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ABSTRACT

Recent studies have explored autoregressive models for image generation, with
promising results, and have combined diffusion models with autoregressive frame-
works to optimize image generation via diffusion losses. In this study, we present
a theoretical analysis of diffusion and autoregressive models with diffusion loss,
highlighting the latter’s advantages. We present a theoretical comparison of con-
ditional diffusion and autoregressive diffusion with diffusion loss, demonstrating
that patch denoising optimization in autoregressive models effectively mitigates
condition errors and leads to a stable condition distribution. Our analysis also
reveals that autoregressive condition generation refines the condition, causing the
condition error influence to decay exponentially. In addition, we introduce a novel
condition refinement approach based on Optimal Transport (OT) theory to address
“condition inconsistency”. We theoretically demonstrate that formulating condition
refinement as a Wasserstein Gradient Flow ensures convergence toward the ideal
condition distribution, effectively mitigating condition inconsistency. Experiments
demonstrate the superiority of our method over diffusion and autoregressive models
with diffusion loss methods.

1 INTRODUCTION

Diffusion models have demonstrated remarkable performance in image generation and have been
widely adopted across various visual generative tasks (Wei et al.,2024; Rombach et al.| [2022; Saharia
et al., |2022). Recently, due to the impressive reasoning capabilities exhibited by large language
models (LLMs), autoregressive modeling has garnered significant attention. Consequently, some
studies are exploring autoregressive frameworks for image and video generation, aiming to integrate
them with LLMs to build more powerful multimodal models (Sun et al., 2024b)).

Recent advancements in autoregressive image generation have shown performance comparable to
diffusion models (Sun et al.| [2024a;; [Tian et al., [2024; |[Zhou et al., |2025a). However, most autore-
gressive image generation methods rely on Vector Quantized Variational Autoencoders (VQ-VAEs
(Rombach et al.l 2022)) to encode visual content into discrete tokens for next-token prediction
modeling. (Li et al.,[2024a)) indicate that VQ-based image generation is sensitive to gradient approxi-
mation strategies and suffers from quantization errors, and propose diffusion loss for autoregressive
image generation, effectively pursuing autoregressive image generation without VQ. Nevertheless,
a comparative analysis between Conditional diffusion modeling and autoregressive modeling with
diffusion loss remains underexplored.

In this study, we investigate the differences between autoregressive modeling with diffusion loss
and conditional diffusion modeling. Firstly, we delve into the theoretical underpinnings of patch
denoising optimization in autoregressive models for condition error correction. We theoretically prove
that, under standard assumptions of Markov property and Gaussian noise in diffusion modeling, the
iterative patch denoising approach leads to a stable condition distribution. Furthermore, our analysis
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reveals the crucial behavior of the conditional probability gradient, showing its attenuation as the
condition stabilizes. Our theoretical exploration demonstrates that patch denoising in autoregressive
modeling effectively mitigates condition errors and consequently contributes to improved conditional
generation quality in diffusion modeling. In addition, we theoretically demonstrate that the sequence
of condition variables generated by an autoregressive process effectively refines the condition, leading
to a reduction in the gradient norm of the conditional probability distribution. Specifically, we
demonstrate that the influence of the condition on the outcome, quantified by the gradient norm,
decays exponentially towards a stationary value as the autoregressive iteration progresses.

Building upon these theoretical insights, we further analyze the issue of “condition inconsistency”
in autoregressive condition generation, demonstrating how extraneous information accumulates
and hinders optimal patch generation. To address this, we introduce a novel condition refinement
approach grounded in Optimal Transport (OT) theory. We theoretically prove that formulating
condition refinement as a Wasserstein Gradient Flow leads to convergence towards the ideal condition
distribution, effectively mitigating condition inconsistency and ultimately enhancing the quality of
patch generation within diffusion models.

In the experiments, we compare our method against other diffusion and autoregressive models with
diffusion loss on ImageNet (Li et al., 2024b). Results show the superiority of our method over these
competitors. We also analyze the denoising process to demonstrate the effectiveness of our method in
condition refinement. Our main contributions and findings are as follows:

* We theoretically prove that patch denoising optimization in autoregressive models mitigates condi-
tion errors and elucidates the attenuation behavior of the conditional probability gradient as the
condition stabilizes.

* We theoretically establish the efficacy of autoregressive condition refinement, quantifying the
exponential decay of the condition’s influence on the outcome as autoregressive iteration progresses
to a stationary value.

* We propose a condition refinement method based on Optimal Transport theory, and theoretically
prove that formulating it as a Wasserstein Gradient Flow ensures convergence towards the ideal
condition distribution.

* Experiments demonstrate our method’s superiority over other competitors. Extensive analysis
shows the effectiveness of our method in condition refinement.

2 PRELIMINARIES

Diffusion Modeling. Diffusion models are generative frameworks that consist of a forward process.
The forward (diffusion) process is a Markov chain that transforms data zy into Gaussian noise xr
through a sequence of Gaussian transitions:

T
g(wrrlve) = [ al@lzior),  a@ilwi—r) = Nz /1= By, Bi1), (1
t=1

where Bt'trzl is a predefined variance schedule with 0 < 8; < --- < B < 1. The reverse (denoising)
process reconstructs zy from xr via:

po(zo.r) = plar) | | po(zizi|ze), po(xi—1|ae) = N(@i—1; po(xe, t), Bo(ze, ),  (2)

o

t=1

where 119 and Xy are predicted by a neural network. Since the true posterior q(2;—1|x;) is intractable,
it is approximated using q(z;_1|x¢, xo) during training.

The model is trained to maximize data likelihood, which is approximated via a variational lower
bound. This can be reformulated as a score-matching problem, e.g.,

Exy ~ py(z¢) [|V$t log pt(2¢) — se(a:t,t)|2] : &)
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Autoregressive Modeling. Autoregressive (AR) models are generative frameworks that sequentially
predict each element in a data sequence by conditioning on all preceding elements. These models

assume that each data point x; depends only on the prior points z.; = {z1,a,...,z;—1}. The
conditional and joint probabilities can be expressed as:
n
p(x) = plar, x2,...,zn) = [ [ pl@ils) )
i=1

The generation process starts from z; and proceeds sequentially to z,,, with each step conditioned on
all previously generated elements. Related work is in Appendix

3 THEORETICAL ANALYSIS ON AUTOREGRESSIVE IMAGE MODELING WITH
DIFFUSION LOSS

3.1 DIFFERENCE OF DIFFUSION MODELS

Diffusion models demonstrate exceptional capabilities in generating high-quality visual content.
Recently, autoregressive modeling integrated with diffusion loss has shown significant potential in
image generation. We will elucidate the differences between standard conditional diffusion modeling
and autoregressive modeling with diffusion loss.

Conditional Diffusion Modeling. In traditional conditional diffusion models, the reverse process
is conditioned on a single, static condition c. This can be formally expressed as:

Ty—1 ~ p(Ti-1|z¢, 0), &)
where c represents a global condition that influences every step of the denoising trajectory. When
dealing with images, we can extend this to an individual patch z;:

Tig—1 ~ p(Ti-1|Tje,0), VieE{l,...,n}, (6)
where n represents the number of patches. Each patch is denoised based on the same shared condition
¢, irrespective of its position within the image.

