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ABSTRACT

This paper aims to achieve faster than O(1/t) convergence in federated learning
for general convex loss functions. Under the independent and identical distribution
(IID) condition, we show that accurate convergence to an optimal solution can be
achieved in convex federated learning even when individual clients select stepsizes
locally without any coordination. More importantly, this local stepsize strategy al-
lows exploitation of the local geometry of individual clients’ loss functions, and is
shown to lead to faster convergence than the case where a same universal stepsize
is used for all clients. Then, when the distribution is non-IID, we employ the shar-
ing of gradients besides the global model parameter to ensure o(1/t) convergence
to an optimal solution in convex federated learning. For both algorithms, we the-
oretically prove that stepsizes that are much larger than existing counterparts are
allowed, which leads to much faster convergence in empirical evaluations. It is
worth noting that, beyond providing a general framework for federated learning
with drift correction, our second algorithm’s achievement of o(1/t) convergence
to the exact optimal solution under general convex loss functions has not been pre-
viously reported in the federated learning literature—except in certain restricted
convex cases with additional constraints. We believe that this is significant be-
cause even after incorporating momentum, existing first-order federated learning
algorithms can only ensure O(1/t) convergence for general convex loss functions
when no additional assumptions on heterogeneity are imposed.

1 INTRODUCTION

Federated learning has received intensive attention since it was proposed by McMahan et al. (2017).
Nowadays, it has found applications in diverse areas including healthcare (Xu et al., 2021a; Nguyen
et al., 2022; Antunes et al., 2022), smart cities (Pandya et al., 2023; Jiang et al., 2020; Ramu et al.,
2022), natural language processing (Liu et al., 2021; Lin et al., 2021; Zhu et al., 2020), the Inter-
net of things (Nguyen et al., 2021; Zhang et al., 2022b; Ghimire & Rawat, 2022), among others.
In federated learning, the training data sets are located on individual clients which cooperatively
learn a common model via periodically sharing their intermediate learning results with a central
server (McMahan et al., 2017). Compared to centralized learning where all data are aggregated to
a data center, federated learning has many advantages, such as enhanced security (Ma et al., 2020;
Mothukuri et al., 2021; Zhang et al., 2022a), better privacy (Yang et al., 2019; Agarwal et al., 2018;
Li et al., 2020), and higher communication efficiency (Sattler et al., 2019; Chen et al., 2021; Hamer
et al., 2020). To date, many aspects of federated learning have been extensively studied, including
stepsize design (see, e.g., Kim et al. (2023); Mukherjee et al. (2023); Pan et al. (2023)), commu-
nication efficiency (see, e.g., Nori et al. (2021); Tran et al. (2019); Liu et al. (2022)), optimization
mechanism (see, e.g., Luo et al. (2021); Wei et al. (2024); Feng et al. (2021)), among others.

In federated learning, clients perform multiple local training steps before communicating with a
central server to reduce the burden of information transmission (McMahan et al., 2017). However,
these local training steps move local optimization variables toward the minima of local loss functions
and introduce a drift from the optimal solution of the global loss function. Therefore, when the
data distribution is non-IID among the clients, local training steps result in slow convergence and
learning errors, which is called the “client-drift phenomenon” (Karimireddy et al., 2020; Li et al.,
2019; Malinovskiy et al., 2020; Charles & Konečnỳ, 2020; Charles & Konečný, 2021; Pathak &
Wainwright, 2020). In fact, under non-IID data, popular federated learning algorithms, such as
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FedAvg, can only ensure accurate convergence under diminishing stepsizes, which, however, results
in slow convergence Mitra et al. (2021b). It is worth noting that by imposing additional assumptions
on the loss function (e.g., the interpolation and the strong growth condition used in Ma et al. (2018);
Meng et al. (2020); Qin et al. (2022); Kim et al. (2023)) or introducing additional information sharing
(e.g., gradient in Mitra et al. (2021a;b)), accurate convergence can be ensured under a constant
stepsize. However, these results only prove O(1/t) convergence for general convex loss functions.

Inspired by the result in Lee & Wright (2019) which proves that o(1/t) convergence rate can be
obtained in first-order centralized gradient methods by employing large stepsizes, we prove that
o(1/t) convergence can be achieved in general convex federated learning, in contrast to existing
state-of-the-art algorithms—which either guarantee only O(1/t) convergence (Mitra et al., 2021b;
Mukherjee et al., 2023; Qin et al., 2022; Khaled et al., 2020), or rely on additional assumptions
beyond convexity to establish o(1/t) rates (Jiang et al., 2024; Kovalev et al., 2022).

The main contributions of this paper are summarized as follows:

• Under the IID condition of data distribution (also called strong growth condition in Schmidt
& Roux (2013)), we prove that the conventional FedAvg algorithm (called Algorithm 1 in
this paper after incorporating local stepsizes) can converge under a stepsize that is much
larger than existing counterparts (our theoretically obtained stepsize is at least two and
four times larger than the ones in Qin et al. (2022) and Khaled et al. (2020), respectively).
More importantly, we prove that our stepsize can lead to an o(1/t) convergence to an
accurate optimal solution, faster than the commonly believed O(1/t) convergence. To our
knowledge, no o(1/t) convergence results have been reported in the literature for general
convex federated learning, even after incorporating momentum (see, e.g., Xu et al. (2021b);
Liu et al. (2020); Cheng et al. (2023); Yang et al. (2022)).

• Under the same condition, we prove that FedAvg can converge accurately when individual
clients select their (constant) stepsizes in an uncoordinated way. This allows individual
clients to exploit their local geometry of loss functions and is proven in our numerical
experiments to provide a faster convergence compared with the case where a same universal
stepsize is used by all clients. To our knowledge, this is the first time that such results are
reported for general convex loss functions.

• Under non-IID data, we show that our Algorithm 2 can ensure accurate convergence un-
der constant stepsizes. Compared with existing counterparts, we allow much larger step-
sizes (our theoretically obtained stepsize is at least 162/5 and 4 times larger than the ones
in Karimireddy et al. (2020) and Mitra et al. (2021b), respectively). More importantly,
we prove that under our stpesizes, the algorithm can ensure o(1/t) convergence under a
general convex loss function, which has not been reported before for first-order feder-
ated learning algorithms, even after incorporating momentum (Xu et al., 2021b; Liu et al.,
2020; Cheng et al., 2023; Yang et al., 2022). This stands in stark contrast to existing results
on convex federated learning, where o(1/K) convergence has only been established un-
der subclasses of convex functions—such as gradient difference being uniformly bounded
(Jiang et al., 2024), or Hessian difference being uniformly bounded (Kovalev et al., 2022).

• Algorithm 2 introduces a general framework for federated learning with drift correction,
unifying and extending a broad class of methods that ensure convergence under non-IID
data, including FedLin (Mitra et al., 2021b), FedTrack (Mitra et al., 2021a), Scaffnew
(Mishchenko et al., 2022), and SCAFFOLD (Karimireddy et al., 2020). In addition, we
develop a novel analytical framework that establishes a key monotonic descent property,
enabling us to prove an improved o(1/t) convergence rate under general convex objec-
tives—an achievement that, to the best of our knowledge, has previously only been at-
tained for specific subclasses of convex functions in federated learning (see, e.g., Jiang
et al. (2024); Kovalev et al. (2022)). It is worth noting that extending the monotonic de-
scent property from centralized optimization in (Lee & Wright, 2019) to federated learning
is highly nontrivial, due to the presence of multiple heterogeneous local loss functions aris-
ing from non-IID data distributions. To the best of our knowledge, this is the first work to
rigorously establish such monotonicity in the context of convex federated learning.
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2 PRELIMINARIES

Notations Rn and Rn×n denote the set of real n-dimensional vectors and the set of n × n-
dimensional matrices, respectively. For x ∈ Rn and A ∈ Rn×n, [x]j and [A]ij denote the jth

element of the vector x and the (i, j)th element of the matrix A, respectively. For x, y ∈ Rn,

we define ⟨x, y⟩ =
∑n

i=1[x]i[y]i and ∥x∥ =
√∑n

j=1[x]
2
j . For a matrix A ∈ Rn×n, we define

∥A∥2 = sup∥x∥=1,x∈Rn ∥Ax∥. 0n ∈ Rn and 1n ∈ Rn are n-dimensional vectors with all elements
being 0 and 1, respectively. We use O(c(t)) and o(c(t)) to represent sequences d(t) satisfying
lim supt→+∞ |d(t)c(t) | < ∞ and limt→∞

d(t)
c(t) = 0, respectively.

2.1 PROBLEM SETTINGS

We consider the following federated learning problem with clients set S = {1, 2, · · · , N} as follows:

min
x∈Rn

f(x) =
1

N

N∑
i=1

fi(x), (1)

where fi : Rn → R is the local loss function of client i. The local loss function fi(x) is dependent
on the local training data of client i. We use the following standard assumptions about the loss
functions (see Mitra et al. (2021a;b); Qin et al. (2022); Mukherjee et al. (2023)).

Assumption 1. For any i ∈ S, fi(x) is Li-smooth over Rn, i.e., there exists a constant Li such that
∥∇fi(x) − ∇fi(y)∥ ≤ Li∥x − y∥ holds for any i ∈ S and x, y ∈ Rn. This implies ∥∇f(x) −
∇f(y)∥ ≤ L∥x− y∥ where L = 1

N

∑N
i=1 Li, i.e., f(x) is also L-smooth over Rn.

Assumption 2. For any i ∈ S, fi(x) is convex over Rn. Moreover, the optimal solution set X ∗ =
{x∗ ∈ Rn|x∗ = argminx∈Rn f(x)} is not empty, i.e., there exists at least one x∗ ∈ Rn such that
∇f(x∗) = 0n holds.

