
ASPERA: A Simulated Environment to Evaluate Planning for Complex
Action Execution

Anonymous ACL submission

Abstract
This work evaluates the potential of large lan-001
guage models (LLMs) to power digital as-002
sistants capable of complex action execution.003
Such assistants rely on pre-trained program-004
ming knowledge to execute multi-step goals by005
composing objects and functions defined in as-006
sistant libraries into action execution programs.007
To achieve this, we develop ASPERA, a frame-008
work comprising an assistant library simulation009
and a human-assisted LLM data generation en-010
gine. Our engine allows developers to guide011
LLM generation of high-quality tasks consist-012
ing of complex user queries, simulation state013
and corresponding validation programs, tack-014
ling data availability and evaluation robustness015
challenges. Alongside the framework we re-016
lease Asper-Bench, an evaluation dataset of 250017
challenging tasks generated using ASPERA,018
which we use to show that program generation019
grounded in custom assistant libraries is a sig-020
nificant challenge to LLMs.021

1 Introduction022

Digital assistants such as Siri or Alexa provide a023

conversational interface for users to execute simple024

actions (e.g., Set a timer for 5 minutes). To achieve025

this, developers typically define APIs (intents) and026

collect data to train specialised parsing models re-027

sponsible for translating user requests into machine-028

interpretable, domain-specific languages that can029

execute these APIs (Andreas et al., 2020; Cheng030

et al., 2020). Equivalently, action execution in this031

setting can be modelled as a function call to an in-032

tent API implemented by a target application (e.g.,033

alarm_set_timer(duration=5, unit='min'))034

Function calling supports simple actions, but exten-035

sion to execute any action on the device requires036

implementation of fine-grained intents and/or spe-037

cialised parsing functions for an intractably large038

number of requests. To enable future digital assis-039

tants to execute complex actions (Figure 1), Jham-040

tani et al. (2024) propose generation of a program041

Figure 1: Program executing the complex action Is it
anyone’s birthday in my team today? A possible query
decomposition is marked by planning steps (lines 6, 12).
The assistant must call 5 APIs (lines 7 - 9, 13 - 14),
perform operations such as attribute access and passing
values by attribute reference (line 15), in addition to
iteration and flow control. Logical reasoning is required
to deduce that the year of the birthday has to be updated
to the current year to correctly execute the task.

implemented with low-level primitives from as- 042

sistant libraries1. We aim to evaluate the ability 043

of LLMs to generate such programs when (1) the 044

LLM has access to all the relevant information for 045

generation, encoded in the assistant library doc- 046

umentation, or (2) the LLM selects the relevant 047

primitives by exploring the entire assistant library 048

as a first step prior to program generation. To this 049

end, we address two challenges. 050

1. Complex action evaluation instances com- 051

prising diverse, realistic queries annotated with 052

programs requiring compositional use of multiple 053

primitives are required for evaluation. Existing 054

resources do not fully satisfy this requirement. SM- 055

CalFlow (Andreas et al., 2020) contains composi- 056

1The assistant library is a collection of functions and ob-
jects the assistant can use to compose plans which determine
or change the user’s device state. A primitive is any abstraction
implemented in the library (e.g., a function or class).

1

tional queries but is annotated with a specialised057

domain-specific language (DSL) which hinders058

LLM performance (Bogin et al., 2024). DeCU059

(Jhamtani et al., 2024) is a dataset for evaluat-060

ing plan generation for complex user queries but061

provides in-context examples (ICEs) demonstrat-062

ing how to parse simple user requests to single-063

instruction programs in lieu of an assistant library;064

recent research has shown that task instructions065

and documentation, which DeCU lacks, can im-066

prove LLM performance on many other tasks (Lu067

et al., 2024; Srivastava et al., 2024; Hsieh et al.,068

2023). Styles et al. (2024) and Trivedi et al. (2024)069

develop simulated environments with comprehen-070

sively documented APIs, but limit action diversity071

by grounding queries in task templates.072

2. Robust evaluation of complex action exe-073

cution capability requires measuring task success,074

i.e. that the assistant actions satisfy the user goal.075

Jhamtani et al. (2024) note this to be an open076

problem, since functional correctness evaluation re-077

quires query-dependent databases and accounting078

for unwarranted side-effects2. Styles et al. (2024)079

tackle this by feeding databases to templated exe-080

cutable programs to annotate expected environment081

states. They propose strict database comparisons082

to estimate task success, and hence cannot evaluate083

queries with multiple outcomes and information-084

seeking queries3. Trivedi et al. (2024) address these085

limitations, but define environment states and eval-086

uate task success via specialised programs imple-087

mented by domain experts for every task.088

Contributions We propose ASPERA, a simu-089

lated environment supporting evaluation of agents090

capable of complex action execution with data gen-091

eration capability. Given an assistant library simu-092

lation (§2.1), ASPERA enables a developer and an093

LLM to interact to generate diverse, high-quality094

complex user requests and programs which satisfy095

them. We show that robust task success estima-096

tion is possible for both synthesised and human-097

authored queries by prompting LLMs to generate098

programs which appropriately initialise the envi-099

ronment state and determine whether the executed100

action satisfies the user goal (§2.3.2 and 2.3.3). Us-101

ing this system, we address the lack of complex102

actions execution data by generating Asper-Bench,103

2This term describes an unintended action by the agent
e.g., setting a meeting with the wrong attendees.

3Queries in which the assistant provides information to the
user.

Module Functions Classes Docs length (words)
time utils 22 11 986
work calendar 13 3 660
company directory 10 3 236
room booking 4 2 331
exceptions - 1 209
Total 49 20 2,422

Table 1: Assistant library summary statistics. A module
corresponds to a .py file. Docs length is the total length
of the documentation strings defined inside the module.
See Appendix B for details.

a challenging collection of 250 tasks (§3). Eval- 104

uation on this dataset shows that (1) generating 105

programs that satisfy complex action requests is a 106

challenge for LLMs even when they are prompted 107

with all the relevant information, despite their abil- 108

ity to generate plausible programs and (2) SOTA 109

LLMs find it difficult to select all the primitives 110

needed for composite tasks, adding a challenge to 111

program generation (§5 and 6). 112

2 The ASPERA Framework 113

In ASPERA, a human developer initiates an inter- 114

active session in which an LLM is prompted to gen- 115

erate complex user requests grounded in a python 116

library which can implement digital assistant use 117

cases. In subsequent human-LLM interactions, two 118

additional programs which enable success rate eval- 119

uation for arbitrary agents are generated. We now 120

discuss how this works in practice. 121

2.1 The assistant library 122

ASPERA implements an assistant library which 123

simulates a company in which employees in var- 124

ious teams (with a tree-based reporting structure) 125

have meetings with one another under various con- 126

ditions, managed by a room booking system. The 127

library consists of 7 databases and 69 python prim- 128

itives (Table 1). An extensive time utilities li- 129

brary, partially inspired by the SMCalFlow (An- 130

dreas et al., 2020), is implemented to test logical 131

and arithmetic reasoning capabilities. 132

2.2 Components of an ASPERA task 133

A task generated by ASPERA has four elements: 134

(1) the user query, a natural-language request for 135

the assistant to execute an action (e.g., Cancel my 136

lunch with Jill); (2) the action execution program 137

(AEP), a program which satisfies the user request 138

upon execution; (3) the state initialisation program 139

(SIP), which uses the assistant library and simula- 140

tion tools to set the environment state so that the 141

query can be executed in python (i.e., establishing 142

2

1
Output programs
with cancellations

2
3

Execute "Cancel
lunch with Jill"

. . .

A

Focus instruction:

Developer
interaction
(optional)

AEP (A)

SIP (B)

EP (C)

SIP (B)

1 2

EP (C)

B

Developer
interaction
 (optional)

Developer
interaction
 (optional) . . .

Program type examples
Documentation1

NL instructions
2
3

1 2 3 3

Developer-authored
query:

Figure 2: Sample ASPERA task, depicting action execution (A), state initialisation (B) and evaluation (C) programs.
The task is generated in an interactive chat session (§2.4) which is initialised with AEP generation prompts
(Appendix A.1 or A.2). To ground state initialisation, the chat history is extended with SIP generation prompt
(Appendix A.3), which developers can customise with task-specific instructions. Finally, the chat history is extended
with the EP generation prompt (Appendix A.4) which can also be customised by developers via instructions. At
each step, the developer can execute and edit the generated programs to ensure data quality.

the existence of an employee named Jill and some143

meetings scheduled with her); (4) the evaluation144

program (EP) which runs the AEP in the initialised145

environment and determines its correctness (i.e.,146

checks that the correct meeting has been deleted).147

Figure 2 depicts a simple ASPERA task.148

2.3 ASPERA task generation149

Figure 2 shows that the three programs which com-150

prise a task are generated given: (1) assistant li-151

brary documentation; (2) ICEs demonstrating the152

program format; and (3) natural language instruc-153

tions. The instructions describe the assistant policy,154

environment assumptions and/or program structure155

information (depending on the program type to be156

generated).157

2.3.1 Query and AEP generation158

The user query can be authored by the human de-159

veloper or synthesised by the LLM with the AEP160

(as part of the AEP docstring)4. By prompting161

the LLM with the documentation of the assistant162

library and with suitable examples, diverse and163

complex AEPs are generated. The complexity of164

the generated AEPs is characterised by: (1) number165

of primitives; (2) a variety of compositional pat-166

terns (Figure 2 AEP, lines 8 & 15, 18 - 20); (3) flow167

control and iteration (lines 21 - 24) and; (4) com-168

plex date-time reasoning (l. 18 - 20). Moreover,169

by prompting the LLM with exceptions, the AEPs170

4See query and AEP prompts in Appendix A.1 and A.2.

model advanced assistant capabilities such as dis- 171

ambiguation (lines 9 - 12, 27 - 28) and determining 172

if the requested action cannot be satisfied (lines 25 173

- 26). The AEP examples contain planning steps, 174

that outline a possible decomposition of the task 175

(lines 7, 14, 17) to encourage step-by-step thinking 176

and to improve generation quality. 177

2.3.2 SIP generation 178

After AEP generation, the LLM is prompted5 to 179

generate an SIP which initialises the simulation 180

state necessary to evaluate the query. In ASPERA, 181

the SIP re-uses the primitives implemented for ac- 182

tion execution (Figure 2 SIP, lines 13 - 22). This 183

obviates the need for handcrafting databases, using 184

templates to define the user query or prompting 185

the LLM with database schemata. While statically 186

defined databases model a single user’s behaviour, 187

ASPERA’s dynamic database generation allows it 188

to model multiple users. To simplify generation of 189

complex environment states (e.g., an organisation 190

reporting structure) the LLM can call ASPERA 191

simulation tools (lines 8 - 10; see Appendix A.5). 192

2.3.3 EP generation 193

The final step is to generate an EP6, which enables 194

ASPERA to evaluate the functional correctness of 195

an AEP to be evaluated. The EP takes as positional 196

arguments the reference SIP and the AEP (Figure 2 197

EP, lines 2 - 4) and executes them in this order 198

5See prompt listing in Appendix A.3.
6See prompt listing in Appendix A.4

3

Id Query Length (words) Cyclomatic complexity # primitives Max. AST depth

1 Assistant, schedule lunch with my entire team tomorrow at noon. 12 1 7 6
2 Assistant, schedule lunch with a different team member each day next week at 12:30 PM. 17 3 8 10
3 Assistant, add a 1-hr strategy review with the CFO and the COO one week from today at 2:30. 23 5 13 9
4 Assistant, check my boss’ calendar Wednesday to Friday next week, can they meet? 18 7 6 11
5 Assistant, I need to know which of Bill or Bob is busiest next week so I can allocate work. 21 7 7 14
6 Assistant, reorganise my diary on the fifth so that the important meetings come first. 16 9 10 11
7 Assistant, cancel the second meeting with Alice tomorrow if she declined. 13 8 5 10
8 Assistant, when in August when everyone from finance is off? 12 10 7 11
9 Assistant, set up a status update meeting with my manager every last Friday of the month at 2 PM

till the end of the year. Skip his holidays.
33 10 16 10

10 Assistant, edit the attendee list for our fortnightly team planning on Wednesdays at 1 PM to remove
Jack and Amy and add the newest sales hire.

