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Abstract001

Reasoning over procedural sequences, where002
the order of steps directly impacts outcomes,003
is a critical capability for large language mod-004
els (LLMs). In this work, we study the task005
of reconstructing globally ordered sequences006
from shuffled procedural steps, using a curated007
dataset of food recipes, a domain where cor-008
rect sequencing is essential for task success.009
We evaluate several LLMs under zero-shot and010
few-shot settings and present a comprehen-011
sive evaluation framework that adapts estab-012
lished metrics from ranking and sequence align-013
ment. These include Kendall’s Tau, Normal-014
ized Longest Common Subsequence (NLCS),015
and Normalized Edit Distance (NED), which016
capture complementary aspects of ordering017
quality. Our analysis shows that model per-018
formance declines with increasing sequence019
length, reflecting the added complexity of020
longer procedures. We also find that greater021
step displacement in the input, corresponding022
to more severe shuffling, leads to further degra-023
dation. These findings highlight the limitations024
of current LLMs in procedural reasoning, espe-025
cially with longer and more disordered inputs.026

1 Introduction027

Understanding and generating correctly ordered ac-028

tion sequences is a key aspect of reasoning. Many029

real world tasks, such as cooking recipes or car-030

rying out technical procedures, require steps be031

completed in a precise order to achieve the in-032

tended outcome. LLMs have demonstrated strong033

performance on various reasoning tasks including034

arithmetic computation (Imani et al., 2023; Ahn035

et al., 2024), commonsense inference (Rajani et al.,036

2019), and question answering (Robinson et al.,037

2022). While much prior work has evaluated LLMs038

on step-by-step reasoning, their ability to reason039

over and reconstruct ordered procedural steps re-040

mains relatively underexplored.041

Figure 1: Example of the step ordering task. Given
a shuffled list of recipe instructions (top), the goal is
to recover the correct sequence (bottom) required to
successfully complete the recipe. The middle row shows
the gold permutation that reorders the input into the
correct order.

Step ordering tasks, where the correctness of the 042

output depends on recovering a globally coherent 043

sequence, pose a unique challenge. Most existing 044

research focuses on predicting the immediate next 045

step (Yong et al., 2025; Wang et al., 2023), rather 046

than reconstructing the full sequence from a shuf- 047

fled set. Moreover, prior evaluations rely only on 048

accuracy (Quan and Liu, 2024), measuring exact 049

matches between predicted and reference positions. 050

This limits our ability to fully understand LLMs 051

procedural reasoning. In this work, we evaluate 052

LLMs’ step ordering capabilities using a curated 053

dataset of food recipes due to their clearly defined 054

structure and strong ordering constraints. As il- 055
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lustrated in Figure 1, the model receives a shuf-056

fled list of recipe instructions and must recover the057

correct sequence that reflects the intended prepara-058

tion process. We incorporate complementary met-059

rics—Kendall’s Tau for rank correlation, Normal-060

ized Longest Common Subsequence (NLCS) for061

subsequence preservation, and Normalized Edit062

Distance (NED) for reordering cost to provide a063

deeper analysis of model performance. We con-064

duct a systematic evaluation across multiple LLMs065

under 0-shot and few-shot settings. We further an-066

alyze performance as a function of sequence com-067

plexity, examining how models respond to longer068

recipes and greater amounts of step shuffling. Our069

main contributions are:070

• We evaluate step-order reasoning in LLMs071

using a structured cooking recipe dataset for072

full sequence reconstruction.073

• We propose a multi-metric evaluation frame-074

work capturing partial correctness, subse-075

quence alignment, and reordering cost.076

• We analyze performance variations with step077

count and shuffling difficulty, revealing gaps078

and challenges in procedural reasoning.079

2 Related Work080

Previous studies have explored LLMs reasoning on081

procedural tasks. STEPS (Wang et al., 2023) pro-082

poses a benchmark to assess models’ procedural083

reasoning through two subtasks: next-step predic-084

tion and multiple-choice selection of the correct085

next step. While valuable, these tasks focus only on086

local coherence by predicting or identifying a sin-087

gle correct step rather than requiring the model to088

recover an entire global sequence. ProcBench (Fu-089

jisawa et al., 2024) focuses on multi-step reasoning090

over structured tasks like string manipulation and091

arithmetic operations. It evaluates whether LLMs092

can follow explicit instructions step-by-step, mini-093

mizing the need for external knowledge or path ex-094

ploration. AttackSeqBench (Yong et al., 2025) eval-095

uates LLMs’ understanding of sequential patterns096

in cybersecurity reports through a suite of question-097

answering tasks. These are designed to probe mod-098

els’ ability to reason about adversarial behavior099

over time. However, the setting remains extractive100

QA, and models are not required to reconstruct full101

procedural chains. EconLogicQA (Quan and Liu,102

2024) introduces a benchmark targeting sequential103

reasoning over interdependent events drawn from104

Figure 2: Distribution of step movement distances
across recipes of different sequence lengths.

