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ABSTRACT

Enzymes can be engineered to catalyze reactions with non-native substrates or
even perform entirely new reactions unknown in nature. However, developing
such novel activities through wet-lab engineering is time- and resource-intensive.
By estimating enzyme activity without new experimental data, zero-shot (ZS)
predictors can accelerate enzyme engineering. While ZS predictors have been
demonstrated in various contexts, they have yet to be evaluated on non-native sub-
strates and new-to-nature chemistry. Critically, many existing predictors do not
explicitly encode substrate or transition-state properties, which we propose are
essential for predicting new-to-nature chemistry. Here, we systematically studied
two types of mechanistically distinct enzymes using 16 ZS predictors—including
six general and ten substrate-aware scores derived from generative modeling,
molecular docking, and active-site heuristics. We curated new experimental and
literature mutation datasets spanning 11 non-native substrates and three new-to-
nature reactions with 11 additional substrates. The six general ZS predictors
could generalize to non-native substrates, but failed for new-to-nature chemistries.
In contrast, certain substrate-aware approaches could predict new-to-nature
chemistries, with AlphaFold 3’s chain-predicted aligned error being the most pre-
dictive of both activity and stereoselectivity. A weighted ensemble of AlphaFold
3 and EVmutation scores generalized to all chemistries that we tested. Our find-
ings highlight the potential of ZS predictors to accelerate enzyme engineering,
advancing the expansion of the chemical universe beyond nature’s repertoire.

1 INTRODUCTION

Enzymes, nature’s catalysts, perform life-sustaining chemistry. Due to their exquisite specificity
and selectivity, engineered enzymes have applications in therapeutics, bioremediation, and bio-
catalysis, where they can offer greener and more sustainable alternatives to conventional chemical
methods (Buller et al., 2023; Lutz & Iamurri, 2018). Beyond merely enhancing their native
functions, significant efforts have focused on expanding enzyme repertoires to catalyze reactions
with non-native substrates—or even perform entirely new chemistries unknown in biological
systems, termed new-to-nature (Arnold, 2017; Renata et al., 2015; Chen & Arnold, 2020; Bell
et al., 2021). The development of such enzymes often starts by identifying a promiscuous or side
activity, which is then optimized for desired functions (termed “fitness”, Figure 1a) (O’Brien &
Herschlag, 1999; Leveson-Gower et al., 2019). Fitness optimization typically employs directed
evolution, a widely used method for accumulating beneficial mutations through iterative rounds of
mutagenesis (to generate variants) and functional assessment by selection or screening (Packer &
Liu, 2015; Wang et al., 2021). However, this process is labor- and resource-intensive, particularly
for challenging chemistries constrained by low-throughput data collection.

Emerging computational tools, especially machine learning (ML)-based methods, have shown
promise in accelerating enzyme engineering, from starting point discovery, to de novo designs and
fitness optimization (Yang et al., 2024; Mak et al., 2015; Siegel et al., 2010; Kalvet et al., 2023; Ding
et al., 2024b; Yang et al., 2025; Thomas et al., 2024; Rapp et al., 2024). A particularly appealing
avenue is zero-shot (ZS) prediction: estimating variant fitness without relying on experimental
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Figure 1: Overview of datasets and zero-shot (ZS) predictors. a) Enzyme engineering for reactions with non-
native substrates and new-to-nature chemistries. b) Six general ZS predictors, covering different modalities and
auxiliary information, alongside ten substrate-aware predictors derived from generative modeling, molecular
docking, and active-site properties. c) The Pf TrpB reaction with the native substrate, indole, in a pyridoxal
phosphate (PLP)-dependent manner, along with 11 non-native indole analogs. d) Heme-based new-to-nature
carbene transfer reactions with activity and stereoselectivity labels: i) ParLQ: protoglobin-catalyzed olefin
cyclopropanation with 9 styrenes and ii) Rma cyt c-mediated formation of C–B (Rma-CB) and C–Si (Rma-CSi)
bonds. Crystal structures illustrate the cofactors and active-site residues targeted for engineering. The number
of unique enzyme-substrate pairs is listed under each reaction.

data. ZS predictors leverage auxiliary information such as protein stability, evolutionary patterns, or
structural features. These predictors have augmented supervised models to identify higher-fitness
variants, guided experimental data collection for ML model training, and scored in silico designs
for reinforcement learning or experimental validation (Wittmann et al., 2021; Li et al., 2024; Hsu
et al., 2022a; Landwehr et al., 2025; Johnson et al., 2024; Stocco et al., 2024). Recent benchmarks
highlight the broad applicability of ZS predictors Notin et al. (2023). However, these methods
have yet to demonstrate capability across diverse enzyme-substrate pairs, particularly for out-of-
distribution non-native substrates and new-to-nature chemistries. Few studies also assess the ZS
predictability of the reaction product stereoselectivity, a key factor influencing their structural and
functional properties (Reisenbauer et al., 2024). Furthermore, existing enzyme-substrate datasets
primarily focus on native or near-native activities and rarely address active-site mutations that
are critical to enabling fundamentally new chemistries (Goldman et al., 2022; Paton et al., 2024).
Most importantly, many existing ZS methods do not explicitly encode substrate or transition-state
properties, which we hypothesize are essential for predicting new-to-nature chemistry.

Here, we curated new experimental and literature datasets for two types of mechanistically distinct
enzymes and benchmarked six general and ten newly proposed substrate-aware ZS predictors.
Specifically, we evaluated their performance across 11 non-native substrates and three new-to-
nature chemistries, covering 11 additional substrates (Figure 1). Each dataset includes active-site
mutations designed to enhance specificity and selectivity, and introduce new chemistries (Bell
et al., 2021). Our study addresses three key questions: 1) Do general ZS predictors generalize
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to non-native substrates and new-to-nature chemistries for both activity and stereoselectivity? 2)
Are novel substrate-aware ZS scores, derived from generative modeling, molecular docking, and
active-site properties, more generalizable than the general predictors? 3) Which combination of ZS
predictors can best generalize across these chemistries?

