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ABSTRACT

Deep learning methods have recently been applied to both predictive and gener-
ative tasks in the molecular space. While molecular generation and prediction of
an associated property are now reasonably common, studies on reaction outcome
due to the generated molecules remain less explored. Chemical reactions present
a complex scenario as they involve multiple molecules and breaking/forming of
bonds. In reaction discovery, one aims to maximise yield and/or selectivity, which
depends on a multitude of factors, including partner reactants and reaction condi-
tions. We propose a multi-pronged approach that combines policy gradient rein-
forcement learning with a recurrent neural network-based deep generative model
to identify prospective new reactants, whose yield/selectivity is estimated by a
pre-trained regressor. Using SMILES (simplified molecular-input line-entry sys-
tem) as the raw representation, our approach involves attaching a user-defined
core fragment to the generated molecules for reaction-specific learning. On three
distinct reaction types (alcohol deoxyflourination, imine-thiol coupling, asymmet-
ric hydrogenation of imines or alkenes), we obtain notable improvements in yield
and/or enantioselectivity. The generated molecules are diverse, while remaining
synthetically accessible.

1 INTRODUCTION

Discovering new reactions is central to the progress in chemistry and other related disciplines, in-
cluding in the synthesis of drug molecules and materials (Blakemore et al., 2018; Campos et al.,
2019). Newer reactions are expected to offer improved efficiencies besides paving way to novel
target compounds (Kanda et al., 2020). Despite the availability of a repertoire of known reac-
tions in the toolkit, realising complex target molecules such as anti-infective (McCauley et al.,
2010) or anti-cancer drugs (Nicolaou et al., 1994; Hu et al., 2021), often presents a formidable
task. Common strategies in developing new reactions rely heavily on intuition, initial planning,
and an accompanying series of empirically driven trial and error attempts to identify potential sub-
strates/reactants/optimal reaction conditions etc. While going through these steps, known as reaction
optimization and expansion of substrate scope, a wealth of scattered data is generated. Access to
such reaction data can make data-driven reaction discovery a feasible endeavour (Wu et al., 2018;
Friederich et al., 2020). The development of novel machine learning (ML) models, built on such
sparse datasets, can bring about a paradigm shift toward sustainable practices in reaction discovery
(Jorner et al., 2021).

In a conventional ML approach in a regression setting, the model learns within the boundaries of
the output values as seen in the training data. Extrapolative tasks using a trained model are more
challenging as they entail predictions outside the envelope of the training data (Hatakeyama-Sato
and Oyaizu, 2021). In a typical reaction development scenario, one would strive to maximise the
yield and/or selectivity while maintaining reasonable experimental cost/hazard/time etc (Kutchukian
et al., 2016; Gallarati et al., 2021). To achieve these goals and to minimise the arduous exploration
of the large design space, an inverse molecular design strategy could be considered, wherein an
ML model can identify promising candidates with a desired target property such as the yield of the
reaction. The design strategy should ideally generate new molecules that are likely to offer yields
higher than the training set reactions.
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The numerous applications of deep learning (DL) in chemical space has led to interesting modelling
paradigms (LeCun et al., 2015; Walters and Barzilay, 2020). DL methods are naturally poised for
generative as well as inverse design applications (Sanchez-Lengeling et al., 2017). Reinforcement
learning (RL) is known to be an effective approach towards goal-directed drug design (Olivecrona
et al., 2017; Popova et al., 2018). It would be of high significance to apply the inverse design con-
cept, akin to those employed in the identification of drug-like molecules, into the realm of reaction
discovery. While these methods are employed for fine-tuning a chemical/biological property of
molecules, it has seldom been extended to chemical reactions.

Whereas most chemical reactions would require the reacting partners to possess one or more func-
tional groups, it is not necessarily a hard constraint in property optimization tasks. Additionally,
in a chemical reaction, the participating molecule(s) undergo bond breaking and bond forming to
form the product of the reaction. The problem would demand more diligence given that chemical
reactions are inherently more complex due to the concurrent or sequential participation of different
molecules (e.g., substrates, catalyst, base, additive, solvents, besides several other environmental
factors) to yield the final product. The extent of conversion of reactants to the desired product, ex-
pressed in terms of %yield, depends on a number of factors. The exploration of such a complex,
vast, and high-dimensional reaction space makes it an inherently interesting pursuit. It assumes
additional importance, when one aims to maximise the reaction yield on small data settings.

In this study, we demonstrate an end-to-end application of a reinforcement learning (RL) framework
for reaction discovery. The REINFORCE (Williams, 1992) policy gradient algorithm in conjunc-
tion with a recurrent neural network (RNN) based deep generative model is used for identifying
prospective new molecules. The reaction yield due to such novel molecules are then predicted using
a trained transfer learning (TL) model. The key aspect here is the deployment of an RL framework to
navigate the generation of new molecules towards higher yield/selectivity regimes for three diverse
reaction types as shown in Figure 1 (a deoxyfluorination reaction of alcohol (Reaction a), a chiral
phosphoric acid catalysed coupling between imines and thiols (Reaction b), and an asymmetric hy-
drogenation of imines or alkenes using axially chiral catalysts (Reaction c)). We have employed
a fragment-based approach, wherein a user-defined core fragment is combined with the generated
strings to facilitate reaction specific learning (Figure 1). Notable improvements in the mean yield
of Reaction a (by 28%) and mean enantioselectivity of Reaction b (by 27%) as compared to the
available experimental data could be achieved. For Reaction c, although improvement is modest,
the generated molecules showed visible diversity. The proposed modular framework can help speed
up the design-make-test-analyse cycle, thus addressing one of the major bottlenecks in reaction dis-
covery.

The manuscript is organised in seven subsections. The reviewing of previous works in Section 2 is
followed by formulation of the problem and its solution in Section 3. Next, we describe experimental
details and our results in Sections 4 and 5 respectively. The concluding remarks are in Section 6.

