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Abstract
In this paper, we propose an extension of the
GFlowNet framework that operates directly in the
space of chemical reactions, offering out-of-the-
box synthesizability, while maintaining compara-
ble quality of generated candidates. We demon-
strate that with the proposed set of reactions and
fragments, it is possible to obtain a search space of
molecules orders of magnitude larger than exist-
ing screening libraries while offering low costs of
synthesis. We also show that the approach scales
to very large fragment libraries, further increasing
the number of potential molecules. Our experi-
ments showcase the effectiveness of the proposed
approach across a range of oracle models.

1. Introduction
In this paper, we propose Reaction-GFlowNet (RGFN),
an extension of the GFlowNet framework (Bengio et al.,
2023) that generates molecules by combining basic chem-
ical fragments using a chain of reactions. We propose a
relatively small collection of cheap and accessible chemical
fragments using a chain of reactions, based upon estab-
lished high-yield chemical transformations, that together
still produce a search space orders of magnitude larger than
existing chemical libraries. We additionally propose several
domain-specific extensions of the GFlowNet framework for
state representation and scaling to a larger space of possi-
ble actions. We experimentally evaluate RGFN on a set
of diverse screening tasks, including docking score approx-
imation with a trained proxy model for soluble epoxide
hydrolase (sEH), GPU-accelerated direct docking score cal-
culations for multiple protein targets (Mpro, ClpP, TBLR1
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and sEH), and biological activity estimation with a trained
proxy model for senolytic classification (Wong et al., 2023).
We demonstrate that RGFN produces similar optimization
quality and diversity to existing fragment-based approaches
while ensuring synthesizability out-of-the-box. Our analy-
sis further indicates that the generated molecules exhibit a
diverse range of chemical properties, as well as target speci-
ficity, demonstrating sufficient expressivity of the proposed
fragments and synthesis pathways.

2. Related work
Generative models for molecular discovery. There exists
a plethora of methods for molecular generation (Meyers
et al., 2021; Bilodeau et al., 2022) using machine learning.
They can be categorized depending on the molecular rep-
resentation used: textual representation such as SMILES
(Kang & Cho, 2018; Arús-Pous et al., 2020; Kotsias et al.,
2020), molecular graphs (Jin et al., 2018; Maziarka et al.,
2020; Pedawi et al., 2022) or 3D atom coordinate represen-
tations (O Pinheiro et al., 2024); as well as the underlying
methodology, e.g., variational autoencoders (Jin et al., 2018;
Maziarka et al., 2020), reinforcement learning (Pedawi et al.,
2022; Korablyov et al., 2024) or diffusion models (Run-
cie & Mey, 2023). Recently, Generative Flow Networks
(GFlowNets) (Bengio et al., 2021; Nica et al., 2022; Roy
et al., 2023; Shen et al., 2023; Volokhova et al., 2024) have
emerged as a promising paradigm for molecular generation
due to their ability to sample diverse candidate molecules,
which is crucial in the drug discovery process. Tradition-
ally, GFlowNets operated on the graph representation level,
and candidate molecules were generated as a sequence of
actions in which either individual atoms or small molecular
fragments were combined to form a final molecule. While
using graph representations, as opposed to textual or 3D
representations, allows the enforcement of the validity of
the generated molecules, it doesn’t guarantee a valid route
by which to synthesize them. This work expands on the
GFlowNet framework by modifying the space of actions
to consist of choosing molecular fragments and executing
compatible chemical reactions/transformations, in turn guar-
anteeing both validity and synthesizability.

Synthesizability in generative models. One approach to
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ensuring the synthesizability of generated molecules is by
using a scoring function, either utilizing it as one of the op-
timization criteria (Korablyov et al., 2024), or as a postpro-
cessing step by which to filter generated molecules. Multiple
scoring approaches, both heuristic (Ertl & Schuffenhauer,
2009; Genheden et al., 2020) and ML-based (Liu et al.,
2022), exist in the literature. However, synthesizability esti-
mation is difficult in practice. It can fail to generalize out
of distribution in the case of ML models, may significantly
reduce the number of high-scoring candidates, and does not
necessarily account for the cost of synthesis. Because of
this, a preferable approach might be to constrain the space of
possible molecules to those easily synthesized by operating
in a predefined space of chemical reactions and fragments.
Several existing works employ this approach (Bradshaw
et al., 2019; Gao et al., 2021; Swanson et al., 2024), includ-
ing reinforcement learning-based methods (Gottipati et al.,
2020; Horwood & Noutahi, 2020), which are conceptually
closest to this paper. We extend this line of work not only
by translating it to the GFlowNet framework but also by
proposing a curated set of robust chemical reactions and
fragments that ensure efficient synthesis at lower total costs.

