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Abstract

While instruction-tuned language models have demonstrated impressive zero-shot
generalization, these models often struggle to generate accurate responses when
faced with instructions that fall outside their training set. This paper presents
Instructive Decoding (ID), a simple yet effective approach that augments the
efficacy of instruction-tuned models. Specifically, ID adjusts the logits for next-
token prediction in a contrastive manner, utilizing predictions generated from a
manipulated version of the original instruction, referred to as a noisy instruction.
This noisy instruction aims to elicit responses that could diverge from the intended
instruction yet remain plausible. We conduct experiments across a spectrum of such
noisy instructions, ranging from those that insert semantic noise via random words
to others like ‘opposite’ that elicit the deviated responses. Our approach achieves
considerable performance gains across various instruction-tuned models and tasks
without necessitating any additional parameter updates. Notably, utilizing ‘opposite’
as the noisy instruction in ID, which exhibits the maximum divergence from the
original instruction, consistently produces the most significant performance gains
across multiple models and tasks.

1 Introduction
Language Models (LMs) have opened up a new era in Natural Language Processing (NLP) by
leveraging extensive datasets and billions of parameters [53, 27, 16]. These LMs excel at In-Context
Learning (ICL), generating responses based on a few demonstrations without needing further pa-
rameter adjustments [46, 2, 8]. The rise of instruction-tuning has further enhanced this capability,
optimizing LMs to align their outputs closely with human-specified instructions [45, 31, 2, 30].
This approach has demonstrated a significant improvement in zero-shot scenarios, underscoring its
importance for tackling diverse tasks.

However, instruction-tuned models often struggle with unfamiliar tasks due to limitations in their
training datasets, whether the datasets are human-annotated [26, 43] or model-generated [42, 13].
Refining these datasets is essential but requires substantial effort and computational resources,
highlighting the need for more efficient approaches [5, 55]. Moreover, the depth of a model’s
understanding of and how they respond to instructions remains an area of active research. While
recent studies have provided some insights [17, 51], many questions remain unanswered. Techniques
such as prompt-engineering [44] and utilizing diversified outputs [38] aim to increase the quality of
outputs. However, the effectiveness of these techniques often depends on the fortuitous alignment of
prompts or initial conditions, making them labor-intensive since the tuning process must be tailored.

In pursuit of refining the behavior of LMs, some researchers have begun to explore the anchoring
effect [15]—a well-known cognitive bias where initial information exerts disproportionate influence
on subsequent judgments. Intriguingly, this cognitive principle has been demonstrated to extend to
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Figure 1: Overview of Instructive Decoding (ID). The example in this figure is from
task442 com qa paraphrase question generation in SUPNATINST [43]. The original re-
sponse not only fails to meet the task requirements (Question Rewriting) but also contains incorrect
information2. In contrast, ID generates a more relevant response by refining its next-token predictions
based on the noisy instruction (here, opposite prompting is used for ID).

LMs. For example, through effective prompting, the outputs generated by LMs can be steered towards
a specific intent [14]. Similarly, emphasizing the first few sentences of a long context enhances the
model’s overall comprehension of the content [25]. Given these observations on LMs—parallels that
mirror human tendencies—and the influential role of initial prompts, we hypothesize that the strategic
application of the anchoring effect could substantially improve LMs’ fidelity to instructions.

In this work, we propose Instructive Decoding (ID) (Figure 1), a novel method that enhances the
attention of instruction-tuned LMs towards provided instructions during the generation phase without
any parameter updates. The core idea of ID is deploying noisy variants of instructions, crafted
to induce a clear anchoring effect within the LMs, to adjust the output anchored by the original
instruction. More precisely, this effect aims to steer the models toward particular, potentially
sub-optimal predictions. Our range of variants spans from simple strategies such as instruction
truncation and more aggressive alterations, the most extreme of which is the opposite instruction.
By intentionally introducing such deviations, ID capitalizes on the resulting disparities. Within a
contrastive framework, next-token prediction logits that are influenced by the noisy instructions are
systematically compared to those derived from the original instruction. This process refines the
model’s responses to align more closely with the intended instruction.
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Figure 2: Zero-shot Rouge-L comparison on the SUP-
NATINST heldout dataset [43]. Models not instruction-
tuned on SUPNATINST are in blue dotted boxes, while
those instruction-tuned are in green.

Experiments on unseen task generaliza-
tion with SUPNATINST [43] and UN-
NATINST [13] held-out datasets show that
instruction-tuned models enhanced by ID
consistently outperform baseline models
across various setups. Intriguingly, Tk-XL
combined with our method outperforms its
larger version, Tk-XXL, with standard in-
ference (Figure 2). Models not previously
trained on the SUPNATINST dataset, includ-
ing Alpaca (7B) and T0 (3B), also show
marked enhancements in performance. Ad-
ditionally, the overall Rouge-L score of
the GPT3 (175B) is strikingly competitive,
closely mirroring the performance of Open-
SNI (7B) when augmented with our method.
We further observe that ID’s generation ex-
hibits increased both adherence to the instruction and an improvement in semantic quality. To provide
a comprehensive understanding, we investigate the anchoring effect of noisy instructions. Our find-

2According to the 2022 U.N. Revision, the population of USA is approximately 338.3 million as of 2022.
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ings suggest that as the model’s comprehension of the noisy instruction intensifies, the anchoring
effect becomes more potent, making ID more effective. Our main contributions are as follows:

• We introduce Instructive Decoding (ID), a novel method to enhance the instruction following
capabilities in instruction-tuned LMs. By using distorted versions of the original instruction,
ID directs the model to bring its attention to the instruction during generation (Section 2).

• We show that steering the noisy instruction towards more degrading predictions leads to
improved decoding performance. Remarkably, the opposite variant, which is designed for
the most significant deviation from the original instruction yet plausible, consistently shows
notable performance gains across various models and tasks (Section 3).

• We provide a comprehensive analysis of the behavior of ID, demonstrating its efficacy
from various perspectives. The generated responses via ID also improve in terms of label
adherence and coherence, and contribute to mitigate the typical imbalances observed in the
standard decoding process. (Section 4)

2 Instructive Decoding
In this section, we present instructive decoding, a method designed to enhance the response generation
of instruction-tuned models. By leveraging the responses derived from noisy instructions, our
approach employs a contrastive technique to refine generated responses, ensuring they are more
closely aligned with provided instructions.