2 RELATED WORK

2.1 PREDICTIVE MODEL

Recent years witnessed increased activities towards developing ML-based predictive models suitable
for chemical space. Early works on predicting reactivity primarily involved the usage of quantum
mechanically derived descriptors (Ahneman et al., 2018; Zahrt et al., 2019). Such feature extraction
methods being computationally expensive, structure and connectivity based featurizations were ex-
plored (Sandfort et al., 2020; Schwaller et al., 2021). Models, especially those based on SMILES,
demonstrated improved performance and generalizability (Schwaller et al., 2019; Kwon et al., 2022).
Most of these approaches were mainly tested on high throughput datasets (HTE) wherein every pos-
sible combination between the key reacting components were evaluated. It is important to note that
in a real-world scenario encountered in reaction development, sparsely distributed smaller datasets
are more likely. To predict yield/selectivity, a regression model can be built using a transfer learning
(TL) protocol. In TL, models are first pre-trained on a generic database of chemical structures, then
fine-tuned on the target task. The use of TL has made predictive modelling in low-data regimes
more affordable (Wang et al., 2022; Kim et al., 2021; Singh and Sunoj, 2022). In this work, we
have adopted a TL-based regression model and fine-tuned separately on the three different reaction
datasets of interest.
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2.2 GENERATIVE MODEL

Deep generative models have been used for exploring chemical space. These models make use
of DNN to learn from the encoding of a collection of training set molecules. Recurrent neural
networks (RNNs) (Gupta et al., 2017; Bjerrum and Threlfall, 2017; Segler et al., 2017), variational
autoencoders (Blaschke et al., 2017), generative adversarial networks (Prykhodko et al., 2019; Wang
et al., 2021), and adversarial autoencoders (Putin et al., 2018) are a few examples of commonly
found generative approaches. It has been shown that alternative methods, such as building molecules
from substructures (Jin et al., 2018) as well as learning to produce graphs (Li et al., 2018), do not
significantly outperform SMILES-based RNN models (Brown et al., 2019; Polykovskiy et al., 2020).
Recently, Skinnider et al. have used a chemical language model (CLM) based on RNNs that could
effectively learn the sequential distribution of SMILES strings from a relatively small sized dataset
(Skinnider et al., 2021). In this work, we have used this CLM for generative applications tailored
to chemical space exploration. While these generative models hold promise, a direct deployment
for molecular generation under specified property constraints is a non-trivial task. Interestingly,
reinforcement learning (RL) has been known as an effective approach towards goal-directed drug
design. In this work, we have employed a multi-pronged approach merging the CLM with RL as
shown in Figure 1 (Sanchez-Lengeling et al., 2017; Neil et al., 2018; Ståhl et al., 2019)

2.3 REINFORCEMENT LEARNING

Olivecrona et al. integrated RNNs with RL to produce targeted molecules with user-defined scoring
function (REINVENT) (Olivecrona et al., 2017). Recently, Popova et al. proposed an RL-guided
optimization using stack-augmented gated recurrent units (GRUs) on properties like logP, quantita-
tive estimate of drug likeliness (QED) and synthetic accessibility (SA) (Popova et al., 2018). The
RL methods based on Deep Q-Networks such as MolDQN are also proven to be successful for
molecule optimization (Zhou et al., 2018). These existing methods built on property optimization as
a key strategy are rarely extended to chemical reactions. In view of this lacuna and the fact that re-
action space optimization is an inherently challenging problem, we became interested in developing
suitable models that focus on maximisation of yield/%ee of reactions of high current importance.
In our RL framework, the model is first pre-trained on a generic dataset containing a large number
of diverse molecules. Another key aspect of training involves the fine-tuning with certain applied
constraints such as a policy function J(θ) set to maximise the yield. This is to ensure a guided
generation towards a region of higher interest in the chemical space.

2.4 NOVELTY ELEMENTS OF OUR METHOD

Despite the several applications of ML for exploring chemical space as described above, most of
them focused on property prediction/optimization tasks, not in chemical reactions (See section h in
the additional information). Prediction or optimization of a molecular property (say, logP) concerns
only a molecule of interest, not a concatenated set of reactants. It would also be informative to
contrast the typical accuracies reported for property prediction and reaction outcome. One of the
best known RMSEs for yield prediction of a catalytic reaction is 7.5 %yield (Ahneman et al., 2018)
whereas for logP it is as good as 0.47 log units (Ulrich et al., 2021). Further, the known regression
models for yield predictions work only within the boundaries of the yields as seen in the training
set. These together suggest that extrapolative tasks for improving yield/%ee of reactions are yet to
be tackled.

It shall also be noted that the direct adaptation of a property optimization RL protocol to reaction
discovery would not be advisable. For most of the property optimization tasks, random forest (RF)
regressors built using molecular fingerprints were used. However, we consider the use of RF model
with caution, in that the predicted output represents a two-level average (average over all samples
falling in a given leaf node of a decision tree and average over all the predicted output values over
all decision trees for a given sample). This limits the upper bound to 93.7 %yield, which is less
than the actual maximum (99) for Reaction a (see Table 8 in additional information). Further, RF
regressor exhibited notable overfitting for unevenly distributed output values (such as in Reaction c).
Importantly, the TL based regressor that we employed exhibits very little overfitting, making it more
generalizable for unseen samples.
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In addition, a molecule should possess the requisite functional group(s) for serving as a substrate
in a chemical reaction. Finding molecules through model conditioning such that it ensures certain
substructure or functional groups is a non-trivial task. Thus, we have incorporated reaction specific
‘core’ fragments in our RL optimisation loop to improve reaction optimization tasks. Repetitive
molecular generation, which prevents optimum exploration, is another common issue with genera-
tive models. Our RL framework incorporates a uniqueness factor βk in the reward to address this.
All these intuition based step by step customizations of our model makes it a novel approach for
reaction discovery.

3 OUR METHOD

Our approach combines an auto-regressive RNN for generation, a TL-based regressor for predicting
yield/%ee, and a policy based REINFORCE algorithm for optimising the generation.

Herein, we used an RNN-based CLM for generation (Skinnider et al., 2021). The RNN was trained
on half million molecules composed of elements ∈ {H, C, N, O, F, P, S, Cl, Br, I} from the ChEMBL
dataset (Gaulton et al., 2011). Each molecule was represented first using the corresponding canonical
SMILES as generated using the RDKIT program (Landrum, 2016). SMILES represents a molecule
as a string of symbols for atoms and a few special characters for opening and closing of a ring and
branches. A typical SMILES notation and an overview of molecule generation is shown in Figure
2. These SMILES strings serve as the input data for the ML model. During the training of the RNN,
the model learns to produce the probability distribution of the next character, given a prefix string.
A fully trained generator (G) can be used to generate new molecules (see additional information).