3. Method
3.1. Generative Flow Networks

GFlowNets are amortized variational inference algorithms
that are trained to sample from an unnormalized target distri-
bution over compositional objects. GFlowNets aim to sam-
ple objects from a set of terminal states X proportionally to
a reward function R : X → R+. GFlowNets are defined
on a pointed directed acyclic graph (DAG), G = (S,A),
where:

• s ∈ S are the nodes, referred to as states in our setting,
with the special starting state s0 being the only state
with no incoming edges, and the terminal states X
have no outgoing edges,

• a = s → s′ ∈ A are the edges, referred to as actions
in our setting, and correspond to applying an action
while in a state s and landing in state s′.

A state sequence τ = (s0 → s1 → . . . → sn = x), with
sn = x ∈ X and ai = (si → si+1) ∈ A for all i, is called
a complete trajectory. We denote the set of trajectories as
T .

3.2. Reaction-GFlowNet

Reaction-GFlowNet generates molecules by combining ba-
sic chemical fragments using a chain of reactions. The
generation process is illustrated in Figure 1:

In the rest of this section, we describe the design of the

Reaction-GFlowNet in detail.

Preliminaries. Reaction-GFlowNet uses a predefined set of
reaction patterns and molecules introduced in Section 3.3.
We denote them as R and M respectively. As a backbone for
our forward policy PF , we use a graph transformer model
f from (Yun et al., 2019). The graph transformer takes as
an input a molecular graph m and outputs the embedding
f(m) ∈ RD, where D is the embedding dimension. In
particular, f can embed an empty graph . It can additionally
be conditioned on the reaction r ∈ R which we denote as
f(m, r). The reaction in this context is represented as its
index in the reaction set R.

Select an initial fragment. At the beginning of each trajec-
tory, Reaction-GFlowNet selects an initial fragment from
M . The probability of choosing i-th fragment mi is equal
to:

p(mi|∅) = σ|M |(s)i, si = MLPM (f(∅))i, (1)

where MLPM : RD → R|M | is a multi-layer perceptron
(MLP). The σk is a standard softmax over the logits vector
s ∈ Rk of the length k:

σk(s)i =
exp(si)∑k
j=1 exp(sj)

.

Select the reaction template. The next step is to select
a reaction that can be applied to the molecule m. The
probability of choosing i-th reaction from R is described as:

p(ri|m) = σ|R|+1(s)i, si = MLPR(f(m))i, (2)

where MLPR : RD → R|R|+1 is an MLP that outputs
logits for reactions from R and an additional stop action
with index |R|+ 1. Choosing the stop action in this phase
ends the generation process. Note that not all the reactions
may be applied to the molecule m. We appropriately filter
those reactions and assume that the score si for them is
equal to −∞.

Select another reactant. We want to find a molecule mi ∈
M that will react with m in the reaction r. The probability
for selecting mi is defined as:

p(mi|m, r) = σ|M |(s)i, si = MLPM (f(m, r))i (3)

where MLPM is shared with the initial fragment selection
phase. As in the previous phase, not all the fragments can
be used with the reaction r, so we filter them out.

Perform the reaction and select one of the resulting
molecules. In this step, we apply the reaction r to the
two fragment molecules chosen in previous steps. As the
reaction pattern can be matched to multiple parts of the
molecules, the result of this operation is a set of possible
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Figure 1. Illustration of RGFN sampling process. At the beginning, the RGFN selects an initial molecular building block. In the next two
steps, a reaction and a proper reagent are chosen. Then the reaction is performed and one of the resulting molecules is selected. The
process is repeated until the stop action is chosen. The obtained molecule is then evaluated using the reward function.

outcomes M ′. We choose the molecule m′i ∈ M ′ by sam-
pling from the following distribution:

p(m′
i|r) = σ|M ′|(s)i, si = MLPM ′(f(m′

i, r)), (4)

where MLPM ′ : RD → R scores the embedded m′
i

molecule.