Autoregressive Modeling with Diffusion Loss. Autoregressive modeling with diffusion loss allows
the condition to evolve autoregressively. Instead of a fixed condition ¢, a sequence of conditions {c; }
depends on preceding conditions {c;} including the initial condition cy, i.e.,

Ct ~ p(ct\c<,;, 00)7 @)
where c.; denotes all conditions up to time ¢ — 1, i.e., {co, 1, . . ., ¢;—1 }. For each patch generation
x;, the reverse process is still a denoising process but is guided by the dynamic condition ¢;, i.e.,

Tip—1 ~ P(xir—1|Tit, Ci), (8)

where c; represents the condition for i-th patch. After generating x;, it is passed as input to the
autoregressive model along with the history of conditions {c<;41}, enabling the prediction of the
subsequent condition ¢; 1.

3.2 CONDITIONAL DENOISING MODEL ERROR DEFINITION

Conditional Score Matching as an Upper Bound. Score matching is central to training diffusion
models, and its loss is linked to the Wasserstein distance between generated and real data (Kwon et al.|
2022). Conditional score matching refines this by incorporating conditioning. Understanding how
conditional score matching relates to standard score matching is key to justifying its use. This section
establishes that the standard score matching loss is upper-bounded by its conditional counterpart. This
result supports the use of conditional score matching, suggesting it might lead to a more controlled
training process.

Theorem 1 (Conditional Score Matching Upper Bound). The standard score matching loss is
upper-bounded by the conditional score matching loss:

]EXtNPt(Xt) |:||vXt logpt(xt) - SQ(Xtvt)H21| (9)

< Eerpe(e)ximps (x:]0) [Hvxt log pi(x¢|c) — s6(x,1)||”

See Appendix|Clfor the proof, which uses the law of total probability and Jensen’s inequality.



Published as a conference paper at ICLR 2026

The conditional score matching loss serves as an upper bound for the standard score matching loss.
Consequently, minimizing the conditional score matching loss indirectly constrains the standard score
matching loss from above.

Error in Conditional Score Matching. To analyze the error in conditional score matching, we
build upon the score matching error definition from (Li & Yan, [2024):

T
1 *
6E(:ore = T ZEXN%: [Hst(X) — S5 (X)Hg} . (10)
t=1

To understand how conditioning affects the error structure, we need to decompose the conditional
and unconditional score matching losses. Expanding these losses into their component terms allows
us to identify and analyze the specific contributions of conditioning to the overall error.

Lemma 1 (Expansion of Score Matching Loss). Expanding the square term in the score matching
loss, we get:

Baonpi (@) [vat log py(x+) — Se(xt,t)”?}

= Erypu(on) [ 1V, g pu() I + (e, O = 2 (50 1, 1), Vi Jogpulw)y | (1D
Similarly, for conditional score matching:
Eeaimpe(emiteade) ||V, 108 Dil@ele) = oz, D]
= Ecumpe(oms(anle)| [V 108 P (@O + llsa e, ) = 2 {s0(w0,8), Vi, log pr(aile)) | (12)
This expansion separates the loss into terms related to the true score, the estimated score, and their

interaction, facilitating a more granular error analysis (Detailed Proof in Appendix[D.).

Definition 1 (Conditional Error Term ¢.). To specifically measure the impact of conditioning on the
true score’s magnitude, we define the conditional error term €. as the change in the expected squared
norm of the true score due to conditioning, relative to the unconditional case:

T
1
€= 7 Burputon) [Eepteio) [IVar logpe(ailOl*] = V2, logpi@e)* ] (13)
t=1

This term quantifies how much the expected squared norm of the true score changes when we move
from unconditional to conditional score matching. A positive €. would suggest that conditioning
increases the magnitude of the true score, potentially indicating a more complex or refined score
function (Detailed Proof in Appendix [D.2).

Definition 2 (Simplified Conditional Error Term €,.). For a simpler metric focused purely on the
magnitude of the conditional true score, we define the simplified conditional error term €,:

T

B 1

€c = T Z ]Echu(c)7xt~pt(xt‘c) [Hvxt Ingt(xt|C)H2} (14)
t=1

€. directly measures the expected squared norm of the conditional score. Analyzing €., along with
€., will help understand the behavior of the true score in conditional settings (Detailed Proof in

Appendix [D.3).
3.3 CONDITIONAL CONTROL TERM ANALYSIS.

We first investigate the uniqueness of the conditional control term under standard diffusion assump-
tions and Classifier-Free guidance. As described in Classifier-Free guidance (Ho & Salimans} 2022
Liu et al., [2023)), the conditional reverse diffusion process for sampling is given by:

p(@i-1]re) = N (215 () + vam log p(c|zt), o)

xi 1 = p(x) + 02V, log plc|as) + e, e ~ N(0,1) (15)
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This shows that conditional control introduces an additional term 07V ., log p(c|x;) to the mean of
the reverse process, compared to the unconditional diffusion sampling. To understand the impact of
this conditional term, we define f(c;) = ||V, log pi(x¢|c;)||?. We hypothesize that the difference
between the expected value of f(c;) and the expected value of the unconditional score norm isolates
the contribution of this conditional control term. This is formalized in the following lemma:

Lemma 2 (Uniqueness of Conditional Control Term). Under standard diffusion assumptions and
Classifier-Free guidance, the difference between the expected squared norm of the conditional score
function and the unconditional score function isolates the contribution of the conditional control term.
Let f(c;) := ||V, log pe(e|c;)||?. Then,

E[f(c:)] — E|[Va, logpe(xe)||* = E[l0} Va, log p(clz:) |* (16)

where the expectation is taken over xy ~ pi(xt) and ¢ ~ p.(c). This lemma indicates that f(c;),
through its expected difference with the unconditional score norm, precisely captures the impact
of the conditional guidance term oV ., log p(c|xy) in the diffusion denoising process. (Proof in

Appendix[E)

3.4 CONDITION REFINEMENT THROUGH PATCH DENOISING.

Building upon the observation that incorporating conditions can amplify errors in diffusion models,
we propose an optimization strategy focused on refining the condition using patch-related corrections.
Specifically, we introduce a mechanism where information from each newly generated patch is
propagated to the condition of the subsequent patch through an iterative update process, ¢;+1 = 7T (¢;).
This autoregressive approach aims to refine the condition during the denoising process iteratively.

To formalize our approach, we first establish the foundational assumptions under which our model
operates.

Assumption 1 (Markov Property Assumption). The reverse diffusion process adheres to the Markov
property, where each state x;_; is conditionally dependent only on the current state x;.

Assumption 2 (Gaussian Distribution Assumption). The conditional probability distribution
pt(x4—1|x¢) in the reverse diffusion process is assumed to be Gaussian, expressed as: py(z—1|x) =
N(2-1; M(xt)7031)~

Assumption 3 (Small Variance Assumption). As the number of time steps 7" becomes sufficiently
large, the variance atz of the conditional distribution p;(z;—1|x;) is assumed to be sufficiently small,
approaching zero as 7' increases. Furthermore, for simplicity, we approximate the variance at each
step to be equal and denote it as o2.

With the above assumptions, we model the patch refinement process as an iterative update to the
condition:

civ1=T(¢), 1€N 17

where ¢; 1 represents the condition at the (¢ + 1)-th iteration, corresponding to the refinement based
on the i-th patch. T is a diffusion function that governs the transition from the current condition state
c; to the next state ¢, 1, encapsulating the information propagation from the generated patch to the
subsequent condition. The index 7 € N denotes the iteration step, analogous to discrete time steps.
The condition update process forms a discrete-time Markov chain, as the future state ¢;; depends
only on the present state ¢;: P(c;q1|ci,ci—1,...,¢0) = P(cit1]ci).

