
Transplanting Knowledge: A Study on Layer-Specific Grafting in LLMs

Bastien Zimmermann1, Matthieu Boussard1

1craft ai
{bastien.zimmermann, matthieu.boussard}@craft.ai

Abstract

This paper introduces layer-specific grafting, a novel ap-
proach for transferring specialized capabilities between Large
Language Models (LLMs). We specialize individual layers
by fine-tuning on a task and grafting them into a host model.
Using modular addition as a test case, we demonstrate the
feasibility of grafting task-specific functionality while evalu-
ating the preservation of the host’s general language gener-
ation capabilities. To ensure smooth integration, we employ
translator modules to align residual streams between models.
Experiments reveal key factors influencing grafting success,
including layer selection, dataset alignment, and model size.
While the method effectively transfers task adherence, chal-
lenges persist in achieving strict format retention and fluency.
These findings establish layer grafting as a promising tool for
modular and efficient AI system development.

Introduction
Model grafting, the integration of components from one
Large Language Model (LLM) into another to transfer spe-
cific capabilities, presents a promising approach for enhanc-
ing model capabilities and advancing our understanding of
neural network modularity and interpretability (Yang et al.
2024). By selectively transplanting layers of an LLM into
another, we can gain deeper insights into how individual
components contribute to the model’s overall behaviour.

Furthermore, layer-grafting seeks to facilitate the reuse
of existing model capacities without extensive retraining,
which is crucial for efficient AI system development and
deployment. Transformer-based architectures, despite their
outstanding performance across various fields, often incur
significant computational costs (Vaswani et al. 2023; Brown
et al. 2020). Model grafting presents a solution by allowing
the incorporation of pre-trained neural network components
to improve performance and accelerate training processes.

However, the success of model grafting depends on multi-
ple factors which have not been yet clearly identified, such as
host-donor model compatibility, integration methods or the
characteristics of the data used during grafting. A system-
atic investigation into these variables is critical to making
grafting procedures viable and understanding their potential

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

limitations. This paper aims to identify and analyse key fac-
tors influencing the success of model grafting. Through this
study, we expect to:

1. Demonstrate the feasibility of transferring specific capa-
bilities between models through layer grafting.

2. Identify viable strategies for model grafting, including
the selection of host models, loss computation tech-
niques, and translator module configurations.

3. Provide insights into the modularity of neural networks,
contributing to the broader understanding of model inter-
pretability and efficient AI system design.

Related Work
Several fields of research explore the potential to combine
existing models to improve the overall performance.

Model Stitching
Lenc and Vedaldi (2015) introduce the stitching method to
assess whether different models capture the same visual in-
formation. By combining representations from one model
with those of another, stitching the beginning of a model
to the end of another, the stitched model’s performance on
tasks such as object classification or detection can be evalu-
ated. If performance remains consistent, it suggests that both
models encode similar information. This evaluation iden-
tifies interchangeable neural network layers and the visual
properties encoded by each. The stitching method provides
a framework for comparing how representations from differ-
ent models align.

Pan, Cai, and Zhuang (2023) propose a modular stitch-
ing approach to combine pre-trained models, optimizing net-
works for varying tasks or computational constraints without
sacrificing performance. Similarly, Yang et al. (2022) de-
velop a framework to reassemble pre-trained layers or mod-
ules into task-specific networks. This reduces training time,
enhances flexibility, and improves performance, especially
for resource-constrained applications.

Model Merging
Model merging combines multiple pre-trained models
to enhance capabilities, leveraging their complementary
strengths. However, instead of concatenating parts of mod-
els, as in stitching, this field merges model weights.



Matena and Raffel (2022) introduced techniques using
Fisher information matrices to prioritize critical parame-
ters during merging, preserving essential learned knowledge
while consolidating models. Yang et al. (2024) proposed
LLM-Augmented LLMs, which create versatile models by
combining specialized components, enabling modular AI
development for specific tasks or domains. Liu et al. (2023)
presented composable language models, selectively integrat-
ing pre-trained model components to build task-specific ar-
chitectures, maximizing resource use and flexibility.