The newly generated sample from G is sent through the trained predictor (PR) to evaluate their yield
or %ee, as applicable. In this case, the source task is a language model (LM) trained to predict the
next character in a sequence of SMILES. One million molecules from the ChEMBL database were
used in the pre-training of a general domain LM. Concatenated SMILES of the individual reaction
partners (catalyst, substrates, additive/solvent) serve as the input for the target task regressor that
predicts the reaction outcome. The output of PR is employed in the RL workflow to formulate the
reward function. The three independent PR employed here offered accurate predictions of yield/%ee
for the three reactions (see additional information).
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Figure 1: Overview of building blocks of our reinforcement learning approach (Rxn-B)

3.1 FRAGMENT BASED RL-ENABLED YIELD/%ee OPTIMIZATION

The generative and predictive models so trained are then used in the design of our RL workflow
aimed at optimising the reaction outcome. The parameters of the generator (θ) are used as policy
parameters and the predictor provides the reaction outcome value. The state space S is defined as
the set of all terminal and non-terminal strings with length l ∈ [0, T ], for some maximum string
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length T. An action at represents the addition of one character, given a prefix string, through the
sampling process (Figure 2). Therefore, the generation of a full string s of length t is a t-action
process. The goal of RL training is to identify the optimal policy, or the action with the maximum
expected reward from a given state. Rewards are given only to the terminal state (sT ), implying that
rewards for intermediate state are set to zero [r(st) = 0, when t < T ] as they represent incomplete
or partially generated strings.

These generated strings represent only a fragment backbone, which should then be joined to a user-
specified core fragment (Figure 1). For this purpose, the generated string is “fragmented”, at the
first H-containing atom as located within the string, which is then joined to the core fragment to
obtain the full molecule pertinent to the reaction in question. To evaluate the performance of such a
generated molecule, the strings of the other reactants in the reaction are concatenated with it and the
predictor provides an output value for this reaction (Figure 2). This output value is then used for the
reward calculation.

Quantifying a reward merely using the predicted outcome value as obtained from the predictor (or
some function of it) could be misleading. An optimal model should not only maximise the reaction
outcome but also provide diverse, novel, and more importantly realistic molecules. If the reaction
outcome value is set as the only objective, the model may be prone to repeated generation of a
single molecule that fetches a high reward, and hence might lead to suboptimal exploration of the
chemical space (See Table 3, additional information). To alleviate this, the reward value associated
with the predicted yield/selectivity was multiplied by a uniqueness factor βk such that it penalises
duplication within a generated set by scaling the reward (see section (i), additional information).
Here, β is a tunable parameter (β ∈ [0, 1]) for every kth iteration when a given string occurs in the
set. The reward for a generated string r(sT ) can therefore be formalised as follows,

r(sT ) = f(PR(s
′
T )); where s

′
T = FJ(sT ) (1)

Here, the core fragment and other reacting partners are added to the string of state sT using the
FJ function to create a modified string s′T . FJ represents the combined function of a series of
operations, as shown within the dashed line in Figure 2. In eqn. (1), PR is a predictive model that
evaluates the modified state s′T , f is the reward function, s0 the initial state, and s∗ the subset of
terminal states [s∗ = sT ∈ S]. The objective of the model is to maximise the expected return
J(θ). The REINFORCE algorithm is used to estimate gradients of ∂θJ(θ) (Popova et al., 2018). Pθ

represents the probability of sampling the terminal sequence (sT ) given policy parameter (θ).

J(θ) = E(r(sT ) | s0, θ) (2)

∂θJ(θ) =
∑

sT∈S∗

[∂θPθ(sT )]r(sT ) (3)

Figure 2: Details of SMILES notation for a representative molecule and an overview of molecule
generation. The state space (sT ) and action space (at) for a set of actions AR are shown. A valid
state sT is transformed into s′T through the subsequent operations such as fragmentation, joining
with the core fragment, and concatenation with other reaction partners (denoted as R2 and R3).

The training process consists of two phases. In the first phase, both the generator and predictor
are trained separately. In the second phase, the pre-trained generative and predictive models are
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used together to generate novel molecules in the targeted reaction space. The results of these two
approaches, i.e., unbiased generation (UB) and biassed generation (B) are then compared. In UB,
token selection for creating a new SMILES uses only the trained generator and is devoid of RL. In
B, the trained generator is further optimised by the RL with the applied constraints.

4 EXPERIMENTS

4.1 DATASET DETAILS

In order to demonstrate the potential of our RL workflow, three different reactions of varying data
size and distribution in their output values are considered. Given the increasing interest in fluorine
containing compounds as potential drug candidates, (Purser et al., 2008; Yerien et al., 2016) we
have chosen a deoxyfluorination reaction (Figure 3; Reaction a). In this reaction, an alcohol gets
converted to a fluorinated compound by the action of a sulfonyl fluoride (SF) that serves as a source
of fluorine in the presence of a base (B). Deoxyfluorination of alcohols is a valuable reaction (Neil
et al., 2018). Here, the data consists of 37 alcohols, 5 SFs, and 4 Bs, together making 740 reactions.
The goal is to explore the alcohol, which is the key substrate undergoing the reaction. We have
considered [OC(*)] as the core fragment. Other reactants, such as the SF (perfluorobutanesulfonyl
fluoride) and B (phosphazene BTPP: P1-t-Bu-tris(tetramethylene)) are kept fixed (logical basis of
keeping them fixed is provided in the additional information). We deployed the RL framework for
targeted generation of high-yielding alcohols in the case of Reaction a.

Figure 3: Important details of the three reactions considered in this study and the respective core
fragments shown in the highlighted box.