28 13 11 10

Table 2: Asper-Bench sample queries (see §3)

9 15 21 27 33 39 45 51
Word count

0

10

20

30

40

50

T
as

k
co

u
nt

19.86
Query length distribution

2 4 6 8 10 12 14 16
primitives

0

5

10

15

20

25

T
as

k
co

u
nt

8.82
Distribution of unique primitives

5 6 7 8 9 10 11 12 13 14 15 16 17
Depth

0
10
20
30
40
50
60
70

T
as

k
co

u
nt

9.31
Maximum abstract syntax tree depth

1 3 5 7 9 11 13 15 17
Complexity

0
5

10
15
20
25
30
35

T
as

k
co

u
nt

5.68
Cyclomatic complexity distribution

Figure 3: Distributions of key complexity measures in the Asper-Bench reference AEPs

(lines 11 & 17) to initialise the environment and199

execute the user action. Prior to action execution,200

one or more variables (line 14) store the initial201

state relevant to assessing side-effects and user goal202

completion. After AEP execution, the variables are203

compared with their expected values in assertion204

statements (lines 22 - 26). These verify the user205

goal was met without unexpected side effects.206

The EPs thus implement goal-oriented agent207

evaluation (Budzianowski et al., 2018; Nekvinda208

and Dusek, 2021) even though the environment209

state is implicit in the queries and SIPs. Further-210

more, the EPs generalise database comparison func-211

tions implemented in other environments (Lu et al.,212

2024; Styles et al., 2024) because they can evalu-213

ate information-seeking queries by comparing the214

AEP returned value against its expected value. Fi-215

nally, evaluation of queries with multiple allowable216

outcomes7 is supported in ASPERA by comparing217

captured state with a range of accepted values in218

assertion bodies.219

2.4 Developer-LLM interaction in ASPERA220

Figure 2 shows how AEP, SIP, and EP generation is221

sequential and moderated by a developer. The de-222

veloper can seed the AEP generation with a focus223

instruction (top left) to provide guidance about at-224

tributes of tasks to be generated (e.g., action types,225

program length and complexity) or author the query226

and supervise AEP generation (bottom left).227

After AEP generation, the chat history is auto-228

7Multiple outcomes are defined for When is Bob free next
Friday? since both the upcoming Friday or Friday the follow-
ing week are valid interpretations of the date mentioned.

matically extended with the SIP generation prompt. 229

The developer can optionally instruct the LLM to 230

customise the environment state to be generated, 231

define multiple SIPs or implement new simulation 232

tools the LLM can use to write the SIPs. The inter- 233

active loop is repeated to enable EP generation. At 234

any point, the developer can execute the programs 235

in the simulated environment and edit them (or the 236

queries) accordingly to ensure data quality. 237

3 The Asper-Bench Dataset 238

We generate an evaluation dataset of 250 tasks us- 239

ing GPT-4o8, given five ICEs for each program type 240

(§2.2). 71 tasks are information-seeking, while the 241

remainder mutate one or more databases. We in- 242

clude both LLM- and human-authored queries. A 243

single SIP and EP are generated for each query, ex- 244

cept for conditional queries (Table 2, line 7) where 245

state initialisation and evaluation are defined to test 246

each AEP branch. Our annotations contain 9k, 13k 247

and 17.5k lines across execution, initialisation and 248

evaluation programs respectively. 249

Asper-Bench AEPs are diverse in their complex- 250

ity (Figure 3). The distribution of maximum ab- 251

stract syntax tree (AST) depth indicates AEPs sat- 252

isfying the queries require compositional use of 253

multiple primitives9; LLMs must interpret exten- 254

sive documentation across multiple modules and 255

demonstrate strong coding ability to generate AEPs 256

which complete Asper-Bench tasks. 257

8gpt-4o-2024-05-13.
9For comparison, the maximum AST depth of an AEP

containing a call where all slot values are strings (e.g.,
find_events(subject="Paper Review") is 5.)

4

As further shown in Appendix C, the queries258

pose challenges ranging from parsing complex time259

expressions and date/time arithmetic (Table 2, rows260

3, 8 - 10) to logical reasoning and interpretation of261

additional instructions (rows 3 - 5, see Appendix262

C.1). Hence, the diversity of the dataset arises from263

the complexity of the tasks rather than through, for264

example, paraphrasing. Representing such com-265

plex queries as programs requires iteration and266

flow-control patterns. This increases a program’s267

cyclomatic complexity (CC), defined as the num-268

ber of independent paths that can be traversed dur-269

ing execution (McCabe, 1976). Tasks with higher270

CC involve non-trivial operations to resolve peo-271

ple, events or dates (Table 3, rows 8, 10), complex272

rescheduling (row 6) and scheduling events sub-273

ject to constraints (row 9). Lower CC tasks test274

fine-grained documentation understanding and pro-275

gramming ability (row 1); occasionally, these tasks276

require branching to follow instructions which pro-277

vide relevant information about the environment278

that does not naturally fit in the documentation (row279

3) or describe the assistant policy.10280

Asper-Bench programs follow a policy for in-281

terrupting execution to interact with the user: the282

RequiresUserInput exception is raised if the enti-283

ties mentioned by the user cannot be retrieved from284

the databases11 or the task cannot be completed285

(e.g., a room is unavailable; see Appendix C.3).286

4 ASPERA Evaluator287

ASPERA provides an interface which enables arbi-288

trary agents to execute AEPs and observe execution289

outcome. To support ongoing comparison of the290

baseline complex action execution capability of291

LLMs independent of the agent prompt, we pro-292

vide two implementations of this interface.293

1. Complete codebase knowledge (CCK) The294

agent prompt (Figure 17, Appendix D) contains295

the documentation for the entire assistant library296

(Table 1) alongside the five AEP example used to297

generate Asper-Bench. The prompt also includes298

instructions for: an events scheduling policy; infor-299

mation about environment constraints12; and the300

output format. For information-seeking queries,301

10For details, see Figure 6c in Appendix A.1.
11Given the complexity of our tasks, we always simulate

these entities; we leave adversarial user behaviour robustness
evaluation (e.g., the user deliberately requests updating an
event that is not in the calendar) to future work.

12These include e.g. company information (e.g., The lead-
ership team is formed of a CEO, COO and CFO.).

the type of the object to be returned to the caller is 302

also included in the prompt. 303

2. Primitives selection (PS) The primitives are 304

not known when the user invokes the assistant. In- 305

cluding the entire assistant library documentation 306

in the prompt (as in the CCK prompt) may be im- 307

practical due to context window and latency limita- 308

tions. In such a case, the assistant must inspect the 309

library to determine which primitives are needed 310

to execute the action requested by the user. To 311

evaluate how well agents perform under these con- 312

straints, we provide a simple interface in which 313

AEP generation is conditioned on primitives se- 314

lected by the LLM prior to generation. This in- 315

volves an iteration through an extended assistant 316

library13. At each step, the agent is prompted with 317

the documentation for an ASPERA module (viz 318

Table 1) alongside the user request and is asked to 319

issue import statements to select relevant primi- 320

tives or None if the module is not relevant for exe- 321

cuting the requested action (Figure 18a, Appendix 322

D). Upon iteration completion, the selected primi- 323

tives replace the full application library listings in 324

the CCK prompt. 325

As opposed to the 5 ICEs in the CCK prompt, 326

the AEP generation prompt for PS contains just 327

one example demonstrating the solution format. 328

Had the CCK examples been included, the success 329

rate of agents with poor primitive selection recall 330

would have been overestimated because the prim- 331

itives used by the ICEs and their documentation 332

would be listed despite not having been purpose- 333

fully imported. 334

Metrics We report task success. A task is com- 335

pleted if the generated AEP executes without error 336

and all assertions pass in all reference EPs. 337

5 Asper-Bench Evaluation 338

Complete assistant library knowledge (CCK Set- 339

ting) AEP generation is challenging for both pro- 340

prietary and open-source LLMs even when they 341

can directly observe all the knowledge relevant 342

for planning (Table 3). Despite performing well 343

on standard code generation benchmarks (Chen 344

et al. (2021), Austin et al. (2021a)), and their 345

ability to consistently generate syntactically cor- 346

rect AEPs (Table 3, column 5), the most widely 347

used general-purpose assistants successfully exe- 348

13The extension contains documentation for the
ai_assistant, contacts, files, messaging, navigation,
user_device_settings modules in addition to those
reported in Table 1, to be implemented in a future release.

5

Model name Checkpoint Size Task success (%) Syntax err. (%)
o1 o1-preview-2024-09-12 - 80.13 -
o1-mini o1-mini-2024-09-12 - 51.40 0.13
GPT-4o gpt-4o-2024-05-13 - 45.33 -
GPT-4o-mini gpt-4o-mini-2024-07-18 - 21.07 -
3.5-turbo gpt-3.5-turbo-0125 - 10.80 1.20
1.5-pro gemini-1.5-pro-002 - 33.73 0.40
1.5-flash gemini-1.5-flash-002 - 27.87 0.40
1.0-pro gemini-1.0-pro-002 - 12.67 0.53

Mistral L Mistral-Large-Instruct-2407 123B 38.00 -
Qwen2.5 Qwen2.5-72B-Instruct 72B 28.80 -
Gemma2 gemma-2-27b-it 27B 14.40 0.4
CodeGemma codegemma-7b-it 7B 2.40 6.0

Table 3: CCK Asper-Bench task completion rates (5-
shot). Rates for proprietary models are average of 3
runs with different seeds. We use greedy decoding for
all models models except o1 where the API only allows
setting the temperature to 1.

Model name Setting # ICE Micro F1 P R Task success (%)

o1
CCK 5 - - - 80.13
CCK 1 - - - 72.80
PS 1 0.63 0.60 0.67 28.40

GPT-4o
CCK 5 - - - 45.33
CCK 1 - - - 36.53
PS 1 0.56 0.56 0.55 11.46

Table 4: PS task success. Rows 1 and 4 are repeated
from Table 3, # ICE denotes the number of AEP exam-
ples in the prompt. Precision and recall are computed
with respect to the Asper-Bench reference AEPs.

cute only 45.33% (GPT-4o) and 33.73% (Gemini349

1.5 Pro (Reid et al., 2024)) of actions. Task success350

correlates with model size (Table 3, r. 9-13). How-351

ever, the improved task success of o1-mini com-352

pared to larger LLMs such as GPT-4o (+6.1%) and353

Gemini 1.5 Pro (+17.67%) suggests that both code354

generation proficiency and step-by-step reasoning355

prior to program generation may be key for im-356

plementing advanced digital assistants with LLMs.357

358

Primitive selection (PS setting) Despite its AEP359

generation capability when conditioned on the doc-360

umentation of the entire ASPERA library, o1 re-361

trieves just 67% of the primitives relevant for AEP362

implementation and achieves a modest 28.4% task363

completion rate as a result (Table 4). Hence, while364

identifying which primitives are relevant for exe-365

cuting a given action is relatively simple for human366

developers, we find that SOTA LLMs have limited367

ability to perform in this setting.368

6 Analysis and discussion369

6.1 CCK error analysis370

We begin with an in-depth analysis of programs371

generated by agents prompted with the documenta-372

tion of the entire ASPERA library. A breakdown373

of the errors observed is presented in Figure 4. We374

Statistic Model name
GPT-3.5-turbo GPT-4o-mini GPT-4o o1-mini o1

Lines of code ∆ to reference AEPs -12.15 -7.3 -5.48 3.22 8.72
RequiresUserInput usages 52 93 170 360 291
Average planning steps (viz. Figure 1) 4.83 5.63 5.41 6.15 9.16
Helper functions count 0 2 11 29 65
Average cyclomatic complexity 2.92 3.82 4.44 5.95 6.80

Table 5: Key generated AEPs statistics

Model name Programs debugged Programs analysed Errors labelled Could recover (%)

GPT-4o 33 125 41 48.39
GPT-3.5-turbo 66 125 100 24.62

Table 6: Execution error analysis statistics.

3.
5-

tu
rb

o

4o
-m

in
i 4o

o1
-m

in
i o1

1.
0-

pr
o

1.
5-

fla
sh

1.
5-

pr
o

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
to

ta
l

er
ro

rs
(%

) 223 197 137 122 50 218 180 166

34.23

62.18

49.82

7.27

42.91

49.75

11.46

38.79

57.43

25.81

16.76

62.23

28.15

9.61

27.49

7.02

65.49

46.23

7.95

45.83

53.54

7.24

39.22

Error type

Task completion

Handback control

Execution

Figure 4: Assistant error types for OpenAI and Gemini
model families. Top row displays total error counts.

make three key observations. 375

First, for both OpenAI and Gemini models, more 376

capable14 variants produce a larger proportion of 377

task completion errors, in which programs exe- 378

cute successfully but fail an assertion in evaluation. 379

Such an error indicates that the model can success- 380

fully use and combine primitives, but fails to under- 381

stand some nuance in the user request and therefore 382

takes the wrong action. Table 13 (Appendix E.2) 383

shows concrete examples of this. 384

Second, less capable models incur relatively 385

more execution errors, in which programs are syn- 386

tactically correct but trigger a runtime exception. 387

An in-depth error analysis of 141 such errors from 388

GPT-3.5-turbo and GPT-4o15 shows that both mod- 389

els have a tendency to hallucinate in situations 390

where multi-step reasoning is required, generat- 391

ing shorter AEPs compared to the reference annota- 392

tions (Table 5, row 1). Additionally, we find that ex- 393

ecution errors often occur with task completion er- 394

rors; in other words, the solution is incorrect even if 395

the execution error is manually fixed (Table 6, col- 396

umn 5). While self-reflecting agents (Shinn et al., 397

2023) could achieve higher task success, our eval- 398

uation considers complex action execution in the 399

single trial setting since, in practice, self-debugging 400

iterations increase latency and trial execution might 401

14As ranked by performance on standard general, math,
reasoning and code benchmarks.

