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Abstract— For generating viable multi-step plans in robotics,
it is necessary to have a representation scheme for scenes that
is both open-set and structured in a way that facilitates local
updates when the scene changes. We propose a method for
generating multi-hierarchical scene graphs in a zero-shot man-
ner using foundation models, which can support downstream
planning tasks. We demonstrate that our method yields superior
results compared to previous works in both open-world object
detection and relation extraction, even without any priors.
Moreover, we illustrate how the multi-hierarchical nature of
the scene graph aids the planner in devising feasible plans
for tasks necessitating reasoning over the spatial arrangements
and object category abstractions. Project web page: https:
//reail-iitdelhi.github.io/scenegraph.github.io/

I. INTRODUCTION

Consider a robot asked to “bring me all the fruits” or
“put the book which has spectacles on top of it on the rack”.
Following such instructions requires the robot to possess a
grounded semantic understanding of its environment in terms
of which objects are present, their metric location/extent,
how objects are related to each other (inside, left of, behind,
supported by etc.). Further, such a representation must be
scalable, allowing updation as the robot takes actions to
affect its environment. This paper concerns enabling a robot
to generate a scene graph of its environment in an open world
setting i.e., without a-priori knowledge of which objects
that the robot may encounter. Such a scene graph should
model objects as well as a multitude of semantic relations
to support diverse instructions that the robot may receive
in future. Finally, the representation must support rapid
reconstruction as the robot manipulates objects as intended
by the instruction.

Traditional approaches use supervised learning methods
to infer metric-semantic graph representations for a scene
(e.g., [7]). Such approaches have shown significant successes
in accurate metric modeling of the space and supporting
semantic interactions. However, their reliance on a pre-
defined set of objects limits their use in open-world settings.
Recent works leverage common sense knowledge embed-
ded in foundation models for open-vocabulary or zero-shot
induction of semantic properties for a scene that a robot
may be in. We build on such efforts (e.g., [6]) and evaluate
SOTA models for zero-shot scene graph construction for
robot instruction following. Our experiments revealed that
direct use of VQA/VLM models for this task result in sparse
graph with a large number of missing or hallucinated objects
for practical scenes and limited ability to decode relations
required for instruction following. Further, latency is high

Fig. 1: We address the problem of generating scene graphs in open world
settings that capture both metric and semantic information required for robot
instruction following tasks. Our factored architecture yields rich accurate
scene graphs amenable to rapid update during plan execution.

due to server access required for most large scale models.

In response, we develop a factored pipeline where we
cascade reasoning as determining object presence, inferring
types/spatial extent and finally inducing inter-object rela-
tions. Each stage in our pipeline reasons with foundation
models using targeted (instead of generic) prompts and at-
tended sub-images from the previous stage. We observe that
such foviation significantly improves the robustness of object
detection in the scene graph and subsequently eases relation
extraction in relation to approaches that offload the entire
scene graph reasoning directly to a large model. Further, we
note that while performing sequential manipulation tasks, a
robot may need to update its scene model after executing
each action. In such a setting, querying a large model on a
remote server can introduce significant latency and reduce
execution tempo. Hence, we introduce a mechanism for the
robot to reason when it encounters a new object (not seen
previously), thereby only querying the remote server for
such instances and when it can perform reasoning from past
memory of objects encountered.

Overall, our results demonstrate generation of robust,
accurate scene graphs that are amenable to sequential update.
The graphs are more complete in relation to baselines and
also reduce construction time when some of the objects
have been seen previously during robot operation. This work
contributes to the human-robot interaction and long-horizon
planning themes in the ICRA Workshop on Mobile Manipu-
lation and Embodied Intelligence. Our current experiments
are on a robot manipulator but potentially scalable to mobile-
manipulation platforms as well.

https://reail-iitdelhi.github.io/scenegraph.github.io/
https://reail-iitdelhi.github.io/scenegraph.github.io/


Fig. 2: The figures illustrate the rollout of a plan for the human instruction “put all the fruits into the basket”. The task planner synthesizes the plan using
the initial scene graph G0 to generate the sequence of actions a0 to a4. The figure also illustrates how this scene representation is amenable to local
rebuilding when the scene changes after the robot performs each action. The low-level skill of opening was performed in a semi-autonomous manner.