In existing results for federated learning (see, e.g., Mitra et al. (2021b); Qin et al. (2022); Khaled
et al. (2020); Mukherjee et al. (2023)), the theoretically obtained convergence rates are all on the
order of O(1/t) for general convex loss functions, where t is the number of communications be-
tween clients and the central server. In this paper, we will show that we can prove a faster o(1/t)
convergence rate by using a larger stepsize. To this end, we first introduce the following lemma (see
Debnath & Mikusinski (2005) or Lee & Wright (2019)).

Lemma 1. Let {∆(t)} be a nonnegative sequence satisfying the following conditions:

(1) {∆(t)} is monotonically decreasing;

(2) {∆(t)} is summable, that is,
∑∞

k=0 ∆(k) < ∞.

Then, we have ∆(t) = o(1/t), i.e., limt→∞ t∆(t) = 0.

3 CONVERGENCE UNDER IID DATA

In this section, we consider the case where the data on all clients are IID. In the literature, this is
usually formulated as the following assumption (see, e.g., Schmidt & Roux (2013); Qin et al. (2022);
Kim et al. (2023)):

Assumption 3. There exists a constant η > 0 such that ∥∇fi(x)∥ ≤ η∥∇f(x)∥ holds for any client
i ∈ S and x ∈ Rn.

This assumption is also sometimes called Strong Growth Condition (Schmidt & Roux, 2013) and has
been widely used in machine learning (Ma et al., 2018; Vaswani et al., 2019a;b; Gower et al., 2021;
Meng et al., 2020). In fact, Qin et al. (2022) recently experimentally verified that this condition is
satisfied for over-parameterized models. Next, we will prove that the classic federated learning algo-
rithm FedAvg can converge at an o(1/t) rate under judiciously designed stepsizes under Assumption
3. In Section 4, we will consider the more general non-IID case.
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3.1 ALGORITHM DESCRIPTION

For the sake of completeness, we restate FedAvg in McMahan et al. (2017) as Algorithm 1 (with an
extension that we allow clients to use heterogeneous local stepsizes). Specifically, in this algorithm,
instead of using a universal stepsize α, each client selects its own stepsize αi without coordination
with other clients. As proven in the next subsection and the numerical experimental evaluation, this
enables our algorithm to obtain faster convergence than existing counterparts.

Algorithm 1 (FedAvg with local stepsizes)
Input: Initial value x̄(1), local training period τ , the stepsize αi for client i
for t = 1 to T do

for i = 1 to N do
Each client i sets xi,0(t) = x̄(t).
for k = 0 to τ − 1 do

Each client i does local training

xi,k+1(t) = xi,k(t)− αi∇fi(xi,k(t)). (2)

end for
end for
Each client i transmits xi,τ (t) to the central server and receives x̄(t + 1) = 1

N

∑N
i=1 xi,τ (t)

from the central server.
end for

3.2 CONVERGENCE ANALYSIS

Theorem 1. Under Assumptions 1, 2, and 3, if the stepsize of client i satisfies αi = α > 0 for all
i ∈ S and

α < min
1≤i≤N

{ 1

Liτ
,

8τ

L(2τ + η(τ − 1))2 + 4ηLτ(τ − 1)

}
, (3)

where L = 1
N

∑N
i=1 Li, then f(x̄(t)) converges to f(x∗) with the convergence rate o(1/t), i.e.,

lim
t→∞

t{f(x̄(t))− f(x∗)} = 0.

Proof. See Appendix C.

In fact, we can allow the stepsize αi of the client i ∈ S in Theorem 1 to be larger to achieve faster
convergence of Algorithm 1, which is detailed in Theorem 2.
Theorem 2. Under Assumptions 1, 2, and 3, if the stepsize αi for client i ∈ S in Algorithm 1
satisfies

0 < αi <
1

Li
, (4)

we have limt→∞ f(x̄(t)) = f(x∗) and f( 1
T

∑T
t=1 x̄(t))− f(x∗) ≤ ∥x̄(1)−x∗∥2

min1≤i≤N{2αi−2Liα2
i }T

.

Proof. See Appendix D.

The proposed stepsize in Theorem 2 is larger than designed stepsizes for FedAvg in existing theo-
retical results. For example, Qin et al. (2022) and Khaled et al. (2020) obtained stepsizes that should
satisfy 0 < α ≤ 1

2L and 0 < α ≤ 1
4L , respectively. A simple comparison with (4) shows that our

stepsize can be two and four times as large besides the additional flexibility of allowing different
clients to select their local stepsizes to exploit local geometry to speed up convergence. In fact, our
numerical experiments in Figure 1 confirm that our stepsize strategy indeed leads to much faster
convergence than the ones in Qin et al. (2022); Khaled et al. (2020); Mukherjee et al. (2023) (see
Table 1 for a detailed comparison of stepsizes).
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Theorem 2 can also be obtained under a weaker interpolation assumption: ∥∇fi(x
∗)∥ = 0 for all

i ∈ S, x ∈ Rn, and x∗ ∈ X ∗, which is also widely investigated in machine learning (see Ma et al.
(2018); Vaswani et al. (2019a;b); Gower et al. (2021); Meng et al. (2020)). Compared with Theorem
2, Theorem 2 does not require client i to know information about the global loss function to deter-
mine its stepsize. In addition, it allows stepsize that is max1≤j≤N{Ljτ

Li
, L(2τ+η(τ−1))2+4ηLτ(τ−1)

8Liτ
}

times larger than that in (3). In fact, our numerical experimental results in Appendix A.2.2 show
that allowing clients to use local stepsizes achieves a faster convergence than the case with a global
stepsize. This is intuitive in that utilizing local Lipschitz constants allows the gradient descent steps
to exploit the local geometry of loss functions, and hence, enables faster convergence. It is worth
noting that although such a phenomenon has been reported in Mukherjee et al. (2023) for one spe-
cific example of quadratic functions, we are the first to theoretically establish that local stepsizes can
be exploited to achieve faster convergence for a general class of loss functions in federated learning.

Remark 1. It is worth noting that the o(1/k) convergence rate established in Theorem 1 does not
contradict the result in Glasgow et al. (2022), which proves that FedAvg cannot achieve a rate faster
than O(1/k) for general convex objectives. The key distinction lies in the fact that Theorem 1 relies
on the additional Strong Growth Condition (see Assumption 3). In the next section, we introduce a
new algorithm that achieves o(1/k) convergence for general convex objectives under non-IID data,
without requiring any additional restrictive conditions.

We can extend our analysis to the setting of stochastic gradients, where client i can only access an
unbiased estimate of the gradient ∇fi(x) with variance bounded by σ2. More specifically, Corollary
3 (see proof in Appendix E) establishes the convergence of Algorithm 1 in this case:

Corollary 3 (Stochastic Gradients). Under Assumptions 1, 2, and 3, if the stepsize αi in Algorithm
1 satisfies 0 < αi <

1
Li

for any i ∈ S, we have

E
[
f
( 1

T

T∑
t=1

x̄(t)
)]

− f(x∗) ≤ ∥x̄(1)− x∗∥2

min1≤i≤N{2αi − 2Liα2
i }T

+
2τ

∑N
i=1 α

2
i

min1≤i≤N{2αi − 2Liα2
i }N

σ2.

4 CONVERGENCE UNDER NON-IID DATA

4.1 ALGORITHM DESCRIPTION

Under non-IID data, it has been known that except the trivial case where the number of local iter-
ations is one (τ = 1), Algorithm 1 will be subject to errors (Mukherjee et al., 2023; Orvieto et al.,
2022; Wang et al., 2020; Karimireddy et al., 2020). Inspired by gradient-tracking-based distributed
optimization algorithms (Pu & Nedić, 2021; Nedić et al., 2017), we propose Algorithm 2 to address
this issue and ensure accurate convergence under non-IID data.

Unlike Algorithm 1 which exchanges only the model parameters xi,k+1(t) between clients and the
server, Algorithm 2 requires exchanging an additional variable for the gradient. More specifically,
in Algorithm 2, each client uses the global gradient information ∇f(x̄(t)) to initialize its local
variable yi,k(t) after each communication round (see (5)). This variable yi,k+1(t), which serves as
an estimate of the global gradient, is then used to update the model parameter xi,k+1(t) (see (7)).
This is key to eliminating the drift caused by non-IID data.

Our Algorithm 2 provides a general framework for federated learning with drift correction, encom-
passing a wide range of existing algorithms as special cases. Specifically, by substituting equation
(5) into equation (7) and applying mathematical induction, the auxiliary variable yi,k(t) can be ex-
pressed as yi,k(t) = ∇f(xi,k(t)) − ∇fi(x̄(t)) + ∇f(x̄(t)) for k = 0, 1, . . . , τ . Substituting this
expression into the update rule (6) recovers the specific update mechanisms used in FedLin (Mitra
et al., 2021b) and FedTrack (Mitra et al., 2021a). In addition, as xi,k(t) converges to x∗, it follows
from equation (8) that yi,k(x∗) = ∇fi(x

∗), a key idea leveraged in the “drift-correction” feder-
ated learning algorithms Scaffnew (Mishchenko et al., 2022) and SCADDOLD (Karimireddy et al.,
2020). This demonstrates that Algorithm 2 not only generalizes but also unifies prior drift-corrected
federated learning methods within a broader and more flexible structure.