The concept is extended to two catalytic reactions chosen from the domain of asymmetric reac-
tions. In these asymmetric transformations, one of the enantiomers (stereoisomers with a non-
superimposable object and mirror image relationship) is produced in excess. Two such reactions
are considered; (a) a chiral phosphoric acid (CPA) catalysed coupling reaction between imines and
thiols (Zahrt et al., 2019) (Figure 3; Reaction b), and (b) an asymmetric hydrogenation reaction
of imines and alkenes using axially chiral catalysts (Singh et al., 2020) (Figure 3; Reaction c).
These reactions have high practical utility, including that in industrial applications, for enantiose-
lective synthesis of pharmaceuticals and agrochemicals. Reaction b consists of 1027 reactions (43
CPA catalysts, 5 imines, and 5 thiols). The nature of the 3,3′ substituents on the CPA catalyst are
known to impact the enantioselectivity (Rueping et al., 2011). Based on this key insight, we have
considered [OP1(Oc2c(c3c4ccccc4cc(*)c3O1)c5ccccc5cc2(*))=O] as the core fragment (Figure 3).
Reactants such as the imine and thiol are kept fixed during exploration of the 3,3′ substituents to
be attached to the CPA core. The goal is to identify suitable 3,3′ substituents that would help max-
imise the formation of the desired enantiomer of the product. In other words, the substituents that
provide maximum enantioselectivity are most desired. Reaction c contains only 368 examples (190
substrates, 12 solvents, and 58 chiral catalysts), forming the smallest dataset used in this work. Fur-
ther, the output values are visibility imbalanced, with fewer samples in the low enantiomeric excess
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region. [P(*)1Oc2ccc3ccccc3c2c(c(O1)cc4)c5c4cccc5] is taken as the core fragment here, with a
fixed set of other reactant such as the alkene (dimethylitaconate) and solvent (dichloromethane).

4.2 BENCHMARK MODELS

There have been two earlier studies that explored the chemical space by generating new substrate
molecules for reaction discovery (Singh and Sunoj, 2022; Popova et al., 2018). The first one, used
an RNN-based deep generative model, augmented with an NLP-based regression model to identify
high yielding substrates. Since no RL was used in their study, the results serve as a suitable baseline
for an unbiased model (UB). The second study employed the ReLeaSE (Reinforcement Learning for
Structural Evolution) model, that contains two generative and predictive DNNs jointly trained using
the RL technique, to create new focused chemical libraries. A biassed generation of new molecules
towards a desired physical and/or biological property was accomplished. Instead of following a
similar protocol, it was necessary for us to modify the ReLeaSE model by including (a) the fragment
based approach, (b) TL-based surrogate regressor, and (c) a uniqueness factor (βk) (see section (k),
additional information). ReLeaSE-UB and ReLeaSE-B in Table 1 corresponds to these modified
models.

5 RESULTS AND DISCUSSION

A comparison of performance of our Rxn-B with other models is provided in Table 1. In Reaction a,
the goal is to find new high-yielding alcohols as obtained from a given core fragment (Figure 3). Not
considering the core fragment in the generation process might result in the absence of the required
functional group in the generated molecules, thus rendering them unsuitable for the reaction (see
Table 5, additional information). In addition to maximising the yield or enantioselectivity, it is im-
portant that the generated molecules are sufficiently diverse and remain amenable to easy synthesis.
The quality of the generated molecules can be assessed by using some simple evaluation matrices
such as validity (V ), uniqueness (U ), and novelty (N ) (see succinct mathematical representation
of these in the additional information). Ease of synthesis can also be evaluated by using the syn-
thetic accessibility score (SAS). Here, V is the fraction of valid molecules among all the generated
molecules, U is the number of unique molecules among the valid molecules, and N represents the
percentage of unique molecules not present in the training set.

All evaluation metrices indicate better performance of our unbiased model (Rxn-UB) than the base-
line ReLeaSE-UB model for Reaction a. A notable improvement in V , U and N of the generated
alcohol molecules shows that the model has effectively learned the semantics and long-term depen-
dencies of the SMILES string. Although the VUN values for Rxn-UB model are lower than the
TL-UB baseline model, the increase in ȳ from 56.5 to 63.8, is an important aspect. With respect to
the second baseline ReLeaSE-UB the VUN values obtained from Rxn-UB are better. When VUN
and ȳ are considered together, the Rxn-UB performs better than both ReLeaSE-UB and TL-UB.
The improved exploration ability of the Rxn-UB has prompted us to perform additional experiments
with biassed generation (B).

The biassed generation using the Rxn-B model has led to significantly improved performance over
the baseline ReLeaSE-B model. Rxn-B appears to explore the valid reaction space of the vast high
dimensional latent space, as evidenced from the high percentage of validity (94.6%). The model
is also successful in addressing the issue of repetitive generation, as revealed by the uniqueness
of 89.4% and is able to explore new molecules with a 89.4% novelty. A significantly higher ȳ of
%yield for Rxn-B model (85.1) over that obtained from ReLeaSE-B (74.2) is noticed. A systematic
improvement in ȳ of %yield over the RL training campaigns can be noted from Figure 4b. A notable
increase in the ȳ value for Rxn-B is also evident as compared to the TL-UB and Rxn-UB models.
Higher yields could be achieved (ȳ, 85.1 versus 56.5) with a modest lowering of the VUN values
(appox. 6 units). Rxn-B model shows significant improvement over previous baselines in gener-
ating high yielding alcohols. It is evident from Figure 4c, how the Rxn-B model is able to guide
the generation of alcohols towards the higher yield regions under the applied constraint of yield
maximisation. The experimentally known ȳ of the yield across all alcohols is 57.2, whereas the
biassed Rxn-B and unbiased Rxn-UB models have outperformed this with ȳ values of 85.1 and 63.8
respectively. Furthermore, the Rxn-B algorithm is more time-efficient than ReLeaSE-B, requiring
only 80 minutes to reach the maximum yield as compared to 720 minutes for the latter. Inspired
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Reaction a
Method V U N ȳ t
ReLeaSE-UB 60.0 60.4 60.4 63.0 na
TL-UB 98.0 95.6 95.6 56.5 na
Rxn-UB 91.8 91.8 91.4 63.8 na
ReLeaSE-B 90.0 80.2 64.6 74.2 720
Rxn-B 94.6 89.4 89.4 85.1 80

