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ABSTRACT

This paper aims to achieve faster than O(1/t) convergence in federated learning
for general convex loss functions. Under the independent and identical distribution
(IID) condition, we show that accurate convergence to an optimal solution can be
achieved in convex federated learning even when individual clients select stepsizes
locally without any coordination. More importantly, this local stepsize strategy al-
lows exploitation of the local geometry of individual clients’ loss functions, and is
shown to lead to faster convergence than the case where a same universal stepsize
is used for all clients. Then, when the distribution is non-IID, we employ the shar-
ing of gradients besides the global model parameter to ensure o(1/t) convergence
to an optimal solution in convex federated learning. For both algorithms, we the-
oretically prove that stepsizes that are much larger than existing counterparts are
allowed, which leads to much faster convergence in empirical evaluations. It is
worth noting that, beyond providing a general framework for federated learning
with drift correction, our second algorithm’s achievement of o(1/t) convergence
to the exact optimal solution under general convex loss functions has not been pre-
viously reported in the federated learning literature—except in certain restricted
convex cases with additional constraints. We believe that this is significant be-
cause even after incorporating momentum, existing first-order federated learning
algorithms can only ensure O(1/t) convergence for general convex loss functions
when no additional assumptions on heterogeneity are imposed.

1 INTRODUCTION

Federated learning has received intensive attention since it was proposed by McMabhan et al.[(2017).
Nowadays, it has found applications in diverse areas including healthcare (Xu et al., [2021a; Nguyen
et al., 2022; |/Antunes et al., [2022), smart cities (Pandya et al., 2023 Jiang et al.| 2020; Ramu et al.,
2022), natural language processing (Liu et al.| [2021}; [Lin et al., 2021} Zhu et al.l [2020), the Inter-
net of things (Nguyen et al., [2021} [Zhang et al., |2022b; |Ghimire & Rawat, 2022), among others.
In federated learning, the training data sets are located on individual clients which cooperatively
learn a common model via periodically sharing their intermediate learning results with a central
server (McMahan et al.,[2017). Compared to centralized learning where all data are aggregated to
a data center, federated learning has many advantages, such as enhanced security (Ma et al., 2020;
Mothukuri et al.| 2021} Zhang et al., 2022a)), better privacy (Yang et al.,|2019; |Agarwal et al.} 2018;
Li et al., 2020), and higher communication efficiency (Sattler et al.,2019;|Chen et al., 2021} Hamer,
et al., [2020). To date, many aspects of federated learning have been extensively studied, including
stepsize design (see, e.g., [Kim et al.| (2023)); Mukherjee et al.| (2023); |Pan et al.| (2023))), commu-
nication efficiency (see, e.g.,|Nori et al.| (2021); [Tran et al.| (2019); [Liu et al.| (2022)), optimization
mechanism (see, e.g.,|Luo et al.[|(2021); |Wei et al.|(2024); |[Feng et al.| (2021))), among others.

In federated learning, clients perform multiple local training steps before communicating with a
central server to reduce the burden of information transmission (McMahan et al.,2017). However,
these local training steps move local optimization variables toward the minima of local loss functions
and introduce a drift from the optimal solution of the global loss function. Therefore, when the
data distribution is non-IID among the clients, local training steps result in slow convergence and
learning errors, which is called the “client-drift phenomenon” (Karimireddy et al., |2020; |Li et al.,
2019; Malinovskiy et al.l [2020; (Charles & Konecny, |2020; (Charles & Konecny, [2021} |[Pathak &
Wainwright, 2020). In fact, under non-IID data, popular federated learning algorithms, such as
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FedAvg, can only ensure accurate convergence under diminishing stepsizes, which, however, results
in slow convergence Mitra et al.[(2021b). It is worth noting that by imposing additional assumptions
on the loss function (e.g., the interpolation and the strong growth condition used in|{Ma et al.|(2018);
Meng et al.|(2020); Qin et al.|(2022); Kim et al.|(2023)) or introducing additional information sharing
(e.g., gradient in [Mitra et al.| (2021ajb)), accurate convergence can be ensured under a constant
stepsize. However, these results only prove O(1/t) convergence for general convex loss functions.

Inspired by the result in [Lee & Wright| (2019) which proves that o(1/t) convergence rate can be
obtained in first-order centralized gradient methods by employing large stepsizes, we prove that
o(1/t) convergence can be achieved in general convex federated learning, in contrast to existing
state-of-the-art algorithms—which either guarantee only O(1/t) convergence (Mitra et al.|, [2021b;
Mukherjee et al.l [2023}; |Qin et al., 2022} Khaled et al., [2020)), or rely on additional assumptions
beyond convexity to establish o(1/t) rates (Jiang et al., 2024; Kovalev et al., [2022).

The main contributions of this paper are summarized as follows:

* Under the IID condition of data distribution (also called strong growth condition in|Schmidt
& Roux| (2013))), we prove that the conventional FedAvg algorithm (called Algorithm |I}in
this paper after incorporating local stepsizes) can converge under a stepsize that is much
larger than existing counterparts (our theoretically obtained stepsize is at least two and
four times larger than the ones in|Qin et al.|(2022) and Khaled et al.|(2020), respectively).
More importantly, we prove that our stepsize can lead to an o(1/t) convergence to an
accurate optimal solution, faster than the commonly believed O(1/t) convergence. To our
knowledge, no o(1/t) convergence results have been reported in the literature for general
convex federated learning, even after incorporating momentum (see, e.g., Xu et al.|(2021b);
Liu et al.|(2020); (Cheng et al.| (2023);|Yang et al.| (2022)).

* Under the same condition, we prove that FedAvg can converge accurately when individual
clients select their (constant) stepsizes in an uncoordinated way. This allows individual
clients to exploit their local geometry of loss functions and is proven in our numerical
experiments to provide a faster convergence compared with the case where a same universal
stepsize is used by all clients. To our knowledge, this is the first time that such results are
reported for general convex loss functions.

* Under non-1ID data, we show that our Algorithm [2] can ensure accurate convergence un-
der constant stepsizes. Compared with existing counterparts, we allow much larger step-
sizes (our theoretically obtained stepsize is at least 162/5 and 4 times larger than the ones
in [Karimireddy et al.| (2020) and Mitra et al.| (2021b), respectively). More importantly,
we prove that under our stpesizes, the algorithm can ensure o(1/t) convergence under a
general convex loss function, which has not been reported before for first-order feder-
ated learning algorithms, even after incorporating momentum (Xu et al., 2021bj [Liu et al.,
2020; |Cheng et al., 2023} |Yang et al.,2022). This stands in stark contrast to existing results
on convex federated learning, where o(1/K’) convergence has only been established un-
der subclasses of convex functions—such as gradient difference being uniformly bounded
(Jiang et al., 2024), or Hessian difference being uniformly bounded (Kovalev et al., 2022).

* Algorithm [2| introduces a general framework for federated learning with drift correction,
unifying and extending a broad class of methods that ensure convergence under non-IID
data, including FedLin (Mitra et al.| [2021b), FedTrack (Mitra et al., 2021a), Scaffnew
(Mishchenko et al., 2022), and SCAFFOLD (Karimireddy et al., [2020). In addition, we
develop a novel analytical framework that establishes a key monotonic descent property,
enabling us to prove an improved o(1/t) convergence rate under general convex objec-
tives—an achievement that, to the best of our knowledge, has previously only been at-
tained for specific subclasses of convex functions in federated learning (see, e.g., Jiang
et al.| (2024); Kovalev et al.| (2022))). It is worth noting that extending the monotonic de-
scent property from centralized optimization in (Lee & Wright,[2019) to federated learning
is highly nontrivial, due to the presence of multiple heterogeneous local loss functions aris-
ing from non-IID data distributions. To the best of our knowledge, this is the first work to
rigorously establish such monotonicity in the context of convex federated learning.
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2 PRELIMINARIES

Notations R™ and R"*"™ denote the set of real n-dimensional vectors and the set of n x n-
dimensional matrices, respectively. For z € R™ and A € R™ ", [z]; and [A];; denote the j"
element of the vector = and the (i, )" element of the matrix A, respectively. For z,y € R”",

we define (z,y) = > i1, [#]i[yl; and [|z[| = />°7_[z]. For a matrix A € R"*", we define
[All2 = sup =1 zern [[Az]|. 0, € R™ and 1,, € R™ are n-dimensional vectors with all elements

being 0 and 1, respectively. We use O(c(t)) and o(c(t)) to represent sequences d(t) satisfying

limsup,_, | o |‘Ci§8 | < oo and limy_, % = 0, respectively.