Next, we prove that the new framework allows us to obtain o(1/t) convergence in general convex
federated learning, which is only established in the literature for special classes of convex functions

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 2
Input: Initial values x̄(1), ∇f(x̄(1)), local training period τ , and stepsize α;
for t = 1 to T do

for i = 1 to N do
Each client i sets

xi,0(t) = x̄(t) and yi,0(t) = ∇f(x̄(t)). (5)

for k = 0 to τ − 1 do
Client i does local updating

xi,k+1(t) =xi,k(t)− αyi,k(t), (6)
yi,k+1(t) =yi,k(t) +∇fi(xi,k+1(t)))−∇fi(xi,k(t))). (7)

end for
end for
The central server calculates and transmits x̄(t + 1) = 1

N

∑N
i=1 xi,τ (t) to each client. Each

client i then transmits ∇fi(x̄(t + 1)) to the central server and receives ∇f(x̄(t + 1)) =
1
N

∑N
i=1 ∇fi(x̄(t+ 1)) from the central server.

end for

with restrictions on data heterogeneity (see, e.g., under the bounded gradient difference condition
in Jiang et al. (2024) and under the bounded Hessian difference condition in Kovalev et al. (2022)).
For the general convex case without any restrictions, existing federated learning algorithms—even
those incorporating momentum—only achieve an O(1/t) convergence rate. In addition, the new
framework allows using significantly larger step sizes compared to existing drift-corrected federated
learning algorithms, as detailed in Section 4.2.

4.2 CONVERGENCE ANALYSIS

Theorem 4. For Algorithm 2, under Assumptions 1 and 2, if the stepsize α of client i ∈ S satisfies

0 < α < min
1≤j≤N

{ 1

Lj
,

2

5Lτ − L

}
, (8)

where L = 1
N

∑N
i=1 Li, then f(x̄(t)) converges to f(x∗) with the convergence rate o(1/t), i.e.,

lim
t→∞

t{f(x̄(t))− f(x∗)} = 0.

Proof. See Appendix F.

In Theorem 4, we establish an o(1/t) convergence rate for federated learning with general convex
functions under non-IID data. A key step in this analysis, as shown in Lemma 1, is proving that the
sequence {f(x̄(t))} is monotonically decreasing, i.e.,

f(x̄(t+ 1)) ≤ f(x̄(t)).

We emphasize that proving this monotonicity under general smooth and convex conditions is highly
nontrivial. Our proof of this property, presented in Lemma 5, constitutes a significant technical
contribution of this work.

Notably, other federated learning algorithms in Mitra et al. (2021a;b), which also follow a
gradient-tracking-based framework, only establish an O(1/t) convergence rate under general con-
vex functions in their analyses. In contrast, our work develops a more refined analysis tech-
nique—specifically, the nontrivial proof of the monotonically decreasing property, i.e., f(x̄(t+1)) ≤
f(x̄(t)) (see Lemma 5)—which enables us to establish an o(1/t) convergence rate in Theorem 4.
Importantly, this analysis framework is not limited to our algorithm and can also be applied to other
gradient-tracking-based methods to improve their theoretical guarantees from O(1/t) to o(1/t) un-
der general convex settings. This general methodology, therefore, represents a significant contribu-
tion of our work.

6
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In the case of stochastic gradients, client i can only access an unbiased estimate of the gradient
∇fi(x) with variance bounded by σ2. Next, we establish Corollary 5 (see proof in Appendix H) for
the convergence of Algorithm 2 in this stochastic setting:
Corollary 5 (Stochastic Gradients). Under Assumptions 1 and 2, if the stepsize α of Algorithm 2
satisfies 0 < α ≤ min1≤j≤N{ 1

Lj
, 1
12τL}, we have

E
[
f
( 1

T

T∑
t=1

x̄(t)
)]

− f(x∗) ≤ ∥x(1)− x∗∥2

ατT
+ 34τασ2.

4.3 COMPARISON WITH EXISTING RESULTS

From Theorem 4, Algorithm 2 allows a much larger stepsize and a better convergence rate com-
pared with existing works. Specifically, the stepsize in Karimireddy et al. (2020) is required to
satisfy 0 < α ≤ min1≤i≤N{ 1

81Liτ
}. In contrast, the stepsize upper bound in Theorem 4 is given

by min1≤i≤N{ 1
Li
, 2
5Lτ−L}. It can be verified that our permissible stepsize is at least 162

5 times
larger than that in Karimireddy et al. (2020). Similarly, Mitra et al. (2021b) requires the stepsize to
satisfy 0 < α ≤ min1≤i≤N{ 1

10Liτ
}. In contrast, our Theorem 4 permits a stepsize that is at least

max1≤i≤N{ 20τLi

5Lτ−L} ≥ 4 times larger than that in Mitra et al. (2021b). Table 1 provides a detailed
comparison between our proposed stepsize and convergence rate with existing works.

Table 1: Comparison of the proposed stepsizes and obtained convergence rates for Algorithm 1 and
Algorithm 2 with existing results. In this table, we represent the total communication round as t, the
local training period as τ , and assume that the local loss function fi(x) satisfies L-smooth property
and each client uses precise gradient.

ASSUMPTION ALGORITHM STEPSIZE
CONVERGENCE

RATE

IID
ALGORITHM 1 1/L O(1/t)
QIN ET AL. (2022) 1/(2L) O(1/t)
KHALED ET AL. (2020) 1/(4L) O(1/t)

NON-IID

ALGORITHM 2 2/(5Lτ − L) o(1/t)
MITRA ET AL. (2021B); KHALED ET AL. (2020) 1/(10τL) O(1/K)
MITRA ET AL. (2021A) 1/(18τL) O(1/K)
KARIMIREDDY ET AL. (2020) 1/(81τL) O(1/K)
REISIZADEH ET AL. (2020); ZHU ET AL. (2021)

O(1/
√
K) O(1/

√
K)

XIANG ET AL. (2024); HUANG ET AL. (2023)
WANG ET AL. (2020); YU ET AL. (2019)
YANG ET AL. (2021); LI & LI (2023)
HADDADPOUR & MAHDAVI (2019)
KIM ET AL. (2023) ADAPTIVE O(1/

√
K)

5 EXPERIMENTS

5.1 EVALUATION USING GENERATED DATA UNDER IID DISTRIBUTION

We use the following regression problem to compare the performance of Algorithm 1 and Algorithm
2 under the proposed stepsizes with existing counterparts1:

min
x∈Rn

f(x) = min
x∈Rn

1

N

N∑
i=1

1

2
∥Aix− bi∥2, (9)

where Ai ∈ R500×100, bi ∈ R500 and x ∈ R100 for each client i ∈ S = {1, 2, · · · , 20}. [Ai]jk are
generated from [0, 1] randomly for 1 ≤ j ≤ 500, 1 ≤ k ≤ 100, and i ∈ S, and we also set [A1]j,1 =

1Code available at https://anonymous.4open.science/r/o1 t-F814/README.md
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[A1]j,2 for 1 ≤ j ≤ 500 to obtain a convex but not strongly convex loss function f1(x). We set bi =
Aix0 for all i ∈ S with x0 = 10 × 1n rather than generating bi randomly. In this setting, fi(x) =
1
2∥Ai(x− x0)∥2 and, hence, there exists a constant η = max1≤j≤N{ ∥AT

j Aj∥2

∥( 1
N

∑N
i=1 Ai)T ( 1

N

∑N
i=1 Ai)∥2

}
such that ∥∇fi(x)∥ ≤ η∥∇f(x)∥ holds for all i ∈ S.

We compare Algorithm 1 and Algorithm 2 under the proposed stepsize strategy with existing coun-
terparts including Qin et al. (2022); Mukherjee et al. (2023); Mitra et al. (2021b); Khaled et al.
(2020). In the evaluation, we use the error e(t) = f(x̄(t))−f(x∗) to measure the learning accuracy.
Moreover, we implement all algorithms using accurate gradients to ensure a fair comparison of them.
The corresponding convergence performances with different local training periods τ = 2, 3, 4, 5, 6
are presented in Figure 1.
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Mukherjee et al. (2023)
Mitra et al. (2021b)
Algorithm 2
Algorithm 1 with Universal Stepsizes
Khaled et al. (2020)
Qin et al. (2022)
Algorithm 1 with Local Stepsizes

Figure 1: Comparisons of the performance of Algorithm 1 and Algorithm 2 under the proposed
stepsize with Qin et al. (2022); Mukherjee et al. (2023); Mitra et al. (2021b); Khaled et al. (2020)
under different local training periods τ .

In Figure 1, the legends ‘Algorithm 1 with Universal Stepsizes’ and ‘Algorithm 1 with Lo-
cal Stepsizes’ denote Algorithm 1 with stepsizes (3) and (4), respectively. Specifically,
in the universal stepsize case, we set the universal stepsize α for all clients as α =

min1≤i≤N{ 1
Liτ

, 8τ
L(2τ+η(τ−1))2+4ηLτ(τ−1)}−10−15 according to (3), where L = 1

N

∑N
i=1 Li is the

global Lipschitz constant. In the local stepsize case, we set the stepsize of client i as αi =
1
Li

−10−15

based on individual Lipschitz constants Li. From Figure 1, we know that the convergence of Algo-
rithm 1 with the stepsize prescribed in (4) is much faster than other cases, including the case with
the universal stepsize (3). Additional experiments with non-IID data are presented in Appendix A.2.

5.2 EVALUATION USING CIFAR-10 AND CIFAR-100 UNDER NON-IID DISTRIBUTION

We also evaluate our algorithms by training a CNN on 10 clients using the benchmark datasets
CIFAR-10 and CIFAR-100, respectively2. The CNN architecture consists of three convolutional
layers with 32, 64, and 128 filters, respectively, each followed by a max-pooling layer. After the final
convolutional and pooling layers, the network includes a fully connected layer with 256 units and
ReLU activation, a dropout layer with a rate of 0.25 for regularization, and a final dense output layer
with 10 units that produces the class logits. In our experiments, we compare the proposed algorithm
against existing federated learning methods specifically designed to address client drift, including
SCAFFOLD (Karimireddy et al., 2020), FedLin (Mitra et al., 2021b), and Scaffnew (Mishchenko
et al., 2022). Following Hsu et al. (2019) and Kim et al. (2023), we generate heterogeneous data
distributions across the 10 agents using a Dirichlet distribution, with the heterogeneity parameter α
set to 0.1, 1, and 10, respectively. A higher value of α yields a nearly uniform distribution of data
across classes for each client, resulting in approximately IID local datasets. In contrast, a lower α
leads to highly skewed distributions, where clients tend to specialize in only a few classes.

