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Abstract: Interactive imitation learning is an efficient, model-free method1

through which a robot can learn a task by repetitively iterating an execution of2

a learning policy and a data collection by querying human demonstrations. How-3

ever, deploying unmatured policies for clearance-limited tasks, like industrial in-4

sertion, poses significant collision risks. For such tasks, a robot should detect5

the collision risks and request intervention by ceding control to a human when6

collisions are imminent. The former requires an accurate model of the envi-7

ronment, a need that significantly limits the scope of IIL applications. In con-8

trast, humans implicitly demonstrate environmental precision by adjusting their9

behavior to avoid collisions when performing tasks. Inspired by human behavior,10

this paper presents a novel interactive learning method that uses demonstrator-11

perceived precision as a criterion for human intervention called Demonstrator-12

perceived Precision-aware Interactive Imitation Learning (DPIIL). DPIIL captures13

precision by observing the speed-accuracy trade-off exhibited in human demon-14

strations and cedes control to a human to avoid collisions in states where high15

precision is estimated. DPIIL improves the safety of interactive policy learn-16

ing and ensures efficiency without explicitly providing precise information of the17

environment. We assessed DPIIL’s effectiveness through simulations and real-18

robot experiments that trained a UR5e 6-DOF robotic arm to perform assembly19

tasks. Our results significantly improved training safety, and our best perfor-20

mance compared favorably with other learning methods. Video results available21

at https://sites.google.com/view/dpiil.22

Keywords: Imitation Learning, Interactive Imitation Learning23

1 Introduction24

Imitation learning [1] is an attractive way for robots to learn a policy for task automation by ob-25

serving human demonstrations rather than manually engineering them using environmental models.26

Interactive Imitation Learning (IIL) [2] is a specific variant of this technique that optimizes a robot’s27

policy by repeating the interactions between a robot that has executed its unmatured policy and a28

human who provides corrective demonstrations while observing their execution. Although standard29

imitation learning cannot determine how many human demonstrations are needed to ensure that a30

policy is learned, IIL allows a human to observe the execution of a policy being learned, making it31

possible to train until its performance is guaranteed more efficiently.32

However, as in IIL, deploying unmatured policies poses significant collision risks in clearance-33

limited tasks, such as aperture-passing and ring-threading. To ensure safety, a robot must be aware34

of the risks of collisions and request intervention by ceding control to a human to avoid them.35

Detecting collision risks requires precision information, such as the narrowness of the environment,36

which provides the spatial context of collisions. Although precision can be obtained with a model37

of the environment, IIL is model-free, a situation that limits its applicability.38
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This study aims to develop an approach for safely applying IIL in clearance-limited tasks. To achieve39

this, the key idea is to identify environmental precision from human demonstrations in a model-free40

manner based on findings from behavioral psychology. We assume that humans can perceive en-41

vironmental precision based on their understanding of the environment, and such precision can be42

captured from the speed-accuracy trade-off [3] exhibited by humans during task execution. For ex-43

ample, in a task that reaches a shaft between obstacles, humans slow down to increase their accuracy44

as the gap between obstacles narrowers (Fig. 1, bottom). As such, demonstrator-perceived precision45

can be captured from human movement speed and is used to estimate the collision risk of IIL in46

clearance-limited tasks.47

Figure 1: Overview of Demonstrator-perceived Precision-aware Interac-
tive Imitation Learning (DPIIL). In clearance-limited tasks, demonstrator-
perceived precision is in the mind of humans. By capturing this precision
level from demonstration data and incorporating it into IIL, a robot can cede
control to a human (expert mode, bottom) in high-precision areas while ex-
ecuting its policy (auto mode, top) in low-precision areas, thus enhancing
safety.

Therefore, this paper presents a novel48

interactive learning approach that49

incorporates demonstrator-perceived50

precision as intervention criteria51

(Fig. 1): Demonstrator-perceived52

Precision-aware Interactive Imitation53

Learning (DPIIL). By employing54

a leader-following teleoperation55

system where a robot directly fol-56

lows human hand movements, the57

human’s speed-accuracy trade-off is58

directly reflected in demonstrations.59

This allows the speed of a robot60

controlled by a human to reflect the61

demonstrator-perceived precision.62

We introduce a precision estimator that learns to capture such speed distribution from demonstra-63

tions and approximates the precision for given states. Since DPIIL solicits human intervention in64

states where the estimated precision must be extremely high (i.e., risk of collisions is excessive),65