2 METHODS AND DATASETS

We examined the predictability of ZS predictors on activity, defined by absorbance or percent
yield of the major product. Where applicable, we also studied stereoselectivity, defined as
enantiomeric excess of the desired chiral isomer or diastereomeric excess of the desired di-
astereomer. We analyzed the effects of mutations in key active-site residues across two types
of mechanistically distinct enzymes: Pf TrpB, which catalyzes reactions with 11 non-native
substrates, and heme-binding proteins (protoglobin and Rma cyt c), which catalyze three different
new-to-nature chemistries (ParLQ, Rma-CB, Rma-CSi). In ParLQ, we further examined the
effects of 9 different substrates. The Pf TrpB dataset is presented for the first time, while the
rest were previously reported (Ding et al., 2024b; Yang et al., 2025). The 11 Pf TrpB datasets
and ParLQ-a contain more low-activity variants than the other datasets (Appendix A.4.1). The
similarity of the non-native substrate to the native substrate was calculated using the Tanimoto
similarity of atom-pair fingerprints (Carhart et al., 1985). The energy barriers of new-to-nature
chemistries were determined using density functional theory (DFT) calculations. We tested
predictor ensembles using families of linear models. See Appendix A.1 and A.3 for more details.
Spearman’s correlation is reported in the main text. For recall (true positives of the top 25% ranked
variants) and additional results, see Appendix A.4.2 and A.4.3. Data supporting this study are
deposited on Zenodo: https://zenodo.org/records/15226690. The code is available
on GitHub: https://github.com/fhalab/substrate_aware_zs.

3 RESULTS

3.1 GENERAL ZS PREDICTORS ARE PREDICTIVE OF ACTIVITIES ON NON-NATIVE
SUBSTRATES BUT DO NOT GENERALIZE TO NEW-TO-NATURE CHEMISTRIES

As baselines, we evaluated six general ZS predictors for variant activity scoring. Each ZS
predictor leveraged distinct auxiliary information (Figure 2a). Hamming distance assumes that
most mutations are deleterious (Romero & Arnold, 2009; Arnold, 2017). It counts the number
of amino acid substitutions from the parent, a variant with initial activity, aiming to perform
a local search for viable variants. Given similar reaction mechanisms and conserved catalytic
residues, we expected the assumption to hold true for substrates similar to their native counterparts.
However, new-to-nature chemistry may require exploring a more diverse sequence space. Indeed,
we observed a weak positive correlation for non-native activities (ρ „ 0.3), but very little to weak
negative correlation for the new-to-nature reactions (ρ „ ´0.2 ´ 0.1).

EVmutation and ESM-2 estimate mutation effects using evolutionary patterns, either through a
Potts model applied to multiple-sequence alignments (MSAs) or a mask-prediction protein language
models (Hopf et al., 2017; Meier et al., 2021). Both predictors generalized well to non-native sub-
strates (ρ „ 0.5) but not to new-to-nature chemistries (ρ „ ´0.2´0.2). Notably, their predictability
decreased with shallower MSAs (Table A6) and was statistically correlated with substrate similarity
to the native substrate (p ă 0.05, Figure 2c). ESM-IF and CoVES incorporate structural context for
ZS predictions. ESM-IF assigns residue likelihoods based on a backbone structure (inverse folding)
and CoVES predicts masked residues based on their local atomic environments (Hsu et al., 2022b;
Ding et al., 2024a). However, neither predictor outperformed EVmutation or ESM-2, though CoVES
scores exhibited a weaker correlation with substrate similarity to the native substrate (Table A10).

Stability is crucial for protein function, as misfolded proteins will be less likely to retain activ-
ity (Bloom et al., 2006; Ding et al., 2024b). We estimated variant stability by calculating the change
in its free energy of folding relative to the parent (∆∆Gf ) using a Rosetta energy function (Wittmann
et al., 2021). However, stability did not predict new-to-nature activities (ρ „ ´0.1 ´ 0.1). We
reason that once a minimal stability threshold is met, factors such as substrate recognition and
transition-state stabilization become the dominant determinants of activity. Moreover, excessive
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stability may limit the structural flexibility needed to accommodate new substrates or reaction
mechanisms (Teufl et al., 2022).

For the new-to-nature chemistries, we also evaluated the stereoselectivity of the major products (Fig-
ure 2b). For the general ZS predictors, activity and stereoselectivity predictions were generally
correlated (ρ „ 0.68 ´ 0.95, Table A7).The chemical mechanisms for the non-native substrates in
this study are conserved, thus we postulate that this makes the predictions easier to generalize (Fig-
ure A1). In contrast, new-to-nature chemistry involves mechanisms distinct from an enzyme’s
native chemistry and may require beneficial mutations that are rare in MSAs or occur at conserved
residues, thus demanding deeper structural insights into the substrate and/or the active site.

Figure 2: General and substrate-aware ZS predictors. Spearman’s ρ for a) activity, b) stereoselectivity, c)
Pf TrpB non-native substrate activities (Table A10), and d) heme-based new-to-nature activities (Table A11).

3.2 SUBSTRATE-AWARE PREDICTORS OFFER INSIGHTS FOR NEW-TO-NATURE CHEMISTRIES

Enzyme catalysis involves complex mechanistic steps, including substrate binding and transition-
state stabilization. We hypothesize that substrate-aware ZS predictors can better describe substrate
recognition and transition-state stabilization for more diverse molecular systems, enhancing the
predictability of new-to-nature chemistries. To capture the full enzyme-substrate-cofactor inter-
action, we considered the cofactors in their catalytically relevant states for each ZS predictor (Ap-
pendixA.2).

We first explored enzyme-substrate binding energy as a potential ZS score using physics-based
molecular docking with GALigandDock and AutoDock Vina (Park et al., 2021; Eberhardt et al.,
2021). Both methods had weak to no correlation on non-native substrates (ρ „ 0 ´ 0.3), but we
noted GALigandDock was slightly better (∆ρ „ 0.1 ´ 0.2) than AutoDock Vina for new-to-nature
chemistries (Figure 2a). Correlations of both scores were independent of substrates (Table A10).