2Code available at https://anonymous.4open.science/r/o1 t-F814/README.md
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Figures 2 and 3 report results for α = 1, which corresponds to a moderately heterogeneous setting
(additional results for other values of α are provided in Appendix A.1). In both Figure 2 (CIFAR-
10) and Figure 3 (CIFAR-100), the step sizes for Algorithm 2, SCAFFOLD, FedLin, and Scaffnew
are selected according to the guidelines from Theorem 4, Karimireddy et al. (2020), Mitra et al.
(2021b), and Mishchenko et al. (2022), respectively, using an estimated smoothness parameter of
L = 2. For Algorithm 2, SCAFFOLD, and FedLin, the local training period is set to τ = 10. For
Scaffnew, the communication probability is set to 1

11 to ensure that the total number of communi-
cated messages remains consistent across methods. As shown in the figures, our algorithm achieves
faster convergence and higher accuracy on both the CIFAR-10 dataset and the CIFAR-100 dataset.
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Figure 2: Comparison of Algorithm 2 with state-of-the-art federated learning algo-
rithms—SCAFFOLD, FedLin, and Scaffnew—on the CIFAR-10 dataset. Each curve represents
the average of five independent runs.
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Figure 3: Comparison of Algorithm 2 with state-of-the-art federated learning algo-
rithms—SCAFFOLD, FedLin, and Scaffnew—on the CIFAR-100 dataset. Each curve represents
the average of five independent runs. The test accuracy in Figure 2(b) is top-5 accuracy.

6 CONCLUSION

Enhancing convergence accuracy and speed is key for federated learning. We prove that much larger
stepsizes can be used in FedAvg, and hence, much faster convergence can be achieved. In fact, we
theoretically show that the proposed stepsize strategy can guarantee o(1/t) convergence to an exact
optimal solution for general convex loss functions, under both IID data distribution and non-IID data
distribution among local clients. This is significant since existing federated learning results can only
theoretically establish O(1/t) convergence under general convex loss functions when no additional
restrictions are made, even after incorporating momentum. Moreover, in the IID data distribution
setting, we theoretically establish convergence when clients set stepsizes individually using local
Lipschitz parameters, and show that such a local stepsize strategy enables exploiting local geometry
to expedite convergence. To our knowledge, this is the first time that local stepsizes designed using
local Lipschitz parameters is systemtically shown to outperform a universal stepsize designed using
the global Lipschitz parameter. Moreover, we propose a general gradient-tracking-based framework
that unifies and extends many existing drift-corrected federated learning algorithms. By establishing
a key monotonic descent property, our framework broadens the theoretical understanding of gradient
tracking and enables an improved o(1/t) convergence rate under non-IID data distributions. This
represents a significant advancement, as existing results establish o(1/t) convergence for convex
federated learning only under additional restrictions on heterogeneity.
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A ADDITIONAL NUMERICAL EXPERIMENTS

A.1 ADDITIONAL CNN TRAINING RESULTS WITH DIFFERENT NON-IID LEVELS

Figures 4 and 5 provide additional results for the CNN training experiment in Section 5.2 with a
heterogeneity parameter α = 0.1.
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Figure 4: Comparison of Algorithm 2 with state-of-the-art federated learning algo-
rithms—SCAFFOLD, FedLin, and Scaffnew—on the CIFAR-10 dataset. Each curve represents the
average of five independent runs. To induce greater heterogeneity in data distribution, the Dirichlet
distribution parameter was set to α = 0.1.
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Figure 5: Comparison of Algorithm 2 with state-of-the-art federated learning algo-
rithms—SCAFFOLD, FedLin, and Scaffnew—on the CIFAR-100 dataset. Each curve represents
the average of five independent runs. The test accuracy in Figure 2(b) is top-5 accuracy. To induce
greater heterogeneity in data distribution, the Dirichlet distribution parameter was set to α = 0.1.

Figures 6 and 7 provide additional results for the CNN training experiment in Section 5.2 with a
heterogeneity parameter α = 10.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000 2500 3000
Communication Rounds

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Lo
ss

Scaffnew
Algorithm2
SCAFFOLD
FedLin

(a)

0 500 1000 1500 2000 2500 3000
Communication Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
cc

ur
ac

y

Scaffnew
Algorithm2
SCAFFOLD
FedLin

(b)

0 500 1000 1500 2000 2500 3000
Communication Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Tr
ai
n 
Ac
cu
ra
cy

Scaffnew
Algorithm2
SCAFFOLD
FedLin

(c)

Figure 6: Comparison of Algorithm 2 with state-of-the-art federated learning algo-
rithms—SCAFFOLD, FedLin, and Scaffnew—on the CIFAR-10 dataset. Each curve represents the
average of five independent runs. To induce smaller heterogeneity in data distribution, the Dirichlet
distribution parameter was set to α = 10.
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Figure 7: Comparison of Algorithm 2 with state-of-the-art federated learning algo-
rithms—SCAFFOLD, FedLin, and Scaffnew—on the CIFAR-100 dataset. Each curve represents
the average of five independent runs. The test accuracy in Figure 2(b) is top-5 accuracy. To induce
smaller heterogeneity in data distribution, the Dirichlet distribution parameter was set to α = 10.

A.2 LEAST SQUARES REGRESSION

A.2.1 COMPARISON OF ALGORITHM 2 WITH EXISTING WORKS

We consider [Ai]jk and [bi]j generated from [0, 1] randomly for 1 ≤ j ≤ 500, 1 ≤ k ≤ 100, and i ∈
S. After the initial random generation of data, we purposely set [A1]j,1 = [A1]j,2 for 1 ≤ j ≤ 500
to make A1 not full rank. By doing so, we can obtain a local loss function f1(x) =

1
2∥A1x − b1∥2

that is convex but not strongly convex.

We compared the performance of Algorithm 2 under the proposed stepsize (8) in Theorem 4 with
those in Mitra et al. (2021a;b). The convergence performances of Algorithm 2 and algorithms in
Mitra et al. (2021a;b) under different local training periods τ = 2, 3, 4, 5, 6, 7 are shown as Figure
8. It is clear that the proposed stepsize strategy indeed yields much faster convergence than the
compared counterparts.

A.2.2 LOCAL STEPSIZE STRATEGY OUTPERFORMS UNIVERSAL STEPSIZE STRATEGY FOR
ALGORITHM 1 UNDER τ = 1

We show that better convergence performance of Algorithm 1 can be achieved with local stepsizes
0 < αi <

1
Li

than a universal stepsize 0 < α ≤ 1
L , where L = 1

N

∑N
i=1 Li. For ease of comparison,

we select [Ai]jk = iρ[Bi]jk and bi = Aix0 for 1 ≤ j ≤ 500, 1 ≤ k ≤ 100, and i ∈ S, where [Bi]jk
is generated from [0, 1] randomly, ρ measures the heterogeneity in loss functions, and x0 = 10×1n.
It can be seen that a larger parameter ρ leads to more heterogeneity in the local loss functions.
Moreover, one can verify that the loss function fi(x) of client i ∈ S satisfies Li-smooth property
with Li = iρ∥BT

i Bi∥2. Then, under τ = 1, we present in Figure 9 the convergence of Algorithm 1
under the local stepsize strategy where αi =

1
Li

− 10−15 of client i ∈ S and the universal stepsize
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Figure 8: Comparisons of the performance of Algorithm 2 under the proposed stepsize with Mitra
et al. (2021a;b) under different local training periods τ

strategy where α = 1
L for all clients, where Li is the individual Lipschitz constant of client i ∈ S

and L = 1
N

∑N
i=1 Li is the global Lipschitz constant.

In Figure 9, to compare the convergence between the local and the universal stepsize strategies, we
plot the learning errors f(x̄l(t)) − f(x∗) and f(x̄g(t)) − f(x∗) under different heterogeneity pa-
rameters ρ = 1, 1.5, 2, 2.5, 3, where x̄l(t) and x̄g(t) are generated under the local and the universal
stepsize strategies, respectively. From Figure 9, it is clear that the local stepsize designed based
on local Lipschitz constants obtains faster convergence than the case with the universal stepsize
designed based on the global Lipschitz constant. Moreover, to quantify the improvement in conver-
gence speed, in Figure 9, we also plot the learning error ratio r(t) = f(x̄l(t))−f(x∗)

f(x̄g(t))−f(x∗) under different
heterogeneity parameters ρ = 1, 1.5, 2, 2.5, 3, respectively. A smaller r(t) (r(t) < 1) means more
advantage of the convergence speed of the local stepsize strategy over the universal stepsize strategy.
Figure 9 shows that a smaller r(t) is obtained under a larger heterogeneity parameter ρ. Thus, it can
be concluded that the local stepsize strategy of Algorithm 1 can achieve faster convergence than the
global stepsize strategy, especially for large heterogeneity cases.