II. RELATED WORKS

Detecting Objects in Scenes. A number of efforts focus
on representing the robot’s environment as objects with
associated metric and semantic properties. They often use
supervised object detection models [16], [18], [4], [17], [15]
that are trained to identify a narrow predetermined collection
of classes. A significant limitation of this method is that, to
add or modify the class of identifiable objects, requires the
collection and annotation of new data followed by retraining
the model. Recent, open vocabulary object detectors [13],
[11], [14], [8] can take textual labels as prompts and ground
them on the image. However, these models require human
inputs such as category names or referring expressions.

Scene Graph Generation Approaches. There have been
significant efforts [7], [20], [5] focused on building 3D scene
graphs. These scene graphs have a hierarchical structure with
different layers representing multiple layers of abstraction
from low-level geometry to high-level semantics. These
scene graphs also encapsulate the metric information about
the entities and are mainly used for navigation related tasks.
The OVSG method [2] offers a technique for generating
3D scene graphs to ground free-form text-based queries.
However, it depends on graph neural networks to identify
relationships between objects, which renders it closed-set
with respect to relations. On the other hand, ConceptGraphs
[6], creates 3D graphs for room like environments. However,
its robustness is limited for workspaces with objects arranged
in numerous and less structured settings and the approach
does not explicitly consider scene graph update after action
execution.

Detecting Scene Elements via VQA. Visual Question
Answering (VQA) models [10], [9], [12], [3] learn to as-
sociate language instructions with visual observations. Such
models can be leveraged for the task of identifying scene
objects. However, their key limitation is that they can only
generate textual label for the object but not ground them
on the image. Since these models are trained to be used
as image captioners, they fail to provide granular details
of the image which is pivotal for multi-object detection
in an image. Recently, models [19], [1], [21] have shown
grounding capabilities in addition to generating the textual
label for the objects in the image. However, they lack

robustness and miss subtle features like text on objects (e.g.,
medicine labels) required during instruction following.

III. PROBLEM SETUP

Consider the robot operating in an environment capable of
capturing images from a camera mounted on the arm. The
workspace is populated by a-priori set of objects o ∈ O.
A human instructor provides a natural language instruction
λ ∈ Λ where Λ is the set of instructions. λ is a combination
of objects or object categories and the interactions to be
performed with them. Relaxation of this assumption is a part
of the future work. The objects in the scene can be contained
within (inside), supported by (on top) or be direction-ally
oriented (left, right, etc). The robot’s overall task is to
synthesize the sequence of actions π = [a0, a1, ..., an] in
response to the instruction λ and the scene graph G.

In order to support a rich set of instructions from a human,
the robot must construct a scene representation that facilitates
the understanding of the intended goal from the instruction
and facilitates plan synthesis to accomplish the intended goal.
Formally, we seek a scene graph that models objects O and
semantic relationships R between objects arising from rich
inter-object interactions such as one object containing or
supporting another. The robot must infer a scene graph Gt at
time t from a sequence of RGB-D information Io:T captured
by the robot at certain poses Po:T .

SceneGraphGeneration(Io:T) → GT = (O,R) (1)

IV. TECHNICAL APPROACH

Directly generating scene graphs from the images Io:T
often leads to poor results (as confirmed by our experiments).
Hence, we factor the graph generation as (i) detecting
presence and type of objects and (ii) estimating inter-object
relations.