15Detailed in Appendix E.1.

6

Subset CC AST depth o1(%) GPT-4o (%) Example

Simple 1.9 7.3 100 100 Table 2, row 1
Constrained scheduling 7.1 9.6 86.67 46.67 Table 2, row 9
Complex time expressions 5.4 9.2 63.33 20.00 Table 2, r. 4 & 10
Policy / instruction following 6.0 9.2 80.00 20.00 Table 2, r. 2 & 3
Advanced problem solving 9.2 10.6 56.67 26.67 Table 2, row 5

Table 7: Task success for query subsets. Each subset
has 10 queries, see Appendix E.4 for complete listings.

have unintended consequences (e.g., some events402

are scheduled before the program execution fails).403

Third, more capable models generate a greater404

proportion of handback control errors. These405

errors are linked to more frequent use of the406

RequiresUserInput exception (Table 5, row 2),407

used to handle cases in which the assistant can-408

not complete a task or cannot disambiguate be-409

tween some entities at runtime. The errors occur410

when this exception triggers unexpectedly, indicat-411

ing that the agent has made an incorrect assumption412

or misidentified an edge case. Such errors provide413

insight into the types of queries which challenge414

even SOTA models.16

0-
2

(n
=

64
)

2-
4

(n
=

53
)

4-
6

(n
=

47
)

6-
8

(n
=

31
)

8-
11

(n
=

32
)

11
-1

9
(n

=
21

)
0

20

40

60

80

100

T
as

k
su

cc
es

s
(%

)

89.1
81.1 78.7 80.6

71.9 76.2

62.5 58.5
46.8

32.3 28.1

14.3

o1 gpt4o

(a) Cyclomatic complexity

3-
7

(n
=

46
)

7-
9

(n
=

84
)

9-
12

(n
=

11
4)

12
-1

7
(n

=
6)

0

20

40

60

80

100

T
as

k
su

cc
es

s
(%

)

89.1 84.5
75.4

66.763.0

48.8
38.6

16.7

o1 gpt4o

(b) Maximum AST depth

Figure 5: Task success as a function of reference AEP
complexity (n denotes bucket size)

415

6.2 Handling complexity416

Asper-Bench requires models to perform various417

complex compositions of primitives and control418

flow sequences. Figure 5 shows that o1 can success-419

fully complete a much larger proportion of tasks420

which require generating complex programs com-421

16For error examples, see Table 14, Appendix E.3.

pared to GPT-4o. As seen in Table 5, o1 is more ca- 422

pable in this regard due to its ability to break down 423

the task into fine-grained steps (row 3), make use 424

of helper functions to encapsulate complex func- 425

tionality (row 4) and to more effectively employ 426

flow control and iteration (row 5). 427

To further demonstrate the challenges in Asper- 428

Bench, we select 5 subsets of 10 queries which 429

test different aspects of assistant understanding and 430

reasoning capabilities. Table 7 (row 1) shows that 431

both o1 and GPT-4o can equally handle simple 432

problems (e.g., scheduling an event on a given 433

date, or deleting events) but a large gap is observed 434

in the completion rate of advanced tasks. Com- 435

pared with o1, GPT-4o is significantly challenged 436

by scheduling with constraints and resolving diffi- 437

cult relative time expressions (rows 2 & 3), which 438

require flow control, primitive composition and 439

arithmetic reasoning. The same is true of generat- 440

ing AEPs constrained by additional instructions in 441

the prompt (row 4) and solving very challenging 442

examples from the above categories (row 5). 443

6.3 Primitives selection 444

The primitives selection setting proved challenging 445

for both models evaluated, as shown in Table 4. 446

The LLMs analysed show limited ability to 447

reason about dependent primitives. Using the 448

work_calendar module, for example, requires 449

knowledge about properties of the Event primi- 450

tive. We find this relation is not recognised dur- 451

ing selection; o1 fails to import both the relevant 452

work_calendar API and Event in 29 out of 67 453

occurrences of find_events, 16 out of 69 occur- 454

rences of add_event and 8 out of 19 occurrences 455

of delete_event. 456

The ability of an LLM to use a primitive listed in 457

the prompt can be weakly associated with selection 458

performance for that same primitive. Consider the 459

function add_event. In our baseline setting (CCK, 460

1-shot), o1 achieves 66% task success rate on the 461

subset of queries whose reference AEP uses this 462

primitive. In selection of add_event, however, o1 463

shows a comparatively poor recall of 0.41 and a 464

F1 score17 of 0.58. This suggests that selecting a 465

complete set of fine-grained primitives to execute a 466

complex user request is a challenging problem for 467

these LLMs. 468

17A detailed breakdown of retrieval metrics per primitive
can be found in Appendix E.5.

7

7 Related Work469

Task-oriented parsing Parsing natural language470

queries into DSL programs interpretable by exe-471

cution engines (Zelle and Mooney, 1996; Liang472

et al., 2013; Berant et al., 2013; Gupta et al., 2018,473

inter alia) is challenging for program structures474

unseen in training (Yao and Koller, 2022). Bogin475

et al. (2024) and Jhamtani et al. (2024) show that476

representing targets as programming languages im-477

proves LLMs’ few-shot semantic parsing ability;478

we build on this by employing program synthesis to479

collect complex, high-quality, task-oriented queries480

and to evaluate agents executing them.481

Tool-augmented LLMs & LLM Agents An al-482

ternative is query synthesis at scale by prompting483

LLMs with documentation of sampled synthetic-484

(Tang et al., 2023) or real-world APIs (Xu et al.,485

2023; Song et al., 2023; Qin et al., 2024) and query486

examples. Because the relations between the sam-487

pled APIs are sparse, the resulting programs are lin-488

ear sequences of often unrelated API calls. As such,489

tool-use corpora mostly evaluate LLMs’ ability to490

parse API call sequences rather than complex rea-491

soning with multiple tools. By grounding queries492

in a library with primitives sharing type relations,493

we generate challenging tasks that require multi-494

step, arithmetic and logical reasoning, building on495

work by Shen et al. (2023), who ground queries in496

handcrafted task relation graphs.497

Synthetic data generation at scale comes with498

both quality (Iskander et al., 2024) and evaluation499

(Guo et al., 2024) challenges. To tackle the former,500

human-authoring and manual curation have been in-501

creasingly employed (Huang et al., 2024; Jhamtani502

et al., 2024; Trivedi et al., 2024; Styles et al., 2024;503

Yan et al., 2024). Instead, we propose an interac-504

tive data generation engine to ensure data quality505

and reduce human cost. Like Styles et al. (2024)506

and Trivedi et al. (2024) we tackle evaluation chal-507

lenges by executing agent actions in a simulated508

environment and determining whether they satisfy509

the user goal. While both Styles et al. (2024) and510

Trivedi et al. (2024) template user queries and re-511

sort to program templates (Styles et al., 2024) or512

high-fidelity task simulators (Trivedi et al., 2024)513

to annotate environment state, ASPERA does not514

constrain the format of the query or of the program515

grounding it. Like Trivedi et al. (2024) we gen-516

eralise the strict database comparisons of Styles517

et al. (2024), but generate the evaluation programs518

in LLM interactions as opposed to manually imple-519

menting them for every task. 520

Code generation LLM ability is measured by 521

benchmarks (Chen et al., 2021; Austin et al., 2021b; 522

Hendrycks et al., 2021) which test algorithmic 523

ability via generation of self-contained functions 524

with contextual dependencies limited to standard 525

libraries. To address this, other resources encom- 526

pass narrow-domain dependencies on external data- 527

science libraries (Lai et al., 2023; Wang et al., 2023) 528

or a broader set of domains (Zhuo et al., 2024). AS- 529

PERA focuses on program generation with project- 530

runnable dependencies (Yu et al., 2024) of custom 531

primitives in the assistant library, which is very 532

challenging but receives limited coverage in ex- 533

isting resources (Siddiq et al., 2024). Moreover, 534

ASPERA tasks represent high-level user goals re- 535

quiring the assistant to reason about primitive rele- 536

vance, while the aforementioned benchmarks test 537

program generation given precise function spec- 538

ifications and knowledge about external libraries 539

acquired during pre-training. Evaluation robust- 540

ness is guaranteed by execution of human-authored 541

tests for all the above benchmarks except Zhuo 542

et al. (2024) who, like our work, use human-LLM 543

interaction to generate data and robustly evalute 544

general software task competence. 545

8 Conclusion 546

This work evaluated the ability of LLMs to parse 547

complex natural language queries into executable 548

programs that involve non-trivial primitive com- 549

position and flow control. We have addressed key 550

limitations in existing work regarding dataset avail- 551

ability and evaluation by devising an environment 552

where LLMs and human developers interact to col- 553

lect evaluation data and code for environment state 554

initialisation and execution outcome verification. 555

We found that generating programs which satisfy 556

intricate user queries grounded in custom assistant 557

libraries is challenging for a wide range of SOTA 558

LLMs which are otherwise proficient at code gen- 559

eration. Our initial results also showed that, while 560

SOTA LLMs can compose primitives to execute 561

difficult tasks, they are limited in their understand- 562

ing of whether a given primitive is needed given the 563

query alone, which is of concern to practical digital 564

assistants. Hence, Asper-Bench and the ASPERA 565

framework enable future study of action execution 566

in the challenging setting where the primitives are 567

not known to the agent and must be retrieved or 568

discovered via environment interaction. 569

8

9 Limitations570

Interactive code generation Humans write code571

in an interactive manner (Yang et al., 2023), occa-572

sionally relying on execution feedback to correct573

errors, resolve ambiguities and decompose tasks it-574

eratively. The majority of existing code generation575

benchmarks, including the current work, consider a576

non-interactive instruction-to-code sequence trans-577

duction process which has the potential for error578

propagation and a disconnect between the gener-579

ated code and its execution environment. While the580

ASPERA environment supports interactive code581

generation grounded in environment feedback and582

observations, we have focused on evaluating LLMs’583

fine-grained understanding and ability to compo-584

sitionally use multiple primitives and curated the585

tasks such that that they are solvable without inter-586

action. In doing so, we have increased the difficulty587

of certain types of tasks (e.g., scheduling subject588

to constraints, tasks involving re-scheduling and589

diary re-organisation). Future work will focus on590

comparing the performance of interactive and non-591

interactive agents on Asper-Bench.592

Scenario-based evaluation We have designed593

ASPERA such that each task can have multiple594

SIPs and corresponding EPs to support creating595

contrast sets (Gardner et al., 2020) for each task596

and comprehensively evaluate that the agent ac-597

tions satisfy the user goal regardless of the initial598

state. However, unlike in domains such as customer599

resource management (Styles et al., 2024) or online600

ordering (Trivedi et al., 2024) where the user may601

not know the state of the environment, we assume602

that the user has complete knowledge of the state603

of their calendar. Consequently, scenario-based604

evaluation is very limited in Asper-Bench and con-605

cerns only queries involving the calendars of other606

actors in the environment (e.g., other employees)607

or the room booking system. Moreover, we do608

not generate states where entities are ambiguous609

(e.g., two employees share the same surname and610

the user attempts to schedule a meeting with one611

of them without further identifying them). Future612

work could thus extend the SIP generation to sup-613

port scenario-based evaluation.614

Dataset size Asper-Bench is comparable in size615

to other popular code generation benchmarks such616

as HumanEval (Chen et al., 2021), NumpyEval617

(Zan et al., 2022b) , PandasEval (Zan et al., 2022b)618

and TorchDataEval (Zan et al., 2022a), but likely619

not sufficiently large for finetuning LLMs for digi-620

tal assistant applications. Future work could focus 621

on scaling the size of our data using the ASPERA 622

data generation engine or by LLM-assisted para- 623

phrasing of existing queries and refactoring of SIPs 624

and EPs, similar to Zhuo et al. (2024). This would 625

enable future work to study robustness of finetuned 626

digital assistant models under non-trivial, seman- 627

tics preserving transformations of the assistant li- 628

brary (e.g., refactoring). 629

Limited domain coverage The ASPERA as- 630

sistant library supports parsing of complex time 631

expressions and a simple simulation of a corpo- 632

rate calendar. Furthermore, the assistant library 633

provides documentation for 6 domains (see §4, 634

footnote 12). With more time investment, these 635

domains could be simulated, along with any ad- 636

ditional simulation and evaluation tools necessary 637

to generate the environment state. The expansion 638

could focus on evaluating requests which span mul- 639

tiple applications (e.g., How long will it take me to 640

drive to my next meeting this afternoon?) which 641

are not supported in the current release. 642

We note that, while the simulation and the cur- 643

rent set of evaluation and simulation tools were 644

developed offline by one of the authors with GPT- 645

4o assistance, future releases could explore the use 646

of LLMs for assisting the developer with auxiliary 647

tool implementation during the ASPERA interac- 648

tive session. We anticipate that the human effort 649

required to scale to new domains depends on the 650

LLMs available for data generation, the complexity 651

of the domain considered and the complexity of the 652

scenarios developers wish to simulate. 653

Multi-turn interactions In keeping with re- 654

cent works focused on multiple tool use and LLM 655

agents, our work considers a user which issues a 656

complex request in a single-turn interaction. In 657

practice, it is desirable that the digital assistant can 658

handle complex requests at any point in a conversa- 659

tion. Moreover, multi-turn interaction is necessary 660

when the assistant cannot perform entity disam- 661

biguation or has failed to solve the task. Future 662

work could exploit the error handling sequences 663

in the reference Asper-Bench AEPs to generate di- 664

alogues where complex action execution requires 665

user interaction, similar to recent work by Lu et al. 666

(2024). 667

References 668

Jacob Andreas, John Bufe, David Burkett, Charles Chen, 669
Josh Clausman, Jean Crawford, Kate Crim, Jordan 670