500 1000 1500 2000 2500 3000
Communication Rounds t (ρ= 1)

10−5

10−4

10−3

10−2

10−1

100

101

102

Er
ro

rs

Global Stepsize
Local Stepsize

1000 1500 2000 2500 3000 3500
Communication Rounds t (ρ= 1.5)

10−5

10−4

10−3

10−2

10−1

100

101

102

Er
ro

rs

Global Stepsize
Local Stepsize

1500 2000 2500 3000 3500 4000
Communication Rounds t (ρ= 2)

10−5

10−4

10−3

10−2

10−1

100

101

102

Er
ro

rs

Global Stepsize
Local Stepsize

2000 2500 3000 3500 4000 4500
Communication Rounds t (ρ= 2.5)

10−5

10−4

10−3

10−2

10−1

100

101

102

Er
ro

rs

Global Stepsize
Local Stepsize

2500 3000 3500 4000 4500 5000
Communication Rounds t (ρ= 3)

10−5

10−4

10−3

10−2

10−1

100

101

102

Er
ro

rs

Global Stepsize
Local Stepsize

1000 2000 3000 4000 5000
Communication Rounds t

0.0

0.1

0.2

0.3

0.4

0.5

Ra
tio

s r
(t)

Ratio Comparisons

ρ= 1
ρ= 1.5
ρ= 2
ρ= 2.5
ρ= 3

Figure 9: Comparisons of the local stepsize strategy with a universal stepsize strategy under different
heterogeneity parameters ρ.
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B SUPPORTING LEMMAS FOR THE PROOF OF THEOREM 1

Lemma 2 (Zhou (2018)). For every Li-smooth and convex function fi(x) over Rn, we have

fi(y) ≥ fi(x) + ⟨∇fi(x), y − x⟩+ 1

2Li
∥∇fi(x)−∇fi(y)∥2

for any x, y ∈ Rn and i ∈ S.
Lemma 3 (Mitra et al. (2021b)). Suppose that fi(x) is Li-smooth and convex. Then, for any 0 ≤
α ≤ 1

Li
, we have

∥y − x− α(∇fi(y)−∇fi(x))∥ ≤ ∥y − x∥
for any x, y ∈ Rn.
Lemma 4 (Zhou (2018)). For the convex and L-smooth function f(x), we have

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2

for any x, y ∈ Rn.

C PROOF OF THEOREM 1

Proof. The sequence {f(x̄(t))− f(x∗)} satisfies

f(x̄(t))− f(x∗) ≥ 0

for any t ≥ 1. From Lemma 1, to prove Theorem 1, we only need to prove that the nonnegative
sequence {f(x̄(t))− f(x∗)} satisfies the summable and monotonically decreasing properties.

• Summable Property: Firstly, we establish the summable property.

From (2) in Algorithm 1, we have

∥xi,k+1(t)− x∗∥2

=∥xi,k(t)− x∗∥2 − 2α⟨∇fi(xi,k(t)), xi,k(t)− x∗⟩+ α2∥∇fi(xi,k(t))∥2. (10)

From the convexity of fi(x), we have

−2α⟨∇fi(xi,k(t)), xi,k(t)− x∗⟩ ≤ 2α{fi(x∗)− fi(xi,k(t))}. (11)

Using the strong growth condition (see Assumption 3) yields

∥∇fi(x
∗)∥ = 0 (12)

for any i ∈ S and x∗ ∈ X ∗.

Then, from Lemma 2 and (12), we have

∥∇fi(xi,k(t))∥2 ≤ 2Li

{
fi(xi,k(t))− fi(x

∗)
}
. (13)

Combining (10), (11), and (13), we arrive at

∥xi,k+1(t)− x∗∥2 ≤ ∥xi,k(t)− x∗∥2 + (2α− 2Liα
2)
{
fi(x

∗)− fi(xi,k(t))
}
. (14)

It is worth noting that the following inequality holds

∥x̄(t+ 1)− x∗∥2 ≤ 1

N

N∑
i=1

∥xi,τ (t)− x∗∥2.

Thus, from Algorithm 1 and (14), we have

∥x̄(t+ 1)− x∗∥2

≤ 1

N

N∑
i=1

(2α− 2Liα
2)

τ−1∑
k=0

{
fi(x

∗)− fi(xi,k(t))
}
+ ∥x̄(t)− x∗∥2. (15)
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Under the stepsize setting (3), we have

2α− 2Liα
2 > 0

for any i ∈ S. Moreover, from Assumption 3, we have ∥∇fi(x
∗)∥ = 0 for any x∗ ∈ X ∗

and i ∈ S. Thus, in (15), we have

fi(x
∗)− fi(xi,k(t)) ≤ 0

for any i ∈ S and k = 0, 1, · · · , τ − 1.

Thus, using (15), we have

∥x̄(t+ 1)− x∗∥2 ≤ ∥x̄(t)− x∗∥2 +
{
2α− 2Lα2

}{
f(x∗)− f(x̄(t))

}
. (16)

From (16), we can obtain

f(x̄(t))− f(x∗) ≤ ∥x̄(t)− x∗∥2 − ∥x̄(t+ 1)− x∗∥2

2α− 2Liα2
.

Thus, for any T ≥ 1, we have
T∑

t=1

{
f(x̄(t))− f(x∗)

}
≤ ∥x̄(1)− x∗∥2

2α− 2Liα2
, (17)

which establishes the summable property of the sequence {f(x̄(t))− f(x∗)}.

• Monotonically Decreasing:

Next, we show that f(x̄(t)) is monotonically decreasing.

From Algorithm 3, we have

∥xi,k+1(t)− x̄(t)∥

≤∥xi,k(t)− x̄(t)− α
(
∇fi(xi,k(t))−∇fi(x̄(t))

)
∥+ α∥∇fi(x̄(t))∥.

Using Lemma 3 and the stepsize setting in (3), we arrive at

∥xi,k+1(t)− x̄(t)∥ ≤ ∥xi,k(t)− x̄(t)∥+ α∥∇fi(x̄(t))∥. (18)

Using the update rule in Algorithm 1, we obtain

∥xi,k(t)− x̄(t)∥ ≤ kα∥∇fi(x̄(t))∥ (19)

for k = 0, 1, 2, · · · , τ − 1.

It is worth noting that the following inequality always holds:

∥ 1

N

N∑
i=1

τ−1∑
k=0

∇fi(xi,k(t))∥ ≤ 1

N

N∑
i=1

τ−1∑
k=0

∥∥∥∇fi(xi,k(t))−∇fi(x̄(t))
∥∥∥+ τ∥∇f(x̄(t))∥.

From Assumption 1 and (3), we have

∥ 1

N

N∑
i=1

τ−1∑
k=0

∇fi(xi,k(t))∥ ≤ 1

N

N∑
i=1

τ−1∑
k=0

Li∥xi,k(t)− x̄(t)∥+ τ∥∇f(x̄(t))∥.

Further using Assumption 3 and the update rull in Algorithm 3, we arrive at

∥ 1

N

N∑
i=1

τ−1∑
k=0

∇fi(xi,k(t))∥ ≤
{
τ +

η(τ − 1)

2

}
∥∇f(x̄(t))∥. (20)

From (2), we have

x̄(t+ 1) = x̄(t)− α

N

N∑
i=1

τ−1∑
k=0

∇fi(xi,k(t)).
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The global loss function f(x) is L-smooth with L = 1
N

∑N
i=1 Li. From Lemma 4 and

Assumption 1, we have

f(x̄(t+ 1))

≤f(x̄(t))− ⟨∇f(x̄(t)),
1

N

N∑
i=1

τ−1∑
k=0

α∇fi(x̄(t))⟩+
L

2
∥ α

N

N∑
i=1

τ−1∑
k=0

∇fi(xi,k(t))∥2

− ⟨∇f(x̄(t)),
1

N

N∑
i=1

τ−1∑
k=0

α∇fi(xi,k(t))−
1

N

N∑
i=1

τ−1∑
k=0

α∇fi(x̄(t))⟩.

Further using Assumption 3 and (20), we have

f(x̄(t+ 1))

≤f(x̄(t))− ατ∥∇f(x̄(t))∥2 + L

2
α2(t)

{
τ +

η(τ − 1)

2

}2

∥∇f(x̄(t))∥2

+ Lα(t)∥∇f(x̄(t))∥
{ 1

N

N∑
i=1

τ−1∑
k=0

∥xi,k(t)− x̄(t)∥
}
.

Based on the update rule in Algorithm 1, we arrive at

f(x̄(t+ 1))

≤f(x̄(t))− ατ∥∇f(x̄(t))∥2 + L

2
α2

{
τ +

η(τ − 1)

2

}2

∥∇f(x̄(t))∥2

+ Lα∥∇f(x̄(t))∥
{
η

τ−1∑
k=0

kα∥∇f(x̄(t))∥
}
,

which further implies

f(x̄(t+ 1))

≤f(x̄(t))− ατ∥∇f(x̄(t))∥2 + L

2
α2

{
τ +

η(τ − 1)

2

}2

∥∇f(x̄(t))∥2

+
ηLτ(τ − 1)α2

2
∥∇f(x̄(t))∥2.

Therefore, the stepsize should satisfy

−τα+
L

2

{
τ +

η(τ − 1)

2

}2

α2 +
ηLτ(τ − 1)

2
α2 ≤ 0

to guarantee the monotonically decreasing property of f(x̄(t)) − f(x∗). Equivalently,
stepsize satisfying

α ≤ 8τ

L(2τ + η(τ − 1))2 + 4ηLτ(τ − 1)

guarantees the monotonically decreasing property of f(x̄).