From the Gaussian expansion norm in Equation equation[T5] we observe that the probability dis-
tribution of x; is influenced by z, itself. Our primary goal is to understand the trajectory of the
conditional probability gradient as the condition c; iteratively refines through the diffusion reverse
process. Therefore, we proceed to analyze how the conditional probability gradient evolves with the
iterations of ¢; within a standard normal conditional distribution setting.

Proposition 1 (Condition Refinement via Patch Denoising). In the diffusion denoising process,
autoregressively refining the condition through patch-related corrections using the iterative update
civ1 = T (¢;) leads to improved conditional generation quality.(Detailed Proof in Appendix[E)
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3.5 AUTOREGRESSIVE MODELING CAN REFINE CONDITION

An autoregressive process is defined as follows:
i
Ciy1 = Zajcj + €it1, i €N (18)
=0

Assumption 4 (Basic Assumptions for Autoregressive Process). We provide a set of standard
assumptions:

1. 32, lai| < oo and sup;cy |ai| < 1, i.e., the sequence {a,,} is convergent.

2. {&:}3°, are independent and identically distributed, following A/ (0, o2).

M)

. pt(z¢]c;) has continuous second-order derivatives with respect to z:;.

N

x

- IV2, pe(a¢]e;)|| < K for some constant K > 0 uniformly holds, i.e., is bounded.

5. (X,] - ||) is a separable complete metric space.

Lemma 3 (Markov Property (Meyn & Tweedie, 2012) (Bellet, 2006)). Under Assumption 4| by
defining the state vector ¢; = (¢i, Ci—1,- .., Ci—p+1) ', the sequence {c;};cn forms a strong Markov
chain. Specifically:

1. The transition probability kernel P(c;11 € -|c;) on the augmented state space satisfies the
Feller property.

2. There exists a unique invariant probability measure m € P(XP) such that

TP =1 ie. / P(Alc)r(de) = 7(A), VA € B(XP) (19)
xp

3. There exist constants C > 0 and p € (0,1) such that for any initial distribution 1 € P(XP):
|uP" = mllrv < Cp" |l = =l[rv,  Vn € No (20)

where || - ||7v denotes the total variation norm, and P™ denotes the n-step transition
probability kernel.

In particular, for any n € Ny, we have:
[1£(cn) = 7llrv < Cp" 2D
where L(c,,) denotes the distribution of ¢,,. Proof can be found in Appendix

Lemma 4 (Regularity of Conditional Probability (Durrett, |1996)). Under Assumptiond| there exist
constants 0, L > 0 such that:

L. pi(zile;) > 6 forall (zy,¢;) € X x X.
2. IV, pe(ze|c1) — Vi, pe(zi|co)|| < Lljer — eo|| for all x4, c1,c0 € X.

Proof can be found in Appendix|l}

Lemma 5 (Bounded Derivative Theorem). On a fixed bounded closed interval [a, b), if the second
derivative is bounded, then there exist constants My, My > 0 such that:

1. sup,, |V, pi(zi|c)|| < My, i.e., the first derivative is bounded.
2. sup,, |pt(z¢|c)| < Moy, i.e., the original function is bounded.

Proof can be found in Appendix M|

Theorem 2 (Descent of Gradient Norm in Autoregressive Process). Under Assumptions 4| and
Lemmas there exist constants M > 0 and 3 € (0, 1) such that for any x, € X and i € Ny:

[V, log pe(2e|ei)|| < MB* +m (22)

where m is a constant representing the stationary gradient norm (Proof in Appendix|G).
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4 AUTOREGRESSIVE CONDITION OPTIMIZATION

Although autoregressive methods provide contextual information, they inevitably accumulate extrane-
ous noise, leading to “condition inconsistency”.

Why Optimal Transport? We employ Optimal Transport (OT) to rectify this distributional drift
for three theoretical reasons:

1. Geometric Correction: Unlike overlap-based metrics (e.g., KL divergence), OT quantifies the
geometric cost required to transform the noisy generated distribution back to the ideal one.

2. Least Action Principle: Formulating the refinement as a Wasserstein Gradient Flow identifies the
optimal path to eliminate inconsistency while preserving valid semantic information.

3. Convergence: The framework guarantees theoretical convergence to the stationary ideal distribu-
tion, effectively acting as a mathematically grounded “denoising” step for the condition.

The full algorithm is provided in Appendix

4.1 CONDITION INCONSISTENCY IN AUTOREGRESSIVE GENERATION

The autoregressive condition generation process, as
defined by Equation equation [/} sequentially con-
structs conditions, aiming to capture contextual de-
pendencies. However, this sequential nature can lead

to conditions that are not only influenced by relevant OT Refi l :

. . efinement | Denoise |
preceding patches but also by accumulated informa- o
tion that is extraneous to generating the current patch. Refing
This phenomenon, whic}% we termg“condition iE)lCOIl- Condition
sistency”, arises because the autoregressive process, Sinkhorn Solver b Noisy
while capturing dependencies, does not inherently Input Condition
guarantee that each generated condition c¢; is opti- MLP
mally focused on information strictly necessary for / \ l
the corresponding patch x;. Latent

Sampled Prior

Lemma 6 (Condition Information Inconsistency and

Extraneous Information Accumulation). Let ¢; = Figure 1: The autoregressive model predicts an

®g(c;_1) + Ty(e;) be the autoregressively generated initial condition, which is processed by the OT

condition for patch x;, and ¢& = Tz (¢;) be its pro- Reﬁnement. module using a sgmpled prior der.l\./ed

Jjection onto the minimal sufficient information sub- from A@gorlthmm The resulting refined condition
* . . then guides the Denoise MLP for latent generation.

space L (derived from x ;). The generated c; inher-

ently contains an extraneous information component 1; = ¢; — c;. This component 1, is generally

non-zero (i.e., E[||n;]|3] > 0), accumulating from (I — mz+)®g(c;—1) and noise components outside

I}. The actual conditional distribution p(x;|c;) deviates from the ideal p(x;|c}), and the conditional

score Vy, log p(x¢|c;) is perturbed from its optimal form under c}.

Proof. Let T} C R? denote the minimal sufficient information subspace for generating patch z;, and
T (+) be the orthogonal projection onto this subspace. The ideal condition ¢} satisfies:

¢; =mzr(c;) where IF = span{fi(r<;) ooy (23)

for some basis functions { f } encoding relevant dependencies from preceding patches z ;. The
autoregressive condition generation follows a Markov process:

ci = Py(ci—1) + To(e) (24
where @y : R? — R? is the learned transition operator and Iy modulates the noise injection. The
extraneous information component 7); can be quantified through subspace decomposition:

o0

mi=—m)ei= > (cive)vy (25)
k=K+1
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where {vj } forms an orthonormal basis for R? with the first K vectors spanning Z;. The ¢2-norm of
extraneous information ||7; |2 satisfies:

Elnil}) = B [[(Z = 7z:)@o(ci)][3] + (DT 26)

The first term represents propagated extraneous information from previous conditions, while the
second term quantifies newly introduced noise. For the denoising process D, at timestep ¢, the
conditional score function becomes perturbed:

Va, logp(ai]ci) = Vg, log p(a|c;) + Ty, Ve, log p(a4|c;) 27

Ideal score Perturbation term

where J,, is the Jacobian of the perturbation. The extraneous information induces an O(||7;]|2)
deviation from the ideal denoising trajectory. The accumulated effect over IV patches yields total
inconsistency:

N
gtotal = Z E [OT)\ (p(ﬂ?z ‘Ci)ap(xi |C:))] (28)
i=1
where OT, denotes the Sinkhorn divergence with regularization parameter A. This completes the
proof of condition information inconsistency. O

4.2 OPTIMAL TRANSPORT FOR CONDITION REFINEMENT VIA WASSERSTEIN GRADIENT
FLow

Building upon the condition inconsistency analysis in Lemma |6 we present a principled solution
through optimal transport theory. Our approach establishes direct connections between the Wasser-
stein gradient flow framework and condition refinement in autoregressive generation.