9

DeLoach, Leah Dorner, Jason Eisner, Hao Fang, Alan671
Guo, David Hall, Kristin Hayes, Kellie Hill, Diana672
Ho, Wendy Iwaszuk, Smriti Jha, Dan Klein, Jayant673
Krishnamurthy, Theo Lanman, Percy Liang, Christo-674
pher H. Lin, Ilya Lintsbakh, Andy McGovern, Alek-675
sandr Nisnevich, Adam Pauls, Dmitrij Petters, Brent676
Read, Dan Roth, Subhro Roy, Jesse Rusak, Beth677
Short, Div Slomin, Ben Snyder, Stephon Striplin,678
Yu Su, Zachary Tellman, Sam Thomson, Andrei679
Vorobev, Izabela Witoszko, Jason Andrew Wolfe,680
Abby Wray, Yuchen Zhang, and Alexander Zotov.681
2020. Task-oriented dialogue as dataflow synthesis.682
Trans. Assoc. Comput. Linguistics, 8:556–571.683

Jacob Austin, Augustus Odena, Maxwell I. Nye,684
Maarten Bosma, Henryk Michalewski, David Dohan,685
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le,686
and Charles Sutton. 2021a. Program synthesis with687
large language models. CoRR, abs/2108.07732.688

Jacob Austin, Augustus Odena, Maxwell I. Nye,689
Maarten Bosma, Henryk Michalewski, David Dohan,690
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le,691
and Charles Sutton. 2021b. Program synthesis with692
large language models. CoRR, abs/2108.07732.693

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy694
Liang. 2013. Semantic parsing on freebase from695
question-answer pairs. In Proceedings of the 2013696
conference on empirical methods in natural language697
processing, pages 1533–1544.698

Ben Bogin, Shivanshu Gupta, Peter Clark, and Ashish699
Sabharwal. 2024. Leveraging code to improve in-700
context learning for semantic parsing. In Proceed-701
ings of the 2024 Conference of the North American702
Chapter of the Association for Computational Lin-703
guistics: Human Language Technologies (Volume 1:704
Long Papers), NAACL 2024, Mexico City, Mexico,705
June 16-21, 2024, pages 4971–5012. Association for706
Computational Linguistics.707

Pawel Budzianowski, Tsung-Hsien Wen, Bo-Hsiang708
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-709
madan, and Milica Gasic. 2018. Multiwoz - A large-710
scale multi-domain wizard-of-oz dataset for task-711
oriented dialogue modelling. In Proceedings of the712
2018 Conference on Empirical Methods in Natural713
Language Processing, Brussels, Belgium, October 31714
- November 4, 2018, pages 5016–5026. Association715
for Computational Linguistics.716

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming717
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-718
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,719
Greg Brockman, et al. 2021. Evaluating large720
language models trained on code. arXiv preprint721
arXiv:2107.03374.722

Jianpeng Cheng, Devang Agrawal, Héctor Martínez723
Alonso, Shruti Bhargava, Joris Driesen, Federico724
Flego, Dain Kaplan, Dimitri Kartsaklis, Lin Li,725
Dhivya Piraviperumal, Jason D. Williams, Hong726
Yu, Diarmuid Ó Séaghdha, and Anders Johannsen.727
2020. Conversational semantic parsing for dialog728

state tracking. In Proceedings of the 2020 Confer- 729
ence on Empirical Methods in Natural Language 730
Processing, EMNLP 2020, Online, November 16-20, 731
2020, pages 8107–8117. Association for Computa- 732
tional Linguistics. 733

Matt Gardner, Yoav Artzi, Victoria Basmova, Jonathan 734
Berant, Ben Bogin, Sihao Chen, Pradeep Dasigi, 735
Dheeru Dua, Yanai Elazar, Ananth Gottumukkala, 736
Nitish Gupta, Hannaneh Hajishirzi, Gabriel Ilharco, 737
Daniel Khashabi, Kevin Lin, Jiangming Liu, Nel- 738
son F. Liu, Phoebe Mulcaire, Qiang Ning, Sameer 739
Singh, Noah A. Smith, Sanjay Subramanian, Reut 740
Tsarfaty, Eric Wallace, Ally Zhang, and Ben Zhou. 741
2020. Evaluating models’ local decision boundaries 742
via contrast sets. In Findings of the Association for 743
Computational Linguistics: EMNLP 2020, Online 744
Event, 16-20 November 2020, volume EMNLP 2020 745
of Findings of ACL, pages 1307–1323. Association 746
for Computational Linguistics. 747

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang, 748
Yujia Qin, Peng Li, Zhiyuan Liu, Maosong Sun, and 749
Yang Liu. 2024. Stabletoolbench: Towards stable 750
large-scale benchmarking on tool learning of large 751
language models. In Findings of the Association 752
for Computational Linguistics, ACL 2024, Bangkok, 753
Thailand and virtual meeting, August 11-16, 2024, 754
pages 11143–11156. Association for Computational 755
Linguistics. 756

Sonal Gupta, Rushin Shah, Mrinal Mohit, Anuj Ku- 757
mar, and Mike Lewis. 2018. Semantic parsing for 758
task oriented dialog using hierarchical representa- 759
tions. In Proceedings of the 2018 Conference on 760
Empirical Methods in Natural Language Processing, 761
pages 2787–2792, Brussels, Belgium. Association 762
for Computational Linguistics. 763

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man- 764
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns, 765
Samir Puranik, Horace He, Dawn Song, and Jacob 766
Steinhardt. 2021. Measuring coding challenge com- 767
petence with APPS. In Proceedings of the Neural 768
Information Processing Systems Track on Datasets 769
and Benchmarks 1, NeurIPS Datasets and Bench- 770
marks 2021, December 2021, virtual. 771

Cheng-Yu Hsieh, Si-An Chen, Chun-Liang Li, Yasuhisa 772
Fujii, Alexander Ratner, Chen-Yu Lee, Ranjay Kr- 773
ishna, and Tomas Pfister. 2023. Tool documenta- 774
tion enables zero-shot tool-usage with large language 775
models. CoRR, abs/2308.00675. 776

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan 777
Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao Wan, 778
Neil Zhenqiang Gong, and Lichao Sun. 2024. Meta- 779
tool benchmark for large language models: Deciding 780
whether to use tools and which to use. In The Twelfth 781
International Conference on Learning Representa- 782
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024. 783
OpenReview.net. 784

Shadi Iskander, Sofia Tolmach, Ori Shapira, Nachshon 785
Cohen, and Zohar Karnin. 2024. Quality matters: 786

10

https://doi.org/10.1162/TACL_A_00333
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://doi.org/10.18653/V1/2024.NAACL-LONG.279
https://doi.org/10.18653/V1/2024.NAACL-LONG.279
https://doi.org/10.18653/V1/2024.NAACL-LONG.279
https://aclanthology.org/D18-1547/
https://aclanthology.org/D18-1547/
https://aclanthology.org/D18-1547/
https://aclanthology.org/D18-1547/
https://aclanthology.org/D18-1547/
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.651
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.651
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.651
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.117
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.117
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.117
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.664
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.664
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.664
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.664
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.664
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/D18-1300
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://doi.org/10.48550/ARXIV.2308.00675
https://doi.org/10.48550/ARXIV.2308.00675
https://doi.org/10.48550/ARXIV.2308.00675
https://doi.org/10.48550/ARXIV.2308.00675
https://doi.org/10.48550/ARXIV.2308.00675
https://openreview.net/forum?id=R0c2qtalgG
https://openreview.net/forum?id=R0c2qtalgG
https://openreview.net/forum?id=R0c2qtalgG
https://openreview.net/forum?id=R0c2qtalgG
https://openreview.net/forum?id=R0c2qtalgG
https://aclanthology.org/2024.emnlp-main.285
https://aclanthology.org/2024.emnlp-main.285

Evaluating synthetic data for tool-using llms. In Pro-787
ceedings of the 2024 Conference on Empirical Meth-788
ods in Natural Language Processing, EMNLP 2024,789
Miami, FL, USA, November 12-16, 2024, pages 4958–790
4976. Association for Computational Linguistics.791

Harsh Jhamtani, Hao Fang, Patrick Xia, Eran Levy, Ja-792
cob Andreas, and Ben Van Durme. 2024. Natural793
language decomposition and interpretation of com-794
plex utterances.795

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,796
Ruiqi Zhong, Luke Zettlemoyer, Wen-Tau Yih,797
Daniel Fried, Sida I. Wang, and Tao Yu. 2023. DS-798
1000: A natural and reliable benchmark for data sci-799
ence code generation. In International Conference800
on Machine Learning, ICML 2023, 23-29 July 2023,801
Honolulu, Hawaii, USA, volume 202 of Proceedings802
of Machine Learning Research, pages 18319–18345.803
PMLR.804

Percy Liang, Michael I Jordan, and Dan Klein. 2013.805
Learning dependency-based compositional seman-806
tics. Computational Linguistics, 39(2):389–446.807

Jiarui Lu, Thomas Holleis, Yizhe Zhang, Bernhard Au-808
mayer, Feng Nan, Felix Bai, Shuang Ma, Shen Ma,809
Mengyu Li, Guoli Yin, Zirui Wang, and Ruoming810
Pang. 2024. Toolsandbox: A stateful, conversational,811
interactive evaluation benchmark for LLM tool use812
capabilities. CoRR, abs/2408.04682.813

Thomas J McCabe. 1976. A complexity measure. IEEE814
Transactions on software Engineering, (4):308–320.815

Tomás Nekvinda and Ondrej Dusek. 2021. Shades816
of bleu, flavours of success: The case of multiwoz.817
CoRR, abs/2106.05555.818

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan819
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,820
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,821
Ruobing Xie, Jie Zhou, Mark Gerstein, Dahai Li,822
Zhiyuan Liu, and Maosong Sun. 2024. Toolllm: Fa-823
cilitating large language models to master 16000+824
real-world apis. In The Twelfth International Con-825
ference on Learning Representations, ICLR 2024,826
Vienna, Austria, May 7-11, 2024. OpenReview.net.827

Machel Reid, Nikolay Savinov, Denis Teplyashin,828
Dmitry Lepikhin, Timothy P. Lillicrap, Jean-Baptiste829
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan830
Firat, Julian Schrittwieser, Ioannis Antonoglou, Ro-831
han Anil, Sebastian Borgeaud, Andrew M. Dai, Katie832
Millican, Ethan Dyer, Mia Glaese, Thibault Sotti-833
aux, Benjamin Lee, Fabio Viola, Malcolm Reynolds,834
Yuanzhong Xu, James Molloy, Jilin Chen, Michael835
Isard, Paul Barham, Tom Hennigan, Ross McIl-836
roy, Melvin Johnson, Johan Schalkwyk, Eli Collins,837
Eliza Rutherford, Erica Moreira, Kareem Ayoub,838
Megha Goel, Clemens Meyer, Gregory Thornton,839
Zhen Yang, Henryk Michalewski, Zaheer Abbas,840
Nathan Schucher, Ankesh Anand, Richard Ives,841
James Keeling, Karel Lenc, Salem Haykal, Siamak842
Shakeri, Pranav Shyam, Aakanksha Chowdhery, Ro-843
man Ring, Stephen Spencer, Eren Sezener, and et al.844

2024. Gemini 1.5: Unlocking multimodal under- 845
standing across millions of tokens of context. CoRR, 846
abs/2403.05530. 847

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang, 848
Kan Ren, Siyu Yuan, Weiming Lu, Dongsheng Li, 849
and Yueting Zhuang. 2023. Taskbench: Bench- 850
marking large language models for task automation. 851
CoRR, abs/2311.18760. 852

Noah Shinn, Federico Cassano, Ashwin Gopinath, 853
Karthik Narasimhan, and Shunyu Yao. 2023. Re- 854
flexion: language agents with verbal reinforcement 855
learning. In Advances in Neural Information Pro- 856
cessing Systems 36: Annual Conference on Neural 857
Information Processing Systems 2023, NeurIPS 2023, 858
New Orleans, LA, USA, December 10 - 16, 2023. 859

Mohammed Latif Siddiq, Simantika Dristi, Joy Saha, 860
and Joanna C. S. Santos. 2024. The fault in our stars: 861
Quality assessment of code generation benchmarks. 862
CoRR, abs/2404.10155. 863

