added difficulty in recovering longer
step sequences. GPT-4o consistently performs best,
maintaining high accuracy (0.73 — 0.56), strong
subsequence alignment (NLCS: 0.88 — 0.82), and
low edit cost (NED: 0.21 — 0.31) as complexity
increases. Gemma-2B shows similar robustness,
with slightly lower performance. Llama-3.1 and
Mistral performance drops more significantly indi-
cating their tendency to produce fragmented and
disordered outputs under increased complexity.
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Figure 4: Smoothed 3-shot performance of models (Acc,
NLCS, KTau, NED) across average positional displace-
ment

6.3 Impact of Step Average Positional
Displacement on Model Performance

We further assess robustness to reordering by ana-
lyzing model performance with respect to average
positional displacement. As shown in Figure 4 with
displacement increasing, indicating more severe
shuffling, all models show performance drops. For
Accuracy, Gemma starts highest but drops sharply
from near 1.0 to 0.4, while GPT-4 declines more
gradually, indicating greater stability. Mistral per-
forms lowest overall but declines steadily, suggest-
ing consistent underperformance rather than height-
ened sensitivity. In NLCS, all models degrade with
displacement, but GPT-4 and Gemma maintain rel-
atively stable and higher scores. NED increases
with displacement, reflecting greater divergence
from the reference; here, GPT-4 shows a smaller
increase compared to the other models.

7 Conclusion

We evaluated four LLMs on step ordering tasks
using four complementary metrics. All models im-
proved from 0-shot to 3-shot prompting, with no
gains beyond. GPT-4o0 consistently achieved the
best performance, followed by Gemma-2, while
Llama and Mistral performed less reliably. As se-
quence length and reordering complexity increased,
performance declined across the board. While mod-
els often preserved relative ordering (high KTau)
and subsequences (high NLCS), they still strug-
gled with precise step level reasoning highlighting
limitations in LLMs’ procedural understanding.



8 Limitations

While our study offers a comprehensive evaluation
of LLMs on step ordering tasks, it leaves room for
further exploration. First, we restrict our analysis
to relatively short sequences (6-8 steps), extending
the evaluation to longer instructions could uncover
new insights. Second, we evaluate only instruction-
tuned models without task-specific fine-tuning. Tar-
geted fine-tuning on step ordering or procedural
datasets may yield improved performance. Finally,
although our dataset is carefully curated to ensure
strong ordering constraints, it is focused solely on
the cooking domain; evaluating cross-domain gen-
eralization would offer a broader view of LLM
procedural reasoning capabilities.

9 Ethics Statement

The research conducted for this paper adheres to
ethical principles and guidelines. The study utilizes
publicly available datasets from reputable sources,
ensuring compliance with data usage policies and
respecting the privacy and confidentiality of in-
dividuals involved. All methodologies follow es-
tablished scientific practices, emphasizing trans-
parency, validity, and reliability. As the study does
not involve human subjects or sensitive informa-
tion, no ethics approval was sought.
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A Dataset Curation

A.1 Dataset Curation Prompt

We used LLaMA-3 models with the prompt shown
in Figure 5 to curate a dataset of 5,000 samples.
Each sample was processed in two independent
runs, where the model was asked to determine
whether the order of steps matters. We retained
only those samples for which both runs returned a
positive response (“‘yes”), indicating that step order
is important.

A.2 Dataset Curation Examples

Some examples of data curation is provided in Fig-
ure 6.

B Task Details

B.1 Prompt

The prompt used for evaluation of the LLMs for
step ordering is given in Figure 7.

B.2 Few Shot Examples Selections

The few shot examples in this experiment were
chosen randomly out of the samples considered for
few shot demponstartions. For 3 shot setting- 1
example with 6 steps, 1 example with 7 steps, 1 ex-
ample with 8 steps were chosen. For 5 shot setting-
2 examples with 6 steps, 1 example with 7 steps, 2
examples with 8 steps were chosen. These fixed set
of chosen examples were used for all evaluation.

C Experimental Details

The table shows the hyperparameters of the LLM
model used for experimentation and their respec-
tive values. We have used 1 A100 GPUs.