Proposition 2 (Optimal Transport as Wasserstein Gradient Flow). The condition refinement process
can be formulated as a Wasserstein gradient flow that minimizes:

F(P.) := W2(P., Por) + AEeup.[|lc — T (z)||?] (29)

where P, denotes the ideal condition distribution and T " represents the inverse process of infor-
mation accumulation in Equation equation[24} The solution admits an implementable discrete-time
scheme through JKO iterations (Jordan et al.| |1998):

P = argmin W3 (P, PV) + i F(P) (30)

Proof. Let Py(R?) denote the space of probability measures with finite second moments. We consider
the energy functional:

F(P) = JW(P, Por) + B, plo(c)] G

where ¢(c) = ||c — T ~1(z)|* encodes the inverse process regularization. The Wasserstein gradient
flow 0, P, = —V, F(P;) can be discretized via the Jordan-Kinderlehrer-Otto (JKO) scheme:

plk+1) _ arg mFi)Il {W22 (p7 p(k)) + 277k]:(P)} (32)

Substituting our specific energy functional yields the update rule in Proposition 2} The first term
maintains proximity to previous iterates while the second term drives the distribution toward both the
ideal condition and inverse-process consistency.

The optimal transport plan between P*) and P**+1) corresponds to the McCann interpolant:
) = ) — iy [VWE(, Per) o + AV ()] (33)

Implementing this requires solving the regularized OT problem:

. _ 12
7er(}g(lkl”)7pc*)IE(c,c/)[IIC 7] + eKL(v|m) (34)

where 7 is the independent coupling and e controls entropy regularization. This leads to the Sinkhorn
algorithm implementation described in Proposition 2} O
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Theorem 3 (Convergence of Wasserstein Gradient Flow). Under the assumptions of Proposition 2]
the Wasserstein gradient flow defined by the energy functional F(P) converges to the ideal condition
distribution P.«. Specifically, for any initial distribution PC(O) € P2(RY), the sequence of distributions
{Pc(k) 172 | generated by the JKO scheme satisfies:

W (PR, Py < p"Wo (P, P.), (35)

where p < 1 is the contraction rate determined by the regularization parameter \ and the step size
Nk-

Proof Sketch. The proof follows from the contractive properties of the Wasserstein gradient flow for
convex energy functionals. By the JKO scheme and the regularization term A\E..p, [||c — 7~ (z) %],

the sequence {Pc(k)} forms a Cauchy sequence in the Wasserstein space P, (R?). The contraction
rate p arises from the strong convexity of the energy functional F(P) and Lipschitz continuity of the
gradient flow. O

Remark 1. The inverse process regularization 7 ~! directly counters the extraneous information
accumulation characterized in Equation equation[26] By Theorem|3] the refinement ensures monotonic
improvement in patch generation quality:

E[OTx(p(xile{™). pleile)))] < pPEIOTA(p(wile”). plailei) (36)
where p < 1 quantifies the contraction rate of our OT-based refinement operator.

This theorem ensures that the proposed Wasserstein gradient flow refinement process monotonically

reduces the Wasserstein distance between the autoregressive condition distribution Pﬁk) and the ideal
condition distribution P.-. The contraction rate p quantifies the refinement efficiency, with smaller
values of p indicating faster convergence.

Table 1: Comparison of different methods on
various metrics on ImageNet 256 X256 condi-
tional generation. Baseline (CDM) denotes a
5.1 EXPERIMENTAL SETTINGS baseline of conditional diffusion modeling.

5 EXPERIMENTS

. . . Method FID| ISt Pre.?T Rec.t
Our autoregressive model is directly based on GPT-XL, oy mombacheral 360 2477 087 048
while the denoising module is implemented using the — U:ViT- 2292639 081 0.62

g at DIT-XL/2 (Pecbles & Xic[2023) 227 2782 083  0.57
MAR-based denoising module. For the Variational Au-  piir D024 173 2765 080 062
0

toencoder (VAE) component, we use the KL-16 version — Mnia Geo e slfe0o] 198 3147 078 062
of LDM (Rombach et al, 2022). Our experiments are MAR (LTt a7 135 3037 081 062
e-MA K 3 o .03 .

conducted on the ImageNet dataset (Deng et al.l 2009),  rar (vu et al 2025 150 3069 0.80 0.6
with image {esolutions set to 256 x 256. For evaluation, ~ Bxeine(Ch Sors i R
we adopt Fréchet Inception Distance (FID) (Heusel et al,  MAR (Li etal.|2024a] 155 3037 081 0.62
2017), Inception Score (IS) (Salimans et al.,[2016]), as ~ Ours (AR) 152 317.6 082 060

Ours (MAR) 131 3242 081 063

well as Precision and Recall metrics (Dhariwal & Nicholl,
[2021). During training, the noise schedule follows a cosine shape and consists of 1000 steps. The
learning rate is set to 1 x 10~°, with a total of 400 epochs and a batch size of 2048. The models are
trained with a 100-epoch linear learning rate warmup. We use an exponential moving average (EMA)
in parameters with a momentum of 0.9999.

5.2 PERFOMANCE COMPARISON

Table [T] shows a comparison of our method against
state-of-the-art approaches on ImageNet 256 x 256
conditional generation. Our method achieves the
best FID score of 1.52, outperforming MAR
(1.55), MDTv2-XL/2 (Gao et al| 2023)
(1.58), and DiffiT (Hatamizadeh et al.| [2024) (1.73).

Based on MAR, it can further reach 1.31. In IS, our Figure 2: Qualitative results on 256 x 256 Ima-
method also achieves the highest score. This demon- geNet class-conditional generation. These images
strates that our model produces samples with higher ~are generated by Ours.

A L il
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fidelity and better alignment with the real image distribution. For Precision and Recall, it attains 0.81
and 0.63, respectively, remaining competitive with other methods. Compared to the baseline, our
model exhibits significant improvements across all evaluation metrics, highlighting the effectiveness
of our approach. Qualitative results are shown in Figure 2]

5.3 SCALABILITY ANALYSIS Table 2: Comparison of scalability across dif-
ferent model sizes on ImageNet 256 x 256. Our

To investigate the scalability and robustness of our method consistently achieves lower FID and higher

proposed method, we conducted additional evalua- IS compared to MAR.

tions across varying model sizes and higher image Size  Method FID| ISt

resolutions. These experiments aim to verify whether

the benefits of our Condition Refinement approach ~ 208M

MAR (Li et al.||2024a) 2.31 281.7

. .. Ours 1.96  290.5
persist as the model capacity increases and the gen- AR i 175 2960

. . ietal.) a) . .
eration task becomes more challenging. 419M G 159 3015
Scalability across Model Sizes.. We evaluat.ed our ousn MAR (Cictal|2024a) 155 3037
method against the strong baseline MAR (Li et al.| Ours 131 3242

20242) on ImageNet 256 x 256 using three different
model scales: 208M, 479M, and 943M parameters. Table 3: Performance comparison on high-
As presented in Table [2] our method consistently resolution ImageNet 512 x 512.

outperforms MAR across all model sizes. Notably,

the performance gap widens as the model size in- Method FID| 1871
creases, suggesting that our autoregressive condition MAR (Lietal},2024a)  1.73  279.9
optimization effectively leverages larger capacities Ours 1.58  302.3

for superior generation quality.