2.1 Preliminary
In the context of an auto-regressive language model, denoted asMθ parameterized by θ, the primary
goal is to generate an output sequence y<t+1 = (y1, . . . , yt) when presented with an input sequence
x. Within the ICL framework, a specific demonstration, represented as I , is supplied in conjunction
with the context x. The language modelMθ then computes the logit for the t th token, symbolized as
zt ∈ R|V| equal toMθ(yt|I, x, y<t), wherein V is the vocabulary set. Consequently, the probability
of output sequence can be formally expressed as:

pθ(y|I, x) =
T∏

t=1

pθ(yt|I, x, y<t) (1)

where pθ(yt|I, x, y<t) is the probability for the next token prediction derived from the softmax
function applied to zt. It can either be the token with the highest probability (i.e., greedy decoding) or
sampled from its distribution (e.g., nucleus sampling [12]). In the broader scope of task generalization
with previously unobserved instructions, the demonstration I takes the form of the guiding instruction.
Depending on the specific context or setting, a few examples can be incorporated to enhance the
learning process. Generally, predictions of the instruction-tuned models are derived from both the
context x and the given instruction I , which play pivotal roles (Eq. 1).

2.2 Motivation and Overview of Instructive Decoding
A significant challenge in instruction following is ensuring that the generated tokens intrinsically
adhere to the instruction I . While the dominant strategy involves enriching the dataset with numerous,
diverse, and creatively curated high-quality tasks, this approach is both labor-intensive and compu-
tationally expensive. It requires new training cycles and does not always produce improvements
commensurate with the effort invested. Consequently, there is growing interest in exploring more
sustainable and effective alternative strategies for enhancing instruction-tuned models.

Inspired from cognitive science, we highlight the anchoring effect, a well-known cognitive bias in
which initial information exerts a disproportionate influence on subsequent judgments [15]. Recent
studies have hinted at this principle being relevant to LMs, where the LM’s predictions are significantly
conditioned (i.e., anchored) on the given context [14, 25]. Based on these findings, we hypothesize
that the strategic use of the anchoring effect could refine the responses of instruction-tuned models by
leveraging the discrepancies between the predictions that are anchored on different instructions.

Contrastive Decoding (CD) is a straightforward technique that improves the performance of LMs
by comparing two sets of predictions [20, 23]. In this approach, predictions from a high-performing
primary model are contrasted against those from a less accurate ‘amateur’ model. The goal is
to differentiate the primary model’s outputs against the less reliable outputs from the amateur
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Algorithm 1: Instructive Decoding

INPUT : Language modelMθ, base instruction sequence I , noisy instruction sequence Ĩ , initial
prompt sequence x and target sequence length T, smoothing coefficient ϵ.

1: Initialize t← 1
2: while t < T do
3: zt, z̃t ←Mθ(yt|I, x, y<t),Mθ(yt|Ĩ , x, y<t)
4: yt = argmax(SOFTMAX[zt − ϵ ∗ z̃t])
5: set t← t+ 1
6: end while

model during the decoding process. Despite its simplicity, the need for two models limits its broad
applicability, and its utility in instruction-following scenarios remains largely unexplored. To this
end, we propose Instructive Decoding (ID), a novel method to ensure that the model’s output closely
aligns with the given instruction. Leveraging the anchoring effect, ID incorporates these principles
into the Contrastive Decoding framework by introducing noisy variants of the original instruction.
These variants are designed to subtly mislead the model into generating deviated responses based on
the noisy instruction yet plausible. The comparison between the original instruction and the noisy
version helps the model identify and correct biases (e.g., inherent model bias and input bias), resulting
in outputs better aligned with the intended purpose. To delve deeper into the mechanics, during
decoding, the model contrasts the logits z, originating from the original instruction, with the logits z̃,
originating from the noisy instructions, as described in Algorithm 1.

2.3 A Collection of Noisy Instructions for Instructive Decoding
We aim to design a collection of noisy instructions that harness the anchoring effect while maintaining
task fidelity. Key guiding principles for our noisy instruction design include:

• Automated Perturbations: To ensure scalability and minimize manual intervention across diverse
tasks, we inject perturbations into the instructions. These perturbations include deletion, shuffling,
or random word insertion.

• Contrastive Elicitation: We systematically create prompts that elicit counter-intuitive yet plausible
responses, thereby producing a deviation from the expected responses.

In line with the principles outlined above, we employ the following noisy instruction variants.
Full-text examples of these variants are displayed in Figure 3.

1. Trunc-Shuf: Words from the instruction are randomly truncated and then shuffled. This
challenges the model to deal with both missing words and altered word sequences.

2. Null: The model receives only input-output pairs. This evaluates its inherent ability to comprehend
text and identify biases without any guiding instruction.

3. Rand Words: Random words from the Natural Language Toolkit (NLTK) [24] replace the original
instruction. This places the model in an environment filled with semantic noise, requiring it to
distinguish meaningful signals.

4. Opposite: In a contrarian approach, the instructions contain misleading directives like “Always
respond with the opposite of what you’re asked. You never get it right.\n\n”. Such directives
confront the model with conflicting guidance, helping it better align with the base instruction.

Unless specified, in the Experiment Section, we configure the noisy instructions to include one
random word (Rand Words) and set the truncation ratio to 0.6 (Trunc-Shuf).

Null Rand Trunc Trunc-Shuf

Opposite

Rand Words

Other Noisy Templates…

unbathed brachystomous warabi colorific

consolatoriness jungle Armatoli Sophoclean

unrecognizing preadministratio

Now complete the following example -

Input: Question: what is the usa population?

Output:

…

Now complete the following example -

Input: Question: what is the usa population?

Output:
Definition: Given a, generate a paraphrase of

that changing the of it. Your answer should

reword the given, but not add to it or remove

from it. The to your question should be the as

the to the question.

Now complete the following example -

Input: Question: what is the usa population?

Output:

Definition: question generate without should

Your a, a of same answer the question

question the reword meaning of it. The

original the, not add answer to it or as Your

it. be the the to information.

Now complete the following example -

Input: Question: what is the usa population?

Output:

Always respond with the opposite of what

you're asked. You never get it right.

Now complete the following example -

Input: Question: what is the usa population?

Output:

Figure 3: Full-text examples for a collection of noisy instructions for instructive decoding on
task442 com qa paraphrase question generation.

4



3 Experiments
3.1 Experimental Setup
Datasets For our experiments, two datasets are utilized: SUPNATINST [43] and UNNATINST [13].
Both datasets feature a diverse collection of crowd-sourced NLP tasks. In SUPNATINST, each task is
formatted as a ‘Definition’ prompt that acts as the instruction. For zero-shot evaluations, only the
‘Definition’ is utilized, whereas two positive demonstration examples are incorporated for few-shot
evaluations. Our experiments focus solely on the English segment of the dataset, and 100 instances
per tasks are used for evaluation following Wang et al. [43]. This subset comprises 119 evaluation
tasks, grouped into 12 categories:

• AC: Answerability Classification

• CEC: Cause-Effect Classification

• CR: Coherence Resolution

• DT: Data-to-Text

• DAR: Dialogue Act Recognition

• GEC: Grammar Error Correction

• KT: Keyword Tagging

• OE: Overlap Extraction

• QR: Question Rewriting

• TE: Textual Entailment

• TG: Title Generation

• WA: Word Analogy

The UNNATINST dataset features LM-generated instructions based on an initial set of 15 seed
samples. From its 64,000 samples, we evaluate a subset of 10,000.