ObjectDetection(Io:T) → O (2)

RelationEstimation(Io:T|O) → R (3)

Modeling Objects. Open vocabulary object detection
models necessitate prior knowledge about object labels,
which limits their effectiveness in unfamiliar settings. To
address this limitation, we propose the integration of a Visual
Question Answering (VQA) model, which is designated



Fig. 3: Overall Pipeline: The figure illustrates the generation of a scene graph for a specified robot workspace. Object detection is accomplished through
a combination of an object grounding model and a Visual Question Answering (VQA) model. Objects that the grounding model fails to detect are queried
to the VQA model through the generation of attention sites. Relations are then extracted using the detected objects as priors to generate multi-hierarchical
scene graphs, encompassing category abstraction and spatial-depth and planar relations.

to ascertain object labels. However, it has been observed
that VQA models often fall short in identifying all object
labels. This shortcoming is attributed to their intrinsic design,
which is geared towards offering high-level descriptions or
captions of images, rather than detailing granular features. To
overcome this shortcoming of VQA models, we developed
a mechanism that provides attention to VQA models that
can be in the form of unlabelled bounding boxes, masks,
cropped images, etc. We detect objects in each image It,
where 0 < t < T , using the open vocabulary detectors
H(It,O0:t−1). The objects that H(.) failed to detect will
become the attention sites At = F(It) − H(It,O0:t−1)
where F(It) detects all the entities as shown in Fig. 3.
The VQA model V(At) then generates the labels for all the
attention sites. The objects detected in the current image It
is given by Ot = H(It,O0:t−1) ∪ V(At).

Modeling Relations. Relations between the detected
objects O0:T are found out in a stage-wise manner. We
leverage foundation models for extracting spatio-depth rela-
tions (e.g. “onTop”, “inside”, “at”) and category abstractions
(e.g. “medicinal items”, “fruits”) and analytical methods
for planar relations (e.g. “left”, “front”). A VQA model
Q(I0:T ,O0:T ) is employed to extract spatio-depth relations
S and category abstractions C in a hierarchical manner.
Planar relations are then calculated analytically P(O0:T |S).
Relations R is then given by R = S ∪ P ∪ C. Figure
4 shows the spatio-depth relations, planar relations and
category abstraction for a given robot workspace.

V. EXPERIMENTAL SETUP

We conduct experiments on a 7DoF Franka Panda Emika
robotic arm with a parallel jaw gripper and an Intel Re-
alsense D435i RGBD camera with eye-in-hand calibration.
The robot workspace includes a table and a vertical rack
with 2 shelves. We collect a dataset containing 30 different

objects commonly found in household environments. These
objects were from various categories like medicinal items
(syringe, pill blister, etc.), food items (banana, carrot, etc.),
containers (basket, tray, etc.), and personal items (spectacles,
comb, etc.). The objects were also classified into two broad
categories - objects that could be identified from their visual
features like shape and color (e.g. spectacles, banana) and
objects that could only be identified by the textual labels on
them (e.g. syrup bottles, hand sanitizer). For the grounding
model H(.), we have used Grounding-DINO[13]; for the
object localizer F(.), we have also used Grounding-DINO;
and for Visual Question Answering V(.), we have utilized
OpenAI GPT-4V. However, due to the modular structure
of our approach, it can easily be adapted to use other
VQA/grounding models.

VI. RESULTS

Quantitative Results. We evaluate the accuracy of our
model in detecting objects and their attributes by comparing
our pipeline against five baseline methods. The baselines
can be segregated into three broad categories: methods
that use VQA for labeling and a phrase grounding model
for localization, methods employing only VQA for both
grounding and labeling, and other state-of-the-art (SOTA)
scene graph generators. The first baseline combines a phrase
grounder, Grounding DINO, with a VQA model, GPT-
4V. The second baseline employs the same framework but
utilizes CogVLM for phrase grounding. The third baseline
exclusively utilizes CogVLM for both VQA and grounding
tasks. The fourth baseline is ConceptGraphs[6] and the fifth
baseline is ConceptGraphs-D, a variant of ConceptGraphs
which employs an image tagging model(RAM[22]) and a
grounding model(Grounding DINO[13]).