Yifan Song, Weimin Xiong, Dawei Zhu, Cheng Li, 864
Ke Wang, Ye Tian, and Sujian Li. 2023. Restgpt: 865
Connecting large language models with real-world 866
applications via restful apis. CoRR, abs/2306.06624. 867

Pragya Srivastava, Satvik Golechha, Amit Deshpande, 868
and Amit Sharma. 2024. NICE: to optimize in- 869
context examples or not? In Proceedings of the 870
62nd Annual Meeting of the Association for Compu- 871
tational Linguistics (Volume 1: Long Papers), ACL 872
2024, Bangkok, Thailand, August 11-16, 2024, pages 873
5494–5510. Association for Computational Linguis- 874
tics. 875

Olly Styles, Sam Miller, Patricio Cerda-Mardini, Tanaya 876
Guha, Victor Sanchez, and Bertie Vidgen. 2024. 877
Workbench: a benchmark dataset for agents in a real- 878
istic workplace setting. CoRR, abs/2405.00823. 879

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, 880
Qiao Liang, and Le Sun. 2023. Toolalpaca: Gener- 881
alized tool learning for language models with 3000 882
simulated cases. CoRR, abs/2306.05301. 883

Harsh Trivedi, Tushar Khot, Mareike Hartmann, Ruskin 884
Manku, Vinty Dong, Edward Li, Shashank Gupta, 885
Ashish Sabharwal, and Niranjan Balasubramanian. 886
2024. Appworld: A controllable world of apps and 887
people for benchmarking interactive coding agents. 888
In Proceedings of the 62nd Annual Meeting of the 889
Association for Computational Linguistics (Volume 1: 890
Long Papers), ACL 2024, Bangkok, Thailand, August 891
11-16, 2024, pages 16022–16076. Association for 892
Computational Linguistics. 893

Boshi Wang, Hao Fang, Jason Eisner, Benjamin Van 894
Durme, and Yu Su. 2024. Llms in the imaginarium: 895
Tool learning through simulated trial and error. In 896
Proceedings of the 62nd Annual Meeting of the As- 897
sociation for Computational Linguistics (Volume 1: 898
Long Papers), ACL 2024, Bangkok, Thailand, August 899
11-16, 2024, pages 10583–10604. Association for 900
Computational Linguistics. 901

11

https://aclanthology.org/2024.emnlp-main.285
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://doi.org/10.48550/ARXIV.2408.04682
https://doi.org/10.48550/ARXIV.2408.04682
https://doi.org/10.48550/ARXIV.2408.04682
https://doi.org/10.48550/ARXIV.2408.04682
https://doi.org/10.48550/ARXIV.2408.04682
https://arxiv.org/abs/2106.05555
https://arxiv.org/abs/2106.05555
https://arxiv.org/abs/2106.05555
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://doi.org/10.48550/ARXIV.2403.05530
https://doi.org/10.48550/ARXIV.2403.05530
https://doi.org/10.48550/ARXIV.2403.05530
https://doi.org/10.48550/ARXIV.2311.18760
https://doi.org/10.48550/ARXIV.2311.18760
https://doi.org/10.48550/ARXIV.2311.18760
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2306.06624
https://doi.org/10.48550/ARXIV.2306.06624
https://doi.org/10.48550/ARXIV.2306.06624
https://doi.org/10.48550/ARXIV.2306.06624
https://doi.org/10.48550/ARXIV.2306.06624
https://doi.org/10.18653/V1/2024.ACL-LONG.300
https://doi.org/10.18653/V1/2024.ACL-LONG.300
https://doi.org/10.18653/V1/2024.ACL-LONG.300
https://doi.org/10.48550/ARXIV.2405.00823
https://doi.org/10.48550/ARXIV.2405.00823
https://doi.org/10.48550/ARXIV.2405.00823
https://doi.org/10.48550/ARXIV.2306.05301
https://doi.org/10.48550/ARXIV.2306.05301
https://doi.org/10.48550/ARXIV.2306.05301
https://doi.org/10.48550/ARXIV.2306.05301
https://doi.org/10.48550/ARXIV.2306.05301
https://doi.org/10.18653/V1/2024.ACL-LONG.850
https://doi.org/10.18653/V1/2024.ACL-LONG.850
https://doi.org/10.18653/V1/2024.ACL-LONG.850
https://doi.org/10.18653/V1/2024.ACL-LONG.570
https://doi.org/10.18653/V1/2024.ACL-LONG.570
https://doi.org/10.18653/V1/2024.ACL-LONG.570

Zhiruo Wang, Shuyan Zhou, Daniel Fried, and Graham902
Neubig. 2023. Execution-based evaluation for open-903
domain code generation. In Findings of the Associ-904
ation for Computational Linguistics: EMNLP 2023,905
Singapore, December 6-10, 2023, pages 1271–1290.906
Association for Computational Linguistics.907

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu,908
Zhengyu Chen, and Jian Zhang. 2023. On the tool909
manipulation capability of open-source large lan-910
guage models. CoRR, abs/2305.16504.911

Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji,912
Tianjun Zhang, Shishir G. Patil, Ion Stoica, and913
Joseph E. Gonzalez. 2024. Berkeley function calling914
leaderboard. https://gorilla.cs.berkeley.915
edu/blogs/8_berkeley_function_calling_916
leaderboard.html.917

John Yang, Akshara Prabhakar, Karthik Narasimhan,918
and Shunyu Yao. 2023. Intercode: Standardizing919
and benchmarking interactive coding with execution920
feedback. In Advances in Neural Information Pro-921
cessing Systems 36: Annual Conference on Neural922
Information Processing Systems 2023, NeurIPS 2023,923
New Orleans, LA, USA, December 10 - 16, 2023.924

Yuekun Yao and Alexander Koller. 2022. Structural gen-925
eralization is hard for sequence-to-sequence models.926
In Proceedings of the 2022 Conference on Empiri-927
cal Methods in Natural Language Processing, pages928
5048–5062, Abu Dhabi, United Arab Emirates. As-929
sociation for Computational Linguistics.930

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang,931
Yuchi Ma, Guangtai Liang, Ying Li, Qianxiang Wang,932
and Tao Xie. 2024. Codereval: A benchmark of prag-933
matic code generation with generative pre-trained934
models. In Proceedings of the 46th IEEE/ACM Inter-935
national Conference on Software Engineering, ICSE936
2024, Lisbon, Portugal, April 14-20, 2024, pages937
37:1–37:12. ACM.938

Daoguang Zan, Bei Chen, Zeqi Lin, Bei Guan, Yongji939
Wang, and Jian-Guang Lou. 2022a. When language940
model meets private library. In Findings of the Asso-941
ciation for Computational Linguistics: EMNLP 2022,942
Abu Dhabi, United Arab Emirates, December 7-11,943
2022, pages 277–288. Association for Computational944
Linguistics.945

Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin,946
Minsu Kim, Bei Guan, Yongji Wang, Weizhu Chen,947
and Jian-Guang Lou. 2022b. CERT: continual pre-948
training on sketches for library-oriented code gen-949
eration. In Proceedings of the Thirty-First Interna-950
tional Joint Conference on Artificial Intelligence, IJ-951
CAI 2022, Vienna, Austria, 23-29 July 2022, pages952
2369–2375. ijcai.org.953

John M Zelle and Raymond J Mooney. 1996. Learning954
to parse database queries using inductive logic pro-955
gramming. In Proceedings of the national conference956
on artificial intelligence, pages 1050–1055.957

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, 958
Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani 959
Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon 960
Brunner, Chen Gong, Thong Hoang, Armel Randy 961
Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kad- 962
dour, Ming Xu, Zhihan Zhang, Prateek Yadav, Na- 963
man Jain, Alex Gu, Zhoujun Cheng, Jiawei Liu, 964
Qian Liu, Zijian Wang, David Lo, Binyuan Hui, 965
Niklas Muennighoff, Daniel Fried, Xiaoning Du, 966
Harm de Vries, and Leandro von Werra. 2024. Big- 967
codebench: Benchmarking code generation with di- 968
verse function calls and complex instructions. CoRR, 969
abs/2406.15877. 970

12

https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.89
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.89
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.89
https://doi.org/10.48550/ARXIV.2305.16504
https://doi.org/10.48550/ARXIV.2305.16504
https://doi.org/10.48550/ARXIV.2305.16504
https://doi.org/10.48550/ARXIV.2305.16504
https://doi.org/10.48550/ARXIV.2305.16504
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
http://papers.nips.cc/paper_files/paper/2023/hash/4b175d846fb008d540d233c188379ff9-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4b175d846fb008d540d233c188379ff9-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4b175d846fb008d540d233c188379ff9-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4b175d846fb008d540d233c188379ff9-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4b175d846fb008d540d233c188379ff9-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.18653/v1/2022.emnlp-main.337
https://doi.org/10.18653/v1/2022.emnlp-main.337
https://doi.org/10.18653/v1/2022.emnlp-main.337
https://doi.org/10.1145/3597503.3623316
https://doi.org/10.1145/3597503.3623316
https://doi.org/10.1145/3597503.3623316
https://doi.org/10.1145/3597503.3623316
https://doi.org/10.1145/3597503.3623316
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.21
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.21
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.21
https://doi.org/10.24963/IJCAI.2022/329
https://doi.org/10.24963/IJCAI.2022/329
https://doi.org/10.24963/IJCAI.2022/329
https://doi.org/10.24963/IJCAI.2022/329
https://doi.org/10.24963/IJCAI.2022/329
https://doi.org/10.48550/ARXIV.2406.15877
https://doi.org/10.48550/ARXIV.2406.15877
https://doi.org/10.48550/ARXIV.2406.15877
https://doi.org/10.48550/ARXIV.2406.15877
https://doi.org/10.48550/ARXIV.2406.15877

A ASPERA dataset generation prompts 971

A.1 Joint query and AEP generation 972

My team needs your help with generation a wide variety of complex
programs that can be implemented with our application backend.
We care to generate only programs that would be generated by our
large language model when interacting with our application via a
voice interface.

Here is our application code.

```python
{{ code }}
```

Here are some examples of high quality programs that we wrote to
help you understand the task.

```python
{{ query_solution_examples }}
```

Guidelines:

1. Please limit yourself to generating programs involving complex
combinations of the members of our codebase. It is not helpful to
assume scenarios that our application cannot implement or assume
unknown details about methods implementations - focus on the
interfaces and read our documentation carefully.

2. Diversity is key. Focus on user requests that can be parsed
to a fairly complex program implemented with the codebase above.
Just put yourself in the shoes of the user wanting to get a lot
done with our application. Some ways to achieve diversity may be:

- imagine scenarios using for loops
- imagine scenarios based on user conditions
- imagine scenarios requiring filtering operations
- imagine many scenarios where multiple dataclasses and their

methods are required to support a complex user goal
- scenarios imagined should always be compositional (ie always

have diverse combinations of object attributes and methods
operating on them)

3. To reiterate, diversity (2) should not come at the expense of
imagining scenarios our codebase cannot support (1). We will
discuss how to improve our codebase in the future.

Program structure guidelines
The examples above follow the
{{ guidelines.generation_labelling | length }} structure guidelines
listed below. Do the same, clearly stating when you follow them in
your comments, as demonstrated above.
{% for instruction in guidelines.generation_labelling %}
{{ loop.index }}. {{ instruction }}
{%- endfor %}

(a) System turn. In the above the field code is re-
placed with the documentation of the assistant library and
query_solution_examples is replaced with 5 AEP exam-
ples. See Figure 6c for guidelines definition.