Models We use the Tk-instruct models [43], instruction-tuned from T5-LM [18]. These models
are trained across 757 english tasks from the SUPNATINST training split over 2 epochs, with each
task comprising 100 samples. Our evaluation primarily involves three sizes of Tk-Instruct models:
Large (770M), XL (3B), and XXL (11B). While Tk-XL and Tk-XXL come from publicly available
checkpoints, the 770M model is manually trained under the same settings as the other Tk-instruct
models. Additionally, T0 (3B), Alpaca (7B), and Open-instruct-SNI (OpenSNI) are also used
for further evaluations. T0 model also fine-tunes T5-LM [18] using task prompts sourced from
PromptSource [1]. Alpaca [35] fine-tunes the LLaMA [36] based on a style outlined by Wang et
al. [42], whereas OpenSNI [41] is a fine-tuned version of LLaMA on SUPNATINST, marking a
distinct way of use from Alpaca. In our experiments, greedy decoding is primarily employed for
these models.

Evaluation Metrics We examine the outputs of instruction-tuned LMs on unseen tasks. Unless
specified, all evaluations are conducted in a zero-shot setting, where the models perform tasks based
solely on instructions, without any demonstration examples. Task performance is measured using the
Rouge-L score [22], which measures the overlap between generated and reference sequences, and is
often used for open-ended tasks as Wang et al. [43]. Adding to the Rouge-L score, classification tasks
further use the Exact Match (EM) metric, which measures whether the response precisely matches a
pre-defined label. To better evaluate pragmatics [7] not captured by metrics like EM or Rouge-L, we
introduce two additional metrics: Label Adherence and Label Coherence. These metrics offer insights
into how closely the generated responses adhere to the provided instructions. Detailed explanations
of our evaluation metrics are as follows:

• Label Adherence (LA): LA checks if the response stays within the label space defined by the
instruction, regardless of its agreement with the golden label. For example, if the instruction
specifies answers as ‘True’ or ‘False’, any response within this set is deemed conforming.

• Label Coherence (LC): This metric evaluates the semantic alignment of the response with the
gold label, allowing for near-equivalent answers. For example, responses like ‘Correct’ may
align with a gold label of ‘True’. We compare responses against an expanded set of gold labels
with semantically equivalent expressions.

For a more comprehensive evaluation, LA and LC are primarily measured on classification tasks
identifying 58 tasks among the 119 unseen tasks in SUPNATINST, which contains the predefined
labels. Although adherence and coherence are valuable for open-ended generation, focusing on
classification ensures thorough evaluation. For clarity, an example illustrating the relationship
between EM, LA, and LC is provided with further details on evaluation in Appendix D.

3.2 Performance on Unseen Task Generalization
Result Overview Table 1 displays the results when applying Instructive Decoding (ID) to the
Tk-Instruct models and OpenSNI-7B model. ID consistently outperforms the baseline model, which
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Table 1: Zero-shot Rouge-L score on unseen tasks in the held-out set of SUPNATINST [43] is
evaluated with Tk-instruct families and OpenSNI-7B. Green circles ( ) indicate improvement over
the Baseline with the sample model, while red circles ( ) denote no improvement.

Model Method Overall AC CEC CR DT DAR GEC KT OE QR TE TG WA

Tk-Large

Baseline 41.10 55.95 54.33 38.32 30.53 40.72 86.06 51.16 27.30 55.19 42.18 31.31 12.21
Trunc-shuf 41.68  50.62  55.56  42.33  30.06  41.03  86.62  47.30  22.67  55.84  46.15  31.55  11.78  

Null 41.79  50.92  55.45  42.00  30.12  41.10  86.62  47.28  23.84  56.26  46.16  31.83  11.90  
Rand Words 41.77  50.54  55.66  42.09  29.57  41.08  86.20  47.92  23.42  56.14  45.97  32.24  12.15  

Opposite 42.21  52.74  56.14  42.31  29.46  42.66  86.34  49.68  27.39  57.82  45.21  32.34  10.63  

Tk-XL

Baseline 45.36 50.00 59.73 43.94 34.01 58.15 87.07 58.08 17.09 54.01 46.46 36.24 27.29
Trunc-shuf 46.37  48.80  62.13  45.88  33.03  57.76  86.66  54.21  13.50  51.61  50.88  36.69  32.46  

Null 46.35  48.78  62.01  46.15  32.42  58.52  85.79  52.43  14.35  52.31  50.96  36.41  32.21  
Rand Words 46.46  49.08  62.28  45.85  32.30  58.71  86.45  53.53  14.86  52.01  51.24  36.45  32.21  

Opposite 46.69  50.73  61.93  45.69  33.63  57.14  87.56  55.09  16.32  51.51  50.47  37.33  33.08  

Tk-XXL

Baseline 46.01 59.28 56.10 33.91 33.43 59.05 81.80 48.53 26.78 50.43 57.70 35.66 19.13
Trunc-shuf 46.98  61.28  59.55  36.02  33.52  60.76  82.77  49.14  25.90  52.66  56.44  36.08  21.37  

Null 47.29  60.69  59.75  36.07  33.44  61.83  83.15  48.01  27.35  53.36  56.99  36.32  22.91  
Rand Words 47.26  61.10  59.44  36.59  33.57  61.11  82.67  47.82  26.77  53.54  56.60  36.24  23.10  

Opposite 47.43  60.77  60.01  35.91  33.79  60.51  81.06  48.66  25.16  52.98  58.56  36.11  22.43  

OpenSNI-7B

Baseline 48.05 54.36 60.87 51.83 38.34 54.00 81.85 49.60 22.13 48.51 52.50 34.56 43.33
Trunc-shuf 48.46  61.03  65.63  43.31  37.63  57.43  82.57  46.81  27.33  51.94  54.35  35.42  34.00  

Null 49.04  61.64  66.19  42.75  38.90  57.48  83.58  48.90  24.20  51.99  56.17  35.44  34.50  
Rand Words 49.00  61.41  65.90  43.23  39.24  56.62  83.11  49.15  24.39  52.52  55.69  35.21  35.15  

Opposite 49.47  62.26  66.53  42.51  39.32  57.41  83.85  51.98  23.60  54.03  55.68  36.30  34.56  

employs only the standard instruction, as indicated by higher overall Rouge-L scores. This per-
formance advantage is evident across all types of noisy instructions. Notably, while larger models
generally yield higher scores, the improvements are not uniformly distributed across task categories.
For instance, the ‘OE (Overlap Extraction)’ task shows a slight performance decline, which hints at
possible architectural limitations for learning in this specific task Nevertheless, the ‘opposite’ variant
consistently results in the most significant improvements in Rouge-L scores across all model sizes,
thus affirming the robustness of our method.