2.1 PROBLEM SETTINGS

We consider the following federated learning problem with clients set S = {1,2,--- , N'} as follows:
1
min f(z) = N;fi(x), )

where f; : R™ — R is the local loss function of client ¢. The local loss function f;(z) is dependent
on the local training data of client 7. We use the following standard assumptions about the loss
functions (see |Mitra et al.| (2021azb)); Qin et al.| (2022); Mukherjee et al.| (2023)).

Assumption 1. Foranyi € S, f;(x) is L;-smooth over R™, i.e., there exists a constant L; such that
IVfi(z) = Vi)l < Li||lz — y|| holds for any i € S and x,y € R™. This implies ||V f(x) —
VWl < Llx — y|| where L = % Zi\il L;, ie., f(z) is also L-smooth over R™.

Assumption 2. For any i € S, f;(x) is convex over R™. Moreover, the optimal solution set X* =
{z* € R"|z* = argmin,crn f(x)} is not empty, i.e., there exists at least one x* € R™ such that
Vf(z*) =0, holds.

In existing results for federated learning (see, e.g., Mitra et al.| (2021b); |Qin et al.| (2022)); |Khaled
et al.| (2020); Mukherjee et al.| (2023))), the theoretically obtained convergence rates are all on the
order of O(1/t) for general convex loss functions, where ¢ is the number of communications be-
tween clients and the central server. In this paper, we will show that we can prove a faster o(1/t)
convergence rate by using a larger stepsize. To this end, we first introduce the following lemma (see
Debnath & Mikusinskil (2005) or|Lee & Wright (2019)).

Lemma 1. Let {A(t)} be a nonnegative sequence satisfying the following conditions:

(1) {A(t)} is monotonically decreasing;
(2) {A(t)} is summable, that is, Y -, A(k) < <.

Then, we have A(t) = o(1/t), i.e., lim;_, tA(t) = 0.

3 CONVERGENCE UNDER IID DATA

In this section, we consider the case where the data on all clients are IID. In the literature, this is
usually formulated as the following assumption (see, e.g.,[Schmidt & Roux|(2013));|Qin et al.[(2022));
Kim et al.| (2023)):

Assumption 3. There exists a constant n) > 0 such that |V f;(x)|| < n||V f(x)|| holds for any client
i€ Sandx € R™.

This assumption is also sometimes called Strong Growth Condition (Schmidt & Roux}[2013)) and has
been widely used in machine learning (Ma et al.,|2018; [Vaswani et al.,|2019ajb; |Gower et al.,|2021}
Meng et al., |2020). In fact, |Qin et al.[(2022)) recently experimentally verified that this condition is
satisfied for over-parameterized models. Next, we will prove that the classic federated learning algo-
rithm FedAvg can converge at an o(1/t) rate under judiciously designed stepsizes under Assumption
In Section[d] we will consider the more general non-IID case.
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3.1 ALGORITHM DESCRIPTION

For the sake of completeness, we restate FedAvg in[McMahan et al| (2017) as Algorithm [I](with an
extension that we allow clients to use heterogeneous local stepsizes). Specifically, in this algorithm,
instead of using a universal stepsize «, each client selects its own stepsize «; without coordination
with other clients. As proven in the next subsection and the numerical experimental evaluation, this
enables our algorithm to obtain faster convergence than existing counterparts.

Algorithm 1 (FedAvg with local stepsizes)

Input: Initial value Z(1), local training period 7, the stepsize «; for client 4
fort =1to7T do
fori=1to N do
Each client ¢ sets x; o(t) = Z(¢).
fork=0toT —1do
Each client ¢ does local training

Tigt1(t) = ik (t) — iV fi(wi k(1)) (2)
end for
end for
Each client i transmits ; ;(t) to the central server and receives Z(t + 1) = + Zivzl x; - (t)
from the central server.
end for

3.2 CONVERGENCE ANALYSIS

Theorem 1. Under Assumptions(I| 2| and[3] if the stepsize of client i satisfies a; = a« > 0 for all
i€ Sand

1 8T
i 3
“< B { L7’ L2217 +n(t —1))2 + 4nL7(1 — 1) }’ ©)

where L = % Zivzl L;, then f(Z(t)) converges to f(x*) with the convergence rate o(1/t), i.e.,
Tim ¢{f(a(0) ~ (a")} 0.
Proof. See Appendix [C] O

In fact, we can allow the stepsize o of the client ¢ € S in Theorem I]to be larger to achieve faster
convergence of Algorithm[I] which is detailed in Theorem 2]

Theorem 2. Under Assumptions and [3] if the stepsize «; for client i € S in Algorithm
satisfies

0<a; < 4

fi,

we have limy . f(#(1)) = (&) and f( TPy #(0)) — f(o") < g2zl

minlgiSN{Zai72Lia?}T'

Proof. See Appendix D} O

The proposed stepsize in Theorem [2is larger than designed stepsizes for FedAvg in existing theo-
retical results. For example, Qin et al.[(2022) and |[Khaled et al.|(2020) obtained stepsizes that should
satisfy 0 < a < ﬁ and 0 < o < 7, respectively. A simple comparison with (@ shows that our
stepsize can be two and four times as large besides the additional flexibility of allowing different
clients to select their local stepsizes to exploit local geometry to speed up convergence. In fact, our
numerical experiments in Figure [T confirm that our stepsize strategy indeed leads to much faster
convergence than the ones in |Qin et al.| (2022); Khaled et al.| (2020); Mukherjee et al| (2023) (see

Table 1| for a detailed comparison of stepsizes).
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Theorem [2| can also be obtained under a weaker interpolation assumption: ||V f;(z*)|| = 0 for all
1 €S,r € R”, and z* € X, which is also widely investigated in machine learning (see Ma et al.
(2018)); Vaswani et al.|(2019ajb); Gower et al.| (2021); Meng et al.|(2020)). Compared with Theorem
[2l Theorem [2| does not require client  to know information about the global loss function to deter-

mine its stepsize. In addition, it allows stepsize that is maxlSjSN{%, L@rn(r ?L),TH”LT(T 1)}

times larger than that in (3). In fact, our numerical experimental results in Appendix [A.2.2] show
that allowing clients to use local stepsizes achieves a faster convergence than the case with a global
stepsize. This is intuitive in that utilizing local Lipschitz constants allows the gradient descent steps
to exploit the local geometry of loss functions, and hence, enables faster convergence. It is worth
noting that although such a phenomenon has been reported in Mukherjee et al.|(2023) for one spe-
cific example of quadratic functions, we are the first to theoretically establish that local stepsizes can
be exploited to achieve faster convergence for a general class of loss functions in federated learning.

Remark 1. Ir is worth noting that the o(1/k) convergence rate established in Theorem|l|does not
contradict the result in|Glasgow et al.|(2022), which proves that FedAvg cannot achieve a rate faster
than O(1/k) for general convex objectives. The key distinction lies in the fact that Theoremrelies
on the additional Strong Growth Condition (see Assumption[3). In the next section, we introduce a
new algorithm that achieves o(1/k) convergence for general convex objectives under non-IID data,
without requiring any additional restrictive conditions.