You have done a stellar job generating some brilliant programs and
user queries already. To remind you of work you completed and keep
things brief, we only show the queries extracted from the docstrings
of programs you generated:
{% for q in queries %}
{{ loop.index }}. {{ q }}
{%- endfor %}

Now we have to generate more programs representing complex user
utterances. Crucially, these should represent a complex set of
new user queries, where the user tries to complete different tasks
from the ones you generated above. *Do not merely paraphrase the
queries you already generated* when synthesizing programs - think
of new and original complex user tasks that our application backend
supports.
{% if focus -%}
{{ focus }}

{% endif -%}

Let us generate {{ n_programs }} programs.

```python"""

(b) User turn. To encourage diversity, we optionally. include
the history of the queries generated in the prompt, similar to
Wang et al. (2024). If n_programs is set to values greater than
1, multiple programs are generated. The focus field can be
changed after each round of interaction, to encourage diversity
of generated queries and programs.

• Employee names are generally assumed unique, so you may use
find_employee(name)[0] for resolving a name to an Employee
object. Use this sparingly; even though there may be multiple
employees with the same name, the user query might give additional
information which resolves the ambiguity (eg specify the meeting
time). If you decided to make this assumption add a ’by structure
guideline #1’ comment.

• Work meetings can start after 9:06 AM and should end before 5:10
PM. They don’t happen at the weekend unless the user explicitly
mentions so.

• Type annotate the return for programs which have a return type
which is not None.

• Do not call functions with default optional values.

(c) Guidelines used to populate {{instruction}} in the bot-
tom loop of (a). The first guideline enforces a unique en-
tity name environment constraint, which grounds 0-indexing
find_employee results. We make this design decision to de-
crease task difficulty for our initial release, but note the LLM
is instructed to mark this assumption with # by structure
guideline 1 to support future LLM-based annotations of
AEPs which handle disambiguation. The second guideline en-
codes a simple events scheduling policy to be followed when
explicit constraints are not provided by the user and when
rescheduling events. The third guideline prompts for return
type annotation for information-seeking queries and the final
guideline encourages concise coding.

Figure 6: Prompt templates for joint program and task generation (Section 2.3.1)

13



A.2 AEP generation given human-authored request973

You are an expert programmer working with my team which is specialising
in developing AI assistants. Your current task is to translate a series
of complex user requests into executable `python` programs using our
application backend below:

```python
{{ code }}
```

Here are some examples your colleagues shared with you to help you
generate your response in a style that is compatible with our
infrastructure:

```python
{{ query_solution_examples }}
```

{% if guidelines.generation_labelling -%}
### Program structure guidelines ###
The examples above follow the
{{ guidelines.generation_labelling | length }} structure guidelines
listed below. Do the same, clearly stating when you follow them in
your comments, as
demonstrated above.
{% for instruction in guidelines.generation_labelling %}
{{ loop.index }}. {{ instruction }}
{%- endfor %}
{%- else %}
{%- endif %}

(a) System turn. The code and query_solution_examples
fields are populated with the assistant library documentation
and 5 AEP examples like in the joint AEP and query genera-
tion prompt depicted in Figure 6

Now it's your turn. Please translate the queries below into `python`
programs using the examples above to guide your response format.
The response should be inside a Python markdown block.
{% for q in queries %}
{{ loop.index }}. {{ q }}
{%- endfor %}

```python"""

(b) User turn. The framework supports AEP generation for
query batches.

Figure 7: Prompt template used for AEP generation given a human-authored request (Section 2.3.1)

14

A.3 SIP generation 974

For testing purposes, we need to generate the underlying runtime state of the user device. Your task is to carefully analyse
`{{ plan_name }}` along with the application code above and assist our testing team in setting up the runtime environment such
that `{{ plan_name }}` can be executed and its outputs verified. To do so, you will need to generate a `python` function named `{{ setup_function_name }}`.

We have implemented additional tooling you may find helpful for completing this task:

```python
{{ setup_code }}
```

You may use additional knowledge and create your own functions if needed - custom functions should be defined inside the
`{{ setup_function_name }}` function. Note how we import modules in the standard python library locally inside the
`{{ setup_function_name }}` and how our application code does not need to be imported (we automatically do so when we run the code).

Here are some comprehensive examples your testing team colleagues shared to help you generate a high quality program that sets up
the runtime environment correctly.

```python
{{ runtime_setup_examples }}
```

{% if guidelines.runtime_setup -%}
Runtime environment setup guidelines
The examples above follow the {{ guidelines.runtime_setup | length }} setup guidelines listed below. Do the same, clearly stating when
you follow them in your comments, as demonstrated above.
{% for instruction in guidelines.runtime_setup %}
{{ loop.index }}. {{ instruction }}
{%- endfor %}
{%- else %}
{%- endif %}

Let's now write `{{ setup_function_name }}`, our developers wrote some TODOs to get you started.

```python
def setup_env_{{plan_name}}():

"""Simulate the environment for the query:

{{ query }}

Note this means to create any persons, contacts, emails, events and everything that should exist
in the user's virtual context when they make the query. You **should not** create new entities that are
implied in the user request that the assistant has created in the `{{plan_name}}` function.
"""

'''
{{ TODOs }}

(a) User turn for SIP generation. This turn is added to the chat history which contains the AEP generation system and user turns
and assistant turn with the generated AEPs. plan_name is the name of the AEP function for which the state is to be initialised and
the setup_function_name is the name of the SIP to be generated. setup_code is replacted by the documentation for additional
tools the LLM can call to simulate complex environment state. One example is simulate_org in Figure 2 (program B, l. 9 - 11)
which allows the LLM to simulate an organisation with a complex reporting structure by parametrising the simulation. The
runtime_setup_examples field shows 5 SIP examples, which initialise the state for the 5 AEP examples in the chat history.
Guidelines, shown in Figure 8b, state simulation assumptions. The LLM is prompted to mark these assumptions in comments to
enable LLM-assisted refactoring of the SIPs. The query field is replaced by the user query. The TODOs fields marks instruction
the developer may optionally specify. These are formatted on separate lines following #TODO: tags.

• Dates should be grounded using the tools in the time_utils library. When doing so, add a ’setup guideline #1’ comment.

• Work meetings can start after 9:06 AM and should end before 5:10 PM. When doing so, add a ’setup guideline #2’ comment.

• Events assumed to occur in the future should start after the date and time specified by time_utils.now_(), whereas events in the past should
finish before time_utils.now_(). When doing so, add a ’setup guideline #3’ comment.

• Employee names are assumed unique, so you may use find_employee(name)[0] for resolving a name to an Employee object. When doing so, add a ’setup
guideline #4’ comment.

• Ensure you follow all the TODOs with appropriate steps, but don’t be afraid to do additional steps if you think it necessary - our developers
may not write detailed enough TODOs.

(b) Guidelines used to populate {{instruction}} in the bottom loop of (a).

Figure 8: Prompt template used for runtime setup program generation (Figure 2, B).

15



A.4 EP generation975

We need some test code to check that `{{ plan_name }}` executes correctly on the user device. After a careful analysis of `{{ plan_name }}` and
`{{ setup_function_name }}` (defined below), your task is to write a function `{{ test_function_name }}` to do so.

We have implemented additional tooling you may find helpful for completing this task:

```python
{{ setup_code }}
```

```python
{{ testing_code }}
```

You may use additional knowledge and create your own functions if needed - custom functions should be defined inside the `{{ test_function_name }}`
function. Note how we import modules in the standard python library locally inside the s`{{ test_function_name }}` and how our application code does not
need to be imported (we automatically do so when we run the code).

Here are some comprehensive examples your testing team colleagues wrote:

```python
{{ evaluation_examples }}
```
{% if guidelines.evaluation -%}
### Testing guidelines ###
The examples above follow the {{ guidelines.evaluation | length }} setup guidelines listed below. Do the same, clearly stating when you
follow them in your comments, as demonstrated above.
{% for instruction in guidelines.evaluation %}
{{ loop.index }}. {{ instruction }}
{%- endfor %}
{%- else %}
{%- endif %}

Here is the code that sets up the runtime environment for `{{ plan_name }}` execution:

```python
{{ runtime_setup_program }}
```

Write `{{ test_function_name }}`:

```python
def evaluate_{plan_name}(

query: str, executable: Callable[[], Any], setup_function: Callable[[], Any]
):

"""Validate that `executable` program for the query

{{ query }}

has the expected effect on the runtime environment.

Parameters

query

The query to validate
executable
The query execution function, `{plan_name}`

setup_function
`{setup_function_name}` function.

"""
'''

(a) User turn template for EP generation. This turn is added to the chat history, which contains at this point the user and system
turns for AEP and SIP generation. plan_name, setup_function_name and test_function_name are formatted with the AEP,
SIP and EP function names, respectively. setup_code is defined in Figure 8 and testing_code is replaced by documentation
of other tools the LLM can use to verify AEP correctness (see Appendix A.5). The evaluation_examples field is replaced
by 5 EP examples, which demonstrated how to evaluate the correctness of the AEPs in the interaction history given the SIPs
examples. Guidelines, shown in Figure 9b, provide relevant assumptions for writing correct and concise test code (Appendix
A.5). The LLM is prompted to mark these assumptions in comments to enable LLM-assisted refactoring of the EPs. The
runtime_setup_program is the SIP, and test_function_name is name of the EP to be generated.

• fields of type list[Employee] of events returned by find_events are sorted alphabetically according to the name attribute. Sort attendees lists
you create accordingly. When doing so, add a ’testing guideline #1’ comment"

• For queries that have a return type, consider a range of possible alternative return types that could have been returned instead by the executable
and check the result correctness in those cases too. Add a ’#testing guideline #2’ comment in this case.

• When checking events requested by the user were created, never test equality of the ’subject’ attribute because variations in the meeting name
can affect test robustness.

• When add_event is called without an ends_at parameter, a default duration of 16 minutes is assumed when writing the event to the underlying
database. Check that the events for which end time or duration is not specified satisfy this constraint.

• SolutionError message is always ’Incorrect Solution’.

• Where possible, use the information in the runtime environment setup function below to simplify testing code.

(b) Guidelines.

Figure 9: Prompt template used for evaluation program generation (Figure 2, C).

16

A.5 Auxiliary ASPERA Tools976

ASPERA defines auxiliary tools designed to aid977

SIP and EP generation (Table 8). These can be978

implemented by the developer interactively18 or979

(before task generation begins).

Simulation Tools
Module Tool Functionality
work_calendar simulate_user_calendar Adds a set of LLM-generated events

to the user’s calendar.
simulate_employee_calendar Adds a set of LLM-generated events

to the calendar of a given employee.
company_directory simulate_org_structure Build an organisation structure

given, employee names, team mem-
bership, user name and user role. Re-
porting relationships and employee
profiles are simulated by ASPERA.

simulate_vacation_schedule Simulate the vacation schedule of a
given employee.

UserRole Enum listing key company roles
such as CEO and COO.

room_booking simulate_conference_room Add a conference room to the con-
ference room database.

Evaluation Tools
Module Tool Functionality
time_utils repetition_schedule Create a recurrence schedule for a

meeting or reminder.
work_calendar assert_user_calendar_shared Check that a calendar has been

shared between a list of employees.

Table 8: ASPERA auxiliary tools

980

Simulation tools Simulation tools are included981

in SIP generation prompts to allow the LLM to982

create entities stored in environment databases.983

These tools differ in their implementation complex-984

ity. Some tools (e.g., simulate_user_calendar)985

simply write LLM-defined entities to the environ-986

ment databases whereas others can be used to987

invoke more advanced simulations implemented988

by developers (possibly with LLM assistance) in989

ASPERA (e.g., simulate_org_structure). The990

LLM uses information in the query and the AEP to991

parametrise the simulation and generates complex992

entities as a result.993

Evaluation tools EP generation prompts include994

evaluation tools to support robust evaluation and995

access to environment state that is not possible with996

the tools the assistant uses to compose AEPs. To un-997

derstand why this is necessary, consider the query998

Remind me to check arxiv on Wednesdays. To exe-999

cute this action, the assistant must create an Event1000

instance and set the repeats property to a correctly1001

parametrised recurrence rule (a RepetitionSpec1002

instance, shown in Figure 10). Because the re-1003

currence always inherits the parent event parame-1004

ters, setting which_weekday=[2] in this case is op-1005

tional. More generally, complex recurrences admit1006

18The developer is prompted to implement simulation tools
after AEP generation and evaluation tools after SIP generation.
The implemented tools are displayed in the subsequent SIP/EP
generation prompts.

multiple parametrisations which are difficult to enu- 1007

merate for developers. For this reason, we include 1008

the repetition_schedule tool in the prompt so 1009

that the LLM can use it to compare the event in- 1010

stances it returns rather than comparing generator 1011

object properties. This ensures robust comparison 1012

independent of RepetitionSpec parametrisation.

Figure 10: Definition of RepetitionSpec, an object
used for generating recurring event instances. Docu-
mentation omitted for brevity.

1013

17

B Assistant library1014

time_utils work_calendar company_directory room_booking

Functions
now_ get_default_preparation_time get_current_user find_available_time_slots
get_weekday add_event find_employee room_booking_default_time_window
this_week_datestextsuperscript* find_events find_team_of search_conference_room
get_weekday_ordinaltextsuperscript* find_past_events find_reports_of summarise_availabilitytextsuperscript*
parse_time_stringtextsuperscript* get_calendar find_manager_of
time_by_hmtextsuperscript* delete_event get_assistant
date_by_mdytextsuperscript* get_search_settings get_vacation_schedule
get_next_dowtextsuperscript* find_available_slotstextsuperscript get_employee_profile
get_prev_dowtextsuperscript* share_calendar get_all_employees
parse_duration_to_calendartextsuperscript* summarise_calendar get_office_location
parse_durations_to_date_intervaltextsuperscript* provide_event_details
parse_date_stringtextsuperscript*
sum_time_unitstextsuperscript*
compare_with_fixed_duration
modifytextsuperscript*
combine
intervals_overlaptextsuperscript*
replacetextsuperscript*

Objects
Duration Eventtextsuperscript EmployeeDetails ConferenceRoom
TimeInterval CalendarSearchSettings Employee RoomAvailability
DateRange
RepetitionSpec

Enums
TimeExpressions ShowAsStatus Team
DateRanges
DateExpressions
TimeUnits
DateTimeClauseOperators
ComparisonResult
EventFrequency

Table 9: The ASPERA assistant library defines 62 primitives across 4 domains, implemented by a single developer
with GPT-4o assistance. Primitives marked with * were implemented interactively with the LLM using the ChatGPT
graphical user interface. For each primitive, the LLM was prompted with the docstring describing the primitive
functionality, and its output subsequently refined until the specification was correctly implemented, if necessary. Unit
tests were generated in addition to developer-authored tests to verify complex functionality. Primitives marked with
†were implemented with partial LLM assistance, where the developer described the functionality to be implemented
to the LLM, but substantially refactored and enhanced the code. The LLM was also used for generating unit tests
for †primitives.