Backward Policy. A backward policy in RGFN is only non-
deterministic in states corresponding to a molecule m which
is a result of performing some reaction r ∈ R on molecule
m′ and reagent m′′ ∈ R. We denote the set of such tuples
(r,m′,m′′) that may result in m as T . We override the
indexing and let (ri,m′

i,m
′′
i ) be the i-th tuple from T . The

probability of choosing the i-th tuple is:

p((ri,m
′
i,m

′′
i )|m) = σ|T |(s)i, si = MLPB(f(m

′
i, ri)),

(5)
where MLPB : RD → R and f is a backbone transformer
model similar to the one used in the forward policy. To
properly define T , we need to implicitly keep track of the
number of reactions performed to obtain m (denoted as k).
Only those tuples (r,m′,m′′) are contained in the T for
which we can recursively obtain m′ in k − 1 reactions.

Action Embedding. While the MLPM used to predict the
probabilities of selecting a molecule mi ∈ M works well
for our predefined M , it underperforms when the size of
possible chemical fragments is increased. Our intuition is
that such an MLPM struggles to reconstruct the relationship
between the molecules. Intuitively, when a molecule mi is
chosen in some trajectory, the training signal from the loss
function should also influence the probability of choosing a
structurally similar mj . However, the MLPM disregards the
structural similarity by construction and it intertwines the
probabilities of choosing mi and mj only with the softmax
function. To incorporate the relationship between molecules

into the model, we embed the molecular fragments with
a simple machine learning model g and reformulate the
probability of choosing a particular fragment mi:

p(mi|m, r) = σ|M |(s)i, si = ϕ(Wf(m, r))T g(mi),
(6)

where ϕ is some activation function (we use GELU) and
W ∈ RD×D is a learnable linear layer. Note that if we
define g(mi) as an index embedding function that simply
returns a distinct embedding for every mi, we will obtain
a formulation equivalent to Equation (3). To leverage the
structure of molecules during the training, we use g that
linearly embeds a (MACSS) fingerprint of an input molecule
mi along with the index i. Note that this approach does not
add any additional computational costs during the inference
as the embeddings g(mi) can be cached. In Appendix C.2,
we show that this method greatly improves the performance
when scaling to larger sets of fragments.

3.3. Chemical language

Seventeen reactions and 350 building blocks were selected
for our first-generation model. The reactions used in-
clude amide bond formation, nucleophilic aromatic sub-
stitution, Michael addition, isocyanate-based urea synthe-
sis, sulfur fluoride exchange (SuFEx), sulfonyl chloride
substitution, alkyne-azide and nitrile-azide cycloadditions,
esterification reactions, urea synthesis using carbonyl sur-
rogates, Suzuki-Miyaura, Buchwald-Hartwig, and Sono-
gashira cross-couplings, amide reduction, and peptide ter-
minal thiourea cyclization reactions to produce iminohy-
dantoins and tetrazoles. The chosen reactions are known to
be typically quite robust and generally high-yielding (75-
100%), thus enforcing reliable synthesis pathways when
sampling molecules from our model. During the construc-
tion of the curated building block database, only affordable
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reagents (building blocks) were considered. For the pur-
poses of this study we define affordable reagents to be those
priced at less than or equal to $200 per gram. The mean
cost per gram of reagents is $22.52, the lowest cost $0.023
per gram, and the highest cost $190 per gram.