From Degradation to Enhancement: The Two-fold Impact of Noisy Instructions When used
in a standard decoding process, noisy instructions lead to a significant decline in performance
for generated responses. However, when integrated into ID, these instructions actually enhance
performance. We attempt to unveil the relationship between such degradation and its enhancement
with ID (Figure 4 (a)). When replacing the original instruction with a noisy variant during the
decoding process, a noticeable drop in Rouge-L scores occurs, as shown on the x-axis labeled
‘degradation’. The y-axis displays the performance improvement gained through ID when using these
noisy instructions. Interestingly, we find a strong positive correlation between the initial drop in
performance and the subsequent improvement when using ID. This correlation is quantified using the
Pearson Correlation Coefficient (R in Figure 4 (a); Cohen et al. [6]). The more substantial the initial
drop caused by a noisy instruction, the greater the performance gain when it is integrated into ID.
Notably, the ‘opposite’ instruction, which causes the most significant initial decline, results in the
largest performance boost when used with ID.

Comparative Winning Rates of Base vs. Ours Figure 4 (b) illustrates tasks where ID outperforms
the baseline, as measured by the Rouge-L score. This improvement is consistent across a range of
tasks, regardless of model size. Although the overall Rouge-L score for Tk-XXL is on par with that
of Tk-Large and Tk-XL, distinct improvements are observed across tasks when ID is used with larger
models. This synergy appears to optimize the potential of the larger models.
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different noisy instructions for instructive decoding over heldout dataset of SUPNATINST. Each
figure shows the performance changes from applying ID.

Granular Performance Analysis on the Classification Tasks We conduct an in-depth analysis
of 58 classification tasks from SUPNATINST to scrutinize the shifts in their response outcomes in
detail (Figure 5). The analysis is segmented into three metrics: EM, LA, and LC. A clear trend
emerges: as the model size increases, EM scores also rise. However, when examining the LA and
LC metrics based on baseline responses, the Tk-XL model outperforms the Tk-XXL model. This
suggests that while larger models excel at strictly adhering to provided instructions, smaller models
are more effective at generating semantically congruent outputs within the given instructional context.
With the incorporation of ID, performance patterns remain largely consistent across different model
sizes and noisy instructions. Specifically, as model sizes increase, the ’opposite’ variant significantly
improves the performances, particularly in the LC metrics for the Tk-XXL model. The random
’trunc-shuffle’ variant exhibits a significant boost in LA scores as model size grows, highlighting the
complex interplay between model sizes and their responsiveness to instructions.

Table 2: Rouge-L scores across dif-
ferent models and datasets.

Dataset UNNATINST SUPNATINST

Model Tk-Large T0-3B Alpaca-7B

baseline 43.25 26.58 23.61
null 44.57 29.33 31.21

rand words 44.44 29.49 30.93
opposite 43.42 29.46 31.38

Table 3: Rouge-L scores under a few-shot sce-
nario across different models. We set ϵ to 0.2.

Model Tk-Large Tk-XL Alpaca-7B

baseline 47.63 54.34 37.06
null 47.94 54.78 38.75

null∗ 46.95 54.41 38.07
opposite 48.08 54.80 37.79

opposite∗ 47.01 54.51 37.55

3.3 Ablation Study

Generalization Capabilities of ID To further assess the adaptability and effectiveness of ID,
we cross-evaluate models in the following way: models trained on SUPNATINST are tested on
UNNATINST and models not trained on SUPNATINST are assessed using the SUPNATINST test
set. Table 2 shows the results, measured through the overall Rouge-L score. For the Tk-Large
model evaluated on the UNNATINST training set, ID consistently outperforms the baseline, even
if the ‘opposite’ variant isn’t the top performer. Models trained on other datasets, such as T0-3B
and Alpaca-7B, also perform better with ID. Notably, there is a significant performance boost,
especially for Alpaca-7B. This indicates that ID effectively addresses the shift between training and
test distributions, highlighting its versatility and robustness as a broadly applicable solution.

Tk-Large Baseline

Tk-XL Baseline

Figure 6: Overall Rouge-L scores
across varying ϵ values with ’null’
instruction in ID.

Sensitivity of Smoothing Coefficient Figure 6 shows the influ-
ence of the hyperparameter ϵ on our method’s performance. This
parameter adjusts the smoothness of logits derived from noisy
instructions. Although our typical choice for ϵ was 0.3, we eval-
uated ID-null across a range of ϵ values, spanning from -0.5 to
0.5 at 0.01 intervals. Performance tends to decline with positive
ϵ values, as the model becomes increasingly biased toward the
noisy instruction. Conversely, excessively negative values (below
-0.4) lead to a deterioration in performance. Interestingly, the
model’s performance stabilizes between -0.1 and -0.4, indicating
a certain level of robustness to variations in ϵ within this range.
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Figure 7: (a) Shift in responses for binary classification tasks using Tk-XL, comparing baseline, ID
with ‘Opposite’, and ID combining ‘Opposite + Base Inst’.; (b) t-SNE visualization of embeddings
for ‘Keyword Tagging (KT)’ and ‘Word Analogy (WA)’, extracted from the Tk-XXL encoder by
concatenating the instruction and input.

Few-Shot Generalization Here, we evaluate how ID performs in the presence of a few positive
demonstration examples (i.e., few-shot evaluation). The results are presented in Table 3. In this table,
the terms null’ and opposite’ refer to the use of noisy instructions without examples, while null∗’ and
opposite∗’ indicate the incorporation of two positive demonstration examples. The table shows that
ID’s performance gains are more modest in the few-shot context than in the zero-shot context. This is
likely because the baseline performance is already improved by the inclusion of examples, thereby
diminishing the benefits of perturbations from z̃. Nevertheless, we find that the negative impact of
noisy instructions is relatively minor, as the provided examples help to clarify the task’s intent.

4 Discussion
Qualitative Analysis on ID with Opposite As Figure 7 (a) demonstrates, the baseline shows strong
label adherence but often settles on a single label. The introduction of the ‘Opposite’ technique
diversifies these responses, as evidenced by tasks previously biased toward ‘True’ now yielding
more balanced outcomes. Specifically, there is a marked increase in the prediction probabilities
for tokens that are not the top-ranked predictions guided by the original instruction. This not
only expands the instruction-guided output space but also emphasizes the increased likelihood for
alternative tokens. This observation is evident when the data points in the figure gravitate closer to
the origin. Intriguingly, combining the original instruction with the noisy instruction prompt does
not lead to improved performance. Although there is a shift away from distinct ‘True’ or ‘False’
predictions—indicating a smoothing effect—this shift does not reverse the predictions. We conjecture
that including the original instruction in the contrastive prediction may inadvertently anchor the
model’s responses, altering their magnitudes but not their directions.