These studies demonstrate the potential of model merging
to create efficient, adaptable, domain-specific architectures.
Current efforts aim to refine merging strategies and enhance
model compatibility to broaden applications.

Experimental Design
Modular Addition as a Fine-Tuning Task and
Metrics
We select modular addition, defined as computing a + b
mod n, as the fine-tuning task due to its simplicity and the
ease of evaluating correctness. For the sake of simplicity, we
fix n = 4. This task provides a clear framework for assessing
the model’s ability to learn new, well-defined information.
Fine-tuning large language models on modular addition en-
ables us to:

1. Evaluate Response Format Learning: Determine if the
model can produce answers in the correct syntactic for-
mat required for modular arithmetic problems.

2. Assess Factual Knowledge Acquisition: Quantitatively
evaluate the model’s ability to compute accurate modular
sums, providing a clear metric for fine-tuning effective-
ness.

3. Monitor Language Generation Integrity: Observe any
degradation in the model’s general language capabilities
due to specialized fine-tuning by comparing performance
on standard language tasks before and after training.

To evaluate the outputs of modular addition fine-tuning,
we use three key metrics:

1. Factual: Checks whether the first number in the out-
put (positive or negative) matches the exact answer. 2. For-
mat Hard: Verifies strict adherence to the modular addition
dataset format: ”The result is x”. 3. Format Soft: Ensures
the output contains a single numerical value.

Those three metrics reflect different levels of learning:
Conforming to the task (outputting a number), meeting the
expectations (format hard) and achieving the task (factual).
They are evaluated as % of success over 1000 points of the
fine-tuning test dataset. Higher scores indicate better perfor-
mance. Modular addition provides a controlled environment
to investigate the effects of fine-tuning at a specific layer
while exploring the feasibility and implications of layer-
specific learning for model grafting.

Layer-Specific Learning for Grafting
To enable model grafting, we fine-tune a specific layer
within the LLM by restricting weight updates exclusively
to that layer. This approach localizes the modular addition

capability within a single layer, making it possible to extract
and transfer it independently to another model for studying
task transferability. For a model pythia-70m (Biderman et al.
2023) all but the last layer were able to reach good perfor-
mance through LoRA fine-tuning (Hu et al. 2021). Achiev-
ing perfect format-hard and format-soft metrics, with a fac-
tual accuracy being ∼ 25% which is random given the mod-
ulo 4 task. This imperfection is not a problem, we can see
fine-tuning as a mean to steer the model’s behaviour. The
learned capacity being recognizing a pattern and correctly
adapting (adopting the expected format) to it.

Grafting Procedure

... ...

Source (Vanilla) Transformer

+

L1
+

Li

Li

+

Ln

+ ...

L'1 L'j L'j+1

Host

... +

L'n'

++ +

Pre-T Post-T

Figure 1: Grafting procedure between a Vanilla model and a
host model

The objective of the grafting procedure is to transfer a
learned task contained in a layer, while preserving the host
model’s original capabilities.

We first take a vanilla model (Mvanilla) and fine-tune layer
Li on modular addition, which becomes Ltuned. Our graft-
ing procedure first integrates Li from the Mvanilla into a host
model Mhost at position j+1. To ensure seamless integration,
we introduce translator modules before and after the inserted
block (Fig.1). The translators are modules composed of a
single linear layer, initialized as an identity transformation.
This component is inspired from Belrose et al. (2023) which
”translates” representations from the basis used at one layer
of the network to the basis expected at the final layer. Here,
we translate from one layer of one network to one of another
network. With the translators, we call this model Mgrafted.

The pre-translator Pre-T adapts the activations from
Mhost to match the input space of Li, while the post-
translator Post-T aligns the output of Li with the subse-
quent layers of Mhost. The training is done over the Fineweb
dataset (Penedo et al. 2024). In other words, we ensure for
the grafted block to receive a similar residual stream through
the pre-translator as it was in the vanilla model, as the post-
translator with the residual expected in Mhost.