D PROOF OF THEOREM 2

Proof. From (2) in Algorithm 1, we can obtain

∥xi,k+1(t)− x∗∥2

=∥xi,k(t)− x∗∥2 − 2αi⟨∇fi(xi,k(t)), xi,k(t)− x∗⟩+ α2
i ∥∇fi(xi,k(t))∥2. (21)
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From the convexity property of fi(x), we have

−2αi⟨∇fi(xi,k(t)), xi,k(t)− x∗⟩ ≤ 2αi{fi(x∗)− fi(xi,k(t))}. (22)

Assumption 3 implies

∥∇fi(x
∗)∥ = 0

for any i ∈ S and x∗ ∈ X ∗. Thus, combining with Lemma 2, we have

∥∇fi(xi,k(t))∥2 ≤ 2Li

{
fi(xi,k(t))− fi(x

∗)
}
. (23)

Combining (21), (22), and (23), we can obtain

∥xi,k+1(t)− x∗∥2 ≤ ∥xi,k(t)− x∗∥2 + (2αi − 2Liα
2
i )
{
fi(x

∗)− fi(xi,k(t))
}
. (24)

Note that the following inequality always holds:

∥x̄(t+ 1)− x∗∥2 ≤ 1

N

N∑
i=1

∥xi,τ (t)− x∗∥2.

Hence, Algorithm 1 and (24) imply

∥x̄(t+ 1)− x∗∥2

≤ 1

N

N∑
i=1

(2αi − 2Liα
2
i )

τ−1∑
k=0

{
fi(x

∗)− fi(xi,k(t))
}
+ ∥x̄(t)− x∗∥2. (25)

Under the stepsize setting (4), we have

2αi − 2Liα
2
i > 0

for any i ∈ S. Moreover, Assumption 3 ensures

fi(x
∗)− fi(xi,k(t)) ≤ 0

for any i ∈ S and k = 0, 1, · · · , τ − 1.

Substituting the above inequality into (25) yields

∥x̄(t+ 1)− x∗∥2 ≤ ∥x̄(t)− x∗∥2 + min
1≤i≤N

{
2αi − 2Liα

2
i

}{
f(x∗)− f(x̄(t))

}
. (26)

From (26), we can obtain

f(x̄(t))− f(x∗) ≤ ∥x̄(t)− x∗∥2 − ∥x̄(t+ 1)− x∗∥2

min1≤i≤N{2αi − 2Liα2
i }

.

Thus, for any T ≥ 1, we have

T∑
t=1

{
f(x̄(t))− f(x∗)

}
≤ ∥x̄(1)− x∗∥2

min1≤i≤N{2αi − 2Liα2
i }

. (27)

Since f(x̄(t))− f(x∗) ≥ 0 holds for any t, we have

lim
t→∞

f(x̄(t)) = f(x∗).

In addition, from (27), for any T ≥ 1, we can obtain

f(
1

T

T∑
t=1

x̄(t))− f(x∗) ≤ 1

T

T∑
t=1

{
f(x̄(t))− f(x∗)

}
≤ ∥x̄(1)− x∗∥2

min1≤i≤N{2αi − 2Liα2
i }T

,

which completes the proof.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

E PROOF OF COROLLARY 3

Proof. We use gi(x) to represent the unbiased estimate of the gradient ∇fi(x). From (2) in Algo-
rithm 1, we can obtain

∥xi,k+1(t)− x∗∥2

≤∥xi,k(t)− x∗∥2 − 2αi⟨∇fi(xi,k(t)), xi,k(t)− x∗⟩+ 2α2
i ∥∇fi(xi,k(t))∥2

− 2αi⟨gi(xi,k(t))−∇fi(xi,k(t)), xi,k(t)− x∗⟩+ 2α2
i ∥gi(xi,k(t))−∇fi(xi,k(t))∥2. (28)

Using the convexity of fi(x), we arrive at

−2αi⟨∇fi(xi,k(t)), xi,k(t)− x∗⟩ ≤ 2αi{fi(x∗)− fi(xi,k(t))}. (29)

Assumption 3 implies

∥∇fi(x
∗)∥ = 0

for any i ∈ S and x∗ ∈ X ∗. Thus, combining the preceding relation with Lemma 2, we can obtain

∥∇fi(xi,k(t))∥2 ≤ 2Li{fi(xi,k(t))− fi(x
∗)}. (30)

Combining (28), (29), and (30), we arrive at

∥xi,k+1(t)− x∗∥2

≤∥xi,k(t)− x∗∥2 + (2αi − 2Liα
2
i ){fi(x∗)− fi(xi,k(t))}

− 2αi⟨gi(xi,k(t))−∇fi(xi,k(t)), xi,k(t)− x∗⟩+ 2α2
i ∥gi(xi,k(t))−∇fi(xi,k(t))∥2. (31)

Using (31) and the property of the stochastic gradient, we have

E[∥xi,k+1(t)− x∗∥2]
≤E[∥xi,k(t)− x∗∥2] + (2αi − 2Liα

2
i ){fi(x∗)− E[fi(xi,k(t))]}+ 2α2

iσ
2. (32)

Note that the following inequality always holds:

E[∥x̄(t+ 1)− x∗∥2] ≤ 1

N

N∑
i=1

E[∥xi,τ (t)− x∗∥2].

Using the update rule in Algorithm 1 and (31), we arrive at

E[∥x̄(t+ 1)− x∗∥2]

≤ 1

N

N∑
i=1

(2αi − 2Liα
2
i )

τ−1∑
k=0

{
fi(x

∗)− E[fi(xi,k(t))]
}
+ E[∥x̄(t)− x∗∥2] + 1

N

N∑
i=1

2τα2
iσ

2.

(33)

Under the stepsize setting (4), we can obtain 2αi − 2Liα
2
i > 0 for any i ∈ S.

Moreover, Assumption 3 ensures fi(x∗)−E[fi(xi,k(t))] ≤ 0 for any i ∈ S and k = 0, 1, · · · , τ−1.

Thus, from (33), we have

E[∥x̄(t+ 1)− x∗∥2] ≤ min
1≤i≤N

{
2αi − 2Liα

2
i

}{
f(x∗)− E[f(x̄(t))]

}
+

1

N

N∑
i=1

2τα2
iσ

2 + E[∥x̄(t)− x∗∥2], (34)

which further implies

E[f(x̄(t))]− f(x∗) ≤ E[∥x̄(t)− x∗∥2]− E[∥x̄(t+ 1)− x∗∥2]
min1≤i≤N{2αi − 2Liα2

i }
+

1
N

∑N
i=1 2τα

2
i

min1≤i≤N{2αi − 2Liα2
i }

σ2.
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Thus, for any T ≥ 1, we have
T∑

t=1

{
E[f(x̄(t))]− f(x∗)

}
≤ ∥x̄(1)− x∗∥2

min1≤i≤N{2αi − 2Liα2
i }

+
1
N

∑N
i=1 2τα

2
iT

min1≤i≤N{2αi − 2Liα2
i }

σ2. (35)

From (35), for any T ≥ 1, we obtain

E
[
f
( 1

T

T∑
t=1

x̄(t)
)]

− f(x∗) ≤ ∥x̄(1)− x∗∥2

min1≤i≤N{2αi − 2Liα2
i }T

+
1
N

∑N
i=1 2τα

2
i

min1≤i≤N{2αi − 2Liα2
i }

σ2,

which completes the proof.

F PROOF THEOREM 4

Proof. From Algorithm 2, the updated rules (6) and (7) can be equivalently expressed as

xi,k+1(t) = xi,k(t)− α(∇f(x̄(t))−∇fi(x̄(t)) +∇fi(xi,k(t))). (36)

The relation in (36), we further implies

∥xi,k+1(t)− x̄(t)∥

≤
∥∥∥xi,k(t)− x̄(t) + α

(
∇fi(xi,k(t))−∇fi(x̄(t))

)∥∥∥+ α(t)∥∇f(x̄(t))∥. (37)

From Lemma 3 and (37), if the stepsize satisfies 0 ≤ α ≤ 1
Li

, we have

∥xi,k+1(t)− x̄(t)∥ ≤ ∥xi,k(t)− x̄(t)∥+ α∥∇f(x̄(t))∥. (38)

Using induction, we obtain

∥xi,k(t)− x̄(t)∥ ≤ kα∥∇f(x̄(t))∥. (39)

Using the update rule in Algorithm 2, we can obtain

xi,τ (t) = x̄(t)− α

τ−1∑
k=0

∇fi(xi,k(t))− τα
(
∇f(x̄(t))−∇fi(x̄(t))

)
.

Therefore, the average parameter x̄(t+ 1) satisfies

x̄(t+ 1) =
1

N

N∑
i=1

xi,τ (t) = x̄(t)− α

N

N∑
i=1

τ−1∑
k=0

∇fi(xi,k(t)),

which further implies

∥x̄(t+ 1)− x∗∥2 − ∥x̄(t)− x∗∥2

=− 2⟨ α
N

N∑
i=1

τ−1∑
k=0

∇fi(xi,k(t)), x̄(t)− x∗⟩+ ∥ α

N

N∑
i=1

τ−1∑
k=0

∇fi(xi,k(t))∥2. (40)

For the first term on the right hand side of (40), we have

− ⟨ 1
N

N∑
i=1

τ−1∑
k=0

∇fi(xi,k(t)), x̄(t)− x∗⟩

=
1

N

N∑
i=1

τ−1∑
k=0

⟨x∗ − xi,k(t),∇fi(xi,k(t))⟩+
1

N

N∑
i=1

τ−1∑
k=0

⟨xi,k(t)− x̄(t),∇fi(x̄(t))⟩

+
1

N

N∑
i=1

τ−1∑
k=0

⟨xi,k(t)− x̄(t),∇fi(xi,k(t))−∇fi(x̄(t))⟩. (41)
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Furthermore, using Assumption 1 and the convexity property of fi(x), we can obtain

− ⟨ 1
N

N∑
i=1

τ−1∑
k=0

∇fi(xi,k(t)), x̄(t)− x∗⟩

≤ 1

N

N∑
i=1

τ−1∑
k=0

{
fi(x

∗)− fi(xi,k(t))
}
+

1

N

N∑
i=1

τ−1∑
k=0

{
fi(xi,k(t))− fi(x̄(t))