DPIIL enhances the safety of IIL in clearance-limited tasks.66

To summarize, the key contributions of this paper are as follows: (i) We develop a novel method67

to estimate collision risk associated with environmental precision by leveraging demonstrator-per-68

ceived precision. (ii) We present a safe IIL algorithm, DPIIL (Fig. 1), which uses collision risk69

as criteria to request human interventions when significant risk is estimated, inspired by risk-aware70

interactive design in previous studies [4, 5, 6, 7]. (iii) We validate our method (DPIIL) in clear-71

ance-limited simulations (e.g., aperture-passing and ring-threading tasks) and in real-robot experi-72

ments (e.g., shaft-reaching and ring-threading tasks). The results show significantly improved train-73

ing phase safety compared to other learning methods.74

2 Related Work75

2.1 Interactive Imitation Learning76

Interactive Imitation Learning (IIL) [2] allows robots to acquire optimal actions through human-77

robot online interaction, such as injecting disturbances into human demonstrations [8, 9] or request-78

ing human interventions for corrections during task execution [10]. The latter has become a promi-79

nent method of efficient imitation learning since it provides theoretical performance guarantees [10]80

without continuous human guidance, as required by the former. However, in tasks with limited81

clearances, such a standard IIL is impractical, since executing the robot’s unmatured policies can82

lead to significant collisions.83

2.2 Risk-aware Interactive Imitation Learning84

Several risk-aware approaches in IIL have been studied to improve safety by estimating the risk of85

robot executions in given states and requesting human intervention when encountering risky states.86

One approach to guarantee IIL safety is using the risk awareness of humans based on their under-87

standing of the environment. Humans continuously monitor a robot’s execution and intervene when88
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a robot encounters risky states and provide corrective action [11] or reset the task execution [12].89

However, these approaches have the constraint of forcing users to constantly monitor the robot.90

Instead of continuous human monitoring, other approaches have been investigated that leverage91

robotic risk awareness based on their policy analysis [4, 5, 7, 6]. These approaches allow a robot to92

quantify the execution risks and actively ask a human to intervene when the risk exceeds a threshold.93

Previous research defined risk indicators as the uncertainty of a robot’s decision about the visited94

state [4] or the discrepancy between the actions proposed by a robot’s policy and a human expert95

[5]. However, neither metric can detect collision risks since a robot still lacks precision information96

of its environment. Although Hoque et al. introduced a precision estimation metric [7], it requires97

a robot to experience hundreds of collisions by itself to optimize the precision estimator; thus, this98

metric is limited in practical application. Alternatively, this paper explores implicitly estimating99

environmental precision from human demonstrations without requiring collision experiences.100

2.3 Speed-accuracy Trade-off in Clearance-limited Tasks101

During human demonstrations of clearance-limited robotic tasks, people carefully regulate a robot’s102

speed through constrained spaces (e.g., obstacles) to avoid collisions based on their understanding103

of the tasks and the environment [13]. This phenomenon has been extensively examined in neu-104

roscience to identify the human balance between speed and accuracy, commonly called the speed-105

accuracy trade-off [3]. This idea has also been studied in robotics to efficiently complete tasks106

while ensuring collision avoidance. In a path-planning context, speed-accuracy cost-maps have been107

achieved by providing explicit environmental dynamics models [14] and incorporating a heuristic108

search algorithm [15]. Another approach uses human behavior as a guide without assuming an109

environmental dynamics model. Our previous IIL study [9] explored this idea and exploited how110

humans factor in collision risk to regulate disturbances, which are injected into human demonstra-111

tions for policy robustification while ensuring feasibility. This paper delves deeper into this concept,112

proposing a novel approach that uses human behavior to capture the demonstrator-perceived preci-113

sion to decide whether to request human intervention to mitigate the risk of collisions in another IIL114

framework.115

3 Problem Statement116

This section discusses a scenario where a human expert trains a robot to automatically perform a117

task. The system is designed to enable the robot to request human intervention when it needs help118

while executing a task. Then, a human expert takes control of the robot and guides it optimally only119

as long as the intervention is requested. These concepts are formulated based on previous research120

of imitation learning.121

An environmental dynamics model is denoted as a Markovian with states st ∈ S , actions at ∈ A122

and time horizon T . Parametric policy πθ : S → A is defined to control robot with parameter θ. The123

human expert has a policy πθ∗ deciding optimal action a∗t from state st. The goal of IL is to learn124

policy parameters θL that match the human expert’s θ∗ by minimizing a surrogate loss function J125

as follows:126

min J(θL) =

T∑
t=1

Ea∗
t ,st∼τ∗

t

[
∥πθL(st)− a∗t ∥

2
2

]
, (1)

where τ ∗
t is the trajectory distribution induced by expert’s policy πθ∗ at step t.127

Furthermore, a key aspect of IIL is to allow robots to request human intervention. As such, a binary128

decision function g(st) = 1 is defined to determine whether a robot operates in an auto mode129