Recent advances in generative modeling have significantly advanced molecular docking and struc-
ture prediction (Yim et al., 2024; Abramson et al., 2024; Discovery et al., 2024). We hypothesized
that the scores pertaining to enzyme-substrate/cofactor binding may predict interactions impacting
activity. While not outperforming general ZS predictors for non-native substrates, AlphaFold 3
(AF3) and Chai-1’s interface predicted TM-scores (iPTM) for the enzyme-cofactor were predictive
of new-to-nature activities (Figure 2a). Interestingly, AF3’s chain-predicted aligned error (PAE) for
the enzyme-cofactor interaction was the most predictive for both activity and stereoselectivity (ρ „
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0.4), independent of the substrate (Figure 2). In contrast, despite adopting similar algorithmic ap-
proaches but without MSAs or templates, Chai-1 exhibited lower predictability, particularly for sub-
strates more dissimilar to the native one (Figure 2c, Table A10). While MSA quality may impact pre-
diction accuracy, further investigation is needed. Generative models can also facilitate binding site
design via substrate-aware inverse folding or simultaneous docking and backbone redesign (Krapp
et al., 2024; Watson et al., 2023; Dauparas et al., 2023; Stärk et al., 2023). We studied using prob-
ability scores from variant generation, conditioned on the parent structure, as a ZS predictor. Lig-
andMPNN and FlowSite were predictive of non-native reactions, performing comparably to existing
predictors like ESM-2, but were less effective for new-to-nature chemistries other than Rma-CB.

Beyond docking scores, we reasoned that a docked pose can be distilled into key components that
reflect enzyme-substrate interactions. We hypothesized that bond-forming atom proximity could
indicate higher activity–for instance, the distance between Glu104 and N1-hydrogen in Pf TrpB, or
between the carbene carbon and boron, silicon, or the styrene double bond (Appendix A.2). How-
ever, bond distance was a poor predictor, likely due to noise in docking poses. Stabilization forces,
particularly hydrogen bonding, can lower reaction energy barriers in the enzyme’s active site (Shan
& Herschlag, 1996). In Pf TrpB, the number of active-site hydrogen bonds correlated with activity,
though it was less evident for heme-based new-to-nature chemistries. Instead, the highly reactive
carbene intermediate would be stabilized by the iron in the heme (Chaturvedi et al., 2024). The com-
bined hydrophobicity of the substrate and active site affects their interaction, with optimal binding
occurring when their hydrophobicity levels match (Estell et al., 1986; Sriramulu & Lee, 2020). This
offered some predictive power for Pf TrpB, but not for heme-based chemistries. Lastly, active-site
volume has been linked to enzyme promiscuity (Martı́nez-Martı́nez et al., 2017), but it showed little
predictive power for non-native or new-to-nature chemistries. We reasoned this may only exclude
overly large residues, while failing to account for exposed active sites in Rma cty c or the substrate
tunnel in ParLQ (Danelius et al., 2023). Consistent with general ZS predictors, the predictability
for activity in substrate-aware predictors generally correlated with its predictability for stereoselec-
tivity (ρ „ 0.31 ´ 0.95, Table A7). AF3 remained the best predictor for new-to-nature chemistries.

3.3 PREDICTOR ENSEMBLES IMPROVE GENERALIZATION ACROSS CHEMISTRIES

Figure 3: Predictor ensembles. a) Different linear
combinations of ZS predictors. w represents weighted
linear combination trained on the Rma-CB dataset and
tested on the rest. uw refers to an unweighted combina-
tion of EVmutation and AF3 rankings for each dataset.
b) Linear models were trained on EVmutation and AF3
score for each dataset and tested on all the datasets.

We explored ensemble methods to improve
generalization and found that many model and
predictor combinations outperformed individ-
ual predictors (Table A5). The unweighted
ensemble of EVmutation and AF3—the top
two individual predictors averaged across
all chemistries—was consistently predic-
tive (ρ „ 0.3 ´ 0.5). A learned linear
combination of them achieved an average ρ of
0.39 across all chemistries in the test set (Fig-
ure 3). This generalization remained robust
regardless the training dataset (Figure A17).
EVmutation, ESM-IF and AF3 had the highest
regression weights when averaged across all
chemistries (Figure A16). However, incorpo-
rating ESM-IF, the third-best predictors averaged across all chemistries, into any combination did
not further improve the generalization (Figure A15). Interestingly, EVmutation was one of the top
predictors alongside AF3 in the top 25% recall analysis, whereas ESM-IF was not (Figure A10).

4 DISCUSSION

We evaluated six general and ten substrate-aware ZS predictors using two types of enzymes with
distinct mechanisms across 22 different substrates and four types of chemistries. General ZS pre-
dictors were effective for non-native substrates but failed for new-to-nature chemistries. Among
substrate-aware ZS predictors, AF3 was the best for both activity and stereoselectivity prediction
in new-to-nature chemistries. A linear combination of AF3 and EVmutation generalized across all
studied reactions, which could complement current protein design pipelines that employ a series of

5



Published at the GEM workshop, ICLR 2025

logical filtering steps (Bennett et al., 2023; Johnson et al., 2024). Physics-based docking methods
and simple active-site heuristics did not consistently capture enzyme reactivity.

Enzyme engineering for new reactivities remains an out-of-distribution challenge, constrained
by limited sequence-activity data. Although we generated new experimental data and curated
literature datasets, their scope remains limited, especially since the literature datasets had largely
active variants, which would not resemble distributions with mostly inactive variants. While the
approaches studied here generalized well in active-site mutation datasets, expanding to more diverse
new-to-nature reactions and testing datasets with mutations outside the active site remains a priority.
With our growing ability to collect sequence-activity data (Long et al., 2024; Wittmann et al., 2022),
more comprehensive datasets will be curated, and systematic benchmarks will be conducted. We
are optimistic that increasingly generalizable substrate-aware ZS predictors will accelerate enzyme
engineering, unlocking entirely new realms of biocatalysis.
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Carla Calvó-Tusell, Zhen Liu, Kai Chen, Frances H Arnold, and Marc Garcia-Borràs. Reversing
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A APPENDIX

A.1 DATASETS

A.1.1 SUMMARY

All datasets are available on Zenodo: https://zenodo.org/records/15226690.