Method Reaction b Reaction c
V U N ȳ t V U N ȳ t

ReLeaSE-UB 62.4 62.4 61.8 51.7 na 63.6 63.6 61.8 91.6 na
Rxn-UB 88.4 88.4 87.6 52.2 na 86.6 86.6 86 91.8 na
ReLeaSE-B 77.6 77.6 76.6 58.6 960 84.6 84.6 79.2 93.8 840
Rxn-B 99.6 96.0 96.0 95.2 80 96.4 93 92.4 95.1 80

Table 1: Performance comparison of our model (abbreviated as Rxn-B) with other baseline models
ReLeaSE (Popova et al., 2018) and TL-UB (Singh and Sunoj, 2022). The mean value of the pre-
dicted yield/%ee is denoted as ȳ. The VUN values are in %. t denotes the time required for RL
training in minutes. Since unbiased models (UB) do not involve any RL training, their run time is
negligible (< 10 minutes), thus denoted by na.

by the promising results on deoxyfluorination reaction, we have extended this concept to two more
reaction datasets, aimed at higher %ee using our Rxn-B model. Additional experiments to check if
the RL optimization is exploiting the surrogate regressor revealed that neither a model-specific nor
a data-specific bias exists (section (j) additional material).
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Figure 4: (a) Comparison of mean yield (ȳ) as obtained using different models. The actual ȳ for the
experimentally known examples are; Reaction a = 57.2, Reaction b = 68.4, and Reaction c = 94.6
(calculated using the same reacting partner as used in developing the RL framework). Note that the
ȳ for all 740 fluorination reactions of alcohols is 42, but with a fixed combination of other reactants
SF5 and B4 it is 57.2, (b) Plot showing the improvement in mean yield value over the RL training
episodes for Reaction a, (c) A comparison of the ȳ values for Reaction a as obtained from biassed
(Rxn-B) and unbiased (Rxn-UB) generation.

With 99.6% validity, 96.0% uniqueness, and 96.0% novelty of the generated molecules, Rxn-B
has offered a notable improvement for Reaction b as well. The increase in the ȳ value of %ee by
43 units (Rxn-B = 95.2, Rxn-UB = 52.2) indicates the effectiveness of the model in biassing the
generation of the chiral phosphoric acids (CPAs) capable giving of higher %ee. This encouraging
result in exploring CPAs requiring two arms (as opposed to just one appendage of the core fragment
in Reaction a and Reaction c; Figure 3) again implies higher general utility of our model in reaction
discovery. In the case of Reaction c, Rxn-B is able to improve the VUN indices. For instance,
ȳ value of the Rxn-B model is about 4 units higher than the Rxn-UB model. Notably, the chiral
ligands generated by Rxn-B are much more diverse than the previously known ligands (Figure. 12c).
Thus, Rxn-B can be considered successful in exploring the region outside of the training set. These
findings demonstrate that our proposed RL framework (Rxn-B) can function as a highly effective
tool for exploring the reaction space in the direction of high yield/%ee.
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experimental
generated
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Figure 5: (a) The t-SNE plot showing the chemical space spanned by the generated (yellow dots)
and the known (dark pink dots) alcohols for Reaction a, (b) representative examples of the generated
alcohols (blue) with a gradual increase in yield in comparison to a known alcohol shown in the left
(red)

5.1 FAITHFULNESS OF RL WORKFLOW

Given these promising results, we wanted to visualise the spread of the explored chemical space viz-
a-viz the training set containing 37 known alcohols. A dimensionality reduction technique, t-SNE
(t-distributed Stochastic Neighbor Embedding) is used to convert the high dimensional space to a
lower dimension (van der Maaten and Hinton, 2008). The t-SNE plot for Reaction a, created using
the 166-bit MACCS (Molecular Access System) keys for the generated and training set molecules,
is shown in Figure 5a. The diversity of the Rxn-B generated alcohols, can be understood from the
spread of the yellow colored dots. The Tanimoto similarity score (a common method to compare
the similarity between molecules) (Chevillard and Kolb, 2015) between these two sets of alcohol
molecules is 0.3, indicating that the generated molecules are very diverse as compared to the known
alcohol molecules in the training set. These are encouraging results obtained through Rxn-B on a
non-trivial extrapolative task in the molecular space focused on chemical reactions.

A few representative molecules from the generated alcohols and the corresponding predicted yields
(y), synthetic accessibility (SAS), and similarity (SIM) scores are shown in Figure 5b. The SIM
score for these alcohols is calculated with respect to a real alcohol with an experimental yield of
36 (shown in the left using red color). Given that the SAS score indicates the ease of synthesis
in a 1 (easy) to 10 (difficult) scale, values from 1.5 to 2.2 obtained for these generated alcohols are
encouraging. Similar analyses on Reaction b and Reaction c can be found in additional information,
section (l), (m), (n).

6 CONCLUSION

Our current contribution builds on the use of RL for reaction discovery that guides toward high
yield/%ee. The Rxn-B model contains an RNN-based deep generative model which generates novel
molecules, and the predicted values obtained from a TL-based predictor is then used in the reward
function. The Rxn-B showed notable improvement over the baseline models. Rxn-B exhibited stable
learning across all the three reaction datasets considered in this study and have discovered higher
yielding substrates or higher %ee chiral catalysts. Training of these models required only around
an hour of compute time, much shorter than other baseline models. The proposed workflow would
help in planning synthesis of important molecules by quickly identifying high-yielding substrates,
thus minimising tedious empirical trial and error attempts.

Our experiments showed that the Rxn-B strategy is effective in exploring one major partner (sub-
strate/catalyst) in a reaction where the yield/%ee is maximised with other components kept fixed.
Although other partners may have only a lower impact on the reaction outcome, it would be in-
teresting to develop an RL algorithm for joint optimisation of multiple components of importance
to the reaction. In future, we intend to consider multi-objective tasks to facilitate a more effective
exploration of the reaction space.
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ADDITIONAL INFORMATION

(a) Experimental settings and details of model architecture

Generator: The architecture of the language model (LM) consists of three hidden layers with 512
GRU (Gated Recurrent Units) in each layer. It also contains an embedding layer of dimension 128
and no dropout layers. Models were trained with a batch size of 128 using the Adam optimizer with
β1 = 0.9 and β2 = 0.999 having a learning rate of 0.001. 10% of the molecules from the training
set were kept aside as a validation set and used to carry out early stopping with a patience of 50,000
mini-batches.