We can extend our analysis to the setting of stochastic gradients, where client 7 can only access an
unbiased estimate of the gradient V f;(x) with variance bounded by 2. More specifically, Corollary
(see proof in Appendix [E) establishes the convergence of Algorithm [I]in this case:

Corollary 3 (Stochastic Gradients). Under Assumptions[I} 2] and[3) if the stepsize «; in Algorithm
satisﬁes 0<a; < %for any i € S, we have

T _ N
1 _ lz(1) — z*|2 27> L a?
E|: (7 t ):| o *) < i=1"1 2.
f T ;LE( ) f(:l) ) - minlSiSN{2ai — 2Lia12}T + minlgiSN{2ai — 2Lia?}NU

4 CONVERGENCE UNDER NON-IID DATA

4.1 ALGORITHM DESCRIPTION

Under non-IID data, it has been known that except the trivial case where the number of local iter-
ations is one (7 = 1), Algorithmﬂ] will be subject to errors (Mukherjee et al.,|2023; [Orvieto et al.,
2022} |Wang et al., [2020; [Karimireddy et al., [2020). Inspired by gradient-tracking-based distributed
optimization algorithms (Pu & Nedié, [2021; Nedic et al.,[2017), we propose Algorithm@]to address
this issue and ensure accurate convergence under non-IID data.

Unlike Algorithm [I|which exchanges only the model parameters x; ;11 (t) between clients and the
server, Algorithm [2| requires exchanging an additional variable for the gradient. More specifically,
in Algorithm each client uses the global gradient information V f(Z(t)) to initialize its local
variable y; ;,(t) after each communication round (see ). This variable y; 541 (t), which serves as
an estimate of the global gradient, is then used to update the model parameter x; j,+1 () (see ).
This is key to eliminating the drift caused by non-IID data.

Our Algorithm 2] provides a general framework for federated learning with drift correction, encom-
passing a wide range of existing algorithms as special cases. Specifically, by substituting equation
into equation (7) and applying mathematical induction, the auxiliary variable y; 5 (¢) can be ex-
pressed as y; 1 (t) = Vf(z;k(t)) — VFi(2()) + Vf(Z(t)) for k = 0,1,...,7. Substituting this
expression into the update rule (6) recovers the specific update mechanisms used in FedLin (Mitra
et al., 2021b)) and FedTrack (Mitra et al., |2021a). In addition, as xiyk(t) converges to x*, it follows
from equation (8) that y; x(z*) = V fi(z*), a key idea leveraged in the “drift-correction” feder-
ated learning algorithms Scaffnew (Mishchenko et al.,[2022) and SCADDOLD (Karimireddy et al.,
2020). This demonstrates that Algorithm 2not only generalizes but also unifies prior drift-corrected
federated learning methods within a broader and more flexible structure.

Next, we prove that the new framework allows us to obtain o(1/t) convergence in general convex
federated learning, which is only established in the literature for special classes of convex functions
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Algorithm 2
Input: Initial values Z(1), V f(Z(1)), local training period 7, and stepsize «;
fort =1to7T do
for: =1to N do
Each client 7 sets

zio(t) = 5(t) and yiolt) = V(& (t)). 5)

fork=0to7 —1do
Client ¢ does local updating

T g1 (t) =23 1 (1) — ayi k (1), (6)
Yik+1(t) =Yik(t) + VIi(@i k1)) — Vfi(zi k(1)) (7

end for
end for
The central server calculates and transmits Z(¢t + 1) = & Zfil x; - (t) to each client. Each
client ¢ then transmits V f;(Z(t + 1)) to the central server and receives Vf(Z(t + 1)) =
L Zf\il V fi(Z(t + 1)) from the central server.
end for

with restrictions on data heterogeneity (see, e.g., under the bounded gradient difference condition
in|Jiang et al.|(2024) and under the bounded Hessian difference condition in |[Kovalev et al.| (2022)).
For the general convex case without any restrictions, existing federated learning algorithms—even
those incorporating momentum—only achieve an O(1/t) convergence rate. In addition, the new
framework allows using significantly larger step sizes compared to existing drift-corrected federated
learning algorithms, as detailed in Section

4.2 CONVERGENCE ANALYSIS

Theorem 4. For Algorithm[2] under Assumptions[I|and[2] if the stepsize o of client i € S satisfies

12
0<a<1£1§nN{L7j’5L7'7L}’ ®

where L = % Zf\il L;, then f(Z(t)) converges to f(x*) with the convergence rate o(1/t), i.e.,

Tim H{f(a(®) ~ Fa)} = 0.
Proof. See Appendix [F] O

In Theorem {4} we establish an o(1/t) convergence rate for federated learning with general convex
functions under non-IID data. A key step in this analysis, as shown in Lemmal|l} is proving that the
sequence { f(Z(t))} is monotonically decreasing, i.e.,

fE+1) < f(z)).

We emphasize that proving this monotonicity under general smooth and convex conditions is highly
nontrivial. Our proof of this property, presented in Lemma [5] constitutes a significant technical
contribution of this work.

Notably, other federated learning algorithms in |Mitra et al| (2021ajb), which also follow a
gradient-tracking-based framework, only establish an O(1/t) convergence rate under general con-
vex functions in their analyses. In contrast, our work develops a more refined analysis tech-
nique—specifically, the nontrivial proof of the monotonically decreasing property, i.e., f(Z(t+1)) <
f(Z(t)) (see Lemma [S)—which enables us to establish an o(1/t) convergence rate in Theorem
Importantly, this analysis framework is not limited to our algorithm and can also be applied to other
gradient-tracking-based methods to improve their theoretical guarantees from O(1/t) to o(1/t) un-
der general convex settings. This general methodology, therefore, represents a significant contribu-
tion of our work.
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In the case of stochastic gradients, chent ¢ can only access an unbiased estimate of the gradient
V f;(z) with variance bounded by 0. Next, we establish Corollary [3| (see proof in Appendix [H) for
the convergence of Algorithm 2]in this stochastic setting:

Corollary 5 (Stochastic Gradlents) Under Assumptions [I| and [2] if the stepsize o of Algorithm 2]
satisfies 0 < o < m1n1<j<N{L , 12TL} we have

B[/ (L3 a0)] - 76 <

t=1

(1) — =~

34rac?.
T + 3dTao

4.3 COMPARISON WITH EXISTING RESULTS

From Theorem 4] Algorithm [2] allows a much larger stepsize and a better convergence rate com-
pared with existing works. Specifically, the stepsize in [Karimireddy et al. (2020) is required to
satisfy 0 < o < minj<;< N{ﬁ} In contrast, the stepsize upper bound in Theorem is given
by min;<;< N{%, MT%L} It can be verified that our permissible stepsize is at least % times
larger than that in Karimireddy et al.[(2020). Similarly, Mitra et al.| (2021b) requires the stepsize to

satisfy 0 < o < minj<;< N{ﬁ}. In contrast, our Theorem [é_l]permits a stepsize that is at least

maxi<;< ~{ H LOTTL i } > 4 times larger than that in Mitra et al.[(2021b). Table |l|provides a detailed

comparison between our proposed stepsize and convergence rate with existing works.

Table 1: Comparison of the proposed stepsizes and obtained convergence rates for Algorithm [I]and
Algorithm 2] with existing results. In this table, we represent the total communication round as ¢, the
local training period as 7, and assume that the local loss function f;(x) satisfies L-smooth property
and each client uses precise gradient.