economic articles, emphasizing complex temporal 105

and logical relationships. However, like other QA- 106

style evaluations, it relies mainly on accuracy or 107

exact match at each step, missing partial correct- 108

ness or structural misalignment. In contrast, our 109

study focuses on full-sequence reconstruction and 110

introduces additional metrics for a more compre- 111

hensive assessment of procedural reasoning. 112

3 Problem Definition 113

Given a shuffled set of procedural steps S = 114

{s1, s2, . . . , sn}, the goal is to find a permu- 115

tation Ŝ = {ŝ1, ŝ2, . . . , ŝn} that best approxi- 116

mates the ground truth ordered sequence S∗ = 117

{s∗1, s∗2, . . . , s∗n}. The predicted sequence Ŝ is 118

aligned with S∗ to assess ordering quality. 119

4 Dataset 120

Majumder et al. (2019) has introduced a dataset 121

containing 230K recipes from Food.com1. From 122

this corpus, we select 5,000 samples with 6 to 8 123

steps and 5 to 6 ingredients, ensuring moderate se- 124

quence length and complexity. Food recipes are in- 125

herently sequential, and prior work has treated step 126

ordering as critical to successful execution (Wang 127

et al., 2023). However, some recipes may have 128

some steps that may be interchangeable without 129

affecting the outcome (e.g., cutting onions and cut- 130

ting potatoes). To focus on sequences where step 131

order is necessary, we apply an additional cura- 132

tion step using a LLM to filter recipes requiring 133

strict ordering (see Appendix A) which yields to 134

1,740 recipes. Each recipe provides a coherent step 135

sequence S = {s1, . . . , sn}, which we shuffle ran- 136

domly (with fixed seed) to produce Ŝ. The task 137

is to recover the original order from Ŝ. We gen- 138

erate a permutation label π ∈ {1, . . . , n}n, where 139

1https://www.food.com
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πi denotes the original position of the i-th step in140

the shuffled sequence. The dataset is balanced with141

29.6% (515 samples) having 6 steps, 36.7% (638142

samples) with 7 steps, and 33.7% (587 samples)143

with 8 steps. We quantify the extent of step per-144

mutation by measuring the average positional dis-145

placement, defined as the mean absolute difference146

between the original position pi and the shuffled147

position si of each step i in a sequence of length148

n, i.e., 1
n

∑n
i=1 |pi − si|. This metric captures the149

average magnitude of step movement caused by150

shuffling. As shown in Figure 2, longer sequences151

show higher average displacement, increasing from152

1.97 for 6-step to 2.62 for 8-step recipes, indicating153

greater complexity in step rearrangements. The me-154

dian displacement remains at 2 across all lengths.155

5 Experimental Setup156

5.1 Inference Settings157

We evaluate four instruction-tuned LLMs:158

Llama-3.1-8B-Instruct(Grattafiori et al.,159

2024), Mistral-7B-Instruct(Jiang et al.,160

2024), Gemma-2-9b-it(Team et al., 2024), and161

GPT-4o-mini(OpenAI et al., 2024) under three162

settings: zero-shot, 3-shot, and 5-shot. Model163

receives task instructions, the recipe name, and164

a list of shuffled steps (see Appendix B, C). It is165

expected to output the reordered steps and their166

corresponding indices. From 1,740 samples, we167

use 1,700 for testing and the rest for few-shot168

demonstrations.169

5.2 Evaluation Metrics170

We use four complementary metrics:171

Step Accuracy (Acc). We report accuracy at the172

step level: Acc = 1
n

∑n
i=1(π̂i = πi). This metric173

measures the fraction of steps placed at the correct174

positions provides an measure of how often the175

model recovers the exact step location.176

Kendall’s Tau (τ ) (KTau). Kendall’s tau is a177

rank correlation metric (Lapata, 2006) that evalu-178

ates the relative order of all possible step pairs be-179

tween the predicted permutation π̂ and the ground180

truth π. It is computed as τ = C−D
1
2
n(n−1)