High-Resolution Generation. To further assess the generalization capability of our method, we
extended our evaluation to a higher resolution setting on ImageNet 512 x 512 (using a model
size of approximately 481M parameters). Table [3] demonstrates the superiority of our approach
in high-resolution synthesis. Our method achieves an FID of 1.58 compared to 1.73 for MAR,
indicating that our OT-based condition refinement remains effective in mitigating inconsistencies
even in higher-dimensional spaces.

5.4 CONDITION ERRORS ANALYSIS 14 — ours " P
12 Baseline ‘E J
. .. . g §7°
Flgure presents the denOISlng analySISa ShOW- % 8 Denoising Direction 5 60 Denoising Direction
ing Signal-to-Noise Ratio (SNR) and Noise In- © 6 % ig — ou
tensity over time for both our method and a base- 4 ety | Bacing
line. The denoising process proceeds from right 0 50 100 150 200 250 0 50 100 150 200 250
Time Step Time Step

to left, with time steps decreasing as denoising

progresses. Our method consistently achieves Figure 3: Analysis of Signal-to-Noise Ratio (SNR,
higher SNR, with a widening gap in later stages. Left) and Noise Intensity (Right) d.uring the denoising
Similarly, the right panel shows the Noise Inten- Process of our m(?thod and the baseline. All ana_lyses are
sity, where both methods show a reduction in computed in the image space after VAE decoding.
noise as denoising progresses. Consistent with the SNR analysis, our method exhibits a marginally
lower Noise Intensity, especially in the earlier time steps, i.e., later stages of denoising. These results
highlight the efficacy of our proposed OT-based refinement of conditional distributions and effectively
mitigate the potential inconsistencies introduced by purely autoregressive methods.

6 CONCLUSION

In this work, our analysis shows that patch denoising in autoregressive models mitigates condition
errors, stabilizing condition distribution and enhancing generation quality. Autoregressive condition
generation further refines conditions, exponentially reducing error influence. To address “condition
inconsistency”, we introduce a refinement method based on Optimal Transport and prove that casting
it as Wasserstein Gradient Flow ensures convergence. Experimental results and analysis show the
effectiveness of our method.
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A RELATED WORK

A.1 DIFFUSION MODEL

Diffusion models have emerged as a powerful generative framework, surpassing GANs (Goodfellow
et al.,[2020) and VAEs (Kingma & Welling} 2014) in stability and sample quality. DDPMs (Yang
et al., 2024b) introduced a noise-based training and reconstruction paradigm, later linked theoretically
to Score Matching and DAEs (Vincent, 2011). However, early diffusion models suffered from
slow sampling due to numerous iterative steps. Improved DDPMs (Pang et al., 2024} refined
noise scheduling, while DDIMs (Wei et al., [2024) accelerated generation through a non-Markovian
formulation. LDMs (Rombach et al.| 2022)) further optimized efficiency by applying diffusion in a
lower-dimensional latent space. Diffusion models also exhibit theoretical advantages over GANS,
notably their implicit minimization of the Wasserstein distance (Kwon et al.| 2022), leading to
better convergence and robustness. Enhancing conditional control remains a key research focus:
Classifier-Free Diffusion Guidance (Wahid et al.,|2025)) enables flexible conditioning without external
classifiers, and structure-aware adaptations (Li & Yan, |[2024) improve efficiency for structured data.
Various applications extend their utility: Palette (Saharia et al.| 2022) enhances image restoration,
GLIDE (Nichol et al.;|2022)) improves text-guided synthesis, CDMs (Ho et al., 2022) refine images
progressively, and ControlNet (Zhang et al., [2023)) integrates structural conditions for enhanced
controllability. Detecting diffusion-generated images is increasingly challenging, with studies like
Schaefer et al. (Corvi et al., [2023)) highlighting the need for robust detection methods.

A.2 AUTOREGRESSIVE IMAGE GENERATION

Autoregressive models, despite their effectiveness, face computational constraints due to sequential
generation (Zhou et al., [2024; |Sun et al., [2025; [Zhou et al., [2025b). Optimization efforts focus
on efficiency and scalability: LlamaGen (Sun et al., 2024a) leverages large-scale training to sur-
pass diffusion models in quality and efficiency, while VAR (Tian et al., |2024) reduces inference
latency via next-scale prediction. Spatial alignment strategies like ImageFolder (Li et al.l | 2024b)
improve autoregressive modeling, and Emu3 (Wang et al., 2024) unifies token prediction across
modalities. Expanding autoregression to multimodal tasks requires bridging discrete and continuous
data representations. Lumina-mGPT (Liu et al.l |2024) employs a decoder-only Transformer for
high-quality text-to-image synthesis, while MMAR (Yang et al.||2024a) models continuous tokens to
enhance understanding and generation. Traditional vector quantization in autoregressive models is
being reconsidered: VQ-free autoregression (Li et al., 2024a) introduces diffusion-based per-token
probabilities for efficiency, and LatentLM (Sun et al., 2024b)) integrates next-token diffusion for
multimodal synthesis across image, speech, and text.

B LIMITATIONS

While our research provides novel theoretical insights and algorithmic advancements, it is important
to acknowledge certain limitations. Specifically, our experimental evaluation has not been conducted
on large-scale models due to the substantial computational resources required for such validation.
Instead, our focus has been on a rigorous theoretical analysis and the development of scalable
algorithms. Despite the absence of experiments on very large models, the generality and applicability
of our method have been theoretically established, and our experiments on general settings support
the soundness of the proposed approach. We believe future work can extend these evaluations to
more resource-intensive settings to further verify empirical performance at scale.

C PROOF OF THEOREM [I] (CONDITIONAL SCORE MATCHING UPPER BOUND)

We begin by establishing two foundational lemmas required for the proof.

Lemma 7 (Bayes’ Theorem for Conditional Scores). For any measurable sets c and x,, the posterior
distribution satisfies:

pe(C)pi(X¢|c) pe(c)pe(xt|c)

pe(clxe) = () = [ pe()pe(xe]e’)de!
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where the second equality explicitly shows the marginalization over c'.

Lemma 8 (Jensen’s Inequality for Convex Functions). For any convex function f : R — R and
random variable Y with finite expectation:

fEY]) <E[f(Y)]
Equality holds if and only if f is affine linear on the support of Y, or Y is constant almost surely.

Step-by-Step Proof: Using these lemmas, we proceed with the main proof.

Step 1: Marginal-Conditional Decomposition. Express the marginal distribution through condi-
tioning variables:

pe(xy) = / pe(€)pe(x¢|c)de  (Law of total probability)
c

Differentiate both sides under the integral sign (valid under Dominated Convergence Theorem
conditions):

Voepe(x2) = / Pe(c) Vi pr (e |c)de
C

Step 2: Score Function Representation. Using Lemma([7] decompose the marginal score:
thpt (Xt)
Pe(Xt)
B [ pe(€)Vx,pe(x¢|c)de
B Pe(x¢)
B / pe(C)pi(xe|c)
B 2 (Xt)
pe(clxe)

= ]ECNPt(C|Xt) [th logpt(xt|c)]

where the critical step (line 3) applies Lemma to identify the posterior distribution.