A crucial consideration when choosing the set of reactions
and fragments used is the state space size. This is difficult
to compute precisely since a different set of reactions or
fragments is valid for every state in trajectory. We estimate
this based on 1,000 random trajectories instead (details can
be found in Appendix A). In addition to our 350 low-cost
fragments, we also perform this analysis with 8,000 addi-
tional random Enamine fragments. Comparison for different
numbers of maximum reactions is presented in Figure 2. As
can be seen, even with curated low-cost fragments and limit-
ing the number to a maximum of four reactions, state space
size is an order of magnitude greater than Enamine REAL
(Enamine, 2024). This size can increase significantly with
the addition of more fragments and/or an increase in the
maximum number of reactions. Additional discussion of
scaling can be found in Appendix C.2.
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Figure 2. Estimation of the state space size of RGFN as a function
of the maximum number of allowed reactions. RGFN (350) indi-
cates a variant using 350 hand-picked inexpensive building blocks,
while RGFN (8350) also uses 8,000 randomly selected Enamine
building blocks. Enamine REAL (6.5B compounds) is shown as a
reference.

4. Experimental study
In the conducted experiments we compare oracle scores
and synthesizability scores of RGFN with several state-of-
the-art reference methods. Then, we perform an in-depth
examination of produced ligands across several biologically
relevant targets. Experimental details can be found in Ap-
pendix B. Additional experiments examining the number of
modes discovered by different methods and the capabilities
of RGFN to scale to larger fragment libraries can be found

in Appendix C.

4.1. Comparison with existing methods

We begin experimental evaluation with a comparison to
several state-of-the-art methods for molecular discovery.
Specifically, we consider a genetic algorithm operating
on molecular graphs (GraphGA) (Jensen, 2019) as imple-
mented in (Brown et al., 2019), which has been demon-
strated to be a very strong baseline for molecular discov-
ery (Gao & Coley, 2020), Monte Carlo tree search-based
SyntheMol (Swanson et al., 2024), and a fragment-based
GFlowNet (FGFN) (Bengio et al., 2021) as implemented
in (Recursion, 2024). Training details can be found in Ap-
pendix B.6. It is worth noting that besides SyntheMol,
which also operates in the space of chemical reactions and
building blocks derived from the Enamine database, our
remaining benchmarks do not explicitly enforce synthe-
sizability when generating molecules. Because of this, in
this section, we will examine not only the quality of gen-
erated molecules in terms of optimized properties but also
their synthesizability. We consider only a single reaction-
based approach, as other existing methods employing this
paradigm (Horwood & Noutahi, 2020; Gottipati et al., 2020)
do not share code or curated reactions and fragments, mak-
ing reproduction difficult.

We first examine the distributions of rewards found by each
method across three different oracles used for training: sEH
proxy, senolytic proxy, and GPU-accelerated docking for
ClpP. The results are presented in Figure 3. As can be seen,
while RGFN underperforms in terms of average reward
when compared to the method not enforcing synthesizabil-
ity (GraphGA), it outperforms SyntheMol’s reaction-based
sampling. Interestingly, when compared to standard FGFN,
RGFN either performs similarly (ClpP docking) or achieves
higher average rewards. This is most striking in the case of
the challenging senolytic discovery task, in which a proxy is
trained on a severely imbalanced dataset with less than 100
actives, resulting in a sparse reward function. We suspect
that this, possibly combined with a lack of compatibility
between the FGFN fragments and known senolytics, led to
the failure to discover any high-reward molecules. How-
ever, RGFN succeeds in the task and finds a wide range of
senolytic candidates.

Finally, we focus on the synthesizability of generated
compounds. We present average values of several
synthesizability-related metrics, computed over top-k modes
generated for each method, in Table 1. For completeness,
we also include SAScores (Ertl & Schuffenhauer, 2009), but
note that they are only a rough approximation of ease of syn-
thesis. For a better estimate of synthesizability we perform
retrosynthesis using AiZynthFinder (Genheden et al., 2020)
and count the average number of molecules for which a
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Figure 3. Distributions of rewards across different tasks.

valid retrosynthesis pathway was found. Note that to reduce
variance, we compute SAScores over top-500 modes, but
due to high computational cost, AiZynth scores are com-
puted only over top-100 modes. As can be seen, while
there is some variance across tasks, RGFN performs simi-
larly to SyntheMol in terms of both synthesizability scores,
and significantly outperforms GraphGA and FGFN. All
RGFN modes were additionally inspected manually by a
chemist and confirmed as synthesizable, which indicates
that AiZynth scores are likely underestimated.