, where C is181

the number of concordant pairs and D is the num-182

ber of discordant pairs. It is suitable for assessing183

whether the predicted step sequence agrees with the184

ground truth in terms of relative step precedence,185

regardless of their absolute positions.186

Normalized Edit Distance (NED). Edit distance 187

counts the number of insertions, deletions, or swaps 188

required to convert the predicted order into the gold 189

sequence. We use its normalized form (Marzal 190

and Vidal, 2002), NED = EditDistance(π̂,π)
n . This 191

metric measures the total transformation cost and 192

is particularly sensitive to local misplacements. 193

Normalized Longest Common Subsequence 194

(NLCS). We compute the length of the longest 195

common subsequence (LCS) between π̂ and π, nor- 196

malized by the length of the reference: NLCS = 197
LCS(π̂,π)

n . This metric rewards the preservation 198

of correct subsequences and reflects the extent to 199

which a model recovers partial ordering structure. 200

It is robust to small local reorderings and has been 201

widely used in structured sequence evaluation. 202

Model Shots Acc NLCS KTau NED
Llama-3.1 0-shot 0.33 0.62 0.70 0.56

3-shot 0.45 0.73 0.83 0.42
5-shot 0.44 0.73 0.83 0.43

Mistral 0-shot 0.29 0.61 0.73 0.55
3-shot 0.32 0.66 0.79 0.51
5-shot 0.31 0.66 0.79 0.51

Gemma-2 0-shot 0.59 0.81 0.87 0.32
3-shot 0.62 0.84 0.90 0.28
5-shot 0.61 0.84 0.90 0.28

GPT-4o 0-shot 0.63 0.83 0.89 0.29
3-shot 0.64 0.85 0.90 0.27
5-shot 0.64 0.84 0.90 0.27

Table 1: Performance of different models across few-
shot settings (0, 3, 5) using Accuracy (Acc), Normalized
Longest Common Subsequence (NLCS), Kendall Tau
(KTau), and Normalized Edit Distance (NED). Best
values are bolded (lowest for NED).

6 Results and Analysis 203

6.1 Performance in Zero-Shot and Few-Shot 204

Settings 205

Table 1 reports LLMs performance in 0-shot and 206

few settings. All models show notable improve- 207

ments from 0-shot to 3-shot prompting, with no 208

gains beyond 3-shot. This suggests that a small 209

number of demonstrations helps models learn struc- 210

tural reordering patterns, but further they do not 211

add additional value. GPT-4o consistently achieves 212

the best performance across all metrics. In the 3- 213

shot setting, it reaches the highest accuracy (0.64), 214

NLCS (0.85), and KTau (0.90), and the lowest 215

NED (0.27), indicating better absolute positioning, 216

strong preservation of subsequences, and minimal 217

local reordering. Gemma-2 performs competitively 218

whereas Mistral and Llama-3.1 fall behind across 219
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Figure 3: 3-shot performance of models (Acc, NLCS,
KTau, NED) across varying numbers of steps.

all metrics, often producing more fragmented se-220

quences (lower NLCS) and higher reordering costs221

(higher NED), despite moderate KTau scores.222

KTau values show that even when models make223

positional errors, they may still preserve correct rel-224

ative ordering. For example, Llama-3.1 in 3-shot225

achieves 0.83 KTau despite only 0.45 accuracy, in-226

dicating good understanding of step precedence227

even with absolute misplacements. NED values228

further expose models’ tendency to make local mis-229

orderings— GPT-4o and Gemma-2B consistently230

yield the lowest values. NLCS emphasizes preser-231

vation of long subsequences; GPT-4o and Gemma-232

2B again score highest, indicating better retention233

of step continuity. Despite overall improvements234

in few-shot settings, all models exhibit gaps in fine-235

grained step-level reasoning.236

6.2 Impact of Number of Steps on Ordering237

Performance238

We analyze model performance by the number of239

steps in the sequence (n), where longer sequences240

indicate increased complexity. As shown in Fig-241

ure 3, with n increasing from 6 to 8, a general242

performance decline is observed across all models,243

reflecting the added difficulty in recovering longer244

step sequences. GPT-4o consistently performs best,245

maintaining high accuracy (0.73 → 0.56), strong246

subsequence alignment (NLCS: 0.88 → 0.82), and247

low edit cost (NED: 0.21 → 0.31) as complexity248

increases. Gemma-2B shows similar robustness,249

with slightly lower performance. Llama-3.1 and250

Mistral performance drops more significantly indi-251

cating their tendency to produce fragmented and252

disordered outputs under increased complexity.253

Figure 4: Smoothed 3-shot performance of models (Acc,
NLCS, KTau, NED) across average positional displace-
ment