Vx, log py (Xt) =

Vx, log pi(x¢|c)de

Step 3: Jensen’s Inequality Application. Substitute into the unconditional loss:
2
Ex, |V 1ogp; — s0]|” = Ex, ||Ecpx, [V log pi(-e)] — so|
< Ex,Ecix, |V 1ogpe(-|c) — soll>  (by Lemmal8))
Here we specifically apply Lemma 8 with:
&

s f(y) = |ly — sol|* (convex since || - ||? is convex)

* Y = Vg, log pi(x¢|c)

Step 4: Law of Total Expectation. Convert the nested expectation to a joint expectation:

Ex,Eepx, [1 = Eex, [] = Eenp.Ex,mp (0[]
Thus, we obtain the final inequality:

Ex, [|V1ogp: — 50”2 < Ecx, [Viogp:(-le) — 59H2
Tightness Analysis. By Lemma 8] equality holds iff Vy, log p,(x;|c) is constant c-a.s., which

requires pt(x¢|c) = pt(x:) for all ¢ in the support of p.. This corresponds to statistical independence
X¢ 11 e

D DETAILED DERIVATIONS FOR CONDITIONAL SCORE MATCHING ANALYSIS

D.1 PROOF oF LEMMA[I]

Following the score matching framework from (Vincent, [2011)), we begin by expanding the squared
norm in both unconditional and conditional score matching objectives.
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Unconditional Case: For the unconditional score matching loss:

Erompaon) [V 10g i) = o, 1)
= Eﬂ?tNPt(mt) [(vl‘t lngt(.Tt) - Sg(wt,t))—r (vzt Ingt(xt) - SQ(!Et,t))}

2 2
=B, [ [V, logpe(ae) >+ |Iso(w, )]
True score norm Learned score norm

— 2 (sg(xt,t), Vg, Ingt(xt»}

Alignment term

This follows directly from the identity ||a — b||> = ||a||® + ||b]|* — 2a "b.

Conditional Case: For conditional score matching, expanding the L2 norm of the training error,
we have:

EcythPL( )Pt (ze|c) |:Hv»bt 1ngt(‘rt| ) - Sa(l‘t,t)HQ:|
= Eeginpe(e)pi(aile) [Hvxt log pi (el )||* + [|so (ze, )[|* — 2 (sp(xe, 1), Va, logpt($t|c)>}
= EﬁftNl)t(wt)ECNl)t(dxt) [HVIf logpt(xt‘c)‘|2 + ||59(:Ctat)||2 -2 <59($t,t)7 vrf, logpt(xt|c)>}

= Barnpuo) [Bomputeten) [V, 108 2@l + 1500, O = 2Bempy o) (s0(@,8), Vi log piile) |

D.2 DERIVATION OF ERROR DIFFERENCE €. (DEFINITIONEI)

Loss Difference Analysis: Subtracting the unconditional loss from the conditional loss (after
expansion):

Ec,z, [Loss] — E,, [Loss]
= EztEdIt [HvTr 1ogpt(xt|c)H2:| - ]Ext Hth logpt(mt)HQ
+Ea, ||50]1* — Ea, ||s6]l*

=0
-2 (]Ezt,c\zt <807 Vlogpt($t|c)> - Ezt <307 \Y Ingt(xt»)

Vanishes by tower property

The cross-terms cancel due to the tower property of expectation:
E:rtECIIf, (s9, Vlogpi(zt|c)) = Eq, (s0, ]EC\mtv log pt(¢]c))

- Efbt <597 \% logpt (zt»
where we used the identity V log p;(x¢) = E¢|, V log ps(x¢|c) from (Li & Yan, 2024).

Final Error Expression' Thus the difference reduces to:

ZEM [Eete, [V 10gpi(ele) |* = [V log pi () |

This quantifies the excess “score energy” induced by conditioning, similar to variance decomposition
in probability theory.

D.3 PROPERTIES OF €, (DEFINITION@

From Definition @ we can relate €. to €. using the law of total variance:

T
1
o= et 7> Be [Viogpi(w)|*

t=1

This decomposition reveals that €. contains both the intrinsic score energy from the unconditional
distribution and the additional energy €. from conditioning.
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E CONDITIONAL CONTROL TERM UNIQUENESS PROOF

Proof. We prove Lemma 2] through three key steps:

Step 1: Bayesian Score Decomposition Using Bayes’ rule p;(z:|c) = %, we derive:
Va, log pi(z¢lc) = Vi, logp(clry) + Vg, log pi(x:) — Vg, log p(c)
=0
= Vg, logp(clzt) + V., log pr(a4)

Step 2: Cross-Term Cancellation The squared norm decomposes as:

IV, log pi(4]c)|” = [V, log p(clze) |1 + [|Va, log pr(z) ||
+ 2(V,, log p(clzy), Vg, log pe(y))

Taking expectation over p;(z) and p.(c):

E[(V., logp(clzt), Vi, log pe(24))] = Eq, [Ec [(Va, logp(clzt), Va, logpe(zt)) | 24]]

= Emt <]Ec[v:ct logp(c\:l:t)], vxt 1ngt(xt)> =0
=0

where the inner expectation vanishes because E. [V, log p(c|z;)] = Va,Ec[p(c|zt)] = V4,1 = 0.

Step 3: Variance Propagation Combining results from Steps 1-2:
ec = E||Vy, logpe(aefc)l|* — |V, log pe () |
= E|0} V., log p(clz,) |

The scaling factor Uf emerges from the reverse process parameterization in (Ho & Salimans| [2022;
Liu et al., 2023)), where the conditional mean adjustment contains an explicit o7 multiplier. This
completes the proof that €. isolates the conditional control term’s contribution. O

F PROOF OF CONDITION REFINEMENT VIA PATCH DENOISING
(PROPOSITION

To understand the long-term behavior of the condition refinement process, we invoke the Markov
Chain Stationary Theorem. The conditional probability density function p(z|c) is then given by: aBy
invoking (Meyn & Tweediel 2012), we establish that as c; iterates, its distribution converges to a
stationary distribution. (The details of the lemma we used can be found in Appendix[K]) Consequently,
our analysis shifts to understanding how the gradient of the conditional probability evolves when c;
follows a normal distribution. To compute the gradient of the conditional probability density function
p(z|c) with respect to x, the joint distribution of « and ¢ follows a multivariate normal distribution:

X Pa\ (Ozz Oxc
(€)= () (o 22))
The conditional probability density function p(z|c) is:
| ( (I(uﬁf,jf(cuc)))Q)
— exp | — —
) 2(0 gy — 22=)

Occ

p(zle) =

0-2
27 (O gy — €

Occ

Taking the logarithm, we obtain the log-likelihood function:
2

logp(ale) = - 3 log (2r(os, — 2))

(= (po + 222 (c = pe)))?
20y — Zic)

Oce
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Differentiating with respect to =, while ignoring constant terms, yields:

z— (pa + Zf: (c— pe))

V logp(zlc) = —

o2,
Ogx — fcz
The squared norm of this gradient is given by:
2
= (pe + ZIC (c—pe))
|V log p(z]c)||* = ( s )
Ogxx — ﬁ

The conditional mean and the conditional variance primarily influence the gradient behavior. The

conditional mean is:
O—IC

Mo + (c— tie),

cc
where pi. represents the mean of c. As c iterates and reaches its stationary distribution, y. converges to
a constant, which we denote as 5®', Consequently, the conditional mean stabilizes to a fixed value.
The conditional variance o,, — ﬁf is determined by the covariance structure of the joint distribution.
Since this variance does not depend on c in its stationary distribution, it remains unchanged. As ¢
reaches its stationary distribution, the deviation of x from the conditional mean gradually diminishes
while the variance remains constant. It leads to gradient magnitude decay, indicating attenuation of

the conditional probability gradient over iterations.