SMILES strings are used as input for this model. The encoding of the data renders it suitable for
RNN models. The initial step in data encoding is tokenization wherein each character representing
an atom or a bond is transformed into a char type (token). A vocabulary of length A is determined,
which is made up of all distinct tokens found in the training data along with start-of-string [SOS],
end-of-string [EOS], and padding token characters [<PAD>]. In the sequence modelling situations,
the training of RNN is done by maximum likelihood estimation of the next token (at) in the target
sequence, given the tokens for the previous steps (at−1). This can be expressed in terms of a cost
function JG(θ), as shown in Eq.(4). Each token array is sent to the NN as an input at each stage of
the training process, to receive the probability distribution of all possible tokens as the output. Then,
the next character is sampled from this predicted probability distribution and is compared to a real
token. Through this loop, the model learns to produce the probability distribution of what the next
character is likely to be, with an aim to maximise the likelihood assigned to the real token:

JG(θ) = −
T∑

t=1

logP (at | at−1, at−2, ..., a1) (4)

The goal of training is to minimise the cost function JG(θ). When applied to a batch of samples, the
cost function is minimised with respect to the NN parameters (θ). After a number of iterations, the
model learns to assign the highest probability to the correct token while taking the rest of sequences
as the input. By learning the grammar and semantics contained in the SMILES representations, the
RNN will be able to produce syntactically valid molecules (Popova et al., 2018).

Once the RNN has been fully trained, it can be utilised to generate new molecules. The next token in
the sequence is sampled using the probability distribution that the RNN has learned, and the sampled
token is then used as the input for the next time-step. The [SOS] token serves as the first input, and at
each subsequent time step, an output token (at) is sampled from the predicted probability distribution
P (At) over vocabulary A. The sequence generation ends once the [EOS] token is sampled. Finally,
generative RNN produces complete SMILES in the form of sequential strings by predicting their
constitution token by token.

Predictor: The ULMFiT (Universal Language Model Fine Tuning) is used in the domain of natural
language processing (NLP), that works in a transfer learning setting, served as an unified regression
model. AWD-LSTM (ASGD Weight-Dropped LSTM), a model architecture with built-in optimiza-
tion and regularisation capabilities, is used. An embedding layer, an encoder consisting of 3 LSTM
layers, and a decoder layer together formed the general domain LM architecture. The model has an
embedding vector of length of 400 for the first LSTM layer, making the input size 400. The number
of hidden units is 1152 whereas output size is 400, the same as the embedding input layer. A fully
connected layer is then used to decode the output hidden state of the final LSTM layer. Finally, the
probability of each token in the vocabulary is assigned using a softmax function. For the target task
regressor, the LM was modified by introducing two linear blocks to the decoder unit (i.e., after the
final LSTM layer of the encoder). The first layer of the decoder unit has an input size of 1200 and
an output size of 50. A feature vector of size 1200 is generated by concatenating the final hidden
state (400) with the maximum-pooled (400) and mean-pooled (400) representations of each hidden
state in the final LSTM layer. In the final linear layer, the dimension is further reduced to 1 for the
regression task.

RL framework details: In our workflow, value of the discount factor (γ) is set to 0.99, by which the
rewards will be discounted within one trajectory. The uniqueness factor (β, set to 0.75) will penalise
the model for repeated generation of same molecules. The batch size per episode is set to 2000.
Performance comparisons between different models are made on 500 newly generated molecules in
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terms of their validity, novelty, uniqueness, and mean value of the predicted output (yield/%ee). It
is important to note that with the exception of fine-tuning the predictor, the same hyperparameter
settings for the RL framework were used across all three data sets.

(b) Performances of TL-predictor

Using a pre-trained general domain LM, we have separately fine-tuned the target task regressor
for three different reactions. The train/validation/test splits consists of 70, 10, 20 % of randomly
distributed samples. The performances for fine tuned TL-regressor are tabulated in Table 2. This
model gave excellent test performance as evident from the RMSEs (root mean square error) of 7.28
(in % yield for Reaction a), 8.96 (in %ee for Reaction b), and 7.50 (in %ee for Reaction c).

Dataset Train RMSE Validation RMSE Test RMSE Test R2

Reaction a 6.55 7.85 7.28 0.94
Reaction b 10.50 9.92 8.96 0.89
Reaction c 6.55 7.52 7.50 0.75

Table 2: Performance of TL-based surrogate regressor

(c) Evaluation metrics

Validity is a basic and important benchmarking metric of the generated molecules. In most cases,
the validity score is calculated by dividing the total number of valid molecules by the total number
of molecules generated. Suppose, the model has sampled n molecules forming a set Y , then the
validity score (Yvalid) can be expressed as,

Y = {y1, y1, y1, ..., yn}; Yvalid =
1

n

n∑
i=1

valid(yi); Yvalid ∈ [0, 1] (5)

Where the function valid (yi) returns 1 for a valid molecule and 0 otherwise. Uniqueness is used as
a measure of model robustness. While a model can produce a high number of valid molecules, the
frequency of generation of same molecules over and again may become an issue. The uniqueness
score (Yunique) for the l valid generated molecules can be written as,

Yunique =
1

n
|

l⋃
i=1

{yi} |; Yunique ∈ [0, 1] (6)

Where, U refers to the union operator applied to yi consisting of l valid molecules. Novelty is
expressed using the novelty score, which is computed by dividing the number of novel molecules by
the total number of sampled molecules. Ideally, a robust model should discover new molecules that
are unseen in the training. If Y is the set of m valid and unique generated molecules obtained from
a training set of S molecules, the novelty score (Ynovel) can be defined as,

Ynovel =
| Y ∩ S |

n
Ynovel ∈ [0, 1] (7)

(d) Importance of uniqueness factor (βk)

We conducted an additional experiment to assess the importance of βk in the reward scheme for
Reaction a. The results shown in Table 3 show a drastic loss of uniqueness and novelty of the
generated molecules as compared to those in the original Rxn-B (Table 1) model. This suggests that
our Rxn-B model is able to generate a good number of unique molecules, by successfully preventing
repetitive generation.