Table 1. Average values of synthesizability-related metrics.
Task Method SAScore ↓ AiZynth ↑
sEH GraphGA 3.87 ± 0.24 0.04

SyntheMol 2.85 ± 0.55 0.80
FGFN 3.43 ± 0.48 0.14
RGFN 3.09 ± 0.39 0.56

Seno. GraphGA 2.92 ± 0.26 0.05
SyntheMol 2.77 ± 0.40 0.53
FGFN 3.74 ± 0.54 0.01
RGFN 3.24 ± 0.32 0.58

ClpP GraphGA 4.14 ± 0.51 0.00
SyntheMol 2.86 ± 0.56 0.56
FGFN 2.94 ± 0.54 0.25
RGFN 2.83 ± 0.22 0.65

4.2. Examination of the produced ligands

In the final stage of experiments we examine the capabil-
ities of RGFN to produce high quality binders to a set of
diverse protein targets. The aim is to evaluate whether 1)
the chemical language used is expressive enough to produce
structurally diverse molecules for different targets, and 2)
whether generated ligands form realistic poses in the bind-
ing pockets. We first demonstrate the diversity of ligands
across targets on a UMAP plot of extended-connectivity fin-
gerprints Figure 4. Ligands assigned to specific targets form
very distinct clusters, showcasing their diversity. Interest-
ingly, we observe structural differences between sEH proxy
and sEH docking, possibly indicating poor approximation of
docking scores by the proxy model. Secondly, we examine

the docking poses of the highest scoring generated ligands.
As can be seen, the generated molecules produce realistic
docking poses, closely resembling those of known ligands
(Appendix D). Overall, this demonstrates the usefulness of
the proposed approach in the docking-based screens.
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Figure 4. UMAP plot of chemical structures of top-500 modes
generated for each target. RGFN generates sufficient chemical
diversity to produce distinct clusters of compounds.

5. Conclusions
In this paper, we present RGFN, an extension of the
GFlowNet framework that operates in the action space of
chemical reactions. We propose a curated set of high-yield
chemical reactions and low-cost molecular fragments that
can be used with the method. We demonstrate that even
with this small set of reactions and fragments, the proposed
approach produces a state space with a size orders of magni-
tude larger than typical screening libraries while providing
high synthesizability of generated compounds. We also
show that the size of the search space can be further in-
creased by including additional fragments and that the pro-
posed action embedding mechanism improves scalability to
very large fragment spaces.

We show that RGFN achieves roughly comparable average
rewards to state-of-the-art methods, and it outperforms an-
other approach operating directly in the space of chemical re-
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actions and, crucially, standard fragment-based GFlowNets.
At the same time, it significantly improves the synthesizabil-
ity of generated compounds when compared to a fragment-
based GFlowNet. Conducted analysis of ligands produced
across the set of diverse tasks demonstrates sufficient di-
versity of proposed chemical space to generalize to various
targets. While difficult to demonstrate experimentally, ease
of synthesis (due to the small stock of cheap fragments and
high-yield chemical reactions used) combined with reason-
ably high optimization quality offer a promising direction
for high-throughput screening applications.
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A. State space size estimation
We estimate the state space size by first sampling 1,000
random trajectories, masking out the end-of-sequence ac-
tion unless the maximum trajectory length max is reached.
Then, for every i-th reaction or fragment in the trajectory, we
count the average number of valid fragments fragi and re-
actions reacti from a given state in the trajectory, as well as
the average number of unique trajectories traji into which
a state can be decomposed using backward policy. We esti-
mate the state space size as

(
∏max

i=0 fragi)(
∏max

i=1 reacti)

trajmax
. (7)

Experimentally derived average values of these parameters
can be found in Table 2. Note that in the second setting we
randomly picked 8,000 fragments from the Enamine stock
(with the same balancing procedure as in Appendix C.2),
which after merging with our own fragments, canonization
and duplicate removal yielded a total of 8,317 fragments.

B. Experimental details
B.1. Set-up

Throughout the course of the conducted experimental study,
we aim to evaluate the performance of the proposed ap-
proach across several diverse biological oracles of interest.
This includes proxy models (machine learning oracles, pre-
trained on the existing data and used for higher computa-
tional efficiency): first, the commonly used sEH proxy as
described in (Bengio et al., 2021). Second, a graph neural
network trained on the biological activity classification task
of senolytic (Wong et al., 2023) recognition. Details of
proxy models are provided in Appendix B.2.