Visualization of Embeddings: Evidence of Anchoring Effect Figure 7 (b) provides a t-SNE [37]
visualization of input embeddings from category KT and WA, extracted from the Tk-XXL encoder.
This visualization serves as empirical evidence for the impact of various noisy instruction variants.
Notably, unique clusters form for each type of instruction embedding, indicating that the encoder
interprets these noisy instructions differently, thereby exerting different anchoring effects—beneficial
for ID. This phenomenon is clearly reflected in the WA category, consistent with the improvements
by our method. In contrast, some embeddings in the KT category overlap, suggesting a limited
distinction between the original and noisy instructions. This weakens the anchoring effect and results
in a decline in Rouge-L scores for KT. This observation suggests that as the model gets better at
understanding noisy instructions, the performance of ID usually improves as well. This is often the
case when using higher-performing models.

Tk-Large Baseline

Tk-XL Baseline

Figure 8: CD vs. ID-Amateur perfor-
mances across Tk-instruct models.

On the Utility of ID over Contrastive Decoding We
examine the synergistic effects of integrating ID with the
use of amateur models (ID-amateur) for z̃ across various
Tk-Instruct model families in Figure 8. More precisely,
we feed a smaller amateur model with the noisy ‘opposite’
instruction in the ID-amateur method. This approach is
compared with the standard Contrastive Decoding (CD, Li
et al. [20]) with the original instruction for analysis, where
τ is temperature for amateur. Using Tk-small with Tk-XL
in CD modestly surpasses ID-amateur due to smaller mod-
els’ limited grasp of noisy instructions. As the ‘amateur’
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model size grows, CD’s performance diminishes, highlighting its size sensitivity. Conversely, ID-
amateur maintains consistent adaptability across diverse model sizes. To sum up, ID-amateur method
maintains performance across model scales while mitigating issues inherent in standard contrastive
decoding.

5 Related Work

Instruction-tuned Language Models Instruction-tuning is a method to fine-tune pre-trained LMs
to better follow natural language instructions [45, 31]. This fine-tuning process has demonstrated
consistent enhancements in the model’s ability to generalize to unseen tasks, particularly in zero-shot
scenarios [35, 49, 43, 29, 28, 5]. Previous studies indicate that expanding the breadth, volume, and
ingenuity of tasks for training improves instruction-tuning even further [43, 42, 40]. While some
efforts also use human feedback [28, 47, 56, 33], this paper focuses on the instruction-tuned models
that are trained on task datasets in a supervised manner.

Impact of Instructions on Generated Responses Understanding how generative LMs interpret
instructions remains an active area of discussion. It has been suggested only the essential tokens
directly related to the expected response influence the performance [51]. However, instruction-
tuned LMs are so heavily conditioned on pre-trained knowledge that it is difficult to override
such conditioning through the prompted instructions [19, 48]. Recent research indicates that the
success of instruction-tuning is contingent upon the familiarity of instructions LMs encounter during
their training phase [3, 21]. More specifically, LMs trained with certain instructions can exhibit
improved generalization on unseen tasks, even when presented with misleading instructions during
evaluation [34, 17]. In zero-shot scenarios, this sensitivity to instruction variations becomes especially
evident [34, 10]. In this work, we suggest this sensitivity can be leveraged by contrasting responses
generated from noisy instructions.

Contrast in Text Generation The concept of using contrast to improve text generation in generative
LMs has been studied in various ways [20, 52, 23, 25]. For example, Contrastive Decoding [20]
aims to maximize the output probability by contrasting a less proficient model with an expert-level
model. Meanwhile, Coherence Boosting enhances long-range contextual understanding by giving
more weight to distant words [25]. This contrastive approach has demonstrated its effectiveness in
diverse areas through its variants, such as text detoxification [23], resolving knowledge conflicts [32],
mitigating bias in input text [52] and boosting response truthfulness [4]. Our study extends this line
of work but places emphasis on the role of instructions in the input text. Also, unlike previous studies,
we present findings that it is possible to utilize inputs that cause severe performance degradation,
experiments show that contrasting predictions based on noisy instructions can significantly improve
the generalization of instruction-tuned LMs on unseen tasks.

6 Conclusion
This paper explores the challenges faced by instruction-tuned language models, especially when
dealing with unfamiliar instructions, termed as unseen task generalization. Our approach is inspired
by the anchoring effect, a cognitive bias where initial information significantly influences subsequent
decisions. Based on this concept, we introduce Instructive Decoding (ID), a method that adjusts
next-token predictions by contrasting them with those generated from a manipulated version of the
original instruction, termed the ‘noisy’ instruction. Designed to counterbalance inherent model biases
and potential input biases, these ‘noisy’ instructions guide the model’s outputs towards contextually
relevant but deviating paths. Our empirical results across multiple tasks confirm the method’s efficacy.
Notably, the ‘opposite’ noisy instruction, which offers the highest degree of deviation, emerges as
the most effective variant for improving model performance. This highlights the significant role the
anchoring effect can play in shaping the model’s behavior. The simplicity of the ID approach, which
necessitates no additional parameter updates, renders it a compelling option to enhance instruction
following of the generated responses. As the field of instruction-tuned models continues to evolve,
we expect that methods like ID will become crucial in extending their capabilities.

Ethics Statement This work primarily presents no direct ethical concerns. However, from a broader
impact perspective, there are some potential implications related to systematic impact and possible
misuse. These concerns are detailed further in the Appendix A.
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Appendices
A Broader Impact

In advancing the domain of instruction-adherence for Language Models (LLM), we introduce
an innovative technique, Instructive Decoding (ID). Recognizing the potential paradigm shifts this
method might instigate, we find it imperative to discuss its broader implications, especially concerning
efficiency, scalability, accessibility, systematic impact, and potential misuse.

Efficiency and Scalability Optimizing instruction adherence at the decoding level, as underscored
by ID, presents pronounced advantages in both efficiency and scalability. Traditional endeavors to
fine-tune instructions often lean on exhaustive training, entailing considerable resource commitments.
This not only poses challenges for real-world applicability, especially with behemoth models or
voluminous datasets, but also limits scalability. Our decoding-centric method, on the other hand,
augments instruction adherence without extensive retraining. This reduction in computational
overhead paired with the method’s adaptability to diverse tasks signifies a pivotal step towards
ensuring future large language models are both instruction-responsive and deployment-efficient.

Accessibility ID inherently fosters increased accessibility of instruction-tuned models to a wider
spectrum of users. A salient attribute of our methodology is its efficacy in amplifying instruction
adherence, even for models with a more modest parameter count (up to 3B). This democratization is
potent, especially when considering that our method eschews dependencies on vast datasets, high-end
computational resources, or specialized engineering teams. In a machine learning landscape often
characterized by escalating computational needs and intricacies, ID emerges as a beacon, rendering
top-tier, instruction-adherent models accessible to a more expansive audience. This broad-based
accessibility is poised to catalyze novel applications across sectors, enriching both the research
community and the general populace.