18

C Dataset characterisation 1015

C.1 Examples of challenging tasks 1016

(a) Assistant, check my boss’ calendar Wednesday to Friday
next week, are they available for a meeting? Solving this
query involves reasoning about time and having the com-
mon sense to account for events spanning multiple days.

(b) Assistant, add a strategy review with the CFO and the
COO one week from today at 2:30 PM, for 1 hr. Solving
this query involves clever tool use to find the leadership
team while taking care to exclude the CEO.

(c) Assistant, I need to know which of Bill or Bob is busiest
next week so I can allocate work. Here, summing the event
duration involves careful unit conversion in order to provide
the correct answer.

Figure 11: Challenging queries from lines 3 -5 of Table 2 as particularly challenging. Figures 11a, 11c and 11b
show the sample solutions for these queries respectively, with explanations of their difficulty.

19

C.2 Further corpus descriptive statistics1017

Here, we present some further descriptive statistics of Asper-Bench. Tables 10 and 11 show some example1018

queries organised according to their complexity, whereas Figures 12 to 15 show how key program1019

complexity measures vary with query length and the distribution of Asper-Bench reference AEPs.1020

Query Cyclomatic complexity σ from mean
Assistant, can you tell me when are my manager and skip manager both available
on Friday?

1.00 -1.14

Assistant, schedule an urgent meeting with my manager now. 1.00 -1.14
Assistant, schedule a project meeting with my team next Wednesday at 2 PM
and block 30 minutes right before for preparation.

1.00 -1.14

Assistant, schedule a project update meeting with my manager before 3 PM
tomorrow.

5.00 -0.16

Assistant, schedule a meeting in the afternoon with my engineering colleagues,
avoiding any engineering management.

6.00 +0.08

Assistant, remove my second holiday notification from the calendar, something
came up.

7.00 +0.32

Assistant, send out a meeting invite to the entire team for a company update next
Monday at 2 PM, but exclude those who are on vacation.

7.00 +0.32

Assistant, see if my boss’ boss and Jane have accepted my meeting request for
tomorrow. If anybody declined, reschedule to take place later but at the earliest
available time for everyone, I’m free all day.

19.00 +3.24

Assistant, tell me which days is Sally in office in the third week of August? 20.00 +3.48
Assistant, is there a time in August where everyone from finance is off? 21.00 +3.72

Table 10: Sampling of queries according to cyclomatic complexity of sample solution

Query # unique primitives σ from mean
Assistant, how many meetings with Jianpeng are in my calendar at the moment? 2 -1.79
Assistant, cancel everything but the important meetings. 2 -1.79
Assistant, find the names of our assistants please. 2 -1.79
Assistant, schedule a meeting with my manager tomorrow at 10 AM if I have no
other meetings then.

9 +0.04

Assistant, provide a summary of my manager’s calendar for the next two weeks. 9 +0.04
Assistant, invite the entire sales department to a meeting today from 3 to 5. 9 +0.04
Assistant, schedule a team meeting next Monday at 10 AM, and book a confer-
ence room for it. Also, schedule a follow-up meeting one week later at the same
time and book the same room.

18 +2.39

Assistant, can you schedule a 30 mins recurring weekly meeting with the engi-
neering team on Fridays at 3 PM for the next two months? If there are clashes,
tell me their dates, don’t double book.

19 +2.65

Table 11: Sampling of queries according to number of unique primitives in sample solution

20

10 20 30 40 50

Query length (words)

0

20

40

60

80

100
S

am
p

le
A

E
P

le
n

gt
h

(L
O

C
)

Figure 12: Asper-Bench AEP query length vs program
length

10 20 30 40 50

Query length (words)

0

2

4

6

8

10

12

14

16

18

20

#
u

n
iq

u
e

p
ri

m
it

iv
es

Figure 13: Asper-Bench AEP query length vs number
of unique primitives

10 20 30 40 50

Query length (words)

0

2

4

6

8

10

12

14

16

18

20

C
yc

lo
m

at
ic

co
m

p
le

xi
ty

Figure 14: Asper-Bench AEP query length vs cyclo-
matic complexity

9 17 25 33 41 49 57 65 73 81 89
Lines of code

0

10

20

30

40

50

T
as

k
co

u
nt

36.58
Sample AEPs length distribution

Figure 15: Asper-Bench AEP length distribution

21

C.3 ASPERA policy1021

(a) RequiresUserInput documentation
(b) LLM-generated system policy for error handling and dis-
ambiguation

Figure 16: ASPERA employs exceptions to generate reference AEPs which follow a simple policy according to
which the assistant can raise to inform a user a certain task could not be completed due to environment constraints
or when disambiguation is required to identify entities mentioned in the user request. The sample solutions contain
144 RequiresUserInput usages across 78 programs. In addition, the top two guidelines in Figure 6c enforce a
simple events scheduling policy.

22

D ASPERA evaluator prompt templates 1022

You are an expert programmer working with my team which is
specialising in developing AI assistants. Your current task is to
translate a complex user request into a `python` program using
our application backend below:

```python
{{ code }}
```

Here are some examples your colleagues shared with you to help you to
understand the solution format and some assumptions about our
application backend.

```python
{{ query_solution_examples }}
```

The examples above follow the
{{ guidelines.generation_labelling | length }} structure
guidelines listed below. You must adhere to these when writing your
solution.
{% for instruction in guidelines.generation_labelling %}
{{ loop.index }}. {{ instruction }}
{%- endfor %}

(a) Prompt template for AEP generation, shared by CCK and PS agents. See guidelines below.

• Unless the user explicitly states, meetings should not be scheduled on or recur during weekends.

• Work meetings can only happen during the times prescribed in the time_utils library unless the user explicitly states otherwise.

• The leadership team is formed of a CEO, COO, CFO. Department heads report to either the COO or the CFO.

• Use the tools in the time_utils library to reason about time. Hence, current date and time on the user device should be found using the tools
and documentation in this library and not the datetime library.

• Information-seeking queries should return an appropriate object to the caller; avoid simply printing the information inside your solution.

• If you need to format dates in a string, use strftime(’%Y-%m-%d’). For datetime objects use strftime(’%Y-%m-%d %H:%M:%S’).

• Make sure to escape \n characters.

• Type annotate the return for programs which have a return type which is not None

• Only the first Python markdown block will be executed, so if you wish to use helper functions, these should be defined locally inside your
solution.

• Only import modules from the standard library that you need for your programs (eg import collections). Imports from our application backend will
be automatically done when we execute the program you generate.

(b) The first two guidelines implement a simple events schedule policy. The third provides additional information about the
environment, required to solve a range of queries involving the organisation leadership. The remainder of the guidelines are
concerned with various aspects of the AEP structure such as time grounding, return type, function nesting and importing. These
guidelines were designed to minimise execution errors due to mismatches between the simulation environment and model
behaviour following detailed error analyses on initial agent development iterations.

Figure 17: ASPERA AEP generation prompt template

23

You are a programmer using a Python library of personal assistant
tools in order to write a program that executes a user query.
You will be shown signatures from a Python module and a query, and will
be asked to formulate Python import statements importing any tools
that might be relevant to writing a program that executes the user
query.

When writing the program, you will be asked to follow the
{{ guidelines | length }} structure guidelines listed below.
{% for instruction in guidelines %}
{{ loop.index }}. {{ instruction }}
{%- endfor %}
Use this additional information to guide your import decisions.

Module:
{{ module }}
Query: {{ query }}

Think carefully, and output the relevant Python import statements,
or None. Any code you write must be included in a Python markdown
block (ie start with a "```python" sequence and end with "```").
If there are no relevant tools in the current module being shown,
simply output None.

(a) Primitives selection prompt template.

• Use the tools in the time_utils library to reason about time. Hence, current date and time on the user device should be found using the tools
and documentation in this library and not the datetime library.

• Work meetings can only happen during the times prescribed in the time_utils library unless the user explicitly states otherwise.

• The leadership team is formed of a CEO, COO, CFO. Department heads report to either the COO or the CFO. Appropriate tools will have to be
imported and combined to resolve these employees to Employee objects required by all APIs.

(b) Guidelines presented to the agent during at each primitive selection iteration step. These are a subset of the guidelines defined
for the CCK prompt in Figure 17b, including only the instructions which can influence primitive selection.

24

E Analysis supplementary material1023

E.1 Execution errors1024

We debug the AEPs generated by the the best1025

GPT-4o and GPT-3.5-turbo runs19 for the first 1251026

queries in our corpus (50% of the data), analysing1027

a total of 141 execution errors (Table 6) which1028

we classify into several categories depicted in Fig-1029

ure 19 and for which representative examples are1030

shown and explained in Table 12. We find execu-1031

tion errors occur because the LLMs hallucinate in1032

preference to performing additional problem solv-1033

ing steps. While GPT-4o fails to appropriately com-1034

bine the primitive to perform non-trivial composi-1035

tions for date and time reasoning (row 1, Table 12)1036

or simple arithmetic reasoning (row 5), GPT-3.5-1037

turbo additionally fails to appropriately exploit type1038

relations to compose primitives (row 6) and often1039

hallucinates API arguments (row 7), demonstrat-1040

ing very limited ability to program according to1041

complex set of constraints defined by an assistant1042

library.

0

20

40

60

80

100

P
ro

p
or

ti
on

of
ex

ec
u

ti
on

er
ro

rs
(%

)

Tool use (datetime) (31.7%)

Attribute hallucination (19.5%)

Misgeneralisation (12.2%)

No tool use (lazy solution) (12.2%)

Enum hallucination (9.8%)

Programming (7.3%)

Other (7.3%)

Error type

Tool use (datetime)

Attribute hallucination

Misgeneralisation

No tool use (lazy solution)

Enum hallucination

Programming

Other

(a) GPT-4o

0

20

40

60

80

100

P
ro

p
or

ti
on

of
ex

ec
u

ti
on

er
ro

rs
(%

)

Type composition (14.0%)

Argument hallucination (14.0%)

Enum hallucination (13.0%)

Programming (other) (13.0%)

Tool use (datetime) (10.0%)

Other (9.0%)

No tool use (lazy solution) (9.0%)

Tool use (other) (7.0%)
Attribute hallucination (6.0%)
Hallucination (other) (5.0%)

Error type

Type composition

Argument hallucination

Enum hallucination

Programming (other)

Tool use (datetime)

Other

No tool use (lazy solution)

Tool use (other)

Attribute hallucination

Hallucination (other)

(b) GPT-3.5-turbo

Figure 19: Execution error classification for the first
125 ASPER queries

1043

19Success rate of 46% and 11.2%, respectively.

25

Id Query Error Snippet

1 Assistant, schedule our team Christmas party 10 days before Christmas. Should start
in the morning and end at 10 PM.

Tool use (datetime): Line 9 contains a TypeError, modify only accepts datetime objects. A correct solution requires an additional reasoning step: pass christmas_day and one of specified
times to the combine library function to get the correct type.

2
Assistant, set up a training session for all employees from the Engineering team next
Monday from 2 PM to 5 PM. Send out invites and book a conference room that fits
20 people.

Attribute hallucination: In, line 6 the .team attribute access raises an error because the Employee objects returned by get_all_employees only have name as attribute. The Employee object
should be passed instead to the get_employee_profile library function to return an object which has team as an attribute.

3
Assistant, can you schedule a 30 mins recurring weekly meeting with the engineering
team on Fridays at 3 PM for the next two months? If there are clashes, tell me their
dates, don’t double book.

Misgeneralisation: The assistant triggers an import error in line 1. The pretraining data contains from typing import List, a common idiom for static typing prior to PEP 585 (2019). When
prompted to return an object of type list[datetime.date] | None, the model does not make this distinction and misgeneralises by generating line 1.

4
Assistant, put 45 minutes in the calendar, back-to-back, with Engineering and
Marketing starting at 10 AM tomorrow... Actually, add a 10-minute buffer between
each meeting.

No tool use (lazy solution): The assistant hallucinates lines 7-8 instead of using relevant APIs to find the engineering team, in spite of documentation that states that Employee objects cannot
be instantiated. The functions get_all_employees, get_employee_profile and the enumeration Team.Engineering should have been composed, similar to snippet in row 2.

5 Assistant, mark my vacation from next Tuesday for 2 weeks and cancel all my
meetings during this period.

Enum hallucination: The assistant uses the enum value TimeUnits.Weeks (line 8), which is undefined. The library deliberately defines the TimeUnits members as "Hours", "Minutes",
"Days", "Months" so that assistants have to perform simple unit conversions.

6 Assistant, notify me of overlapping meetings this week.

Type composition: The assistant calls intervals_overlap with Event instead of TimeInterval types (line 18). The latter must be instantiated from the event properties.