Dataset Method V U N ȳ
Reaction a Rxn-B 99.8 7.20 7.20 88.7

Table 3: Performance of Rxn-B devoid of βk, VUN values are in %.

(e) Justification for using the other reaction partners as held fixed for every generated
molecules in the regression
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In the case of Reaction a, the RL model focuses on generating new alcohol molecules, which are
subjected to fluorination by using a sulfonyl fluoride (SF) and a base (B) as the other reaction part-
ners. While one can combine each generated alcohol with any of the five SFs and four Bs, for ease
of comparing the yields between various alcohols it would be good to keep the combination of SF
and B fixed. A careful analysis of the reported experimental data suggests that SF5 and B4 returns
a higher average yield (Figures 6a and 6b). In this analysis, every reaction that uses only a given SF
(say, SF1) as the fluorinating agent is chosen and the mean yield is calculated over the output values
of such reactions. A similar process is followed for all other sulfonyl fluorides and their average
yields are then plotted in Figure 6a. The best mean yield value is found to be for SF5. The base with
the highest average yield value is similarly identified, which is found to be B4 (Figure 6b).

(a) (b)

Figure 6: Mean experimental yield for each (a) sulfonyl fluoride (SF), (b) base (B). The SF and B
which are held fixed are shown inside the highlighted box.
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Figure 7: The mean yield values for deoxyfluorination reactions across all sulfonyl fluoride and base
combinations in the case of Reaction a.

In the case of Reaction b, IM5 (imine) and TH2 (thiol) are kept as the fixed components. These
compounds offer the highest mean %ee (Figure 8A & B). Figure 8C plots the mean of the predicted
%ee for the generated ligands, with each possible combination of IM and TH. Regarding Reaction c,
making a plot is not feasible as there are a large number of imine/alkene reacting partners (190).

(f) Reproducibility of model performance

We have conducted additional experiments, maintaining the same settings of the RL model, for
Reaction a, to assure the reproducibility of results. The average value of all performances is shown
in Table 4. It is likely that certain minor differences, between different runs, may become apparent
in ML models that are sensitive to the initialization. In the present case, the RL generator or RL
training would have similar, but non-identical initialization. It shall be noted that the sampling of
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Figure 8: The mean experimental %ee values for each (a) imine and (b) thiol (fixed IM and TH are
shown in the box); (c) mean predicted %ee for the generated ligands with every pair of imines and
thiols in the case of Reaction b.

characters based on probability distribution during the initialization of trained generators is random.
This process will therefore not always generate the same set of samples. In the RL training, it
explores different regions of the latent space in different runs. Although more experiments might
lower the standard deviation in VUN, the most important quantity, i.e., ȳ, already has very small
standard division.

We provide our code, datasets, and pre-trained models through the zip file in the Supplementary
Materials.

Experiment No. Method V U N ȳ
1 Rxn-B 94.6 89.4 89 85.1
2 Rxn-B 94.6 94 94 87.1
3 Rxn-B 98.2 90.6 91 87.1
4 Rxn-B 96.4 92.8 93 86.9
5 Rxn-B 95.6 89.2 89 86.3

avg. ± std. dev. Rxn-B 95.9 ± 1.3 91.2 ± 1.9 91.2 ± 1.9 86.5 ± 0.8

Table 4: Performances for different runs in case of Reaction a

(g) Importance of core fragment constraints

To assess the importance of the core fragment, additional experiments were performed. If the core
fragment or substructure [OC(*) is the core fragment for Reaction a] is not considered throughout
the generation process, they may not have the required functional group, rendering them unsuitable
for the reaction. Here, we modified the reward function to make it dependent on the presence of the
necessary functional groups. If the substructure is present in the generated molecule, we rewarded
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the generation process; if not, we penalised the model. The results are shown in Table 5, where a
sharp decline of novelty and uniqueness relative to the original model performance (Table 1) strongly
suggests that reaction space exploration without the core fragment is not very useful. In the case of
Reactions b and , the core fragment is the axially chiral phospohric acids, which are rarely found in
the ChemBL molecules. Sampling such molecules from the pre-trained model is unlikely, thus not
included in Table 5.

Dataset Method V U N ȳ
Reaction a Rxn-B 100 0.20 0.20 68.7

Table 5: Performance of Rxn-B devoid of core fragment and corresponding VUN values in %

(h) A comparison between property prediction and reaction outcome

Consider the following two alcohols: C(CCCO)c1ccccc1, c1(CCC(C)O)ccccc1. Both of them are
present in the Reaction a dataset. These molecules are very similar in structure, one is a linear pri-
mary alcohol and the other a branched secondary alcohol. Due to this similarity, they have very
similar individual properties, especially those routinely considered in literature for property opti-
misations. The logP values are nearly identical (2.00 and 2.0016) so are the QED (Quantitative
Estimation of Druglikeness) values (0.65 and 0.69). On the other hand, the yields of fluorination
reaction under identical conditions are 94% and 65% respectively. Such observations ascertain that
reaction optimisation requires a different level of control on molecular structure, making it a rela-
tively more complex problem statement.

(i) Reward function

As our target is to maximise the reaction outcome such as yield/%ee, a monotonic function of the
predicted outcome as the reward function would be suitable. In this study, we employed a linear step
function, as shown in Figure 9. The actual reward function includes a multiplication by βk.
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Figure 9: A plot of step reward function used for this study

(j) Tests to examine whether exploitation of surrogate regressor occurs

We randomly divided the initial dataset into two sets, split1 and split2, for Reaction a, each con-
taining 370 samples. Three fine tuned surrogate models PR1, PR2, and PR3 were built. PR1 is then
trained on split1 and used as the surrogate model for RL training. PR2 was trained on the same split
(split1), but with a different seed (to evaluate any model-specific bias was induced by the surrogate
model). PR3 was separately trained on split2 (to examine the likelihood of data-specific bias induced
by the surrogate model). The test and train performances for these models are shown in Table 6. The
results of RL training as shown in Figure 10a, demonstrate that the optimization algorithm did not
exploit the surrogate regressor.