Our assessment focuses on two key metrics: robustness
and accuracy in object detection. We present our findings



Fig. 4: Qualitative Result for Scene Graph: The figure shows the scene graph that was generated by our approach for the given robot workspace. The
scene graph has 3 perspectives to it - spatio-depth relations, planar relations, and category-wise abstraction. Each node in the scene graph represents an
object in the workspace and has attributes such as color and pose. This scene graph supports the execution of tasks like “place the book that is to the right
of the basket on the rack”(requires knowledge about the planar relation between the books and the basket and also the ‘onTop’ relation between book and
glasses to generate viable plans), “give me something to eat”(requires object category abstraction).

Fig. 5: Qualitative Comparison of Scene Graphs: The figure shows the scene graphs generated by both the proposed method and ConceptGraph, alongside
the ground truth.

Method Precision (%) Recall (%) F-measure
GDino+GPT-4V 85.0 57.0 0.68

CogVLM+GPT-4V 62.1 93.8 0.75
CogVLM 79.5 77.8 0.79

ConceptGraphs 44.8 73.2 0.54
ConceptGraphs-D 55.8 38.7 0.46

Ours 94 96 0.95

TABLE I: Accuracy of open-world object detection during scene graph
construction.

across five different indoor settings, each featuring 12-
15 randomly sampled objects from our dataset. TABLE I
demonstrates that our proposed method achieves the highest
F-measure compared to the baseline methods. The perfor-
mance can be attributed to the method’s inherent robustness.
In instances where the phrase grounder fails to detect objects,
the Visual Question Answering (VQA) model serves as a
fail-safe, effectively compensating for these detection lapses.
This dual-detection mechanism endows our method with an
inherent Optical Character Recognition (OCR) capability, a
feature that the baseline methods do not possess. However,
in the baselines where both VQA and phrase grounder are
present, due to the lack of attention sites, the VQA model
hallucinates leading to errors that propagate to the next stage
of grounding.

Qualitative Results. Next, we qualitatively evaluate how
well our method estimates spatio-depth relations (“onTop”,
“inside”, “at”), planar relations (“left”, “right”, “front”,
“back”), and categorical abstractions. Fig. 4 shows the multi-
hierarchical scene graph that was generated for an indoor
setting, with 14 objects randomly sampled from the dataset.
Fig. 5 shows the qualitative comparison between the scene

graphs generated by the proposed method and Concept-
Graph. Specifically, we focused on spatio-depth relations for
this comparison due to ConceptGraph’s limitation in generat-
ing planar relations and categorical abstractions. Our results
indicate that the proposed method demonstrates robustness
in object detection, consequently leading to more accurate
relation extraction. However, the proposed method made
one incorrect detection and missed one object. In contrast,
ConceptGraph missed three objects, mislabeled two objects,
and also produced some hallucinations.

VII. CONCLUSIONS

We introduce a novel approach for generating multi-
hierarchical scene graphs for open-world settings which
facilitates the execution of sequential and long-horizon plans.
It employs a factored approach to scene graph generation,
first detecting objects and then establishing relations between
them. Experimental evaluations showcase the effectiveness of
our approach in generating rich and accurate scene graphs
without prior knowledge of objects. The graphs are more
robust in comparison to baseline methods and can be updated
rapidly during a multi-step manipulation task execution.
Ongoing work focuses on more extensive evaluation. Future
work will extend the approach to mobile manipulators.



ACKNOWLEDGEMENTS

We are grateful to Mr. Himanshu Gaurav Singh for assisting in setting
up the LLM/LVM infrastructure (while being student at IIT Delhi) and
feedback on this work (after graduating). We thank Mr. Mohd. Nadir, and
Dr. Piyush Chanana for conceptualizing and realizing the Franka Emika
Panda manipulation test bed used for real experiments. We acknowledge
Mr. Shailendra Negi and Ms. Sunita Negi for administrative support. We
thank Namasivayam K and the IIT Delhi HPC team for assisting with setup
and maintenance of high-performance computing infrastructure used for this
work. Rohan Paul and P. V. M. Rao acknowledge research funding support
from IIT Delhi IRD-Unit, NCAHT-ICMR and DIA-COE.