6.3 Impact of Step Average Positional 254

Displacement on Model Performance 255

We further assess robustness to reordering by ana- 256

lyzing model performance with respect to average 257

positional displacement. As shown in Figure 4 with 258

displacement increasing, indicating more severe 259

shuffling, all models show performance drops. For 260

Accuracy, Gemma starts highest but drops sharply 261

from near 1.0 to 0.4, while GPT-4 declines more 262

gradually, indicating greater stability. Mistral per- 263

forms lowest overall but declines steadily, suggest- 264

ing consistent underperformance rather than height- 265

ened sensitivity. In NLCS, all models degrade with 266

displacement, but GPT-4 and Gemma maintain rel- 267

atively stable and higher scores. NED increases 268

with displacement, reflecting greater divergence 269

from the reference; here, GPT-4 shows a smaller 270

increase compared to the other models. 271

7 Conclusion 272

We evaluated four LLMs on step ordering tasks 273

using four complementary metrics. All models im- 274

proved from 0-shot to 3-shot prompting, with no 275

gains beyond. GPT-4o consistently achieved the 276

best performance, followed by Gemma-2, while 277

Llama and Mistral performed less reliably. As se- 278

quence length and reordering complexity increased, 279

performance declined across the board. While mod- 280

els often preserved relative ordering (high KTau) 281

and subsequences (high NLCS), they still strug- 282

gled with precise step level reasoning highlighting 283

limitations in LLMs’ procedural understanding. 284
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8 Limitations285

While our study offers a comprehensive evaluation286

of LLMs on step ordering tasks, it leaves room for287

further exploration. First, we restrict our analysis288

to relatively short sequences (6–8 steps), extending289

the evaluation to longer instructions could uncover290

new insights. Second, we evaluate only instruction-291

tuned models without task-specific fine-tuning. Tar-292

geted fine-tuning on step ordering or procedural293

datasets may yield improved performance. Finally,294

although our dataset is carefully curated to ensure295

strong ordering constraints, it is focused solely on296

the cooking domain; evaluating cross-domain gen-297

eralization would offer a broader view of LLM298

procedural reasoning capabilities.299

9 Ethics Statement300

The research conducted for this paper adheres to301

ethical principles and guidelines. The study utilizes302

publicly available datasets from reputable sources,303

ensuring compliance with data usage policies and304

respecting the privacy and confidentiality of in-305

dividuals involved. All methodologies follow es-306

tablished scientific practices, emphasizing trans-307

parency, validity, and reliability. As the study does308

not involve human subjects or sensitive informa-309

tion, no ethics approval was sought.310
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A Dataset Curation383

A.1 Dataset Curation Prompt384

We used LLaMA-3 models with the prompt shown385

in Figure 5 to curate a dataset of 5,000 samples.386

Each sample was processed in two independent387

runs, where the model was asked to determine388

whether the order of steps matters. We retained389

only those samples for which both runs returned a390

positive response (“yes”), indicating that step order391

is important.392

A.2 Dataset Curation Examples393

Some examples of data curation is provided in Fig-394

ure 6.395

B Task Details396

B.1 Prompt397

The prompt used for evaluation of the LLMs for398

step ordering is given in Figure 7.399

B.2 Few Shot Examples Selections400

The few shot examples in this experiment were401

chosen randomly out of the samples considered for402

few shot demponstartions. For 3 shot setting- 1403

example with 6 steps, 1 example with 7 steps, 1 ex-404

ample with 8 steps were chosen. For 5 shot setting-405

2 examples with 6 steps, 1 example with 7 steps, 2406

examples with 8 steps were chosen. These fixed set407

of chosen examples were used for all evaluation.408

C Experimental Details409

The table shows the hyperparameters of the LLM410

model used for experimentation and their respec-411

tive values. We have used 1 A100 GPUs.412

Hyperparameter Value
temperature 0.9

max_new_tokens 512
top_p 0.9

Table 2: Hyperparameter Values

D AI Assistance413

We have used ChatGPT for writing assistance in414

the paper writing415
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Figure 5: LLM prompt used for data curation

Figure 6: Examples of data curation

Model Details License
LLaMA-3.1 meta-llama/Llama-3.1-8B (Hugging Face) llama 3.1

Mistral-7 mistralai/Mistral-7B-Instruct-v0.2 (Hugging Face) apache-2.0
Gemma-2 google/gemma-2-9b-it (Hugging Face) gemma
GPT-4o gpt-4o-mini (OpenAI) proprietary

Table 3: List of models used in our experiments.
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Figure 7: LLM prompt used for step ordering
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