Table A1: Dataset summary

Enzyme Substrates Cofactor # Pairs # Sites Sites Activity Selectivity

Pf TrpB 4bromo indole + L-serine PLP 241 3 I165, I183, Y301 Absorbance N.A.
Pf TrpB 4cyano indole + L-serine PLP 241 3 I165, I183, Y301 Absorbance N.A.
Pf TrpB 5bromo indole + L-serine PLP 241 3 I165, I183, Y301 Absorbance N.A.
Pf TrpB 5chloro indole + L-serine PLP 241 3 I165, I183, Y301 Absorbance N.A.
Pf TrpB 5cyano indole + L-serine PLP 241 3 I165, I183, Y301 Absorbance N.A.
Pf TrpB 5iodo indole + L-serine PLP 241 3 I165, I183, Y301 Absorbance N.A.
Pf TrpB 6chloro indole + L-serine PLP 241 3 I165, I183, Y301 Absorbance N.A.
Pf TrpB 7bromo indole + L-serine PLP 68 3 I165, I183, Y301 Absorbance N.A.
Pf TrpB 7iodo indole + L-serine PLP 241 3 I165, I183, Y301 Absorbance N.A.
Pf TrpB 7methyl indole + L-serine PLP 241 3 I165, I183, Y301 Absorbance N.A.
Pf TrpB 5,6chloro indole + L-serine PLP 241 3 I165, I183, Y301 Absorbance N.A.
Rma cyt c NHC-borane + Me-EDA heme 150 6 V75, M99, M100, T101T, D102, M103 % yield Enantio-
Rma cyt c phenyldimethyl-silane + Me-EDA heme 150 6 V75, M99, M100, T101T, D102, M103 % yield Enantio-
ParLQ a: 4-vinylanisole + EDA heme 490 5 W56, Y57, L59, Q60, F89 % yield Diastereo-
ParLQ b: styrene + EDA heme 91 5 W56, Y57, L59, Q60, F89 % yield Diastereo-
ParLQ c: 1-methyl-4-vinylbenzene + EDA heme 91 5 W56, Y57, L59, Q60, F89 % yield Diastereo-
ParLQ d: 1-methyl-3-vinylbenzene + EDA heme 91 5 W56, Y57, L59, Q60, F89 % yield Diastereo-
ParLQ e: 1-methyl-2-vinylbenzene + EDA heme 91 5 W56, Y57, L59, Q60, F89 % yield Diastereo-
ParLQ f: 1-chloro-4-vinylbenzene + EDA heme 91 5 W56, Y57, L59, Q60, F89 % yield Diastereo-
ParLQ g: 1-bromo-4-vinylbenzene + EDA heme 91 5 W56, Y57, L59, Q60, F89 % yield Diastereo-
ParLQ h: 1-(trifluoromethyl)-4-vinylbenzene + EDA heme 91 5 W56, Y57, L59, Q60, F89 % yield Diastereo-
ParLQ i: 2-vinylnaphthylene +EDA heme 91 5 W56, Y57, L59, Q60, F89 % yield Diastereo-

A.1.2 DATASET BACKGROUNDS

The tryptophan synthase β -subunit (TrpB) catalyzes a native reaction between L-serine and in-
dole to form tryptophan. Engineered TrpBs extend this function to non-native substrates such as
serine analogues and substituted indoles, enabling the synthesis of tryptophan analogs and other
noncanonical amino acids that are important precursors to pharmaceuticals and natural products
(Figure 1c) (Buller et al., 2015; Romney et al., 2017; Almhjell et al., 2018; Boville et al., 2018).

Heme-containing enzymes have been engineered to carry out a plethora of valuable reactions that
have not been found in biological systems (Brandenberg et al., 2017). These new-to-nature reac-
tivities include carbene transfers for stereoselective olefin cyclopropanation, traditionally requiring
unsustainable transition metals (Renata et al., 2015; Coelho et al., 2013), and the formation of car-
bon–silicon (C–Si) (Kan et al., 2016) and carbon–boron (C–B) (Kan et al., 2017) bonds (Figure 1d).

A.1.3 MULTI-SUBSTRATE Pf TRPB DATASET

Library Generation Beginning with a TrpB variant discovered in a directed evolution campaign
for 4-nitroTrp formation, Pf 5G8 (Romney et al., 2017), a triple-site saturation mutagenesis library
was generated. Primers from Table A2 were used to amplify out the vector in three pieces and install
variation at positions 165, 183, and 301 via the 22-codon trick (Kille et al., 2013). Amplification
was performed with Phusion® High-Fidelity DNA Polymerase according to manufacturer recom-
mendations (New England Biolabs, Catalog M0530L). A Gibson assembly was used to generate
full-length vectors which were transformed via electroporation into electrocompetent BL21-DE3 E.
coli cells. These cells were plated onto LB agar containing 100 µg/mL ampicillin.

Single colonies were picked into 96-well deep well plates containing 300 µL TB containing 100
µg/mL ampicillin (TBAmp) and grown overnight at 37 °C, 250 rpm, and 80% humidity. The follow-
ing day, expression 96-well deep well plates were filled with 630 µL TBAmp and 20 µL culture and
grown for 3 h at 37 °C, 250 rpm, and 80% humidity. These plates were then cooled on ice for 20
min prior to adding 50 µL 14 mM IPTG (1 mM final) and incubating overnight at 25 °C and 250
rpm overnight. Cells were pelleted at 3500–4000 rpm for 10 min, the supernatant was decanted, and
the plates were then frozen at -20 °C overnight.
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Table A2: Primer Sequences, where XXX = 22 codon trick (Kille et al., 2013)

Name Sequence
I165 f GTTCTCGCACCCTGAAAGACGCAXXXGACGAGGCTCTGCGTGATTGG
I165 r TGCGTCTTTCAGGGTGCGAGAAC
I183 f GTGGCTACTTTTGAATACACCCACTACCTAXXXGGTTCCGTGGTCGGTCCAC
I183 r TAGGTAGTGGGTGTATTCAAAAGTAGCCAC
Y301 f CTCCATCGCACCAGGTCTGGATXXXCCAGGTGTTGGTCCAGAACACG
Y301 r ATCCAGACCTGGTGCGATGGAG

Screening To prepare cell lysate, pellets were first resuspended in lysis buffer composed of
1mg/mL HEWL, 2 mM MgCl2, 10X bug buster, 200 µM PLP, and a small amount of DNAse in
50 mM potassium phosphate buffer, pH 8.0 (KPi). They were then incubated at 37 °C for 30 min
and heat treated at 75 °C for at least 30 min. Plates were then spun down at 5000 rpm for 10 min
and the supernatant was used as cell lysate.