Per the GFlowNet training algorithm, the reward is calcu-
lated for a batch of dozens to hundreds of molecules at each
training step, rendering traditional computational docking
score algorithms like AutoDock Vina (Trott & Olson, 2010)
infeasible for very large training runs. As a result, previ-
ous applications of GFlowNets to biological design (Bengio
et al., 2021; Shen et al., 2023) employed a fast pre-trained
proxy model trained on docking scores instead. These prox-
ies, while lightweight, present potential issues should the
GFlowNet generate molecules outside their training data dis-
tributions and require receptor-specific datasets. To circum-
vent this, we use the GPU-accelerated Vina-GPU 2.1 (Tang
et al., 2023) implementation of the QuickVina 2 (Alhossary
et al., 2015) docking algorithm to calculate docking scores
directly in the training loop of RGFN. This approach allows
for drastically increased flexibility in protein target selec-
tion while eliminating proxy generalization failure. We se-
lect human soluble epoxy hydrolase (sEH), ATP-dependent
Clp protease proteolytic subunit (ClpP), SARS-CoV-2 main
protease (Mpro), and transducin β-like-related protein 1
(5NAF) as targets for evaluating RGFN using a docking
reward.

Training details for all of the generative methods can be
found in Appendix B.6.

B.2. Proxy models

The sEH proxy is described in (Bengio et al., 2021). It
is an MPNN trained on a normalized docking score data.
We utilize the exact same model checkpoint as provided in
(Recursion, 2024).

Senolytic classification model is a graph neural network
trained on the biological activity classification task of
senolytic (Wong et al., 2023) recognition. Specifically, it
was trained on two combined, publicly available senolytic
datasets (Wong et al., 2023; Smer-Barreto et al., 2023). Re-
ward is given by the predicted probability of a compound
being a senolytic. It is worth noting that due to the low
amount of data and high imbalance (< 100 active com-
pounds, a high proportion of which contained macrocycles

https://www.biorxiv.org/content/early/2023/11/05/2023.11.04.565429
https://www.biorxiv.org/content/early/2023/11/05/2023.11.04.565429
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Table 2. Experimentally derived average values of valid fragments, valid reactions, and possible trajectories.

350 fragments 8350 fragments

# reactions fragi reacti traji fragi reacti traji

0 350.0 - 1.0 8317.0 - 1.0
1 37.5 11.8 3.5 835.8 12.0 4.2
2 39.9 16.5 16.8 822.1 15.9 17.0
3 40.7 15.4 76.7 832.6 17.0 75.2
4 40.0 15.8 349.3 814.0 18.0 480.8
5 42.1 16.8 1825.8 857.6 18.9 3058.1

and were infeasible to construct with fragment-based gen-
erative models), this is expected to be a difficult task with
sparse reward.

The senolytic proxy model consisted of 5 GIN layers (Xu
et al., 2018a) with hidden dimensionality of 500, utilized
Jumping Knowledge shortcuts (Xu et al., 2018b), and had
a single output MLP layer. Pretraining was done in an
unsupervised fashion on the ZINC15 dataset (Sterling &
Irwin, 2015). The training was done for 30 epochs using
Adam optimizer with a learning rate of 5× 10−5 and batch
size of 50.

B.3. GPU-accelerated docking

Our docking oracle first accepts canonized SMILES strings
as input. These are then converted to RDKit Molecules,
protonated, and a low-energy conformer is generated and
minimized with the ETKDG (Riniker & Landrum, 2015)
conformer generation method and UFF (Rappe et al., 1992)
force field, respectively. For computational efficiency, we
generate one initial conformer per ligand. Each conformer
is converted to a pdbqt file and docked against a target
with Vina-GPU 2.1 using model defaults: exhaustiveness
(denoted by "thread" in the implementation) of 8000 and a
heuristically determined search depth d given by

d = max (1, ⌊0.36×Natom + 0.44×Nrot − 5.11⌋) ,
(8)

where Natom and Nrot are the number of atoms and the
number of rotatable bonds, respectively, in the generated
molecule. Box sizes were determined individually to encom-
pass each target binding site and centroids were calculated to
be the average position of ligand atoms in the receptor PDB.
A negative score is calculated and returned as a reward.