1. Pre-Translator Training: Freeze Post-T and all layers
of Mgrafted. Train Pre-T to minimize the discrepancy be-
tween the inputs of Li in Mvanilla and the corresponding
outputs in Pre-T in Mgrafted.



2. Post-Translator Training: Freeze Pre-T and all pre-
ceding layers. Train Post-T to minimize the difference
between the outputs of Post-T and the inputs of block
L′
j+1 in Mhost.

The loss is expressed using the KL divergence between the
two streams. The KL divergence measures how much infor-
mation is lost when approximating the reference distribution
with the new distribution.

After training, Mgrafted effectively incorporates the mod-
ular addition capability by exchanging Li with Ltuned the
fine-tuned block. For our experiments, we use pythia-70m as
vanilla model and pythia-70m-deduped as host model. They
share the same architecture but with different weights. The
small scale of those models allows iterating the different ex-
periments without a surge in computation cost.

Experiments
In this section, we evaluate the grafting procedure across
multiple scenarios. Each subsection details the experimen-
tal setup, methodology, and results. We evaluate the graft-
ing procedure using two key metrics: perplexity and masked
language model predictability.

Perplexity Metric Perplexity measures lexical diver-
sity and unpredictability in text. For a sequence S =
(w1, w2, . . . , wN ) with N words, the empirical probability
of each word w is p(w) = count(w)

N , where count(w) is the
frequency of w. The entropy H of the text is then computed
over the text sequence:

H = −
∑
w∈S

p(w) log2 p(w).

and perplexity P = 2H .
This metric represents the average uncertainty per word in

the text, considering both word frequency and distribution.
A higher perplexity indicates greater lexical diversity and
unpredictability within the text sample.

Masked Language Model (MLM) Metric We assess
text naturalness and predictability using a pre-trained
MLM (BERT-base-uncased). Given a text sequence S =
(w1, w2, . . . , wN ), we compute the predictability score as:

1. Masking: Replace each wi with [MASK] to form
w(i) = (w1, . . . , wi−1,[MASK], wi+1, . . . , wN ). 2. Pre-
diction: Use the MLM to predict wi and record the proba-
bility pθ(wi | S(i)). 3. Scoring: Average probabilities where
the original word is among top predictions:

P =
1

M

N∑
i=1

δi pθ(wi | w(i)),

where δi = 1 if wi is retrieved, and M is the total num-
ber of successful predictions. A higher P indicates greater
fluency and alignment with the MLM’s patterns. The higher,
the better. Those metrics are evaluated over 1000 points of
the fineweb dataset, truncated to generate the end of its sen-
tences.

Acronyms: fH (format hard mean), fS (format soft
mean), fact (factual mean), P (mean perplexity), MLM
(mean Masked Language Model metric).

Loss Computation Techniques
This experiment examines the impact of computing grafting
loss on model ouptu logits versus residuals (cf ). Instead of
carefully aligning the proper residual streams, the logits ap-
proach intends to match the logits of Mgrafted and Mvanilla for
the training of Pre-T and those of Mgrafted and Mhost for the
training of Post-T .

task Tuned residual logits Vanilla

fH 1.000 0.000 0.000 0.000
fS 1.000 0.645 0.012 0.000
fact 0.227 0.233 0.046 0.000

Table 1: Modular addition evaluation

task Tuned residual logits Vanilla

P 1.284 1.236 1.370 1.230
MLM 0.359 0.022 0.012 0.749

Table 2: Language generation evaluation

Training translators using residual streams is more effi-
cient, it avoids relying on downstream model components.

In the modular addition evaluation (Tab. 1), the tuned
model excels in both strict and soft format adherence,
while residual-based grafting retains soft format capabil-
ity but fails in strict format adherence. Logits-based graft-
ing and the vanilla model perform poorly across both met-
rics. Residual-based grafting slightly outperforms the tuned
model in factual accuracy, effectively transferring task-
specific knowledge.