G PROOF OF DESCENT OF GRADIENT NORM IN AUTOREGRESSIVE PROCESS

(THEOREM [2))
Proof.
Remark 2 (State Space Representation). By introducing the state vector c¢; =
(cisCio1,-. .,cl-,pH)T, we can represent the original process as a vector-valued first-order

autoregressive process:

cit1 = Ac; + e

ap a1 ' Ap_2 Qp-1 €it+1
1 0 .- 0 0 0
A=|0 1 - 0 0 i1 = 0
0 0 - 1 0 0

In this representation, the conditional distribution of c¢;; depends only on c¢;. From Assumption
(1), the spectral radius of matrix A is less than 1, which ensures the stability of the process.

Let pi(x¢|m) = [, pe(2¢|c)m(dc). The log-likelihood gradient can be decomposed as:

v:c )
Vi, 10gpt(xt|ci> = M

Pt(l’t \Cz’)
_ (thpt(ﬂfdci) thpt(l“th)) Vo, pe(z¢|m)
= - +
pe(ze|ci) pe(xe|m) pe(ze|m)

Stationary Term

Using the triangle inequality for norms, we get:

192 log (o) < [ Foepioec)  Teilont)
o R Pe(weles) pe(we|m)

’ Vo pe(we|m)
pe(we|m)

Stationary Term
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For the non-stationary term, we have:

1
<5 e (24| 7)Va, pe(we|ci) — pe(wie|ci) Vi, pe(ze|m) |

Hvxtpt($t|ci) Vo, pe(wm)
pe(xe|cs) pe(xe|m)
Pe(@e| )V, pe(ze]ci) — pe(@e|ei) Vi, pe(ae|m)
pt(l't|ci)pt(xt|77)

= 5% [Pt (e|T) [V, pt (Tt]€i) — Vi pie(@e|m)] + Vo pe (| ) [pe(2e]7) — pi(@e|ei)] ||

< = [ IV puCarles) = T @Ml -+ [Vagpeanlmlpeaelm) = e

Using the Lipschitz property of both the conditional probability density function p;(x:|c) and its
gradient V, p;(z¢|c) with respect to ¢ (with Lipschitz constant L), and the upper bound My for
pi(x¢|m) from Lemmafd] the above inequality becomes:

1
< g2 | MoLlles = exl + | Vape(aulm) | Ll — e ]
L

T2

We consider ¢, to be a representative value from the stationary distribution 7, for simplicity we
can consider ¢, = E,[c]. Applying the geometric ergodicity of the Markov chain (Lemma @] in

Appendix , which gives us |j¢; — ¢ || < \/Varg(c)p’, we arrive at:
L .
S5 [M2 + Hthpt(:Etlvr)ll} V/Varg (c)p'

For the stationary term, from Lemma 5] we have:

Ve, pe (7)o My
< — =
5 =75 =m

(M + 1V, il ] lles = el

’ Vo, pi(we|m)
pe(ze|T)

E

where m is a constant.

Combining the estimates for both terms, we have:

L .M
IV, log prlaile)l| < 55 (Mo + [ Vo polaelm) | ) o/ Var, (o' + =5
< Mp'+m

where M = 4 (M2 T Hthpt(xthr)H) /Var,(c) and 8 = p € (0,1).

Thus, we obtain the desired exponential decay estimate for the gradient norm as the autoregressive
process iterates. This estimate holds uniformly for all x; € X. O

H GEOMETRIC ERGODICITY AND CONVERGENCE TO STATIONARY MEAN

Lemma 9 (Geometric Ergodicity and Convergence to Stationary Mean). Assume that the Markov
chain {c;}1>0 is geometrically ergodic with stationary distribution 7, and let ¢, = Er[c]. Then,
there exist constants C' > 0 and 0 < p < 1 such that for all i > 0:

e — ex|| < Cpi/Vary(c)

where Vary (c) = E||lc — cx||?].

Explanation: Lemma [0 formalizes the geometric convergence of the Markov chain state ¢; towards
the stationary mean ¢, due to geometric ergodicity. This property ensures that the influence of the
initial condition diminishes exponentially over time, allowing us to bound the distance ||¢; — ¢, || by
a geometrically decaying term proportional to /Var, (c). This justifies the transition in the eighth
line of the derivation, replacing ||¢; — ¢, || with a term that decays geometrically with i.
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I PROOF OF REGULARITY OF CONDITIONAL PROBABILITIES

1. Existence of a lower bound: Since the conditional probability density is quadratically
continuous and differentiable and is defined on a tight set, there is a minimum by the
extreme value theorem. Since the probability density is always positive, the minimum must
be greater than zero.

2. Using the boundedness of the second-order derivatives in our Assumption 2
for Vo 3K >0, |VZp(ze)| <K
Consider the difference of derivatives:
Ve pe(zeler) — Vi, pe(ze]c2)

By the median theorem in multivariable calculus, there exists some point between c;cs such
that:

Vape(xelc1) = Va,pe(welca) = V2, pe(we]c)(c1 — ¢2)
By taking the value of the paradigm of the above equation, we have:
IVape(@tler) = Va,pi(zelea) || = IVZ,pe(wele)(cr — e2)]

Using Multiplicative Inequality for Norms(||a - b]| < ||a|| - ||b]|)and the boundedness of the
second-order derivatives, we obtain:

IVape(wiler) = Vo, po(zdea) | < [IVE, o)l (er — e2)ll < K- [(ex = e2)
Thus, taking L = M, we get the final inequality:
IVa,pi(iler) = Va,pi(zileg) || < Lfj(er = eo) |

J PROOF OF THE MARKOV PROPERTY

This paper mainly uses the last geometric traversal of the theorem and therefore focuses on proving
the geometric traversal of Markov chains. The proof is divided into three steps.

1. Drift Conditional Verification: Constructing Foster-Lyapunov Functions V (z) = 1 + |z,
for Vz

EV(Xp1)|Xn = 2] = 1+ Ellanz + €[]
= 1+ |an’|2] + 02
= lan* (1 + [2?) + (1 = |anf* + 0%)
< AV(z)+b
where) = sup,, |an|? < 10 |a;] < 00), b =1+ o2

2. Compactness:for VR > 0, the set {z : V(z) < R} is compact because it is equivalent to the
closed ball{z : |x]? < R —1}.

3. Irregularity and continuity: Since the noise term ¢,, obeys a normal distribution, the transfer
probability has a positive density everywhere, which guarantees strong Feller and irregularity
of the chain.

According to Meyn-Tweedie theory, the above condition guarantees geometric ergodicity.

K LEMMA OF MARKOV PROPERTY

Lemma 10 (Markov Chain Stationary Theorem). If a random process has a transition matrix P and
is ergodic (i.e., any two states are aperiodic and irreducible), then:
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1. The limit of the n-step transition matrix exists and is given by:

R(1) (@) e ()
(1) =(2) - 7w()
lim P"=| : S :
e m(1) =(2) 7(j)
2. The stationary distribution m = [w(1),7(2), .. .| satisfies the equation:

m(j) = Z i Py
i
3. m is the unique non-negative solution to the stationary equation, with ), m(i) = 1.