}
+

1

N

N∑
i=1

τ−1∑
k=0

Li∥xi,k(t)− x̄(t)∥2. (42)

Combining (39) and (42), we arrive at

− ⟨ 1
N

N∑
i=1

τ−1∑
k=0

∇fi(xi,k(t)), x̄(t)− x∗⟩

≤ 1

N

N∑
i=1

τ−1∑
k=0

{
fi(x

∗)− fi(x̄(t))
}
+

1

N

N∑
i=1

τ−1∑
k=0

Lik
2α2∥∇f(x̄(t))∥2. (43)

Plugging the stepsize condition 0 < αLi ≤ 1 into (43) yields

−⟨ 1
N

N∑
i=1

τ−1∑
k=0

∇fi(xi,k(t)), x̄(t)− x∗⟩ ≤ τ
{
f(x∗)− f(x̄(t))

}
+ α∥∇f(x̄(t))∥2

τ−1∑
k=0

k2. (44)

Applying the relation
∑n

k=1 k
2 = n(n+1)(2n+1)

6 to the second term on the right hand side of (44)
yields

−⟨ 1
N

N∑
i=1

τ−1∑
k=0

∇fi(xi,k(t)), x̄(t)− x∗⟩ ≤ τ
{
f(x∗)− f(x̄(t))

}
+A1α∥∇f(x̄(t))∥2, (45)

where A1 = τ(τ−1)(2τ−1)
6 .

For the second term on the right hand side of (40), we have∥∥∥ 1

N

N∑
i=1

τ−1∑
k=0

∇fi(xi,k(t))
∥∥∥ ≤ 1

N

N∑
i=1

τ−1∑
k=0

∥∥∥∇fi(xi,k(t))−∇fi(x̄(t))
∥∥∥+ τ∥∇f(x̄(t))∥. (46)

Using the smoothness condition in Assumption 1, we can further obtain∥∥∥ 1

N

N∑
i=1

τ−1∑
k=0

∇fi(xi,k(t))
∥∥∥ ≤ 1

N

N∑
i=1

τ−1∑
k=0

Li∥xi,k(t)− x̄(t)∥+ τ∥∇f(x̄(t))∥. (47)

Combining (39) and (47), we can obtain∥∥∥ 1

N

N∑
i=1

τ−1∑
k=0

∇fi(xi,k(t))
∥∥∥ ≤

τ−1∑
k=0

Likα∥∇f(x̄(t))∥+ τ∥∇f(x̄(t))∥. (48)

Applying the stepsize condition 0 < ταLi ≤ 1 to (48) yields

∥ 1

N

N∑
i=1

τ−1∑
k=0

∇fi(xi,k(t))∥ ≤ A2∥∇f(x̄(t))∥, (49)

where A2 = 2τ − 1.
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Then, combining (40), (45), and (49), we can obtain

∥x̄(t+ 1)− x∗∥2 − ∥x̄(t)− x∗∥2

≤2τα
{
f(x∗)− f(x̄(t))

}
+
{
2A1 +A2

2

}
α2∥∇f(x̄(t))∥2. (50)

Using the relation established in Lemma 5, we can obtain the following inequality from (50):

∥x̄(t+ 1)− x∗∥2 − ∥x̄(t)− x∗∥2

≤2τα
{
f(x∗)− f(x̄(t))

}
+

2A1 +A2
2

γ

{
f(x̄(t))− f(x̄(t+ 1))

}
. (51)

Rearranging terms yields

2τα
{
f(x̄(t))− f(x∗)

}
≤∥x̄(t)− x∗∥2 − ∥x̄(t+ 1)− x∗∥2 + 2A1 +A2

2

γ

{
f(x̄(t))− f(x̄(t+ 1))

}
. (52)

Thus, for any T > 0, summarizing (52) from t = 1 to t = T leads to

T∑
t=1

{
f(x̄(t))− f(x∗)

}
≤ 1

2τα
∥x̄(1)− x∗∥2 + 2A1 +A2

2

2ταγ

{
f(x̄(1))− f(x∗)

}
. (53)

Using (53), Lemma 5, and Lemma 1, we can conclude that f(x̄(t)) converges to f(x∗) with the
convergence rate o(1/t), which completes the proof.

G SUPPORTING LEMMAS FOR THE PROOF OF THEOREM 4

Lemma 5. If the stepsize α of Algorithm 2 satisfies 0 < α < 2
5Lτ−L , there exists a constant γ > 0

such that

γα2∥∇f(x̄(t))∥2 ≤ f(x̄(t))− f(x̄(t+ 1)).

Moreover, the sequence f(x̄(t)) is monotonically decreasing.

Proof. Under Assumption 1, we know that f(x) is L-smooth. Thus, from Lemma 4, we have

f(x̄(t+ 1))

≤f(x̄(t))− α⟨∇f(x̄(t)),
1

N

N∑
i=1

τ−1∑
k=0

∇fi(xi,k(t))⟩+
L

2
∥ α

N

N∑
i=1

τ−1∑
k=0

∇fi(xi,k(t))∥2. (54)

Substituting (49) into (54) leads to

f(x̄(t+ 1))

≤f(x̄(t))− ατ∥∇f(x̄(t))∥2 + 2Lτ2α2∥∇f(x̄(t))∥2

+ α∥∇f(x̄(t))∥
{ 1

N

N∑
i=1

τ−1∑
k=0

∥∇fi(xi,k(t))−∇fi(x̄(t))∥
}
. (55)

Using the smoothness condition in Assumption 1, we can have the following relationship for (55):

f(x̄(t+ 1))

≤f(x̄(t))− ατ∥∇f(x̄(t))∥2 + 2Lτ2α2∥∇f(x̄(t))∥2

+ α∥∇f(x̄(t))∥
{ 1

N

N∑
i=1

τ−1∑
k=0

Li∥xi,k(t)− x̄(t)∥
}
. (56)
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Plugging (39) into (56) yields

f(x̄(t+ 1)) ≤ f(x̄(t))− ατ∥∇f(x̄(t))∥2 + 5τ2 − τ

2
Lα2∥∇f(x̄(t))∥2. (57)

Rearranging like terms leads to{
ατ − 5Lτ2 − Lτ

2
α2

}
∥∇f(x̄(t))∥2 ≤ f(x̄(t))− f(x̄(t+ 1)). (58)

Since the stepsize α satisfies 0 < α < 2
5Lτ−L , there exist γ > 0 such that

ατ − 5τ2 − τ

2
Lα2 ≥ γα2.

Thus, we have

γα2∥∇f(x̄(t))∥2 ≤ f(x̄(t))− f(x̄(t+ 1)),

implying that the sequence f(x̄(t)) is monotonically decreasing, which completes the proof.

H PROOF OF COROLLARY 5

We use gi(x) to represent the unbiased estimate of the gradient ∇fi(x). We need the following
Lemma 6 to prove Corollary 5.

Lemma 6. If the stepsize satisfies 0 < α < min{1≤j≤N}{ 1
Lj

}, we have

E[∥xi,h(t)− x̄(t)∥2] ≤ 12τ2Lα2E[f(x̄(t))− f(x∗)] + 27τα2σ2

for 0 ≤ h < τ and i ∈ S.

Proof. From Algorithm 2, we can obtain

xi,k+1(t) = xi,k(t)− α
{ 1

N

N∑
j=1

gj(x̄(t))− gi(x̄(t)) + gi(xi,k(t)))
}
.

Thus, we have

xi,k+1(t)− x̄(t)

=xi,k(t)− x̄(t)− α
{
∇f(x̄(t))−∇fi(x̄(t)) +∇fi(xi,k(t))

}
− α

{ 1

N

N∑
j=1

gj(x̄(t))−
1

N

N∑
j=1

∇fj(x̄(t)) +∇fi(x̄(t))− gi(x̄(t))

+ gi(xi,k(t))−∇fi(xi,k(t))
}
.

From the property of stochastic gradients, we have

E
[
∥xi,k+1(t)− x̄(t)∥2

]
=E

[∥∥∥xi,k(t)− x̄(t)− α
(
∇f(x̄(t))−∇fi(x̄(t)) +∇fi(xi,k(t))

)∥∥∥2]
+ α2E

[∥∥∥ 1

N

N∑
j=1

gj(x̄(t))−
1

N

N∑
j=1

∇fj(x̄(t)) +∇fi(x̄(t))− gi(x̄(t))

+ gj(xi,k(t))−∇fi(xi,k(t))
∥∥∥2]. (59)
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For the first term of the right hand side of (59), we can obtain

E
[∥∥∥xi,k(t)− x̄(t)− α

(
∇f(x̄(t))−∇fi(x̄(t)) +∇fi(xi,k(t))

)∥∥∥2]
≤(1 +

1

τ
)E[∥xi,k(t)− x̄(t)− α(∇fi(xi,k(t))−∇fi(x̄(t)))∥2] + (1 + τ)α2E[∥∇f(x̄(t))∥2].

From Lemma 3, we can obtain

E
[∥∥∥xi,k(t)− x̄(t)− α

(
∇f(x̄(t))−∇fi(x̄(t)) +∇fi(xi,k(t))

)∥∥∥2]
≤(1 +

1

τ
)E[∥xi,k(t)− x̄(t)∥2] + (1 + τ)α2E[∥∇f(x̄(t))∥2], (60)

if the stepsize satisfies 0 < αLi ≤ 1 for any 1 ≤ i ≤ N .