For language generation (Tab. 2), the vanilla model
demonstrates the best fluency and predictability, followed
closely by residual-based grafting in fluency. Logits-based
grafting and the tuned model underperform across all met-
rics.

Influence of Destination Layer
Does the graft destination layer (position where the block is
placed) impact the resulting performance?

task L1 L2 L3 L4 L5

fH 0.000 0.000 0.000 0.000 0.000
fS 0.000 0.001 0.000 0.723 0.000
fact 0.000 0.038 0.000 0.233 0.000

Table 3: Modular addition evaluation

task L1 L2 L3 L4 L5

P 1.006 1.290 1.301 1.281 1.055
MLM 0.000 0.121 0.054 0.042 0.010

Table 4: Language generation evaluation



For modular addition (Tab. 3), destination layer L4 stands
out, achieving the best soft format adherence and factual ac-
curacy, while all other layers show negligible performance.
Strict format adherence is not retained across any layer.

In language generation (Tab. 4), destination layer L1 (sec-
ond pythia-70m layer) exhibits the best fluency with the low-
est perplexity, followed by layer L5 the last layer. However,
destination layer L2 achieves the highest predictability, in-
dicating better alignment with natural language patterns.

Role of Translator Training Data
How does the choice of dataset for training translator models
affect grafting efficacy? The alternatives are: the fine-tuning
dataset (Mod), the Fineweb dataset (Fineweb) and a mix of
boths: (Mixed).

task Tuned Mod Mixed Fineweb Vanilla

fH 1.000 0.000 0.000 0.000 0.000
fS 1.000 0.910 0.706 0.639 0.000
fact 0.227 0.233 0.233 0.233 0.000

Table 5: Modular addition evaluation

task Tuned Mod Mixed Fineweb Vanilla

P 1.284 1.343 1.305 1.337 1.231
MLM 0.359 0.029 0.104 0.024 0.749

Table 6: Language generation evaluation

All dataloaders allow some transfer of the fine-tuned task
(Tab. 5, Mod dataloader performs slightly better. In language
generation (Tab. 6), none of the dataloaders approach the
performance of the vanilla model.

Comparison of Grafting Strategies
What would be the effect of directly merging the tuned block
instead of first merging the vanilla block? We named this
alternative strategy direct and the original original.

task Tuned original direct Vanilla

fH 1.000 0.000 0.000 0.000
fS 1.000 0.706 0.000 0.000
fact 0.227 0.233 0.000 0.000

Table 7: Modular addition evaluation

task Tuned original direct Vanilla

P 1.284 1.305 1.087 1.231
MLM 0.359 0.104 0.138 0.749

Table 8: Language generation evaluation

The direct grafting approach fails to transfer both strict
and soft format adherence effectively (Tab. 7), as well as
failing factuality. In language generation, the direct grafting
strategy achieves the lowest perplexity (Tab. 8), indicating

better fluency compared to the original strategy, though nei-
ther comes close to the predictability of the vanilla model.

Comparison of model sizes

Tuned 70m 160m Vanilla 410m

fH 1.000 0.000 0.000 0.000 0.000
fS 1.000 0.645 0.245 0.000 0.000
fact 0.229 0.233 0.027 0.002 0.000

Table 9: Modular addition evaluation

Tuned 70m 160m Vanilla 410m

P 1.222 1.236 1.271 1.198 1.338
MLM 0.619 0.022 0.111 0.722 0.000

Table 10: Language generation evaluation

For modular addition, the 70m model retains moderate soft
format adherence and the highest factual accuracy among
the grafted models (Tab. 9). Larger models (160m and
410m) fail to transfer strict or soft format capabilities ef-
fectively, showing minimal performance across metrics. In
language generation (Tab. 10), 70m maintains closer fluency
to the vanilla model, while 160m shows slightly better pre-
dictability. The 410m model performs poorly in both met-
rics, highlighting challenges in grafting larger models.