L. AUTOREGRESSIVE CONDITION OPTIMIZATION ALGORITHM

The full algorithm integrates three key components: (1) autoregressive condition generation, (2)
diffusion-based denoising, and (3) optimal transport refinement. The pseudocode below specifies the
detailed computational workflow.

Algorithm 1 Autoregressive Condition Optimization (ACO) with Denoising Integration

Require: Initial condition cq < ®y(c;_1,r~;); Diffusion model {D;}L_; with noise levels {3;};
Target latent distribution P,«, OT parameters )\, €, Knx; Learning rate schedule {7, }, gradient

clipping threshold 7

Ensure: Optimized condition c;, generated latent zl(T)
1: Initialize: c(©) < cg, 2(9 ~ N(0, 1)

2: fork=0to K —1do

3:  Denoising trajectory:

4. fort =T to1ldo

5: 2Bt=1) Dy (21 (k) {DDIM update}

6: end for

7. Inverse process alignment:

8 @(cW) =™ — T HEEN? + o VT HE

9:  Optimal transport computation:
10:  Sample reference latents {2} } ~ P,
11:  Compute pairwise cost matrix: C,y, = ||z — 22|12 4\ [|cF) — 771 (7)) 2

Latent matching Condition consistency

12:  Entropy-regularized OT:
13:  Initialize u(®) < 1,0 « 1
14: forl=1to Ksin}gdo

. l 2%
15: ’U( ) < W
. ! P
16: u® — K (@0 D,00)
17:  end for

18: )« diag(uFsm)) - K - diag(v(Finw))
19:  Gradient computation & update:

20: VLot ’}/(k) ® 62(6,;)

210 Vel ¢ 5205

22: V@l & Clip(V.Lor + VeLreg, T)

23: kD) k) g ptowl

24: end for

25: Return ¢} B z; ¢ 20)
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L.1 IMPLEMENTATION DETAILS

* Target Distribution Estimation: Maintain an EMA of generated latents:

B
(i) _ -1 1 (i)
P =0-v)P. '+ Y5 ;5(217 )
with v = 0.1 and buffer size B = 2048.
* Adaptive Entropy Regularization: Schedule e during Sinkhorn iterations:

k
()

= €max — (emax - 6min)?
* Stochastic Optimization: Use Adam optimizer with:

Mk = Mo * min(l, kwarm/k)
where Eywam = 100 controls learning rate warmup.

L.2 CONVERGENCE ANALYSIS
The algorithm maintains the convergence guarantee in Theorem [3| through:

1. Monotonic Improvement: For Lyapunov function
Vi = Wa(P,w, Por) + AgE[o(c))]
we have Vi1 < Vi — || VVi[? + O(n)
2. Error Propagation Bound: Approximation error from Sinkhorn iterations satisfies
V™ = y7|lp < Cpfon

< where ¢ is the minimum cost matrix entry.

e+6
3. Stability Condition: Gradient clipping ensures Lipschitz continuity:

IVES 2 < 71+ AegL7-1)
where L1 is the Lipschitz constant of the inverse process.

with p =

M BOUNDED THEOREM

Function p;(x¢|c) in the fixed interval [a,b] has second order derivatives V2 p;(2|c), and
V2 pi(z¢]c) is bounded, so we have K > 0,

V2.pe(zilo)| S K, Va, € [a,0)].

THE FIRST DERIVATIVE IS BOUNDED

We use the Mean Value Theorem to show that first-order derivatives are bounded. According to the
mean value theorem, if x;, } € [a, b], there exists a point & € (x4, ), then:

Va,pe(@i]c) = Vi, pi(alc) = Vitpt(ﬂc)(x; — ).
V2 pi(a¢]c)] < C, so we have:
[V, pe(atle) — pi(de)| = V2, pe(€le)(a) — 24)| < Clay — a4

This shows that V, p;(z¢|c) is Lipschitz continuous and the Lipschitz constant is C.So V, p:(z¢|c)
is bounded. Next, we give specific boundedness estimates Taking x; = a, we have:

Ve, pi(wi]e) = Va,pi(alc)| < Clzy —al.
Since |z — a| < b — a, we get:
Va.pr(zel0)] < [Va,pi(alc)| + C(b—a).
Therefore, there exists a constant My = |V, pt(ale)| + C(b — a) such that for all z; € [a, ]:
|V, pe(xi]c)| < M.

23



Published as a conference paper at ICLR 2026

THE ORIGINAL FUNCTION IS BOUNDED

According to the Fundamental Theorem of Calculus, we have:

mm@—mwoz/ V..o (ylc) dy.

Since |V, p:(x¢]c)| < My for all z; € [a, b], we can estimate the above integral:

pe(i|c) — pi(ale)| =

/’w@wwﬂs/|w%mmwsmm—w

Since |z; — a| < b — a, we have:
pe(2ile) = pe(ale)] < Ma(b— a).
Therefore, the original function p;(z:|c) is bounded and:
pe(xele)| < |pi(ale)] + Mi(b— a).
Thus, there exists the constant My = |p;(alc)| + M1 (b — a) such that for all z; € [a, b]:
[pe(e]c)| < Ma.

Thus, in a fixed interval, a bounded second-order derivative is bounded by a bounded first-order

derivative, and the original function is bounded by the proof.

N THE USE OF LARGE LANGUAGE MODELS

In this paper, ChatGPT was employed to assist in polishing the writing. The model was used as a
language aid to improve clarity, grammar, and readability of the text, while ensuring that the academic

content and arguments remain entirely the work of the author.

O TABLE OF NOTATIONS

To facilitate easier reading of the theoretical sections and provide a quick reference for the mathemat-

ical symbols used throughout the paper, we summarize the key notations in Table 4]
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Table 4: Summary of Notations

Symbol

Description

Diffusion & Autoregressive Basics

ZTo, TT

Ti.T
q(w¢|wsq)
Po(wi—1|zs)
sg(x,t)

c

&)

Zq

T<i

Dy, Ty

The original data (image) and the Gaussian noise at time 7.

The sequence of latent variables in the forward diffusion process.

The forward diffusion transition kernel.

The reverse (denoising) process approximated by the network.

The score function predicted by the neural network.

A global, static condition (in standard conditional diffusion).

The autoregressively generated condition for the ¢-th patch.

The ¢-th image patch.

The set of patches preceding 4, i.e., {21, ..., 2Z;—1}.

The transition operator and noise modulation in the AR condition process.

Error Analysis & Theory

€c

€c

T (cs)
0#Vy, log p(clazy)
M? /67 m

Conditional Error Term (Eq. 13). Measures the change in expected score
squared norm due to conditioning.

Simplified Conditional Error Term (Eq. 14). Directly measures the ex-
pected squared norm of the conditional score.

The transition function representing patch-based condition refinement.
The conditional guidance term in the reverse process mean.

Constants and decay rate describing the descent of the gradient norm (Theo-
rem 2).

Condition Refinement (Optimal Transport)

"

G
*

73

T I?
i

Wz(.) )
F(P)
T*l
p¥

P

The ideal condition for patch x;.

The minimal sufficient information subspace for patch x;.

Orthogonal projection onto the subspace 7.

Extraneous Information Component (Eq. 25). The deviation from the
ideal condition (1; = ¢; — ¢}).

The 2-Wasserstein distance between probability distributions.

The free energy functional minimized by the Wasserstein Gradient Flow.
The inverse process regularization operator.

The probability distribution of the condition at refinement step k.

The contraction rate of the Wasserstein Gradient Flow (Theorem 3).
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