Systematic Impact The introduction of our Instructive Decoding (ID) methodology offers a promis-
ing avenue for democratizing advanced instruction-following capabilities in contemporary language
models. Independent of their operational scale, organizations and researchers can leverage the en-
hanced proficiency of LLMs without the typical burdens of exhaustive tuning. This democratization
holds the potential to streamline and standardize AI implementations across multifarious industries.
Nevertheless, with widespread adoption comes the imperative of rigorous monitoring to identify,
mitigate, and rectify unforeseen biases or unintended consequences that may emerge.

Potential Misuses The amplification of instruction-adherence in models, while laudable, introduces
vulnerabilities that may be exploited for malevolent purposes, such as disseminating misleading
narratives or manipulating public discourse. It is our responsibility, as proponents of this technology,
to instate robust safeguards, advocate for ethical deployment standards, and formulate stringent usage
guidelines. Continuous emphasis should be placed on responsible application, vigilant oversight, and
cultivating a user ecosystem that is cognizant of both the potential benefits and inherent risks of such
advanced systems.

B Limitation & Future Work

B.1 Limitation

Generalization While our method has shown promising results in specific tasks and datasets, it
remains uncertain how universally it can be applied across various instruction-following scenarios,
languages, and cultures. Future research is essential to validate its effectiveness in diverse contexts
and ensure it doesn’t inadvertently introduce biases or inaccuracies in untested situations.

Robustness and Stability Our approach, though effective under the conditions tested, may exhibit
sensitivity to slight variations in instructions or other input parameters. This sensitivity might manifest
as inconsistent outputs or varied model performance, emphasizing the need for comprehensive testing
across a range of inputs to ensure stable and robust operation.
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Resources To produce a single output, our method necessitates two separate inferences. This
inherent design, while facilitating the desired model behaviors, leads to increased computational
overhead. As a consequence, there could be a tangible impact on speed, particularly in resource-
constrained environments, and a potential increment in storage requirements due to the need to
maintain intermediate representations or states.

Error Propagation Given our method’s two-step inference process, there’s an inherent risk of
error propagation: inaccuracies or biases introduced in the initial inference might not only persist but
could also be exacerbated in the subsequent inference. Addressing this challenge requires meticulous
design and evaluation to ensure that initial errors don’t compromise the quality of final outputs.

B.2 Future Work

Resource-Efficient ID As we explore deeper into the behaviors of instruction-tuned models and the
efficacy of ID, a clear trajectory emerges for future exploration: enhancing the resource efficiency of
the ID process. While our current methodology has showcased promising results, the computational
overhead and time complexity associated with it remain areas of improvement. In future iterations,
we aim to refine our algorithms to make the ID process not just effective but also leaner in terms of
computational resources. This could involve optimizing the perturbation computations, streamlining
the sampling process, or introducing lightweight heuristics to guide the decoding. Such enhancements
would make our approach more amenable to real-world applications, where both accuracy and
efficiency are paramount.

Robustness on More Diverse Tasks Another direction for future research lies in testing the
robustness of instruction-tuned models, especially with ID, across a broader spectrum of tasks. While
our initial investigations are mainly focused on the analysis of SUPNATINST dataset, the potential
of this approach could be unearthed by exposing the model to a gamut of diverse challenges – from
intricate sequence-to-sequence tasks to multi-modal problem settings. Such an expanded evaluation
would provide deeper insights into the model’s versatility and its adaptability to various task nuances.
Furthermore, it would be intriguing to observe how the model, anchored by its initial instruction,
fares in tasks that exhibit high levels of ambiguity or where the boundaries between classes are not
starkly defined. Pushing the boundaries in this manner will not only test the model’s resilience but
also its capability to generalize from one context to another seamlessly.

ID for RLHF Enhanced-LLMs Instruction tuning in a supervised manner equips models to
respond precisely to clear-cut tasks or queries, but its prowess diminishes when faced with ambiguous
or vague questions. Herein lies the significance of Reinforcement Learning from Human Feedback
(RLHF). By integrating human feedback into the model’s learning process, RLHF ensures that models
can interpret and respond to less defined queries in a manner that aligns closely with human intentions.
Introducing ID into RLHF-enhanced LLMs emerges as an intriguing avenue to further enhance this
capability. While RLHF provides the foundation for models to comprehend and align with human
intent, ID can be instrumental in refining the model’s adaptability to instructions and user preferences.
The amalgamation of RLHF’s continuous learning approach with ID’s anchoring capabilities may
lead to a more contextually adept and user-aligned model. In essence, this synergy could result in
LLMs that not only grasp the intricacies of human intent but also consistently generate outputs that
are both accurate and contextually relevant, regardless of the clarity or vagueness of the incoming
query.

Theoretical Analysis for ID ID stands as a distinct mechanism that aligns responses more to-
ward a goal-oriented direction without the need for additional training; it augments the provided
instruction to elicit more pertinent outputs from the model. Yet, while its practical benefits are
becoming increasingly evident, a deeper theoretical understanding remains a pressing requirement.
Specifically, understanding the interplay between the input that’s instruction-augmented and how it
influences the model’s prediction is of paramount importance. A rigorous analysis should explore
the level of perturbation this augmented instruction introduces into the model’s decision-making
process. Furthermore, the inherent trade-offs between the exact match, Rouge-L scores, and semantic
coherence in relation to these perturbations need to be delineated. Establishing such a theoretical
foundation would provide invaluable insights into how ID effectively alters model behavior, paving
the way for more predictable and controlled outcomes. Future research endeavors focusing on these
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aspects can unveil the precise mechanics at play, allowing for further refinement and optimization of
the ID approach.

C Experimental Setup Details

Tk-Instruct Tk-Instruct is an instruction-tuned model trained using SUPNATINST on the T5-LM
within an encoder-decoder architecture. As previously mentioned, we employ the publicly available
checkpoints (Tk-Instruct public checkpoints) for Tk-Instruct, specifically models such as 3b-def,
3b-def-pos, and 11b-def, which -def models are zero-shot tuned model and -def-pos model is tuned
with additional 2 positive demonstration examples for few-shot generalization. For model sizes not
publicly disclosed, we adhere to the training setup provided by Wang et al. [43] to perform fine-
tuning. Only the definition and input are used for training the Tk-Small (60M), Base (220M), Large
models (770M), whereas the Tk-Large-def-pos is trained with both a definition and two positivie
demonstration examples, each adapted from their corresponding T5-LM [18]. The models are trained
with a batch size of 16, for 2 epochs, using a learning rate of 5e-5. Due to the absence of an official
validation task, training is conducted without splits and the last checkpoint is used for experiments.
The number of training instances utilized is 67,825. For both training and evaluation, the combined
maximum length of demonstrations and contexts is set to 1,024, while the maximum generation
length is limited to 128.