Moreover, we have examined whether any model-specific bias is present (PR2 and PR2′) in the
surrogate regressor trained on the original 740 reactions for Reaction a. These surrogate models
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Dataset Surrogate Regressor Split Type Train RMSE Test RMSE Test R2

Reaction a PR1 Split1 8.37 9.38 0.88
Reaction a PR2 Split1 7.75 11.02 0.84
Reaction a PR3 Split2 6.11 9.15 0.91

Table 6: Performances for different splits having 370 samples in case of Reaction a

are trained with different seed values. The performances of various models are provided in Table
7. It is also evident from Figure 10b that predicted yield did not significantly differ across different
model controlled surrogate regressors PR1, PR2, or PR2′. For Reaction b and Reaction c, model
controlled experiments showed similar trends (Figure 10), indicating that the optimization algorithm
did not exploit the surrogate regressor model.

Dataset Surrogate Regressor Train RMSE Test RMSE Test R2

Reaction a PR1 6.55 7.29 0.94
Reaction a PR2 5.82 7.67 0.93
Reaction a PR2′ 5.89 7.44 0.93
Reaction b PR1 10.50 8.96 0.89
Reaction b PR2 10.76 8.50 0.90
Reaction b PR2′ 11.20 7.70 0.92
Reaction c PR1 6.55 7.50 0.75
Reaction c PR2 6.56 7.51 0.75
Reaction c PR3 6.70 7.68 0.74

Table 7: Performances of different runs for Reaction a, Reaction b, and Reaction c

(k) Influence of including different functionalities step-by-step to the baseline model

The performances of unmodified ReLeaSE models (ReLeaSE-B(UM)) are shown in Table 8 in the
case of Reaction a. Note that ReLeaSE-B(UM) (i) lacks constraints on generating molecules with a
user defined functional group (i.e., core fragment in our terminology), (ii) employs a random forest
regressor (found to be less suitable for our task (Table 8), and (iii) found to reach a state of repetitive
generation. This indicates that the ReLeaSE model finds it challenging to identify new molecule
containing alcohol functional group. To make it applicable to a reaction discovery, as in the present
case, the ReLeaSE model should accordingly be customised. The results of our Rxn-B method
shown in Table 9 convey a gradual improvement in performance with step-by-step inclusion of
each of the tailored functionalities such as (a) the fragment based approach, (b) TL-based surrogate
regressor, and (c) a uniqueness factor (βk), as compared to the unmodified ReLeaSE baseline models
(Figure 11).

Dataset Surrogate Regressor Train RMSE Test RMSE Test R2

Reaction a RF 7.74 11.00 0.86
Reaction b RF 7.80 8.63 0.90
Reaction b RF 9.83 12.93 0.40

Table 8: Performances for different runs in the case of Reaction a, Reaction b, Reaction c with a
random forest (RF) surrogate regressor

The notations (UM) and (M) respectively denote the unmodified ReLeaSE and a partially modified
(inclusion of only the core fragment).

(l) Synthetic accessibility score (SAS)

SA scores of the generated molecule sets were calculated, and the corresponding mean values are
2.1, 4.9 and 3.7 for Reaction a, Reaction b and Reaction c respectively (Figure 11).

(m) Diversity of generated molecules

The diversity of generated CPAs can be seen from Figures 12a and 12c respectively for Reaction b
and Reaction c. Some representative CPAs generated by our Rxn-B model for Reaction b and the
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Figure 10: (a) Plot shows a comparison of average yield value obtained with different regressors
trained on a split dataset for Reaction a (370 samples). Comparison of mean yield(ȳ) as obtained
using different surrogate regression models trained using the respective full datasets for (b) Reac-
tion a, (c) Reaction b, and (d) Reaction c. The shaded regions represent standard deviations while
the bold line represents the mean value.

Method Core
fragment

Uniqueness
Factor

Surrogate
Regressor V U N ȳ

ReLeaSE-B(UM) No No RF 82.0 26.0 26.0 58.9
ReLeaSE-B(M) Yes No RF 87.0 66.0 42.0 67.0
ReLeaSE-B Yes Yes TL 90.0 80.2 64.6 74.2
Rxn-B Yes Yes TL 95.8 94.8 94.8 89.0

Table 9: Performances for different runs in case of Reaction a, Reaction b, Reaction c with RF
surrogate regressor

corresponding %ee values are shown in Figure 12b. It can be seen that Rxn-B has identified new
CPAs with higher %ee that are structurally similar to the experimentally known reference (shown in
red, Figure 12b). The model has generated a novel CPA with a predicted %ee of 99, much higher
than the reported %ee of 18 for the reference CPA. The similarity score (SIM score) of 0.85 between
this and the reference CPA indicates the ability of Rxn-B in efficiently exploring neighbourhoods
of the known CPA in the higher %ee regimes. The SIM score for generated CPAs for Reaction c is
calculated with respect to a experimentally known CPAs with an experimental %ee of 89 (shown in
the left using red color, Figure 12d).

(n) Quantitative estimate of drug-likeness (QED) score

QED is a metric of drug likelihood, which ranges from 0 to 1, where compounds with higher drug-
like properties are closer to 1. In the case of Reaction a, we have calculated the QED score for
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Figure 11: Plots of SA scores for the generated molecules in the case of (a) Reaction a, (b) Reac-
tion b, and (c) Reaction c.
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Figure 12: (a) The t-SNE plot showing the chemical space spanned by the generated (yellow dots)
and the known (dark pink dots) alcohols for Reaction b, (b) representative examples of the generated
alcohols (blue) with a gradual increase in yield in comparison to a known alcohol shown in the left
(red) for Reaction b; (c) The t-SNE plot containing the known chiral ligands and the generated
ligands for Reaction c, (d) representative examples of the generated CPAs (blue) by the Rxn-B
model for Reaction c.

generated molecules (Figure 13a), the QED score is found to be 0.72 ± 0.13. This value is higher
than the QED score obtained using the ChEMBL dataset (0.56 ± 0.20) shown in Figure 13b.
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(a) (b)

Figure 13: Plot of QED score of (a) the generated molecules for Reaction a, (b) the molecules
present in ChEMBL dataset.
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