B.4. Target preprocessing

Each target was prepared by removing its complexed in-
hibitor and atoms of other solvent or solute molecules. We
selectively prepared the ClpP 7UVU protein structure by re-
taining only two monomeric units to ensure the presence of
a single active site available for ligand binding and similarly

prepared the Mpro 6W63 protein structure by retaining only
one monomeric unit.

B.5. Ligand postprocessing

To ensure the diversity, specificity, and conformer valid-
ity of top-generated molecules for each target, we initially
categorized our molecules into distinct modes, each rep-
resenting any SMILES string with a Tanimoto similarity
of 0.5 or lower with all other modes. Subsequently, we
selected the top 100 modes based on their Vina-GPU 2.1
scores and filtered their docked poses using PoseBusters
(Buttenschoen et al., 2023) in "mol" mode, where any pose
failing any PoseBusters check was excluded from consid-
eration. As a final precaution, we selected only modes
with Tanimoto coefficients to known aggregators of 0.4
or lower using UCSF’s Aggregation Advisor (Irwin et al.,
2015) dataset. This process resulted in 35, 68, 31, and 15
top modes for sEH, ClpP, Mpro, and TBLR1 binders, respec-
tively (Appendix E). Comparative analyses of docked top
RGFN modes and confirmed sEH, ClpP, and Mpro ligand
poses can be found in Appendix D. TBLR1 was omitted
from the analysis due to a lack of known small-molecule
ligands.

B.6. Model training

Both RGFN and FGFN were trained with trajectory balance
loss (Malkin et al., 2022) using Adam optimizer with a
learning rate of 1×10−3, logZ learning rate of 1×10−1, and
batch size of 100. The training lasted 4,000 steps. A random
action probability of 0.05 and a replay buffer of 20 samples
per batch were used. Both methods use graph transformer
policy with 5 layers, 4 heads, and 64 hidden dimensions.
Exponentiated reward R(x) = exp(β ∗score(x)) was used,
with β dependent on the task: 8 for sEH proxy, 0.5 for
senolytic proxy, and 4 for all docking runs. Note that due to
different ranges of score values, this resulted in a roughly
comparable range of reward values.

All sampling algorithms were outfitted with the Vina GPU-
2.1 docking, senolytic proxy, and sEH proxy scoring func-



RGFN: Synthesizable Molecular Generation Using GFlowNets

tions. While model architecture hyperparameters and batch
sizes were kept consistent between FGFN and RGFN, we
allowed FGFN a maximum fragment count of 6 as opposed
to RGFN’s 5 due to RGFN’s larger average building block
sizes.

GuacaMol’s Graph GA model was trained with a population
size of 100, offspring size of 200, and a mutation rate of
0.01 for 2000 generations for a total of 400,000 visited
molecules.

For SyntheMol experiments, we used the default building
block library of 132,479 compatible molecules and pre-
computed docking, senolytic, and sEH proxy scores for all
prior to executing rollouts to follow the established method-
ology. Due to CPU constraints, sampling 500,000 molecules
with SyntheMol was impractical. Instead, we executed
100,000 rollouts over approximately 72 hours to match the
RGFN training time with docking, yielding 111,964 unique
molecules. Additionally, we performed 50,000 rollouts each
(approximately 30 hours) for sEH and senolytic proxies, re-
sulting in 73,941 and 69,652 unique molecules, respectively.

C. Additional experiments
C.1. Number of discovered modes

We examine the number of discovered modes for each
method, with a mode defined as a molecule with computed
reward above a threshold (sEH: 7, senolytics: 50, ClpP dock-
ing: 10), and Tanimoto similarity to every other mode < 0.5.
The number of discovered modes across tasks as a function
of normalized iterations is presented in Appendix C.1. Note
that in the case of GraphGA, FGFN, and RGFN this simply
translates to the number of oracle calls, but for Synthe-
Mol, due to large computational overhead, we impose a
maximum number of rollouts such that training time was
comparable to RGFN (see Appendix B.6 for details). As can
be seen, despite slightly worse average rewards, FGFN still
outperforms other methods in terms of the number of discov-
ered modes (with the exception of senolytic discovery task,
where it fails to discover any high-reward molecules). This
suggests that RGFN samples are less diverse, possibly due
to the relatively small number of fragments and reactions
used. However, RGFN still outperforms remaining methods
across all tasks, suggesting that it preserves some of the
benefits of the diversity-focused GFlowNet framework.