REFERENCES

[1] J. Bai, S. Bai, S. Yang, S. Wang, S. Tan, P. Wang, J. Lin, C. Zhou,
and J. Zhou. Qwen-vl: A versatile vision-language model for under-
standing, localization, text reading, and beyond. 2023.

[2] H. Chang, K. Boyalakuntla, S. Lu, S. Cai, E. Jing, S. Keskar,
S. Geng, A. Abbas, L. Zhou, K. Bekris, et al. Context-aware entity
grounding with open-vocabulary 3d scene graphs. arXiv preprint
arXiv:2309.15940, 2023.

[3] W. Dai, J. Li, D. Li, A. M. H. Tiong, J. Zhao, W. Wang, B. Li,
P. N. Fung, and S. Hoi. Instructblip: Towards general-purpose
vision-language models with instruction tuning. Advances in Neural
Information Processing Systems, 36, 2024.

[4] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov. Scalable object
detection using deep neural networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2147–
2154, 2014.
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APPENDIX

A. Detecting Objectness
We employ a factored approach for detecting novel objects in a scene,

where the presence of objects in an image is initially identified using
foundational models termed as objectness. The subsequent step involves
determining the labels for these objects. To detect objectness in an image,
we utilize a generic prompting technique, employing “objects” as the prompt
for the Grounding-DINO model, which localizes all possible entities in the
given image. However, detecting objectness is not confined solely to this
prompting strategy; alternative methods such as leveraging class-agnostic
segmentation models like SAM can also be utilized.

Fig. 6: “objects” prompt for Grounding DINO for detecting objectness

B. Prompts for Hierarchical Relation Estimation
A Visual Question Answering (VQA) model is employed to extract the

hierarchical relationships between the detected objects. We have explored
various prompting strategies to induce this hierarchy using foundation
models. The VQA used for the experiments is GPT-4V, which has the
capability to accept multiple images as inputs in a single query. The
following shows the prompt that we used:

Objects in the image are: [<obj 1>, <obj 2>, ...].
Find the relations (inside, onTop) between all
the objects mentioned using the images.
Not all the objects will be present in each image.
The objects can be either on the table (light brown color)
or on a rack. For each object, also tell if the
object is at the table or at the rack.

We have not constrained the VQA model to output in a structured
format. Experiments have shown that constraining the output prevents the
model from engaging in inherent Chain-of-Thought reasoning, resulting in



hallucinations. To structure the output, we employ an LLM parser, which
induces hierarchy and categorizes object types.

C. Comparison of Scene Graph Generation Methods
The Scene Graph encompasses more than one aspect, including the name

and pose of objects, as well as relations such as spatio-depth, planar, and
category abstraction. However, not all methods can handle all of these
aspects. TABLE II illustrates the capabilities of each baseline method.

Method Objects Relations
Detection Pose Spatio-depth Planar Abstraction

GPT-4V
CogVLM
GPT-4V+GDINO
GPT-4V+CogVLM
ConceptGraph
Proposed

TABLE II: Comparison of various method for generating scene graphs

D. Time Efficiency
Since querying the VQA model is computationally expensive, our method

caches all previous detections so that in the next iteration, querying the VQA
model can be reduced. However, since the baselines always rely on the VQA
models for object labeling, there is no added benefit of caching. Fig. 7 shows
the number of VQA calls made by the proposed method, GPT-4V+GDINO
(Baseline 1), and GPT-4V+CogVLM (Baseline 2) over two iterations of
scene graph generation.
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Fig. 7: Optimality in Object Detection
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