Nucleophile stocks were made for all indole analogs at 200 mM in either EtOH (4bromo, 5bromo)
or DMSO (7bromo, 5chloro, 6chloro, 5,6chloro, 5iodo, 7iodo, 7methyl, 4cyano, 5cyano). Reactions
were set up in 96-well deep well plates. Reactions were prepared with 10 µL nucleophile stock (10
mM final), 20 µL lysate, 10 µL L-serine (25 mM final), and 160 µL KPi and incubated in a tightly
sealed plate at 75 °C overnight. The next day the reactions were acidified with 200 µL 1M HCl
and the unreacted indole extracted with 500 µL EtOAc. The plates were sealed tightly and shaken
vigorously, then spun down at 1000 rpm for 3 min to separate the layers before drawing the bottom
(aqueous) layer of the mixture into a 96-well UV-transparent flat-bottom plate. Absorbance was
collected every 2 nm from 290–310 nm for every substrate using a Tecan InfiniTe. The absorbance
wavelength used for quantification for each substrate was selected according to its absorbance prop-
erties (Table A3).

Table A3: Wavelengths

Compound Wavelength (nm)
4bromo 304
5bromo 306
7bromo 300
5chloro 306
6chloro 304
5,6chloro 310
5iodo 306
7iodo 306
4cyano 294
5cyano 310
7methyl 296

A.1.4 MULTI-SUBSTRATE PARLQ DATASET

The dataset was sourced from the study by Yang and Lal et al. (Yang et al., 2025). The model
substrate was presented in their main text, while the substrate scope data was provided in the sup-
plementary information. Additional experimental details were confirmed through direct communi-
cation with the authors.

Activity was calculated based on GC-FID measurements, where the product area was normalized
to the internal standard area and converted using the calibration curve from Figures S11–S28. The
yield calculation followed the author’s notebook (GitHub repository), normalizing the area to the
maximum possible product concentration and accounting for the 1.5X dilution from the reaction.
The cis isomer was the major product. Selectivity was determined by calculating the ratio of the cis
to trans isomer.
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A.1.5 Rma CYTOCHROME c C–B AND C–SI DATASET

The dataset was sourced from the study by Ding et al. (Supplementary Tables 3 and 4) (Ding
et al., 2024b). Upon communication with the corresponding author, we confirmed that no sequence
information was collected from the random mutagenesis libraries presented in Supplementary Tables
5 and 6.

A.2 MECHANISM

A.2.1 PLP-DEPENDENT TRPB REACTIONS

Figure A1: TrpB mechanism based on published studies (Buller et al., 2015; Romney et al., 2017; Almhjell
et al., 2024). The E(A-A) intermediate together with the substrates were used for ZS predictors.

A.2.2 HEME-BASED CARBENE TRANSFER REACTIONS
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Figure A2: Mechanism for heme-based carbene transfer reaction as computed by DFT (Ap-
pendix A.3.15) (Tinoco et al., 2018; Calvó-Tusell et al., 2023). TS2 was used for ZS predictors.
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A.3 METHODS

The code is available on GitHub: https://github.com/fhalab/substrate_aware_zs.

A.3.1 GENERAL ZS PREDICTORS

Hamming distance, EVmutation, ESM, ESM-IF, CoVES, and (∆∆Gf ) ZS scores were calculated
based on the study by Li et al. (Li et al., 2024).

A.3.2 VINA

AutoDock Vina v1.2.5 was used. PDBQT files for substrates were prepared from corresponding
SMILES strings using RDKit at pH 7.4 and Open Babel (Bento et al., 2020; Landrum, 2013;
O’Boyle et al., 2011). The cofactor was extracted from the parent PDB and converted to PDBQT us-
ing Open Babel, while metal ions were prepared separately. Receptor structures were derived from
parent PDB structures (PDB ID: 5DW0 for Pf TrpB and 3CP5 for Rma cyt c), while the structure for
ParLQ was modeled by the authors using Alphafold 3 with a bound-heme. Variant structures were
generated using MDAnalysis.

Docking coordinates were defined by the centroid of the substrate-cofactor complex with a box size
of 20Å. Each docking experiment was performed in five replicates, with nine docking modes and
an exhaustiveness setting of 32. The lowest energy from each replicate was recorded, and the final
energy was averaged across replicates. The negative values of the energies were used as the ZS
predictor.

A.3.3 ROSETTA GALIGANDDOCK

The Pyrosetta GALigandDock-based ZS scores were obtained from a local copy of the pyrosetta
distribution pyrosetta-2025.3+release.1f5080a079-py3.12-linux-x86 64.egg/pyrosetta/distributed.
Two conda environments (anaconda.org) were created. One for the input preprocessing and one
for inference of Pyrosetta GALigandDock. To set them up, download the corresponding .yaml files
(ambertools.yml and pyrosetta env.yml) and execute the following console commands:

$ conda env create -f <path/to/ambertools.yml>

and

$ conda env create -f <path/to/pyrosetta_env.yml>

respectively.

To preproccess the inputs, the first conda environment was activated and the script py-
rosetta pipeline.py was executed with the following parameters:

python -m substrate_aware.zs.pyrosetta_pipeline
--meta_list <path/to/campaign_1_meta.csv>

<path/to/campaign_2_meta.csv>
<...>
<path/to/campaign_n_meta.csv>

--struc_dir <path/to/structures_dir>
--tmp_dir <path/to/dir/for/tempfiles>
--out_dir <path/to/dir/for/output_files>
--rosettascript_path <rosetta/source/.../mol2genparams.py>
--net_charge_unit_1 <net charge>
--net_charge_unit_2 <net charge>

The script takes docked structures for a given campaign as input and returns them adequately re-
formatted for Pyrosetta, alongside a Pyrosetta-specific parameter file for each of the campaign’s
substrates. The script runs into a tracepoint and prompts the user to manually correct a newly created
mol2 file of the substrates and then save it under a printed location. For this purpose, the file was then
downloaded, observed in a 3D molecular viewer, such as Avogadro (Hanwell et al., 2012) and edited
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to meet antechambers (Case et al., 2023) requirements for am1bcc charge generation. This includes
adding hydrogen, correcting unnatural bond orders, and ensuring that the molecule only contains
atoms of the element set {H, C, N, O, F, P, S, Cl, Br, I} on which antechamber is parametrized. In
the case of iron coordination centers, the metal atom was replaced by a phosphorous. Boron and
silicon were substituted with carbon. Lastly, each connected unit must consist of 4 or more atoms.
Units with less than that (e.g. ions) were omitted. To finish the preprocessing, the console prompts
were followed.