C.2. Scaling to larger sets of fragments

Next we investigate the influence of a fragment embedding
scheme proposed in Section 3.2. In the standard implemen-
tation of the GFlowNet policy, actions are represented as
independent embeddings in the MLP. These encode actions
as indices, effectively disregarding their respective internal
structures and all information contained therein. If there

is a helpful structure within the actions, the independent
embeddings will need to learn it from scratch. While this
may be a relatively easy task for small action spaces, it
becomes more difficult when the size of the action space
increases. To scale RGFN to a larger size of the building
block library, we proposed to encode fragment actions us-
ing molecular fingerprints, allowing the model to leverage
the internal structure of the actions without any additional
computational overhead during the inference. In Figure 6,
we observe that our fingerprint embedding scheme allows
for drastically faster convergence compared to the standard
independent action embedding, especially for large library
sizes.
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Figure 5. Number of discovered modes as a function of normalized iterations. Log scale used.
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Figure 6. The number of discovered scaffolds with sEH proxy value above 7 (a) and 8 (b) as a function of fragment library size. We
compare standard independent embeddings of fragment selection actions (blue) with our fingerprint-based embeddings (orange) that
account for the fragments’ chemical structure. The number of scaffolds is reported after 2k training iterations for 3 random seeds (the solid
line is the median, while the shaded area spans from minimum to maximum values). We observe that our approach greatly outperforms
independent embedding when scaling to a larger action space.
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D. Docked poses of top generated molecules

Ours (sEH, 4JNC)

Vina-GPU 2.1 Score: -14.97 Vina-GPU 2.1 Score: -14.94 Vina-GPU 2.1 Score: -14.94

Reference (sEH, 4JNC)

Vina-GPU 2.1 Score: -11.13 Vina-GPU 2.1 Score: -14.97

Figure 7. Top left to right: Top 3 generated ligand scaffolds for sEH (blue). Bottom left: Reference ligand pose (purple, PDB ID: 1LF).
Bottom right: Reference ligand (purple) overlaid with top-scoring ligand (blue).
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Ours (ClpP, 7UVU)

Vina-GPU 2.1 Score: -13.35 Vina-GPU 2.1 Score: -13.32 Vina-GPU 2.1 Score: -13.19

Reference (ClpP, 7UVU)

Vina-GPU 2.1 Score: -10.31 Vina-GPU 2.1 Score: -13.35

Figure 8. Top left to right: Top 3 generated ligand scaffolds for ClpP (blue). Bottom left: Reference ligand pose (purple, PDB ID: OY9).
Bottom right: Reference ligand (purple) overlaid with top-scoring ligand (blue).
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Ours (Mpro, 6W63)

Vina-GPU 2.1 Score: -11.22 Vina-GPU 2.1 Score: -11.18 Vina-GPU 2.1 Score: -11.14

Reference (Mpro, 6W63)

Vina-GPU 2.1 Score: -8.53 Vina-GPU 2.1 Score: -11.22

Figure 9. Top left to right: Top 3 generated ligand scaffolds for Mpro (blue). Bottom left: Reference ligand pose (purple, PDB ID: X77).
Bottom right: Reference ligand (purple) overlaid with top-scoring ligand (blue).
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E. Top filtered molecules for all targets

sEH

Figure 10. Top 25 filtered binders to sEH drawn from top 100 RGFN modes.

ClpP

Figure 11. Top 25 filtered binders to ClpP drawn from top 100 RGFN modes.
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Mpro

Figure 12. Top 25 filtered binders to Mpro drawn from top 100 RGFN modes.

TBLR1

Figure 13. All 15 filtered binders to TBLR1 drawn from top 100 RGFN modes.