ASSUMPTION | ALGORITHM STEPSIZE CONVERGENCE
RATE

ALGORITHMT] 1/L O(1/t)

11D QIN ET AL.[(2022) 1/(2L) O(1/t)
KHALED ET AL.[(2020) 1/(4L) O(1/t)
ALGORITHM 2] 2/(5LT — L) o(1/t)
MITRA ET AL.[(2021B)); [KHALED ET AL.|(2020) 1/(107L) O(1/K)
MITRA ET AL.|(2021A) 1/(187L) O(1/K)
KARIMIREDDY ET AL.|(2020) 1/(817L) O(1/K)

NON-IID | IREISIZADEH ET AL.[(2020);ZHU ET AL.[(2021)

XIANG ET AL.[(2024));JHUANG ET AL.[(2023))
WANG ET AL, (2020); YU ET AL, (2019) 0(1/VK) O(1/VK)
YANG ET AL.[(2021);|L1 & L1 (2023)
HADDADPOUR & MAHDAVI|(2019)
| IKIM ET AL.[(2023) ADAPTIVE O(1/VK)

5 EXPERIMENTS

5.1

EVALUATION USING GENERATED DATA UNDER IID DISTRIBUTION

We use the following regression problem to compare the performance of Algorithm|[I]and Algorithm
2|under the proposed stepsizes with existing counterparts|

i = — Ajz — b|]?
min f(z) = min NZ |45z — i1, ©)
where A; € RP00X100 . ¢ R590 and » € R for each clienti € S = {1,2,---,20}. [A;];x are

generated from [0, 1] randomly for 1 < j < 500,1 < k < 100, and ¢ € S, and we also set [41];1 =

!Code available at https://anonymous.4open.science/r/o1_t-F814/README.md
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[A4];,2 for 1 < j < 500 to obtain a convex but not strongly convex loss function f;(x). We set b; =

Az for all i € S with g = 10 x 1,, rather than generating b; randomly. In this setting, f;(x) =
A7 Ajll2

& it AT (x i, Ad)ll2 }

]| 4i(z — xo)||* and, hence, there exists a constant 77 = maxi<j<n{ i
such that ||V f;(2)|| < n||Vf(z)| holds forall : € S.

We compare Algorithm[I]and Algorithm 2Junder the proposed stepsize strategy with existing coun-
terparts including [Qin et al. (2022); Mukherjee et al.| (2023); [Mitra et al. (2021b)); [Khaled et al.
(2020). In the evaluation, we use the error e(t) = f(Z(t)) — f(z*) to measure the learning accuracy.
Moreover, we implement all algorithms using accurate gradients to ensure a fair comparison of them.
The corresponding convergence performances with different local training periods 7 = 2,3,4,5,6
are presented in Figure[I]

10'

—- Mukherjee et al. (2023)
————— Mitra et al. (2021b)
—— Algorithm 2
Algorithm 1 with Universal Stepsizes
Khaled et al. (2020)
""" Qin et al. (2022)
—— Algorithm 1 with Local Stepsizes

Errors e(t)
Errors e(t)

200 250 300 30 a0 430 00 S0 600
Communication Rounds t (T =3)

e(t)

Errors e(t)
Err

200 250 300 350 4o 0 500 20 255 230 255 300 335 30 35 4w M0 250 200 20 280 300 30 3k
Communication Rounds t (T =4) Communication Rounds t (T=5) Communication Rounds t (T =6)

Figure 1: Comparisons of the performance of Algorithm |I| and Algorithm [2| under the proposed
stepsize with [Qin et al.[(2022)); [Mukherjee et al.| (2023); Mitra et al.| (2021b); |Khaled et al.| (2020)
under different local training periods 7.

In Figure [I} the legends ‘Algorithm [I] with Universal Stepsizes’ and ‘Algorithm [I] with Lo-
cal Stepsizes’ denote Algorithm [I] with stepsizes (3) and (@), respectively.  Specifically,
in the universal stepsize case, we set the universal stepsize « for all clients as a =
min1gigN{L%T, L(27+n(771§§)2+4nm(771) }—1071% according to , where L = % vazl L; is the
global Lipschitz constant. In the local stepsize case, we set the stepsize of client ¢ as o; = % —10-1
based on individual Lipschitz constants ;. From Figure[I} we know that the convergence of Algo-
rithm [T] with the stepsize prescribed in @) is much faster than other cases, including the case with
the universal stepsize (3). Additional experiments with non-IID data are presented in Appendix [A.2]

5.2 EVALUATION USING CIFAR-10 AND CIFAR-100 UNDER NON-IID DISTRIBUTION

We also evaluate our algorithms by training a CNN on 10 clients using the benchmark datasets
CIFAR-10 and CIFAR-100, respectivelyﬂ The CNN architecture consists of three convolutional
layers with 32, 64, and 128 filters, respectively, each followed by a max-pooling layer. After the final
convolutional and pooling layers, the network includes a fully connected layer with 256 units and
ReLU activation, a dropout layer with a rate of 0.25 for regularization, and a final dense output layer
with 10 units that produces the class logits. In our experiments, we compare the proposed algorithm
against existing federated learning methods specifically designed to address client drift, including
SCAFFOLD (Karimireddy et al., 2020), FedLin (Mitra et al., 2021b)), and Scaffnew (Mishchenko
et al., [2022). Following Hsu et al.[(2019) and Kim et al.| (2023)), we generate heterogeneous data
distributions across the 10 agents using a Dirichlet distribution, with the heterogeneity parameter o
set to 0.1, 1, and 10, respectively. A higher value of « yields a nearly uniform distribution of data
across classes for each client, resulting in approximately IID local datasets. In contrast, a lower «
leads to highly skewed distributions, where clients tend to specialize in only a few classes.

2Code available at https://anonymous.4open.science/r/o1_t-F814/README.md
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Figures [2 and [3| report results for o = 1, which corresponds to a moderately heterogeneous setting
(additional results for other values of « are provided in Appendix [A.T)). In both Figure 2| (CIFAR-
10) and Figure [3| (CIFAR-100), the step sizes for Algorithm 2] SCAFFOLD, FedLin, and Scaffnew
are selected according to the guidelines from Theorem E], Karimireddy et al.| (2020), Mitra et al.
(2021b)), and Mishchenko et al.| (2022), respectively, using an estimated smoothness parameter of
L = 2. For Algorithm [2, SCAFFOLD, and FedLin, the local training period is set to 7 = 10. For
Scaffnew, the communication probability is set to 1—11 to ensure that the total number of communi-
cated messages remains consistent across methods. As shown in the figures, our algorithm achieves
faster convergence and higher accuracy on both the CIFAR-10 dataset and the CIFAR-100 dataset.
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Figure 2: Comparison of Algorithm with state-of-the-art federated learning algo-

rithms—SCAFFOLD, FedLin, and Scaffnew—on the CIFAR-10 dataset. Each curve represents

the average of five independent runs.
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Figure 3: Comparison of Algorithm with state-of-the-art federated learning algo-

rithms—SCAFFOLD, FedLin, and Scaffnew—on the CIFAR-100 dataset. Each curve represents
the average of five independent runs. The test accuracy in Figure 2(b) is top-5 accuracy.