For the second term of the right hand side of (59), we have

E
[∥∥∥ 1

N

N∑
j=1

gj(x̄(t))−
1

N

N∑
j=1

∇fj(x̄(t)) +∇fi(x̄(t))− gi(x̄(t))

+ gi(xi,k(t))−∇fi(xi,k(t))
∥∥∥2]

≤ 3

N

N∑
j=1

E[∥gj(x̄(t))−∇fj(x̄(t))∥2] + 3E[∥∇fi(x̄(t))− gi(x̄(t))∥2]

+ 3E[∥gi(xi,k(t))−∇fi(xi,k(t))∥2]

for any i ∈ S.

Using the properties of stochastic gradients, we have

E
[∥∥∥ 1

N

N∑
j=1

gj(x̄(t))−
1

N

N∑
j=1

∇fj(x̄(t)) +∇fi(x̄(t))− gi(x̄(t))

+ gi(xi,k(t))−∇fi(xi,k(t))
∥∥∥2] ≤ 9σ2 (61)

for any i ∈ S.

Combining (59), (60), and (61), we arrive at

E[∥xi,k+1(t)− x̄(t)∥2]

≤(1 +
1

τ
)E[∥xi,k(t)− x̄(t)∥2] + (1 + τ)α2E[∥∇f(x̄(t))∥2] + 9α2σ2.

Using induction, we obtain the following relation holding for any 0 ≤ k < τ :

E
[
∥xi,k(t)− x̄(t)∥2

]
≤

{
(1 + τ)α2E[∥∇f(x̄(t))∥2] + 9α2σ2

} τ−1∑
h=0

(1 +
1

τ
)h,

which further implies

E
[
∥xi,k(t)− x̄(t)∥2

]
≤

{
(1 + τ)α2E[∥∇f(x̄(t))∥2] + 9α2σ2

} (1 + 1
τ )

τ − 1

(1 + 1
τ )− 1

.

Using the relation ∥∇f(x̄(t))∥2 ≤ 2L(f(x̄(t))−f(x∗)) from Assumption 1 and the convex property
of fi(x), we can obtain

E
[
∥xi,k(t)− x̄(t)∥2

]
≤ 12τ2Lα2E[f(x̄(t))− f(x∗)] + 27τα2σ2,

which completes the proof.
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Next we proceed to prove Corollary 5. From the update rule in Algorithm 2, we have

x̄(t+ 1) = x̄(t)− α

N

N∑
j=1

τ−1∑
h=0

gj(xj,h(t)),

which further implies

∥x̄(t+ 1)− x∗∥2 − ∥x̄(t)− x∗∥2

=− 2α⟨ 1
N

N∑
j=1

τ−1∑
h=0

gj(xj,h(t)), xi(kτ)− x∗⟩+ α2∥ 1

N

N∑
j=1

τ−1∑
h=0

gj(xj,h(t))∥2. (62)

For the term −2α⟨ 1
N

∑N
j=1

∑τ−1
h=0 gj(xj,h(t)), xi(kτ)− x∗⟩ in (62), we have

− 2αE
[
⟨ 1
N

N∑
j=1

τ−1∑
h=0

gj(xj,h(t)), xi(kτ)− x∗⟩
]

=
2α

N

N∑
j=1

τ−1∑
h=0

E
[
⟨x∗ − xj,h(t),∇fj(xj,h(t))⟩

]
+

2α

N

N∑
j=1

τ−1∑
h=0

E
[
⟨xj,h(t)− x̄(t),∇fj(xj,h(t))⟩

]
.

Using the convexity of fi(x) and Assumption 1, we arrive at

− 2αE
[
⟨ 1
N

N∑
j=1

τ−1∑
h=0

gj(xj,h(t)), xi(kτ)− x∗⟩
]

≤2α

N

N∑
j=1

τ−1∑
h=0

E
[
fj(x

∗)− fj(xj,h(t))
]

+
2α

N

N∑
j=1

τ−1∑
h=0

E
[
fj(xj,h(t))− fj(x̄(t)) +

L

2
∥xj,h(t)− x̄(t)∥2

]
,

which further implies

− 2αE
[
⟨ 1
N

N∑
j=1

τ−1∑
h=0

gj(xj,h(t)), xi(kτ)− x∗⟩
]

≤2ατE
[
f(x∗)− f(x̄(t))

]
+

αL

N

N∑
j=1

τ−1∑
h=0

E
[
∥xj,h(t)− x̄(t)∥2

]
. (63)

From Lemma 6, we have

E[∥xj,h(t)− x̄(t)∥2] ≤ 12τ2Lα2E[f(x̄(t))− f(x∗)] + 27τα2σ2 (64)

for 1 ≤ h < τ .

Combining (63) and (64), yields

− 2αE
[
⟨ 1
N

N∑
j=1

τ−1∑
h=0

gj(xj,h(t)), x̄(t)− x∗⟩
]

≤2ατE
[
f(x∗)− f(x̄(t))

]
+ 12τ3L2α3E[f(x̄(t))− f(x∗)] + 27τ2Lα3σ2.

When the stepsize satisfies 0 < 6ταL ≤ 1, we have

− 2αE
[
⟨ 1
N

N∑
j=1

τ−1∑
h=0

gj(xj,h(t)), x̄(t)− x∗⟩
]

≤2ατE
[
f(x∗)− f(x̄(t))

]
+ 2τ2Lα2E[f(x̄(t))− f(x∗)] + 9τ2α2σ2. (65)
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For the term α2∥ 1
N

∑N
j=1

∑τ−1
h=0 gj(xj,h(t))∥2 in (62), we have

α2
∥∥∥ 1

N

N∑
j=1

τ−1∑
h=0

gj(xj,h(t))
∥∥∥2

≤2α2
∥∥∥ 1

N

N∑
j=1

τ−1∑
h=0

{
gj(xj,h(t))− gj(x̄(t))

}∥∥∥2 + 2α2
∥∥∥ 1

N

N∑
j=1

τ−1∑
h=0

gj(x̄(t))
∥∥∥2. (66)

Using the smoothness conditon in Assumption 1 and the inequality ∥
∑k

i=1 ai∥2 ≤ k
∑k

i=1 ∥ai∥2,
we have

α2
∥∥∥ 1

N

N∑
j=1

τ−1∑
h=0

{
gj(xj,h(t))− gj(x̄(t))

}∥∥∥2
≤3τL2α2

N

N∑
j=1

τ−1∑
h=0

∥∥∥xj,h(t)− x̄(t)
∥∥∥2 + 3τα2

N

N∑
j=1

τ−1∑
h=0

∥∥∥gj(xj,h(t))−∇fj(xj,h(t))
∥∥∥2

+
3τα2

N

N∑
j=1

τ−1∑
h=0

∥∥∥∇fj(x̄(t))− gj(x̄(t))
∥∥∥2. (67)

From (67) and the property of stochastic gradient, we have

2α2E
[∥∥∥ 1

N

N∑
j=1

τ−1∑
h=0

{
gj(xj,h(t))− gj(x̄(t))

}∥∥∥2]

≤6τα2L2

N

N∑
j=1

τ−1∑
h=0

E
[∥∥∥xj,h(t)− x̄(t)

∥∥∥2]+ 12α2τ2σ2. (68)

Plugging the inequality in Lemma 6 into (68) leads to

2α2E
[∥∥∥ 1

N

N∑
j=1

τ−1∑
h=0

{
gj(xj,h(t))− gj(x̄(t))

}∥∥∥2]
≤72τ4L3α4E[f(x̄(t))− f(x∗)] + 162τ3L2α4σ2 + 12α2τ2σ2. (69)

For the term ∥ 1
N

∑N
j=1

∑τ−1
h=0 gj(xj(kτ))∥2 in (66), we have

2α2∥ 1

N

N∑
j=1

τ−1∑
h=0

gj(x̄(t))∥2

≤4α2τ2

N

N∑
j=1

∥gj(x̄(t))−∇fj(x̄(t))∥2 + 4α2τ2∥∇f(x̄(t))∥2.

Using Lemma 6 and the property of stochastic gradients, we have

2α2E[∥ 1

N

N∑
j=1

τ−1∑
h=0

gj(x̄(t))∥2] ≤ 4α2τ2σ2 + 8α2τ2LE[f(x̄(t))− f(x∗)]. (70)

Combining (66), (69), and (70), we have

α2E
[∥∥∥ 1

N

N∑
j=1

τ−1∑
h=0

gj(xj,h(t))
∥∥∥2]

≤(72τ4L3α4 + 8α2τ2L)E[f(x̄(t))− f(x∗)] + 162τ3L2α4σ2 + 16α2τ2σ2.
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When the stepsize satisfies 0 < 6ταL ≤ 1, we have

α2E
[∥∥∥ 1

N

N∑
j=1

τ−1∑
h=0

gj(xj,h(t))
∥∥∥2] ≤ 10τ2Lα2E[f(x̄(t))− f(x∗)] + 25α2τ2σ2. (71)

Combining (62), (65), and (71), we have

E[∥x̄(t+1)−x∗∥2]−E[∥x̄(t)−x∗∥2] ≤ (2ατ−12τ2Lα2)E[f(x∗)−f(x̄(t))]+34τ2α2σ2. (72)

When the stepsize satisfies 0 < α ≤ 1
12τL , we have ατ − 12τ2Lα2 ≥ 0. Plugging the preceding

inequality into (72) yileds

1

T

T∑
t=1

E
[
f(x̄(t))− f(x∗)

]
≤ ∥xi(1)− x∗∥2

ατT
+

34τ2α2

ατ
σ2.

Moreover, using the stepsize condition 0 < α ≤ min1≤j≤N{ 1
Lj

, 1
12τL} and the convexity of f(x),

we can obtain

E
[
f
( 1

T

T∑
t=1

x̄(t)
)]

− f(x∗) ≤ ∥x(1)− x∗∥2

ατT
+ 34τασ2

for any i ∈ S, which completes the proof.
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