7 Assistant, block time for preparation before important meetings.

Argument hallucination: The assistant calls find_event with event_importance keyword (line 4). Valid find_event arguments are attendees and subject.

Table 12: Sample execution errors

26

E.2 Task completion error examples 1044

Id Query Agent action

1 Assistant, Ari and James are on holiday next month, who’s out for longer? Sums duration of all vacations, month notwithstanding.
2 Assistant, reorganise my diary on the fifth so that the important meetings come first. Sets the importance of the first low-priority meeting to "high" and all other

events to "normal", without any further updates.
3 Assistant, is there a time in August where everyone from finance is off? Returns True for the first employee whose vacation starts in August.
4 Assistant, book a conference room for the meeting with sales tomorrow at 2 PM. Assumes the user is part of the sales team, scheduling a meeting with the

wrong attendees as a result.
5 Assistant, add bi-weekly mentorship sessions with the reports of my reports starting next Monday at 2

PM to my calendar.
Hallucinates an end date for the recurrent event, scheduling instances only for
six months.

6 Assistant, add a reminder 1 hour before all important meetings, with the meeting title in the subject. Disregards add_event documentation according to which the user should not
be a member of attendees lists for events in their own calendar.

7 Assistant, schedule by-monthly team training sessions on the first Monday at 10 am for hires who
joined since the 1st of May, alternating between the Engineering and Sales and Marketing.

Cannot correctly resolve the meeting start dates scheduling two meetings
which start at the same time in the first Monday of the current month, which
has already passed.

8 Assistant, cancel all my meetings Wednesday next week and mark me out of office Cancels meetings on Wednesday in the current week instead
9 Assistant, how many employees called John are in my team? Exact matches the name attribute instead of calling find_employee(’John’)

and filtering to ensure returned employees are in user’s team
10 Assistant, what date did Joris and Pete meet last week? Wrong information provided to the user because the model is looking for a

meeting involving Joris and Pete in user’s calendar as opposed to checking
either Joris’ or Pete’s calendar.

11 Assistant, reschedule the meetings which overlap with “annual review” this afternoon to the same time
tomorrow.

Adds copies of overlapping events tomorrow, instead of modifying existing
events.

12 Assistant, schedule a 30 mins meeting with Frank from finance at 10 AM in any available meeting
room.

Schedules a meeting in the wrong room, choosing the first room returned by
the room search API without first checking availability for the entire duration
specified by the user.

13 Assistant, can you find a room that can accommodate 20 people for a meeting on Thursday afternoon? Incorrectly processes serch results, returning rooms that are not available
during the stated interval

14 Assistant, who in our team has not booked any vacations yet? Includes the user in the list of returned names, not expected since the user was
asking about other team members, not themselves.

15 Assistant, reschedule all meetings from today to next Monday. Reschedules all the meetings happening until next Monday to next Monday
instead of rescheduling today’s meetings.

Table 13: Sample task completion errors for gpt3.5-turbo (rows 1-3), gpt-4o-mini (4 - 6), gpt-4o (7 - 9), o1-mini
(10 - 12) and o1 (13 - 15)

E.3 Handback control error examples 1045

Id Query Agent action

1 Assistant, find a suitable conference room for a meeting with my team I wanna schedule later today. Tries to schedule a meeting, handing back control because of incorrect
diary checking.

Error cause: Distracted by irrelevant info. The agent is not required to schedule a meeting, not enough details are provided. Instead, it should have searched for a room that is available and has
sufficient capacity to accommodate the user and their team.

2 Assistant, can you find a time slot in my diary today when I could schedule something with the HR department to discuss
my performance review?

Hallucinates a program attempting to find HR team, handing back control
because it cannot determine it.

Error cause: Distracted by irrelevant info. The HR team is not defined in the simulation. The task requires the agent to find a slot in user’s diary.

3 Assistant, schedule our team Christmas party 10 days before Christmas. Should start in the morning and end at 10 PM? Requires the user to provide an alternative date.

Error cause: Following policy. The agent follows the instruction Unless the user explicitly states the date, meetings should not be scheduled on or recur during weekends. which is irrelevant.

4 Assistant, schedule a follow-up meeting two weeks after my last one-on-one with my manager. Hand back control because it cannot find the 1:1 meeting.

Error cause: Documentation comprehension. The agent fails to follow a note according to which the user should not be specified as an attendee during search by convention. The note is
included in find_events docs and referenced in find_past_event documentation.

5 Assistant, move back my meeting with John from sales and Jane by one hour. Hands back control because it determines two employees named John
are part of the sales team.

Error cause: Unwarranted disambiguation. The event can uniquely determined by checking the calendar.

Table 14: Examples of queries where o1 mistakenly hands back control to the user.

27

E.4 Problem categories1046

In Table 7, we report task success for five problem categories. Table 15 lists the queries which were1047

used to estimate the performance per problem category. For each query, a model predicts three AEPs1048

with different random seeds, so 30 task completion outcomes are considered when estimating subset1049

performance.1050

Simple

Assistant, how many meetings with Jianpeng are in my calendar at the moment?
Assistant, plan a weekend trip to the beach with my work colleagues Alice and Bob starting Saturday morning.
Assistant, schedule lunch with my entire team tomorrow at noon.
Assistant, schedule a 3-hour workshop with my team next Monday starting at 1 PM.
Assistant, schedule a meeting with my manager at lunch tomorrow.
Assistant, schedule an urgent meeting with my manager now.
Assistant, share my calendar with my assistant.
Assistant, cancel everything but the important meetings.
Assistant, schedule a team event next Tuesday at 4 PM for 2 hours at the bowling alley.
Assistant, cancel my meeting with Pete and move my meeting with Jianpeng in that slot instead

Constrained scheduling

Assistant, schedule a project update meeting with my manager when I’m free, before 3 PM tomorrow.
Assistant, schedule a project update meeting with my manager when we’re both free, before 3 PM tomorrow.
Assistant, set a 3 to 4 meeting in room z with any team members available then.
Assistant, set a 30 mins meeting with Jianpeng at the earliest time when we are both free today.
Assistant, reschedule today’s meetings to Monday - keep the same time. If you detect clashes the rescheduled meetings should start as soon as possible after the end of existing events. No
overlaps!
Assistant, find an available slot for a 30-minute meeting with my team two weeks from now.
Assistant, is it possible to schedule a team meeting tomorrow 10 am to 11:30 am or is any colleague from my team busy?
Assistant, check my boss’ calendar Wednesday to Friday next week, are they available for a meeting?
Assistant, set up a status update meeting with my manager every last Friday of the month at 2 PM till the end of the year. Skip the ones on his holidays.
Assistant, my manager just told me of a clash with our 1:1 tomorrow, reschedule it to the latest free slot we’re available.

Complex time expressions

Assistant, show me the last time I met with Alice.
Assistant, schedule a 45-minute team follow-up call two weeks after tomorrow’s project deadline, keeping the start time.
Assistant, schedule our team Christmas party 10 days before Christmas. Should start in the morning and end at 10 PM.
Assistant, schedule a 1-hour meeting with my manager, then a 45-minute meeting with my team, followed by a 30-minute meeting with the sales team. Add a 15-minute buffer between each
meeting starting tomorrow at 9 AM.
Assistant, put 45 minutes in the calendar, back-to-back, with Engineering and Marketing starting at 10 AM tomorrow... Actually, add a 10-minute buffer between each meeting.
Assistant, find an available conference room for my next meeting and schedule it there.
Assistant, book me out of office for the last two hours of the working day the day before my vacation in October.
Assistant, schedule a 1-hour review meeting with my sales team next Monday at 10, then one with finance right after that, and one with engineering after a 30 mins break.
Assistant, block the last hour of the working day for a catch-up with my team the day before any of their vacations start.
Assistant, change our weekly team meeting to happen on Thursday instead, with a update to say ’friday is a no-meeting day’?

Policy / instruction following

Assistant, schedule a meeting with my team every day next week at 3 PM.
Assistant, plan an off-site event with my team this weekend at Central Park starting at 10 AM.
Assistant, schedule lunch with a different team member each day next week at 12:30 PM.
Assistant, block 90 mins of focus time every morning at 8 AM for the next two weeks.
Assistant, I’ve got an urgent task that needs 3 hours starting at 1 PM tomorrow. Reschedule my existing meetings to fit this in, but try to keep the same day.
Assistant, schedule a meeting with my team late afternoon tomorrow. Mark Alice optional.
Assistant, reorganise my diary on the fifth so that the important meetings come first.
Assistant, add a strategy review with the CFO and the COO one week from today at 2:30 PM, for 1 hr.
Assistant, set 30 minutes tomorrow late afternoon with the department heads from engineering, finance and marketing.
Assistant, add a reminder 1 hour before all important meetings, with the meeting title in the subject.

Advanced problem solving

Assistant, find a suitable conference room for a meeting with my team I wanna schedule later today.
Assistant, see if my boss’ boss and Jane have accepted my meeting request for tomorrow. If anybody declined, reschedule to take place later but at the earliest available time for everyone, I’m
free all day.
Assistant, schedule a meeting in the afternoon with my engineering colleagues, avoiding any engineering management.
Assistant, find an available conference room for my next meeting and schedule it there.
Assistant, block 2 hours of free time for holiday preparation after dinner on the last working day before my next vacation.
Assistant, I will need to schedule an important retrospective sometime next week, how many rooms accommodating between 8 and 12 people do we have?
Assistant, add a finance manager to my meeting with the marketing manager.
Assistant, who in finance is yet to book a holiday this year?
Assistant, Ari and James are on holiday next month, who’s out for longer?
Assistant, what’s ratio of Diarmuid to Anders holidays from the start of the year till the second of July?

Table 15: Listing of queries for which task success is reported in Table 7.

28

E.5 Primitive selection1051

Below, we report primitive selection results broken1052

down for three key ASPERA modules. "Task suc-1053

cess" represents the task success rate for queries1054

whose sample solution made use of the primitive1055

in question. The final row shows the global preci-1056

sion, global recall, micro F1 and mean task success1057

across primitives in the module.1058

work_calendar
Primitive Precision Recall F1 CCK task success (1-shot)
find_past_events 0.83 0.91 0.87 0.73
RepetitionSpec 0.76 0.94 0.84 0.68
find_events 0.97 0.71 0.82 0.73
summarise_calendar 1.00 0.67 0.80 0.67
get_default_preparation_time 0.67 1.00 0.80 0.00
Event 0.73 0.78 0.76 0.64
delete_event 0.79 0.65 0.71 0.78
find_available_slots 0.73 0.64 0.68 0.76
get_calendar 0.73 0.55 0.63 0.69
add_event 0.97 0.41 0.58 0.66
CalendarSearchSettings 0.29 0.50 0.36 0.75
ShowAsStatus 0.33 0.12 0.18 0.56
get_search_settings 0.33 0.09 0.14 0.73
Overall 0.62 0.61 0.61 0.66

company_directory
Primitive Precision Recall F1 CCK task success (1-shot)
get_all_employees 0.98 0.83 0.90 0.71
get_employee_profile 0.87 0.92 0.90 0.71
get_current_user 0.89 0.89 0.89 0.72
Team 0.97 0.79 0.87 0.67
find_reports_of 0.95 0.77 0.85 0.81
find_employee 0.92 0.77 0.84 0.74
find_team_of 0.98 0.68 0.81 0.74
get_vacation_schedule 0.73 0.83 0.77 0.76
get_assistant 1.00 0.60 0.75 1.00
find_manager_of 0.86 0.63 0.73 0.65
Employee 0.05 0.50 0.09 0.75
Overall 0.66 0.74 0.70 0.74

room_booking
Primitive Precision Recall F1 CCK task success (1-shot)
room_booking_default_time_window0.75 1.00 0.86 1.00
find_available_time_slots 0.50 0.50 0.50 0.50
search_conference_room 0.30 0.89 0.45 0.72
summarise_availability 0.06 1.00 0.12 0.67
Overall 0.27 0.42 0.33 0.72

Table 16: Primitive selection results broken down for
three ASPERA modules. The final column shows o1’s
task success in the CCK setting for the subset of queries
whose sample solution made use of the primitive in
question. This can be thought of as a proxy for how well
the model is able to make use of this tool, in contrast to
how well it is able to select it.

29

	Introduction
	The ASPERA Framework
	The assistant library
	Components of an ASPERA task
	ASPERA task generation
	Query and AEP generation
	SIP generation
	EP generation

	Developer-LLM interaction in ASPERA

	The Asper-Bench Dataset
	ASPERA Evaluator
	Asper-Bench Evaluation
	Analysis and discussion
	CCK error analysis
	Handling complexity
	Primitives selection

	Related Work
	Conclusion
	Limitations
	ASPERA dataset generation prompts
	Joint query and AEP generation
	AEP generation given human-authored request
	SIP generation
	EP generation
	Auxiliary ASPERA Tools

	Assistant library
	Dataset characterisation
	Examples of challenging tasks
	Further corpus descriptive statistics
	ASPERA policy

	ASPERA evaluator prompt templates
	Analysis supplementary material
	Execution errors
	Task completion error examples
	Handback control error examples
	Problem categories
	Primitive selection