Hyperparameter | Value
temperature 0.9
max_new_tokens | 512
top_p 0.9

Table 2: Hyperparameter Values

D Al Assistance

We have used ChatGPT for writing assistance in
the paper writing



Prompt For Data Curation:

You will be given a list of steps from a food recipe. Your task is to determine whether the steps must be
followed in the given order, or if the steps can be rearranged without affecting the outcome.

Definition:

- steps_matter: "yes" — All steps depend on the previous ones and must be performed in order (e.g., you
cannot bake before marinating).

- steps_matter: "no" — The steps are not fully order-dependent and can be rearranged without significantly
affecting the outcome (e.g., you can prepare the sauce before or after cooking the meat).

Instructions:

- Analyze the sequence of steps.

- For each adjacent step pair, determine if the later step depends on the previous one.

- For example, if there are 4 steps, evaluate: (step 1 — step 2), (step 2 — step 3), (step 3 — step 4)

- If all transitions require the given order, return steps_matter = "yes".

- If even one pair can be reordered without affecting the result, return step: ter = "no".

- Provide a detailed explanation justifying your conclusion, explaining whether each step depends on its
predecessor.

- Return your output in the following JSON format **only**:

{

steps_matter: <yesjno>,
explanation: <elaborate explanation justifying the decision for each step transition>

}
- Do NOT include any other text in your output before or after the JSON, ONLY return the JSON Object.

Recipe Name: <recipe_name>
Recipe steps: <orde: ecipe_steps™>

Figure 5: LLM prompt used for data curation

Data Curation Example 1:

1. 'rinse the quinoa in water using a strainer , as you would was rice',

2. 'add the quinoa to the water in a medium sized saucepan',

3. 'bring to the boil , reduce heat and gentley simmer for 5 minutes',

4. 'add the apples , raisins and cinnamon',

5. 'simmer until the water has absorbed',

6. 'serve with milk of your choice and sweeten with honey / rice syrup if desired']

LLM Decision:

Step Matter: Yes

LLM Reasoning: The quinoa must be cooked before adding the liquid, and the liquid must be added before the quinoa is tender.
The quinoa must be drained before adding the soymilk, apples, sugar, and cinnamon. The mixture must be simmered before being
transferred to a blender. Each step depends on the previous one, so the steps must be followed in the given order.

Data Curation Example 2
Steps:

'in a bowl combine eggs , sugar , flour and milk',

'grease a stoneware dish with all the butter,

'pour in the dough and add fruit , raisins or almonds to taste', '

bake in the cold oven at 180c for about 60 minutes or until custard has set',
'you might need to cover the dish after 40 minutes or so',

‘allow to stand and set for at least 10 minutes before serving']

QU A LN

LLM Decision:

Step Matter: No

LLM Reasoning: The steps can be rearranged without affecting the outcome. For example, step 2 (greasing the dish) does not
depend on step 1 (combining the ingredients).

Figure 6: Examples of data curation

Model Details License

LLaMA-3.1 meta-llama/Llama-3.1-8B (Hugging Face) llama 3.1

Mistral-7 | mistralai/Mistral-7B-Instruct-v0.2 (Hugging Face) | apache-2.0

Gemma-2 google/gemma-2-9b-it (Hugging Face) gemma

GPT-40 gpt-4o-mini (OpenAl) proprietary

Table 3: List of models used in our experiments.




Prompt Used For LLM Evaluation on Step Ordering Task of Food Recipes :

You are given a list of randomly shuffled cooking recipe steps. These steps are out of their intended logical
order. Your task is to reorder them based on your understanding of typical recipe structure.

Cooking recipes usually follow a logical progression: starting with preparation, then actual cooking, and
ending with final touches (e.g., serving, garnishing).

### Instructions:

- Analyze the shuffled steps and infer the most logical correct order.

- Return ONLY a JSON object in the exact format described below — no extra text or explanation.

- Do not renumber or reword the steps; return them as-is from the input, just reordered.

- You must respond with ONLY the JSON object — no explanations, comments, or markdown formatting.
Your output will be parsed automatically, so format strictly.

### Output (JSON format only):

*json

"reordered_steps": [<step_1>, <step_2>, ..., <step_n>],
"order": [<index in the original shuffled list of step_1>, <index of step_2>, ..., <index of step_n>]

L

#it# Examples: Here are some examples:

Here's the input

### Input

Recipe Name: <recipe_name>

Recipe steps: <shuffled_recipe_steps>

Figure 7: LLM prompt used for step ordering
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