The second script, pyrosetta inference.py, runs the actual GALigandDock docking by executing it
with the following parameters:

python -m substrate_aware.zs.pyrosetta_inference
--meta_list <path/to/campaign_1_meta.csv>

<path/to/campaign_2_meta.csv>
<...>
<path/to/campaign_n_meta.csv>

--preprocessed_dir <path/to/directory_containing_pdbs_and_params>
--results_dir <path/to/results_dir>

The docking mover is parametrized within this script. This will create two output files for each vari-
ant of all campaigns. The variantname aligned enzyme final.pkl contains the best scoring docked
poses and variantname aligned enzyme final.csv contains a table with Rosetta metrics of these
poses. Finally, for each campaign campaignname.csv summarizes the Rosetta-metrics of the best
docked pose of each variant together with variant ground-truth data.

The negative values of all energy terms were extracted. The dH value, representing enthalpy, was
used as the score to indicate the thermodynamic stability of the binding event, where more exother-
mic values correspond to stronger binding.

A.3.4 ALPHAFOLD 3 (AF3)

For Pf TrpB, the substrate SMILES was joint with the E(A-A) intermediate (Figure A1) and the
crystallographic sodium ion to prevent the substrate from docking onto the enzyme surface. For
heme-based reactions, the substrate SMILES was assigned to chain B, while the carbene-heme in-
termediate complex (Figure A2) TS2 was assigned to chain C. All scores were extracted from five
replicates, and the final structure for each variant was aggregated. The scores from the replicates
were averaged. For chain-predicted aligned errors (PAE), the negative values were used as the pre-
dictor. The confidence scores of each residue at the targeted site were also extracted and averaged
as a predictor.

A.3.5 CHAI-1

Chai-1 version 0.1.0 was used, following the same process as AF3, except without MSAs and using
PAE as scores.

A.3.6 LIGANDMPNN

Code from LigandMPNN GitHub was adopted to extract the ZS scores (Dauparas et al., 2023).
The model with 20Å Gaussian noise was chosen. Only the mutated residues of the campaign were
redesigned with autoregressive scoring. To mitigate biases introduced through decoding order, the
number of batches was set to 100. Variant likelihoods were thus obtained through:

PVariant “
1

100

100
ÿ

i“1

Nmut
ź

n“1

P
`

AAn | Backbone, tAAj | j ă nui
˘

. (1)

A.3.7 FLOWSITE

Code from FlowSite GitHub was adopted to extract ZS scores (Stärk et al., 2023). The param-
eters were chosen according to the author’s suggestion. To evaluate the docking and sequence
co-generation as appropriate to directed evolution campaigns, both the residues to design and the
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pocket were defined via the mutated sites. For each variant, 100 inference trajectories were gener-
ated. Predicted likelihoods were averaged among inferences and position to yield the final variant
ZS score.

A.3.8 BOND DISTANCES

Bond distances were derived from AF3 docked structures based on the mechanisms for bond-
forming atoms (Appendix A.2). For Pf TrpB, distances were measured between the catalytic Glu104
and N1-hydrogen. For heme-based carbene transfer reactions, the distances were measured between
the carbene carbon and either boron, silicon, or the styrene double bond.

Distances were calculated for each replicate and averaged. The negative value of the bond dis-
tance was used as the predictor, based on the hypothesis that closer reactive atoms lead to stronger
reactivity and, consequently, higher activity.

A.3.9 PROTEIN-LIGAND-INTERACTION-PROFILER (PLIP)

A local copy of the PLIP software (release 2.4.0 ) was obtained from the GitHub (Adasme et al.,
2021). The AF3 docked strucutres were used as inputs. An output XML report file was generated to
characterize each variant’s ligand-active-site-interactions.

A.3.10 ACTIVE-SITE IDENTIFICATION

Two different active site extraction heuristics were explored. The first heuristic defines all residues
to belong to the active site, that bear the centroid of their side-chain atoms within a 10Å distance
threshold of the ligand’s centroid.

The second extraction heuristic used PLIP to define the active site. The residues tagged with “bind-
ingsite” were considered (Appendix A.3.9).

A.3.11 HYDROGEN BONDS

The AF3 docked structures were used to run PLIP (Appendix A.3.9). The number of hydrogen
bonds identified in the active site was extracted from the output files and used as a ZS predictor.

A.3.12 HYDROPHOBICITY

For the enzyme, active-site hydrophobicity was calculated based on different active-site identifica-
tion methods (Appendix A.3.10) using various scales, including the Kyte-Doolittle scale (Kyte &
Doolittle, 1982), the Hopp-Woods scale (Hopp & Woods, 1983), the Eisenberg scale (Eisenberg
et al., 1984), and theoretical and empirical residue solvent accessibility (Tien et al., 2013).

For the ligand, logP was calculated. While previous literature used the Kyte-Doolittle scale to iden-
tify hydrophobic regions likely to be in transmembrane segments (Sriramulu & Lee, 2020), we
instead chose the Hopp-Woods scale, which highlights antigenic (hydrophilic) regions on protein
surfaces.

A.3.13 ACTIVE-SITE VOLUME

The substrate volume was estimated based on the ConvexHull of the substrate. The active-site
volume of the parent was estimated with CASTp based on PDB ID 5DW0 for Pf TrpB, 3CP5 for
Rma cyt c and 3ZJI for ParLQ (Tian et al., 2018). The variant active-site volume was estimated by
the different in different amino acid side chain at the targeted sites.