OpenSNI, T0, and Alpaca OpenSNI represents a model trained on the SUPNATINST for compari-
son among instruction datasets as depicted by Wang et al. [41], following the methods of Touvron et
al. [36]. It has been fine-tuned with 96,913 training instances over 2 epochs using a learning rate
of 2e-5. Two publicly available variants of this model exists: 7B and 13B, with our experiments
using the 7B variant from OpenSNI-7B public checkpoint. We observe a superior performance
in the 7B model compared to the 11B variant of Tk-Instruct (i.e., Tk-XXL). We attribute this not
only to LLaMA’s potent pre-trained capability but also the increased number of instances used in
training. In the methodology proposed by Wang et al. [41], the fine-tuning is conducted with a fixed
template for both input and output to facilitate comparisons across instruction datasets. Notably, this
differs slightly from the template of SUPNATINST. In our experiments, we employ the SUPNATINST
template with the OpenSNI model. As seen in Table 4, there is a significant performance difference
when using the SUPNATINST template compared to the one used in training.

Table 4: Rouge-L score of OpenSNI-7B on SUPNATINST with different input format
Method \Format SupNatInst Open-instruct

baseline 47.85 46.20
null 49.04 48.70

opposite 49.47 48.94

We also use the T0-3B [31] and Alpaca-7B [35] checkpoints from T0-3B public checkpoint, and
Reproduced Alpaca-7B public checkpoint [39] in our experiments, repectively. We set maximum
length of inputs and generation length to 1,024 and 128, respectively.

D Metric Details

Rouge-L Rouge-L (Recall-Oriented Understudy for Gisting Evaluation with Longest Common
Subsequence) is one of the metrics under the ROUGE framework [22], used predominantly for
evaluating the quality of summaries by comparing them to reference summaries. Rouge-L specifically
utilizes the Longest Common Subsequence (LCS) approach. LCS captures the longest co-occurring
in-sequence n-grams, words, or bytes between the system-generated summary and a set of reference
summaries. The advantage of Rouge-L is that it does not require predefined n-gram length like other
ROUGE metrics (e.g., ROUGE-N), making it more adaptive to varying lengths of summaries and
capturing fluent sequences more effectively. Given a candidate summary C and a reference summary
R, the precision P and recall R for Rouge-L are calculated as:

PLCS =
LCS(C,R)

|C|
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Table 5: Examples of expanded label space for evaluating Label Coherence (LC).
Task Label Keywords

task1385 anli r1 entailment
entailment entailment, entail, entails, entailing, Valid, en-

tailments
neutral neutral, neutrality, neutrally, neutrals, Unknown
contradiction contradiction, contradictions, contradicts, con-

tradict, contradicting, Disagree

task935 defeasible nli atom-
ic classification

weakener weakener, weakens, weak, weaken, weakening,
a weak

strengthener strengthener, strengthens, strong, strengthen,
strengthening, a strong, stronger, strongest,
strongly

task392 inverse causal rela-
tionship

plausible plausible, Yes
not plausible not plausible, No

RLCS =
LCS(C,R)

|R|

where |C| and |R| are the lengths of the candidate and reference summaries, respectively, and
LCS(C,R) denotes the length of the longest common subsequence between the two summaries. The
F1 score for Rouge-L is then computed as the harmonic mean of the precision and recall:

F1LCS =
2× PLCS ×RLCS

PLCS +RLCS

Due to its measurement efficiency, we choose Rouge-L as our main metric for zero-shot instruction
following ability.

We opt for Rouge-L as our primary metric for zero-shot instruction following capability. Other studies
[11, 50] have utilized methods such as ranking options by likelihood for possible labels to assess
instruction following abilities. However, these methods not only fail to reflect the efficacy of our ID
but, when considering a more practical instruction following scenario—specifically, open-ended text
generation corresponding to the provided instruction and context—Rouge-L emerges as the more
appropriate metric for representing the overall task performance.

While there exist frameworks, such as Alpaca Farm [9] and Chatbot Arena [54], that evaluate the
generation capabilities of instruction-tuned models, they predominantly focus on assessing dialogue
formats. As a result, they are not ideally suited for evaluating IDs that aim to improve zero-shot task
generalization.

Label Adherence & Label Coherence For an in-depth analysis of ID, we measure LA and LC in
addition to EM (Exact Match) across 58 classification tasks. The illustration of Label Adherence and
Coherence is in Figure 9. To measure LA, we construct the space of all ground truth outputs for each
task’s instances and evaluate whether the generated answer resided within this space. Conversely, to
comprehensively evaluate the LC of instruction-tuned LMs, we take a scrupulous approach. Rather
than solely relying on the default labels provided in the SUPNATINST dataset for classification
tasks (Table 9), we go a step further. We manually select all classification tasks and deliberately
extend their label space. By doing so, we aim to capture a broader range of potential responses the
model generates, ensuring a more precise assessment of its semantic coherence.

Table 5 presents an example of an extended label space. For tasks like entailment classification, we
expanded the label space by collating responses from our experiments that semantically matched the
ground truth labels such as ‘entailment’, ‘neutral’, and ‘contradiction’. Additionally, we underwent
further processing, such as removing special characters like ‘.’, ‘\n’, ‘?’, ‘!’, and conducting com-
parisons without upper case sensitivity, to ultimately create the extended label space used in the LC
evaluation. This manual label space enhancement not only increases the quality of our evaluation but
also provides deeper insights into how the model interprets and aligns its outputs with the intended
semantics. Figure 9 shows the example of adherence and coherence for the needs of LA and LC.
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Task Type Answerability Classification
Definition In this task you are given a story and a question regarding that story. You must judge whether 

the question is answerable based on the info given to you. Label the instances as "Answerable" 
or "Not Answerable" based on your judgment. the story and the question are separated by a 
new line character.“

Instance Adler tried to place a fire ant in his brother's bed. He got bit by the ant several times. In 
addition, he caught an infection. Adler's dad was angry from what happened. He decided to 
send Adler to summer camp. \nWhy did He decide to send Adler to summer camp?

(a) Only Coherence

Answer: 
Because he was angry Not Answerable Answerable

(b) Only Adherence (c) Expected Response

Coherence Adherence
Outputs

Figure 9: The example of Adhernece and Coherence in
task290 tellmewhy question answerability. In classification tasks, the definition (i.e.,
instruction) contains not only semantic information about the task but also hints on how to respond.
If an instruction-tuned model solely pursues adherence and conforms only to the label format (i.e.,
Only Adherence), it may produce incorrect answers. Conversely, if it tries to align only semantically
(i.e., Only Coherence), it deviates from the predetermined format.

E Additional Experiments

Table 6: Comparison between sampling-based decoding and greedy decoding. Top-k and temperature
scaling are adopted. Mean and standard deviation of 3 seeds experiments are reported.