6 CONCLUSION

Enhancing convergence accuracy and speed is key for federated learning. We prove that much larger
stepsizes can be used in FedAvg, and hence, much faster convergence can be achieved. In fact, we
theoretically show that the proposed stepsize strategy can guarantee o(1/t) convergence to an exact
optimal solution for general convex loss functions, under both IID data distribution and non-IID data
distribution among local clients. This is significant since existing federated learning results can only
theoretically establish O(1/t) convergence under general convex loss functions when no additional
restrictions are made, even after incorporating momentum. Moreover, in the IID data distribution
setting, we theoretically establish convergence when clients set stepsizes individually using local
Lipschitz parameters, and show that such a local stepsize strategy enables exploiting local geometry
to expedite convergence. To our knowledge, this is the first time that local stepsizes designed using
local Lipschitz parameters is systemtically shown to outperform a universal stepsize designed using
the global Lipschitz parameter. Moreover, we propose a general gradient-tracking-based framework
that unifies and extends many existing drift-corrected federated learning algorithms. By establishing
a key monotonic descent property, our framework broadens the theoretical understanding of gradient
tracking and enables an improved o(1/t) convergence rate under non-IID data distributions. This
represents a significant advancement, as existing results establish o(1/t) convergence for convex
federated learning only under additional restrictions on heterogeneity.
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A  ADDITIONAL NUMERICAL EXPERIMENTS

A.1 ADDITIONAL CNN TRAINING RESULTS WITH DIFFERENT NON-IID LEVELS

Figures [ and [5] provide additional results for the CNN training experiment in Section 5.2 with a
heterogeneity parameter o = 0.1.
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Figure 4: Comparison of Algorithm [2] with state-of-the-art federated learning algo-

rithms—SCAFFOLD, FedLin, and Scaffnew—on the CIFAR-10 dataset. Each curve represents the
average of five independent runs. To induce greater heterogeneity in data distribution, the Dirichlet

distribution parameter was set to o = 0.1.
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Figure 5: Comparison of Algorithm [2] with state-of-the-art federated learning algo-

rithms—SCAFFOLD, FedLin, and Scaffnew—on the CIFAR-100 dataset. Each curve represents
the average of five independent runs. The test accuracy in Figure 2(b) is top-5 accuracy. To induce
greater heterogeneity in data distribution, the Dirichlet distribution parameter was set to o = 0.1.

Figures [6] and [7] provide additional results for the CNN training experiment in Section 5.2 with a
heterogeneity parameter o = 10.
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Figure 6: Comparison of Algorithm [2] with state-of-the-art federated learning algo-
rithms—SCAFFOLD, FedLin, and Scaffnew—on the CIFAR-10 dataset. Each curve represents the
average of five independent runs. To induce smaller heterogeneity in data distribution, the Dirichlet
distribution parameter was set to o = 10.
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Figure 7: Comparison of Algorithm [2] with state-of-the-art federated learning algo-

rithms—SCAFFOLD, FedLin, and Scaffnew—on the CIFAR-100 dataset. Each curve represents
the average of five independent runs. The test accuracy in Figure 2(b) is top-5 accuracy. To induce
smaller heterogeneity in data distribution, the Dirichlet distribution parameter was set to o = 10.

A.2 LEAST SQUARES REGRESSION

A.2.1 COMPARISON OF ALGORITHM 2] WITH EXISTING WORKS

We consider [A;]; and [b;]; generated from [0, 1] randomly for 1 < j < 500,1 < k£ < 100, and i €
S. After the initial random generation of data, we purposely set [A1];1 = [A1];,2 for 1 < j < 500
to make A; not full rank. By doing so, we can obtain a local loss function f(z) = % |Ajz — b2

that is convex but not strongly convex.

We compared the performance of Algorithm [2] under the proposed stepsize (8) in Theorem 4] with
those in [Mitra et al| (2021ab). The convergence performances of Algorithm [2] and algorithms in
Mitra et al.| (2021ajb)) under different local training periods 7 = 2, 3,4, 5,6, 7 are shown as Figure
It is clear that the proposed stepsize strategy indeed yields much faster convergence than the
compared counterparts.

A.2.2 LOCAL STEPSIZE STRATEGY OUTPERFORMS UNIVERSAL STEPSIZE STRATEGY FOR
ALGORITHM[IJUNDER 7 = 1

We show that better convergence performance of Algorithm [I]can be achieved with local stepsizes
O0< o < % than a universal stepsize 0 < o < %, where L = % va:l L;. For ease of comparison,

we select [A;]r = 1°[B;]j, and b; = Az for 1 < j <500,1 < k <100, and i € S, where [B;]
is generated from [0, 1] randomly, p measures the heterogeneity in loss functions, and zo = 10 x 1,,.
It can be seen that a larger parameter p leads to more heterogeneity in the local loss functions.
Moreover, one can verify that the loss function f;(z) of client ¢ € S satisfies L;-smooth propert

with L; = i”|| BI B;||2. Then, under 7 = 1, we present in Figure E]the convergence of Algorithm |I|

under the local stepsize strategy where a; = % — 10715 of client i € S and the universal stepsize
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Figure 8: Comparisons of the performance of Algorithm 2] under the proposed stepsize with Mitra
et al.[(2021azb)) under different local training periods 7

strategy where o = % for all clients, where L; is the individual Lipschitz constant of clienti € S
and L = % Zivzl L; is the global Lipschitz constant.

In Figure[9] to compare the convergence between the local and the universal stepsize strategies, we
plot the learning errors f(Z;(t)) — f(«*) and f(Z,4(t)) — f(z*) under different heterogeneity pa-
rameters p = 1,1.5,2,2.5, 3, where Z;(t) and Z,(t) are generated under the local and the universal
stepsize strategies, respectively. From Figure [9] it is clear that the local stepsize designed based
on local Lipschitz constants obtains faster convergence than the case with the universal stepsize
designed based on the obal Lipschitz constant. Moreover, to quantify the improvement in conver-

gence speed, in Figure |9} we also plot the learning error ratio r(t) = % under different
g

heterogeneity parameters p = 1,1.5,2, 2.5, 3, respectively. A smaller r(¢) (r(¢) < 1) means more
advantage of the convergence speed of the local stepsize strategy over the universal stepsize strategy.
Figure |§| shows that a smaller (¢) is obtained under a larger heterogeneity parameter p. Thus, it can
be concluded that the local stepsize strategy of Algorithm[I]can achieve faster convergence than the
global stepsize strategy, especially for large heterogeneity cases.
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Figure 9: Comparisons of the local stepsize strategy with a universal stepsize strategy under different
heterogeneity parameters p.
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B SUPPORTING LEMMAS FOR THE PROOF OF THEOREM I

Lemma 2 (Zhou|(2018)). For every L;-smooth and convex function f;(x) over R™, we have

fily) = filz) + (Vfi(z),y — =) + () — Vfi(y)l?

forany x,y € R andi € S.

Lemma 3 (Mitra et al.| (2021b)). Suppose that f;(x) is L;-smooth and convex. Then, for any 0 <
a< %, we have

ly — 2z —a(Vfi(y) = Vi) < lly — |
forany x,y € R™.
Lemma 4 (Zhou|(2018)). For the convex and L-smooth function f(x), we have

Fl) < F@) 4 (VS ()y — ) + 2y —
forany x,y € R™.

C PROOF OF THEOREMI]

Proof. The sequence { f(Z(t)) — f(x*)} satisfies
f(@(t) = f(2") =0

for any ¢ > 1. From Lemma (T} to prove Theorem I} we only need to prove that the nonnegative
sequence { f(Z(t)) — f(z*)} satisfies the summable and monotonically decreasing properties.