A.3.14 SIMILARITY CALCULATIONS

To quantify the similarity between the indole analogs to the native indole, Tanimoto similarity of
atom-pair fingerprints (Carhart et al., 1985) was calculated with RDKit (Bento et al., 2020; Landrum,
2013).
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A.3.15 DFT CALCULATIONS

DFT calculations were conducted using Orca 6.0 (Neese, 2012). We constructed a model containing
the porphyrin core, Fe center and an imidazole to mimic the histidine ligand. Geometry optimiza-
tions and frequency calculations were performed using the unrestricted B3LYP hybrid functional
with def2-TZVP basis set and with D3(BJ) dispersion correction. All geometries were verified as
minima or first-order saddle points by frequency analysis. Enthalpies and entropies were calculated
for 1 atm and 298.15 K. The SMD continuum solvation model was used in all optimizations and sin-
gle point calculations with water as the implicit solvent to approximate the energy otherwise required
when the reaction is performed without the enzyme. In Figure A2, we show the complete energetics
of heme-catalyzed cyclopropanation with different spin-states. In other carbenoid reactions, we re-
port energetic barriers derived from open-shell singlet calculations of the C-Si insertion/borylation
transition state, in comparison against the carbene-porphryin intermediate. Readers should note that
while DFT can derive reasonable geometries for transition states, the absolute energy values can
have significant margin of error and should only serve as qualitative estimates. Surprisingly, DFT
calculations yielded similar activation energies of „9-13 kcal/mol for the three new-to-nature reac-
tions, as shown by other studies (Garcia-Borràs et al., 2021; Huang et al., 2019; Wei et al., 2017).
We also obtained the ∆G of the reaction considering all substrates and products (Table A12).

A.3.16 ENSEMBLE MODELS

To ensemble ZS predictors into a unified score, unweighted ensemble and different types of learned
linear models were explored. Results from the shallow neural network were excluded due to over-
fitting.

Unweighted ensemble Each ZS predictor was ranked, and the ranks of different chosen ZS pre-
dictors were summed up for the final score.

Learned ensemble Each model was fitted on one specific enzyme optimization campaign and
successively tested on all other campaigns. The models included linear regression, piecewise linear
regression with a threshold. By doing so, we tested whether a model’s learned relationship between
feature scores and measured activities. During prediction, these models thereby weighted individual
ZS scores and introduced nonlinearities. Given the data:

tpxpiq, ypiqqumi“1, xpiq “
`

x
piq
1 , x

piq
2 , . . . , xpiq

n

˘

, ypiq P R.

The goal is defined as:

min
m
ÿ

i“1

`

ypiq ´ ŷpiq
˘2
,

where ŷpiq depends on the chosen transformation. And that fitting on 1 set of ypiq generalizes to
other sets of ys.

Inputs where normalized according to:

xi “
xi ´ µx

σx

Linear regression In the case of linear regression (w), the prediction is obtained by the transfor-
mation:

ŷpiq “ w0 `

n
ÿ

j“1

wj x
piq
j .

where w0, wj are obtained through the optimization problem:

min
w0,...,wn

m
ÿ

i“1

`

ypiq ´ rw0 `

n
ÿ

j“1

wj x
piq
j s

˘2
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Piecewise linear regression Although linear regression is straightforward to fit and interpret, it
may fail to capture threshold-dependent behaviors (e.g., scores only become useful after a certain
threshold and optimization is capped after a certain cutoff). To address this, we additionally con-
sidered a piecewise linear regression model, which introduces simple nonlinearities via a learned
threshold for each feature. The prediction is obtained by the transformation:

ŷpiq “ w0 `

n
ÿ

j“1

wj ϕj

`

x
piq
j ;αj1, αj2

˘

.

Where the mapping function ϕj introduces the nonlinearity:

ϕjpxj ;αj1, αj2q “

$

’

’

’

&

’

’

’

%

0, xj ă αj1,

xj ´ αj1

αj2 ´ αj1
, αj1 ď xj ă αj2,

1, xj ě αj2.

The piecewise model parameters tw0, wju and thresholds tαj1, αj2u are fit by minimizing the sum
of squared errors:

min
w0,w1,...,wn

αj1,αj2

m
ÿ

i“1

´

ypiq ´
“

w0 `

n
ÿ

j“1

wj ϕjpx
piq
j ;αj1, αj2q

‰

¯2

,

subject to αj1 ă αj2 for each feature j.
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A.4 ADDITIONAL RESULTS

A.4.1 DATASET VISUALIZATION

Figure A3: Pf TrpB activity

Figure A4: ParLQ activity

Figure A5: ParLQ diastereoselectivity

Figure A6: Rma cyt c activity

Figure A7: Rma cyt c enantioselectivity
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A.4.2 INDIVIDUAL ZS PREDICTOR PERFORMANCE

Table A4: ZS predictors are averaged across all, non-native, and new-to-nature datasets. Bold indicates the best
predictor, bold italics indicates the second-best predictor, and italics highlight the third-best predictor within
each category.

ZS predictor All Non-native substrate New-to-nature chemistry

Hamming distance 0.1056 0.3378 -0.1266
EVmutation 0.2768 0.4652 0.0885
ESM-2 0.1904 0.5125 -0.1316
ESM-IF 0.2534 0.4810 0.0257
CoVES 0.1473 0.4075 -0.1129
∆∆Gf 0.2379 0.5253 -0.0495

Vina 0.0361 0.0257 0.0465
GALigandDock 0.1393 0.1228 0.1559
AF3 0.2751 0.2416 0.3086
Chai-1 0.1420 0.2094 0.0746
LigandMPNN 0.2105 0.4780 -0.0570
FlowSite 0.2176 0.4007 0.0345
Bond distance 0.0607 0.1853 -0.0639
Hydrogen bonds 0.1633 0.2802 0.0464
Hydrophobicity 0.2028 0.4128 -0.0072
Active-site volume 0.0828 0.0469 0.1187

Figure A8: Spearmen’s correlation for activity
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Figure A9: Top 25% recall for activity

Figure A10: Top 25% recall for activity, averaged by chemistry
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Figure A11: Spearmen’s correlation for selectivity

Figure A12: Top 25% recall for selectivity

Figure A13: Top 25% recall for selectivity, averaged by chemistry
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A.4.3 COMBINATION OF ZS PREDICTORS

Table A5: Spearman’s ρ of 34 unweighted ensembles of ZS predictors generalized better than the top individual
ZS across all chemistries. See Table A4 for topN predictors.