Method Top-k (k = 40) & Temp (τ = 0.7) Greedy

original instruction 43.17± 0.26 45.36
null 41.61± 0.20 46.35
rand words 41.60± 0.26 46.46

Decode by Sampling We conduct experiments using greedy decoding. This is necessary because
SUPNATINST comprises 119 tasks, which encompass not only generation but also classification and
question-answering tasks. Although sampling-based decoding aids in increasing diversity, it operates
stochastically, which is not beneficial for classification or question-answering. Nevertheless, we
examine whether ID has benefits from sampling, and the results are presented in Table 6. From the
outset, one can observe a performance degradation across all methods, including the baseline, with
ID experiencing a particularly significant decline. As described in Section 4, we demonstrate that this
outcome stems from the smoothing effect from the characteristics of ID. Because ID reduces the top1
probability by increasing the probabilities for other tokens, sub-optimal tokens can be easily sampled,
leading generalization far worse than that of the greedy decoding.

CD ablations In Section 4, we discuss the application of Contrastive Decoding (CD) to ID for
unseen task generalization. The comprehensive results for the hyperparameters that demonstrates the
highest performance during our experiments can be found in Figure 10. As previously mentioned,
while CD experiences significant sensitivity concerning model selection, the simultaneous use of
ID’s opposite instruction with CD (i.e. ID-amatuer) reduces this sensitivity. Even when the expert
model is smaller than the amateur model, it displays more robust results, and the degradation is
considerably less when compared to the standard CD. This can be attributed to the fact that as the
amateur model grows in size, it better understands the meaning of the opposite instruction, thereby
producing significant noisy logits.

Ablations on the Number of Random Words for Noisy Instruction To understand the influence
of the number of random words in the noisy instruction, we conduct ablation experiments varying
their count. In Table 7, performance metrics for Tk-Large and Tk-XL models across different random
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Figure 10: Performance results after applying CD to SUPNATINST in comparison to the expert
model’s original score. We explore various values for τ , representing the temperature parameter τ
for the amateur model, within the range [0.5,10.0]. The parameter α, which constrains the model’s
confidence, is set to 0.1 as in Li et al. [20]. For the ID-amateur approach, which introduces noisy
instructions to the ‘amateur’ model, we examine the optimal value for ϵ among 0.1, 0.2, and 0.3.

Table 7: Performance degradation with increasing number of random words in the noisy instruction
for Tk-Large and Tk-XL models. This table highlights the trade-offs when introducing randomness
in instructions.

The number of random words

Model 1 3 5 10 30 50 100

Tk-Large 41.77 41.74 41.73 41.54 41.40 41.36 41.35
Tk-XL 46.46 46.39 46.34 46.30 46.29 46.25 46.11

word counts are presented. As the number of random words increases, there is a marginal decline in
performance for both models. This suggests a potential saturation point beyond which additional
random words might not offer significant noise benefits. The results underscore the importance of
adjusting the randomness level in the noisy instruction to achieve optimal performance.

Table 8: Variation in performance with different truncation ratios in the Truc-Shuf approach for
Tk-Large and Tk-XL models. The table showcases the resilience and adaptability of the models to
varying degrees of truncation in the instructions

Trucation Ratio

Model 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Tk-Large 41.68 41.67 41.57 41.87 41.60 41.70 41.61 41.73 41.66
Tk-XL 46.37 46.31 46.39 46.60 46.21 46.45 46.30 46.26 46.67

Ablations on the Ration of Truc-Shuf To ascertain the impact of truncation on the model’s
performance, we perform ablation studies varying the truncation ratio. As illustrated in Table 8,
we report the performance for Tk-Large and Tk-XL models across different truncation ratios. The
table indicates that the models exhibit varying sensitivity to the truncation level. Notably, neither
extreme truncation nor minimal truncation consistently maximizes the performance, suggesting an
intermediate truncation ratio might be optimal. The results underline the significance of adjusting the
truncation ratio to optimize the balance between the retention of task-relevant information and the
introduction of noise.

Example on Logits Correction by ID The baseline response guided by the original instruction
displays a slight ambiguity, predicting tokens like ‘True’ and ‘Correct’ at relatively high levels, but
also showing minor confusion with ‘Answer’, ‘Fal’, and ‘Yes’. However, for the given task, the
correct response should be ‘Correct’. When using the ‘null’ with ID, the prediction scores across
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Task ID task133_winowhy_reason_plausibility_detection

Definition "In this task you need to indicate the plausibility of reasoning for the pronoun coreference 

relations. Each of the provided inputs contains a sentence with a target …{Skip}… You should 

answer 'Correct' if the reasoning made sense, otherwise, you should answer 'Wrong'."

Instance "Sentence: Thomson visited Cooper's grave in 1765. At that date he had been dead for five 

years.\n Reason: The 'he' refers to cooper because dead people are in the graves. \n Question: Is 

the above reasoning correct or wrong? "  # Golden Label: Correct

Instructive Decoding Logits

Figure 11: An example on logits correction by ID with Tk-XL model.

these tokens generally increase. By contrasting these outcomes, the model is further reinforced
to adhere to the ‘Correct’ response, underlining the strength of ID in guiding models towards the
appropriate response.
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Table 9: List of Task IDs in the SUPNATINST used to evaluate Adherence and Coherence of instruction
following.

Task IDs
task893 gap fill the blank coreference resolution task641 esnli classification
task1529 scitail1.1 classification task202 mnli contradiction classification
task1393 superglue copa text completion task1344 glue entailment classification
task1387 anli r3 entailment task880 schema guided dstc8 classification
task738 perspectrum classification task1439 doqa cooking isanswerable
task642 esnli classification task242 tweetqa classification
task890 gcwd classification task1612 sick label classification
task1442 doqa movies isanswerable task233 iirc link exists classification
task936 defeasible nli snli classification task1386 anli r2 entailment
task290 tellmewhy question answerability task391 causal relationship
task201 mnli neutral classification task520 aquamuse answer given in passage
task892 gap reverse coreference resolution task828 copa commonsense cause effect
task1155 bard analogical reasoning trash or treasure task1385 anli r1 entailment
task1531 daily dialog type classification task1516 imppres naturallanguageinference
task1394 meta woz task classification task1615 sick tclassify b relation a
task970 sherliic causal relationship task1390 wscfixed coreference
task199 mnli classification task133 winowhy reason plausibility detection
task226 english language answer relevance classification task935 defeasible nli atomic classification
task020 mctaco span based question task937 defeasible nli social classification
task1388 cb entailment task329 gap classification
task1554 scitail classification task050 multirc answerability
task362 spolin yesand prompt response sub classification task220 rocstories title classification
task232 iirc link number classification task1391 winogrande easy answer generation
task1533 daily dialog formal classification task1624 disfl qa question yesno classification
task827 copa commonsense reasoning task879 schema guided dstc8 classification
task190 snli classification task200 mnli entailment classification
task1534 daily dialog question classification task392 inverse causal relationship
task640 esnli classification task623 ohsumed yes no answer generation
task1640 aqa1.0 answerable unanswerable
question classification

task349 squad2.0 answerable unanswerable
question classification
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