* Summable Property: Firstly, we establish the summable property.
From (@) in Algorithm[T] we have
i 41 (8) — 27|
=llik(t) = 2|* = 20(V fi(win(t)), 2ix(t) — %) + 2|V filzix@)% (10)
From the convexity of f;(z), we have
—2a(V fi(wi (1)), wi k() — 27) < 20{fi(z") = fi(wix(t))}- (11)
Using the strong growth condition (see Assumption [3) yields
IVfi(z™)] =0 (12)
forany i € S and 2* € X*.
Then, from Lemma[2]and (12)), we have

IV fiein@)I? < 2L filain(®) - fila")}. (13)
Combining (I0), (T, and (I3), we arrive at
fraen(t) =1 < lrailt) "I + (20— 2Li0®) { fi(a) — filrea(®) ). (19
It is worth noting that the following inequality holds

N
= * 1 *
12(t +1) —2|* < NZH%—,T(t) -
i=1

Thus, from Algorithm [T]and (T4), we have

|2t +1) —z*|?
-1

%Z 20 - 2L,0%) Y {fia") - fles®)} + 120 -2 ()
i=1 k

=0

17
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Under the stepsize setting (3), we have
200 — 2L;0”® > 0

for any i € S. Moreover, from Assumption 3} we have ||V f;(z*)| = 0 for any 2* € X*
and i € S. Thus, in (T3), we have

fi(@®) = fi(zix(t) <0
foranyi € Sandk=0,1,--- ,7— 1.
Thus, using (T3], we have
o+ 1) = 2|2 < Jla(t) - 2|2 + {20 — 2La®}{ f(a") — f@(e) ). 16)
From (T6), we can obtain

|2(t) — a*|* — 2t + 1) —2"|*

f@() = f(@") < 20 — 20,02

Thus, for any 7" > 1, we have

T

S {fa) - £} < U

— _ . 2 )
P 20 — 2L;«x

* (|2

which establishes the summable property of the sequence {f(Z(t)) — f(x*)}.

* Monotonically Decreasing:
Next, we show that f(Z(¢)) is monotonically decreasing.

From Algorithm 3] we have
i k1 () — Z(2) |
<|lzi () — 2(t) — O‘(Vfi(xi,k(t)) - Vfi(f(t))) [+l Vfi(Z@)].

Using Lemma 3]and the stepsize setting in (3)), we arrive at

i ka1 (t) = @) < [lzin(t) — 2@ + [V fil2(2))]]- (18)
Using the update rule in Algorithm[I] we obtain

zik(t) — 2@)]| < kal|V£i(2(1)] (19)

fork=0,1,2,--- ,7 — 1.

It is worth noting that the following inequality always holds:

N 7-—1

I S Vil < ZZHmm ~ VHEO)| + IV

i=1 k=0
From Assumption[TJand (3), we have

N 7—1 N 7—1

II*ZZVJ% zik() < 5 ZZL 3,6 () = 2@ + T[V f (@)

i=1 k=0 i=1 k=0
Further using Assumption [3]and the update rull in Algorithm 3] we arrive at

N 7—1

IIfZZVfZ CRONERE: +@}nw(@(t))u. (20)

i=1 k=0

From (2), we have

|
-

T

N
Z Vi zzk t)).

i=1 0

T(t+1) =zt

2\@
i



Under review as a conference paper at ICLR 2026

The global loss function f(z) is L-smooth with L = + Zf\;l L;. From Lemma and
Assumption[I} we have

fEt+1))
1 N 1-—1 L a N 7—1
Sf(j(t))_ 7 ZZ vfl j )>+§”NZ vfz(xzk<t))‘|2
i=1 k=0 i=1 k=
N -1 1 N -1 =
- ZZ vfz xtk )) NZ Oész(i'(t)»
i=1 k=0 i=1 k=0
Further using Assumption[3]and (20), we have
fE(t+1))
(r—1)

<f@®) — ot V@) +

Le{r+ DV v s
+ La(t)|Vf(2(t) {%ZZIIM H}

i=1 k=0

Based on the update rule in Algorithm [T} we arrive at

f@(t+1))
<(E0) ~ ar |V E@)I + Za2{r + TV v s
¥ La||Vf(z { ZkaHVf }
which further implies
f@t+1)
_ . - 2 £ 2 n(r —1)32 - 2
<F(@(t) - ar|[ V@) + S {r + T IV FE®)]
nLt(t —1)a?

+ 5 IV @)

Therefore, the stepsize should satisfy

n(r—1) }2a2 L=l o g
2 2

to guarantee the monotonically decreasing property of f(z(t)) — f(z*). Equivalently,

stepsize satisfying

+L{ +
—Ta+ =<7
2

8T
<
~ L2t +n(r—1)2+4nL7(t — 1)

guarantees the monotonically decreasing property of f(Z).

O
D PROOF OF THEOREM
Proof. From (2)) in Algorithm[I] we can obtain
i kg1 () — ¥
=[lzik(t) — 2*° — 20 (V fi (@i (1)), i (£) — %) + 7 ||V fil@i k(1)) 21

19
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From the convexity property of f;(x), we have

—204(V fi(i (1), w0 (0) = %) < 200 {fila") — filia (1)} 22)
Assumption [3]implies
194 =0
forany i € S and z* € X*. Thus, combining with Lemma[2] we have
19 fi(w(®)I? < 2L filain(®) - fila™) }. 23)

Combining (Z1), 22), and (23)), we can obtain
lisr(®) = " < lloar(t) 2| + (205 = 2Lia?) { fi(a") = filain®) |- @4

Note that the following inequality always holds:
Izt +1) —a*)* < ZII%’” ) — "%

Hence, Algorithm [T]and (24) imply
12t +1) — 2"

I
-

T

N
<= (@00~ 2Li02) o £i") — Fiwan i)} + lat) — 2| 25)

i=1 0

x>
Il

Under the stepsize setting (@), we have
20; — 2L >0
for any 7 € S. Moreover, Assumption@ensures

fia®) = fi(zix(t)) <0
foranyi € Sandk=0,1,--- , 7 — 1.
Substituting the above inequality into (25) yields

2t +1) — 2| < [[#(5) = 2*[* + | min {2a2—2La }{f(x*)—f(:f(t))}. (26)
From (26), we can obtain
(@) — f(a") <

Thus, for any 7' > 1, we have

() — =*|1* — ll2(t + 1) — 2*|>
minlSiSN{Qai — 2Ll0412}

L SR OO & 27
Z{f(x( ) — [z )}7 min; <;< y{20; — 2L;02} 27)

t=1

Since f(Z(t)) — f(x*) > 0 holds for any ¢, we have
Jim f(2(1) = /().

In addition, from (7)), for any 7' > 1, we can obtain

T _
Ly s @) < 7 {70 - 16 < 20~

t:l mlnlSiSN{Zai - 2Lia%}T’

:L,*HQ

which completes the proof.

20



Under review as a conference paper at ICLR 2026

E PROOF OF COROLLARY [3]

Proof. We use g;(x) to represent the unbiased estimate of the gradient V f;(z). From (2) in Algo-
rithm [T} we can obtain

[l g1 () — 2|12
<lzi gk (t) — 2*)° = 203 (V fi (@i 1 (1)), i1 () — %) + 207 |V fi(@i i (1) ]2
— 20 (gi (i k(1) — Vfilwin(t), zin(t) — %) + 207 | gi (@i k(1)) — V iz (0)]>.  (28)

Using the convexity of f;(x), we arrive at

=20 (V fi (@i (1)), wi k(1) — %) < 20:{fi(2") — filwin(t))}. (29)
Assumption [3]implies
IV £iG")] =0
for any i € S and 2* € X*. Thus, combining the preceding relation with Lemma 2] we can obtain
IV filain@)I® < 2Li{ fizin(t) — filz)}- (30)

Combining (28), (29), and (30), we arrive at

i k41(t) — 22
ik (t) = a*|* + (20i — 2L ){ fi(a™) — fi(wix(8))}

= 2ai{gi(xi () = Vfi(zin (1), 2ok (t) — 2*) + 207 || gi(zi (1) = Vfilzix@)[*.  GD

Using (3T) and the property of the stochastic gradient, we have
Ell|zik1(t) — 2]
<E[|zix(t) — 2|1°] + (205 — 2Liad){ fi(x") — E[filzix(t))]} + 20f0”. (32)

Note that the following inequality always holds:

1 N

Ellz(t+1) - 2"|"] < ;E[Ilwm(t) — |,

Using the update rule in Algorithm[T]and (3T)), we arrive at

Efflz(t+1) — 2]
1 & , r—1 ) ) » 1 »
SN i:1(2ai —2L;a3) 2 {fz'(x ) — E[fi(xi,k(t))]} +E[||z2(t) — %] + ~ ;27042»0— .