Conclusion
We proposed and systematically analyzed a novel approach
for transferring specific capabilities between large language
models (LLMs) through layer-specific grafting. By isolat-
ing and fine-tuning individual layers for a modular addition
task and then integrating these layers into a host model, we
demonstrated the feasibility of task-specific transfer while
maintaining the host model’s broader capabilities. However,
the transfer is limited to conforming to the task, no iteration
was able to transfer the format-hard capabilities of Mtuned. In
the evaluation of language generation (conserving the origi-
nal model capabilities), our metrics are limited. For instance,
texts with repetitive patterns (low diversity) will have lower
perplexity, which might be interpreted as more predictable
or ”better”, even when such repetition is undesirable in nat-
ural language. Better benchmarks exist such as MMLU but
are not relevant in our case, as we evaluated pythia-70m our
baseline as 0 the lowest possible score.

These findings highlight the potential of model grafting
as a tool for modular AI development, allowing researchers
and practitioners to repurpose and integrate capabilities from
pre-trained models. Future work should explore applying
this technique to a wider range of tasks and model architec-
tures, while investigating methods to enhance grafting ro-
bustness and generalization across diverse domains.

By deepening our understanding of neural network modu-
larity, this study establishes a foundation for more efficient,
interpretable, and reusable AI systems, paving the way for
scalable and task-specific model development.



References
Belrose, N.; Furman, Z.; Smith, L.; Halawi, D.; Ostrovsky,
I.; McKinney, L.; Biderman, S.; and Steinhardt, J. 2023.
Eliciting Latent Predictions from Transformers with the
Tuned Lens. arXiv:2303.08112.
Biderman, S.; Schoelkopf, H.; Anthony, Q.; Bradley, H.;
O’Brien, K.; Hallahan, E.; Khan, M. A.; Purohit, S.;
Prashanth, U. S.; Raff, E.; Skowron, A.; Sutawika, L.;
and van der Wal, O. 2023. Pythia: A Suite for Analyz-
ing Large Language Models Across Training and Scaling.
arXiv:2304.01373.
Brown, T. B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan,
T.; Child, R.; Ramesh, A.; Ziegler, D. M.; Wu, J.; Winter,
C.; Hesse, C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.;
Chess, B.; Clark, J.; Berner, C.; McCandlish, S.; Radford,
A.; Sutskever, I.; and Amodei, D. 2020. Language Models
are Few-Shot Learners. arXiv:2005.14165.
Hu, E. J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang,
S.; Wang, L.; and Chen, W. 2021. LoRA: Low-Rank Adap-
tation of Large Language Models. arXiv:2106.09685.
Lenc, K.; and Vedaldi, A. 2015. Understanding Image Rep-
resentations by Measuring their Equivariance and Equiva-
lence. arXiv preprint arXiv:1411.5908.
Liu, N.; Li, S.; Du, Y.; Torralba, A.; and Tenenbaum, J. B.
2023. Compositional Visual Generation with Composable
Diffusion Models. arXiv:2206.01714.
Matena, M.; and Raffel, C. 2022. Merging Models with
Fisher-Weighted Averaging. arXiv:2111.09832.
Pan, Z.; Cai, J.; and Zhuang, B. 2023. Stitchable Neural
Networks. arXiv preprint arXiv:2302.06586.
Penedo, G.; Kydlı́ček, H.; allal, L. B.; Lozhkov, A.; Mitchell,
M.; Raffel, C.; Werra, L. V.; and Wolf, T. 2024. The
FineWeb Datasets: Decanting the Web for the Finest Text
Data at Scale. arXiv:2406.17557.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2023. At-
tention Is All You Need. arXiv:1706.03762.
Yang, E.; Shen, L.; Guo, G.; Wang, X.; Cao, X.; Zhang,
J.; and Tao, D. 2024. Model Merging in LLMs, MLLMs,
and Beyond: Methods, Theories, Applications and Opportu-
nities. arXiv:2408.07666.
Yang, X.; Zhou, D.; Liu, S.; Ye, J.; and Wang, X. 2022. Deep
Model Reassembly. arXiv preprint arXiv:2210.17409.