Predictor Combination Average Spearman’s ρ across all chemistries

All top2 0.3859
New-to-nature top8 0.3802
New-to-nature top9 0.3769
New-to-nature top5 0.3757
All top3 0.3738
New-to-nature top7 0.3708
New-to-nature top11 0.3598
New-to-nature top10 0.3588
New-to-nature top6 0.3579
All top4 0.3531
New-to-nature top12 0.3460
All top5 0.3457
New-to-nature top13 0.3395
New-to-nature top4 0.3390
All top6 0.3316
New-to-nature top14 0.3179
All top7 0.3162
New-to-nature top15 0.3091
All top12 0.3079
All top9 0.3046
All top14 0.3008
Non-native top16 0.3007
All top16 0.3007
New-to-nature top16 0.3007
All top13 0.3000
All top8 0.2983
Non-native top15 0.2978
All top15 0.2978
All top11 0.2943
Non-native top14 0.2938
All top10 0.2901
Non-native top12 0.2887
Non-native top11 0.2843
Non-native top13 0.2802
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Figure A14: Linear regression model trained on one library with 16 ZS and tested on all

Figure A15: Different model and ZS predictor combinations for ensembling. uw refers to an unweighted
combination. w refers weighted linear combination trained on the best dataset and tested on the rest. lp refers
to piecewise linear models trained on the best dataset and tested on the rest. The ˚ symbol indicates the training
set, which is excluded from the test-avg calculation.
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Figure A16: Averaged weights for linear regression model trained on one library with 16 ZS and tested on all

Figure A17: Scatter plot for EVmutation + AF3w
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A.4.4 ADDITIONAL TABLES

Table A6: Bitscore and sequence counts for Pf TrpB, Rma cyt c, and ParLQ. The bold row indicates the chosen
MSA covering all the targeted sites.

Enzyme Bitscore Sequences

Pf TrpB 0.1 74795
0.3 5996
0.5 5935
0.7 4647

Rma cyt c 0.1 Job exceeded resources
0.3 79025
0.5 3042
0.7 1940

ParLQ 0.1 15086
0.3 875
0.5 343
0.7 343

Table A7: Activity and selectivity Spearman’s correlation

Library Spearman’s ρ

ParLQ-a 0.9610
ParLQ-b 0.7527
ParLQ-c 0.9335
ParLQ-d 0.9326
ParLQ-e 0.8971
ParLQ-f 0.8197
ParLQ-g 0.7097
ParLQ-h 0.9257
ParLQ-i 0.7618
Rma-CB 0.6438
Rma-CSi 0.4554
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Table A8: Correlation between ZS predictions for activity and for selectivity, both measured by Spearman’s
correlation

ZS predictor Spearman’s ρ p-value

Hamming distance 0.9455 1.12e-05
EVmutation 0.7818 0.0045
ESM-2 0.8545 0.0008
ESM-IF 0.7273 0.0112
CoVES 0.6818 0.0208
∆∆Gf 0.8727 0.0005

Vina 0.8091 0.0026
GALigandDock 0.9182 6.66e-05
AF3 0.3091 0.3550
Chai-1 0.9545 4.99e-06
LigandMPNN 0.8273 0.0017
FlowSite 0.6545 0.0289
Bond distance 0.5636 0.0710
Hydrophobicity 0.4909 0.1252
Hydrogen bonds 0.9364 2.21e-05
Active-site volume 0.9000 0.0002

Table A9: Tanimoto similarity of atom-pair fingerprints for Pf TrpB non-native substrates

Indole Analogs Similarity to Indole

7iodo 0.6053
7methyl 0.6053
7bromo 0.6053
5iodo 0.6000
5bromo 0.6000
5chloro 0.6000
4bromo 0.5500
6chloro 0.5366
5cyano 0.4898
4cyano 0.4894
56chloro 0.3333

Table A10: Correlation between predictors and substrate similarity to the native substrate.

ZS predictors Spearman’s ρ p-value

Hamming distance 0.3890 0.2371
EVmutation 0.6390 0.0343
ESM-2 0.6390 0.0343
ESM-IF 0.5371 0.0884
CoVES 0.1574 0.6439
∆∆Gf 0.6390 0.0343

Vina 0.3334 0.3164
GALigandDock 0.5371 0.0884
AF3 0.3982 0.2251
Chai-1 0.3241 0.3308
LigandMPNN 0.3982 0.2251
FlowSite 0.1574 0.6439
Bond distance 0.0185 0.9569
Hydrophobicity 0.5464 0.0820
Hydrogen bonds 0.3612 0.2751
Active-site volume 0.0370 0.9139
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Table A11: Calculated reaction energy barrier (kcal/mol)

Chemistry Energy barrier

ParLQ „ 9
Rma-CB „ 11
Rma-CSi „ 12

Table A12: Calculated reaction energy ∆G (kcal/mol) considering all substrates and products for new-to-nature
chemistries

Chemistry ∆G

ParLQ-a -44.6075
ParLQ-b -44.7320
ParLQ-c -44.5280
ParLQ-d -46.3590
ParLQ-e -45.8877
ParLQ-f -45.5328
ParLQ-g -46.0807
ParLQ-h -75.2704
ParLQ-i -45.5365
Rma-CB -54.8434
Rma-CSi -62.6220

Table A13: Correlation between reaction energy and ZS predictor performance

ZS predictor Spearman’s ρ p-value

Hamming distance 0.4455 0.1697
EVmutation 0.1273 0.7092
ESM-2 0.3000 0.3701
ESM-IF -0.0545 0.8734
CoVES 0.3455 0.2981
∆∆Gf 0.2818 0.4011

Vina 0.2000 0.5554
GALigandDock -0.1000 0.7699
AF3 0.4909 0.1252
Chai-1 0.3818 0.2466
LigandMPNN 0.3091 0.3550
FlowSite 0.0273 0.9366
Bond distance -0.0364 0.9155
Hydrogen bonds 0.1364 0.6893
Hydrophobicity 0.1273 0.7092
Active-site volume 0.0455 0.8944
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