Under the stepsize setting , we can obtain 2c; — 2L;a? > 0 forany i € S.
Moreover, Assumptionensures fi(e*)—E[fi(z;x(t))] < Oforanyi € Sandk =0,1,--- ,7—1.
Thus, from (33)), we have

Ef2(t+1) "% < min {20, —2Lia? }{/(@") ~ E[f(2(t))] |

N
1
+ szmfa? + E[||z(t) — «*||?], (34)
i=1
which further implies
= * = * N
BF ()] — for) < BIEE) — 2]~ B[+ 1) — o)) EOVE L S
- minlSiSN{2ai — 2Ll0422} minlSiSN{2ai — QLZ‘Oz?} ’

21
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Thus, for any T' > 1, we have

d |(1) — 2" FYN 2ra?T

E[f(Z(t))] — f(z*); < = ! . (35
> (Bl - 1)} < o e e s ey — 2L O
From (33), for any 7' > 1, we obtain
T _
1 - [Z(1) — a*|]? N Z 12 o2,
E - t _ * < 1=
V(T ;x( ))] fla”) < ming <;<n{20; — 2L;02}T * rr11nl<,<1\;{204Z — 2L 042}
which completes the proof.
O
F PROOF THEOREM [4]
Proof. From Algorithm 2] the updated rules (6) and (7) can be equivalently expressed as
Tik1(t) = 2 k() — a(VF(Z(1) = Vi(Z(1) + V fi(zi (1)) (36)
The relation in (36), we further implies
27 k41() — Z(2)]|
<[Jwsrt) = 20) + a(Vitwin(®) - V@) + IV EO)]- 37
From Lemmaand l| if the stepsize satisfies 0 < o < E’ we have
i1 (t) = 2@ < [lwin(t) — 2@ + [V (Z®)]- (38)
Using induction, we obtain
ik (t) = ()| < kal|VF(Z(®))] (39)
Using the update rule in Algorithm@, we can obtain
zi(t) = 2(t) — az Vii(@ir(t) = (V1) - Vii(a(0).
Therefore, the average parameter Z(¢ + 1) satisfies
N o N 7—1
t+1 Z 17' :i‘ NZ:; fzxzk: ))
which further implies
|12(t +1) = 2| = [|2(t) — 2*||?
a N 7—1 N 7-—1
=—2(5 D> Viilwin(®), 2(t) - " +|\fZZVfZ i ()12 (40)
i=1 k=0 i=1 k=0
For the first term on the right hand side of (0), we have
1 N 7—1
— (5 S Vi), 7(0) — o)
i=1 k=0
1 N 7-—1 1 T—1
=~ oD et —wik(t), Vilzin(t)) + NZ (i x(t) — Z(t), Vfi(2(1)))
i=1 k=0 i=1 k=0
N 7-1
+ lz (23, (t) — 2(t), Vfilzik(t) — Vfi(Z(2))) 41
N e i,k ’ i\ L,k 7 .

22
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Furthermore, using Assumption |I{and the convexity property of f;(z), we can obtain
N 7-1

1 — *
NZ};JWZ 23k (1)), 2(t) — 2)

1
1

|
—

K2
T— T

{ £ = filzin(®) }+1i {Filwin(®) - fia )}

1=1 k=0 =1 0
T

1 N
+ =Y O Lilla () — ()] (42)

>
Il

N 7—1
{5 D0 V(). 7(0) — 2°)
i=1 k=
1 N 7-1 ’ 1 N 7-1
<y Y {5 - @@} + 5 33 Lika?| V(@) 43)
i=1 k=0 i=1 k=0
Plugging the stepsize condition 0 < aL; < 1 into {3) yields
N 7—1
o S Vi), 2(0) — o) < 7{ @)~ @)} + ol V)P Zk2 (44)
=1 k=0

A_Pﬁiying the relation >_;'_, k? = % to the second term on the right hand side of
yields

T—1

N
e SO Vi), 2(0) 1) < o{£7) — F@) ) + Al V@), @)

i=1 0

>
Il

where A; = %

For the second term on the right hand side of (#0), we have

HNZZVL%’“ H<*ZZHszm VGO +ITFEO @6

Using the smoothness condition in Assumption[I] we can further obtain

N 7-—1 N 7-—1
HNZZW vix )] € 5 o3 Lallras() — 20 + VS @)
i=1 k=0
Combining (39) and #7), we can obtain
N -1 T—1
| 3 Vi) < 3 Likal V@) + 71V £ (48)
i=1 k=0 k=0

Applying the stepsize condition 0 < TaL; < 1 to (d8) yields

N 7—1

15 303 VAl < AV S 9)

i=1 k=0

where Ay = 27 — 1.
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Then, combining (@0), @3), and (@9), we can obtain
|Z(t+ 1) — 2*|]* — [|2(t) — 2*|?
<ara{f(@") - f@@(t) } + {241 + 43 }a? |V (@) (50)

Using the relation established in Lemmal[5] we can obtain the following inequality from (30):

l2(t+1) — 2" * = |2(t) — 2|

2
<2ra{f(a) - fa®)} + 222 (o) - slate+ 1)} s1)
Rearranging terms yields
2ra{ f(@(1) - (=)}
2A; + A}

z(t) —x*|? - ||z —z*|? T z
<||z(t) — 2" = [l2(t + 1) — ™[I + 5 {f( () — £( (t+1))} (52)

Thus, for any 7' > 0, summarizing (52) from ¢t = 1 to ¢ = T leads to

T

S {r@) - 1)} < o) -

T ||2 EE il )
P 2Ta

2rary

{few)-ra}. 63

Using (53), Lemma [5] and Lemma [1} we can conclude that f(Z(t)) converges to f(z*) with the
convergence rate o(1/t), which completes the proof. O

G SUPPORTING LEMMAS FOR THE PROOF OF THEOREM (4]

Lemma 5. If the stepsize o of Algorzthmlsatlsﬁes 0<a<
such that

T LT T, there exists a constant v > 0

1|V ()P < f(z(t) — f(z(t+1)).

Moreover; the sequence f(Z(t)) is monotonically decreasing.

Proof. Under Assumption[l] we know that f(x) is L-smooth. Thus, from Lemma} we have

F(t+1))
1 N
<f@E®) = oVIEW®) Z

|
-

N 7-—1

fl Ti,k ) *Hizzvfz -rzk: H2 (54)

i=1 k=0

T

It

Substituting (49) into (54) leads to

f(@(t+1))
<f@®) — ot VF@E)? + 2LV (2 (1))

N 7-1
- 1 -
+ ol VAEO)I{ 5 2 Y IV Ailint) - VEEO) . (55)
i=1 k=0
Using the smoothness condition in Assumption [T} we can have the following relationship for (53):

fE(t+1))
<f@®) = ar|V(@(E)]? + 2L7°e®(|V (2 (1))

N
ol Vi) 5 303 Lillaas(t) - 2]} (56)

1=1 k=0
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Plugging (39) into (56) yields

J(@(t+ 1) < J(@(0) ~ ar|ViEO)P + T

La?||V f(z(t))]1.
Rearranging like terms leads to

for = T2 v pa)|? < £(a(0) - £t + 1)

Since the stepsize o satisfies 0 < o < 72—, there exist 7 > 0 such that

Thus, we have

1e? |V f(z())|° < f(z(t) - f(2(t +1)),

implying that the sequence f(Z(¢)) is monotonically decreasing, which completes the proof.

H PROOF OF COROLLARY

(57

(58)

O

We use g;(x) to represent the unbiased estimate of the gradient V f;(x). We need the following

Lemma [§]to prove Corollary [5|

Lemma 6. [f the stepsize satisfies 0 < o < rnin{1<j<N}{%}, we have
- J

Ef[lzs (1) — 2(1)|°] < 127°La’E[f(2(t)) — f(2*)] + 2TTa’0?
forO< h<rTandie€S.

Proof. From Algorithm 2] we can obtain

rinna(0) = a(t) = o 5 D0 0:(20)) — (2 (0) + () ]

Thus, we have
Ty kg1 (t) — Z(t)
—zix(t) = 2(t) — o{ VI (@(t)) = Vi(a(t) + Vfi(win(t)) |

+ gi(zik(t)) — Vfi(ﬂfi,k(t))}-

From the property of stochastic gradients, we have

E[wi441(8) - 2(2) ]
=&t - 300 - a(S11000) - S10) + w5000 | ]

1 g 1
+042E{HN Zgj(if — szfg (1)) + Vfi(2(t)) — 9:(2(1))
j=1

+ gj (i) — Vfi(x,»,k(t))H }

25
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For the first term of the right hand side of (|3_§|) we can obtain
ran(t) = 2(0) — o(VS@(0) = VA0) + VhiCean®) | |
<O+ DEllas(t) — 2(0) — a(Vfilwin(t) — VEEENI] + (14 )]V £@(2)|)
From Lemma[3] we can obtain
rox(t) — 2(0) — o (VD) ~ VEED) + Y hiCeas )|
<O+ DE[laie(t) ~ 207 + (1 + )BT S @), (60)

if the stepsize satisfies 0 < aL; < 1forany 1 <¢ < N.

E|

|

For the second term of the right hand side of (39), we have
L
E[| 5 Y ai@) - ZWJ )+ V() — 9:(2(1))
j=1
2
+ g (@i (1) - vmxi,k(t))H ]

N
%Z (195 (@(8)) = V f5(@()?] + BE[IV £i(2(1) — g: (2 (t))[|*]
+ 3E[lgi (w1, () — Vfilwix () 1)

forany i € S.

Using the properties of stochastic gradients, we have

E[H}Vim —fzvm )+ Vfila(t) - gi(@ (1))
J=1
+gleir(®) — V)] ] <907 (61)

foranyi € S.

Combining (39), (60), and (6I)), we arrive at
Ell|zik+1(t) — 2(t)|]

<(1+ 1) Eflzi,(t) = 2(@)]1°] + (1 + 7)a”E[|V f(2(1)]*] + 9a’0>.

Using induction, we obtain the following relation holding for any 0 < k£ < 7:

E[lles () - 20)I12] < {1+ 1)a* B[V ((0)] +9m2}21+

h=0
which further implies
) 1+ -1
B[llean(®) — 2@)IF] < {1+ QBT @)+ 900 o= —

Using the relation ||V f(Z(t))||? < 2L(f(Z(t))— f(z*)) from Assumptionand the convex property
of f;(z), we can obtain

E{||mi7k(t) - a:«(t)||2] <1272 LaE[f(2(t)) — f(z*)] + 27ra20?,

which completes the proof. O
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Next we proceed to prove Corollary 5. From the update rule in Algorithm 2] we have

N 7-1
(t+ Zzg] x]h
j 1 h=0
which further implies
2(t +1) = 2| — ll2(t) — «*||?
1 N 7-1 N -1
:—2aNZZgJ zjn(t)), zi (k) — z*) +a2||—ZZgJ xR ()| (62)
j=1h=0 j=1h=0
For the term —2a(4 Z;VZI E;;é g;(zjpn(t)), z;(kT) — z*) in Ib we have
1 N -1
= 20E (= D Y gi(@in(®),wilkr) =)
j=1h=0
20 N 7-1 20 N 7-1
=YY B[ —2in(®), V@) + 5 D0 Y E[(@ia) - 2(0), Vi @in(t)]
j=1h=0 j=1h=0

Using the convexity of f;(x) and Assumption we arrive at

1 N -1
- QaE[ ZZQJ zjn(t)), zi(kT) — )]
j=1 h=0
20 N 1—1
<Y E[LE) - L)
j=1h=0
T7—1

2aN B B L
+ 2SS B[ anlt) - £ 0) + 5 lesa(t) - #(0)P].

7j=1h=0
which further implies
1 N 17-1
~20E (57 22 Y g5, wilkr) — )]
j=1h=0
ol N 7—-1
<207E|f(2") = f@®)] + 55 30 D Elwia(t) - 2] 63)
j=1h=0
From Lemmal[6] we have
Efllzjn(t) — 2(t)|%] < 127°La®E[f (2(t)) — f(2")] + 277’0 (64)
forl<h<r.
Combining (63) and (64), yields
T—1
*20[E|: Zzgj m]h )7I*>i|
1 h=0
<207E|f(a") - f(3(t)]| +127° L2 E[f(2(t)) — [(a")] + 277° La’o?
When the stepsize satisfies 0 < 67aL < 1, we have
N 7-—1
—204E{ ZZQJ zjn(t)), Z(t) — >}
j=1h=0
<207E[f(2*) — f(2(t))] + 272 La’E[f(a(t)) — f(a")] + 97%a0>. (65)
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For the term o|| %, ZJ e gi(xin(®)])? in l| we have

N 7—1

5 LS a0

Jj=1h=
N 1—1

=20 HNZZ{QJ zin(t) = 9i(@ }H +2a Hjlvi_:l};)gj(ﬂw)\f. (66)

Using the smoothness conditon in Assumptionand the inequality || Zle ai||* <k Zle lla:ll?,
we have

onH% z]_v: sz {gj(xj,h(t)) - gj(f(t))} H2

37’L2 2 2 3ra? LA 2
ZZHm 7o)+ 5 30 s wine) - Va0
j=1h= =1 h=0

+ 5SS ) sy a0 (67)

7=1h=0

From (67) and the property of stochastic gradient, we have

el 335 s st}

67a2L2ZZE|:H1-]h 7‘% H :|+120[2 2 2 (68)

Plugging the inequality in Lemma [§into (68) leads to

25| 35~ fotosn ) ~sten}

j=1h=0
<2 LPa*E[f(z(1)) — f(2*)] + 16273 L2 ato? + 127202 (69)

For the term ||+ Z] Lo 091 (z;(kT))||* in , we have

N 7—1

2a2llfzzgg z(t))]*

jlhO

0427'
<! Z lg; (@(8)) = Vf3(@O)|* + 4?72V f(2(2)]]*.

Using Lemmal6]and the property of stochastic gradients, we have

N 7—1

20°E[ ||f 3N g @@®)IP] < 40°r%0% + 8T LE[f(2(t)) — f(a)). (70)

]1h0

Combining (66), (69), and (70), we have

N 7-—1

5 2 a0 ]

7=1h=0
(721 L3t + 8’ TP L)E[f(2(t)) — f(x*)] + 16273 L2 0? + 16a*7%02.
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When the stepsize satisfies 0 < 67aL < 1, we have

N -1
O‘QE[H;;’;%‘(%@@))HZ} < 1072 La’E[f (2(t)) — f(2*)] + 2507202, a0

Combining (62), (63), and (71)), we have

E[||z(t+1) —2*||?] = E[|z(t) — 2*||?] < (2a1 —1272La®)E[f(z*) — f(2(t))] +347%a%0?. (72)

When the stepsize satisfies 0 < o < 57, we have ar — 1272La? > 0. Plugging the preceding
inequality into (72) yileds
T
1 _ lz:(1) — 2|2 = 347%a® ,
— IE[ t)) — N < .
P2 el - o] < IR e,

Moreover, using the stepsize condition 0 < o < minj<j<n {‘Ll ) 1217L} and the convexity of f(z),
- J
we can obtain

]E[f(% Z;@(t))} — f(@*) < ”””T + 34ra0?

T *
(1) — |
t=1

for any ¢ € S, which completes the proof.
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