(g(st) = 0, controlled by πθL ) or an expert mode (g(st) = 1, controlled by πθ∗ ). Then cost C of130

IIL is the total number of actions provided by a human expert along entire interactions. Thus, as in131

prior works [5, 4, 6, 7], the designed IIL aims to optimize policy while minimizing C.132

Although policy optimization convergence is theoretically guaranteed [10] while reducing human133

costs C [5, 4, 6, 7], no risk awareness has been ensured. This situation is especially problematic134

in clearance-limited tasks, because the risk of collisions can greatly hinder task performance and135
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significantly damage robots. The next section presents our novel IIL to estimate the environmental136

precision and prompt human intervention for collision risk mitigation.137

4 Demonstrator-perceived Precision-aware IIL138

Figure 2: Overview of DPIIL: (top): While a
robot is executing a task with its policy, if st is too
risky, a human controls it until the risk is sufficiently
lowered. (bottom): Policy and precision estimator
are iteratively learned from training data collected
through interactions. Collision risk is computed with
analyzed uncertainty of learned policy and estimated
precision.

In this section, we propose a novel Demonstrator-139

perceived Precision-aware Interactive Imitation Learn-140

ing (DPIIL) algorithm that introduces a collision-141

risk-estimation metric based on demonstrator-perceived142

precision to increase safety during interactive policy143

learning. In the following, §4.1 describes how the144

demonstrator-perceived precision is estimated based on145

the speed-accuracy trade-off exhibited by humans, §4.2146

introduces the collision-risk-estimation metric from147

both the precision and the uncertainty analysis of a148

learned policy, §4.3 introduces an interaction design for149

mitigating collision risks, and §4.4 describes DPIIL’s150

overall algorithmic procedure.151

4.1 Demonstrator-perceived Precision Estimation152

First, we defined speed transformation function fv ,153

which computes speed vt from a pair of states along154

1-step transitions: fv(st, st+1) = vt. For the following formulation, vt is given by fv . Under155

this speed definition, human speeds are corrupted by state-dependent noise [16], whose variance in-156

creases with the size of the input actions during demonstrations. Such variations in demonstrations157

are called aleatoric uncertainty, and a natural way to capture this uncertainty is to use a probabilis-158

tic neural network regression model [17] that consists of two neural networks predicting the mean159

and variance (i.e., aleatoric uncertainty), respectively. Specifically, the speed estimator is defined as160

Vλ(vt|st), which outputs the Gaussian distribution with mean network µλ(st) and variance network161

σ2
λ(st) for a given state st with parameter λ: Vλ(vt|st) = N (vt|µλ(st), σ

2
λ(st)).162

In practice, training dataset D for involving human speeds v∗t can be calculated by fv using transition163

(st,a
∗
t , st+1) of a human expert’s trajectory: D = {a∗t , st, v∗t }Tt=1. For learning probabilistic speed164

estimator Vλ(vt|st) in an imitation learning context, negative log-likelihood loss L of the estimator165

is defined:166

L(Vλ|D) =

T∑
t=1

− logN (v∗t |µλ(st), σ
2
λ(st)). (2)

Therefore, the speed estimator’s parameter λ is optimized by minimizing the expected loss along167

the training dataset:168

λ′ = argmin
λ

ED∼τ∗
t
[L(Vλ|D)]. (3)

Due to the speed-accuracy trade-off of humans [3], in narrow areas, the human speed mean and169

variance are decreased. For this human behavior, there are two types of modeling possibilities for170

precision estimator Preλ′(st): (i) Preµλ′(st) = {µλ′(st)}−1, where the precision is inversely propor-171

tional to the estimated speed’s mean; (ii) PreUCB
λ′ (st) = {µλ′(st) + σλ′(st)}−1, where the precision172

is inversely proportional to the estimated speed’s Upper Confidence Bound (UCB), which is the sum173

of the mean and the standard deviation. Implementing the former type is simpler, although it is ex-174

pected to be less sensitive for capturing demonstrator-perceived precision than the latter type, which175

consider speed variance simultaneously. The DPIILs used for each precision model are defined as176

DPIILµ and DPIILUCB.177

4.2 Collision Risk Estimation178

To estimate the collision risk, the robot must analyze not only the environment’s precision but also179

the uncertainty of the learned policy for performing the task. Such policy uncertainty, called epis-180
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Algorithm 1 Demonstrator-perceived Precision-aware Interactive Imitation Learning (DPIIL)
Input: Number of iterations K, threshold χ
Output: Parameter of learned policy θLK , parameter of precision estimator λK

1: Get the initial dataset through a human expert:
D = {a∗

t , v
∗
t , st}Tt=1

2: Initialize θL0 and λ0 by Eq. (1) and Eq. (3) on D
3: for k = 1 to K do
4: Get the dataset through interactions:

Dk = {a∗
t , v

∗
t , st | g(st, χ) = 1}Tt=1

5: Aggregate datasets: D ← D ∪Dk

6: Learn θLk and λk by Eq. (1) and Eq. (3) on D
7: end for

temic uncertainty, stems from a lack of demonstration data and increases the risk that the robot will181

make unmatured decisions, which may induce collisions.182

To capture the epistemic uncertainty of a learned policy, we employ an ensemble neural network183

as a policy model similar to the prior study [4]. As such, each component of the ensemble policies184

is learned by Eq. (1). Then the ensemble of learned policies outputs actions for any given st, and185

variances σ2
θL(st) of these actions can be interpreted as the level of epistemic uncertainty in the186

decision. Finally, to quantify the collision risk by comprehensively evaluating st regarding both187

precision Preλ′(st) and the uncertainty of learned policy σ2
θL(st), collision risk Risk(st) is defined188

as: Risk(st) = Preλ′(st) · σ2
θL(st). Note that the efficacy of multiplying these two factors is: (i) in189

open areas, precision Preλ′(st) decreases, allowing for higher policy uncertainty σ2
θL(st) (i.e., less190

demonstration data), and (ii) in narrow areas, precision Preλ′(st) increases, requiring lower pol-191

icy uncertainty σ2
θL(st) (i.e., more demonstration data). (iii) Finally, once enough data has been192

collected to meet the appropriate policy uncertainty σ2
θL(st) for precision Preλ′(st), the robot will193

request no more human intervention.194

4.3 Interaction Design195

Interaction using the collision risk estimation of §4.2 is introduced to improve the safety of the inter-196

active policy learning. To prompt human intervention triggered by collision risk, decision function197

g(st;χ) is defined that is activated when Risk(st) exceeds threshold χ:198

g(st;χ) =

{
1, if Risk(st) > χ

0, otherwise
, (4)

which indicates whether state st is safe (g(st;χ) = 0) or risky (g(st;χ) = 1) regarding collisions.199

During a robot’s training phase (Fig. 2-top), this decision function allows a robot to request human200

intervention (i.e., expert mode) only in risky state st while deploying a learned policy (i.e., auto201

mode) during the others.202

4.4 DPIIL Overview203

This section describes DPIIL’s algorithmic flow. As shown in Fig. 2, the robot’s policy is learned204

by iterating two phases: (i) collecting training datasets through human-robot online interaction with205

collision risk estimation (Fig. 2, top), and (ii) learning the robot’s policy and the precision estimator206

using collected training datasets (Fig. 2, bottom).207

Specifically, an initial dataset, D = {a∗t , st, v∗t }Tt=1, is only collected by πθ∗ . The initial parameters208

of policy θL0 and precision estimator λ0 are obtained by optimizing Eq. (1) and Eq. (3) on D. Under209

this initialization, a training dataset is collected with an underlying interaction design (§4.3) for K210

iterations. At each k th iteration, θLk−1 is used for the robot policy, and the states that are performed211

in the expert mode and the expert’s actions and speeds are collected: Dk = {a∗t , st, v∗t | g(st;χ) =212

1}Tt=1. These collected data are added to dataset D. After each k th iteration, the parameters of213

learned policy θLk and precision estimator λk are optimized using equations Eq. (1) and Eq. (3) on214

accumulated dataset D. A summary of DPIIL is shown in Algorithm 1.215
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Figure 3: Aperture-passing simulation: (a): Uncertainty and precision results across state space are obtained using a
policy and a precision estimator learned from initial demonstration dataset. Both measurements are normalized to clarify
variations across states. Based on these indicators, interactive trajectories of IIL algorithms (DAgger, EnsembleDAgger,
DPIIL (Ours)) are compared. (b): Comparison of the 2D vector fields of the policies learned by BC and DPIIL (ours) and
their execution trajectories. (c): Averaged performance of interactive (top) and robot-autonomous (bottom) are evaluated
by repeating each experiment ten times with random seeds. (top): Interactive performance is measured as a box plot of
average success probability during training phases across entire trials of each IIL approach. Significant differences by t-test
are observed between proposed method and a baseline (∗ : p < 5e−2, ∗ ∗ ∗ : p < 5e−4). (bottom): Comparing robot-
autonomous performance for number of expert actions used to train by conducting 100 test episodes of each learned policy.
The t-test results showed no significant difference between our method and other risk-aware IIL methods (EnsembleDAgger
and ThriftyDAgger), but a significant difference (p < 5e−2) with HG-DAgger. (d): Interactive and robot-autonomous
performances are measured as χ values fixed at χ ∈ [10−5, 10−3] for each experiment; square of correlation coefficient r2
[18] between hyperparameter χ and each performance is measured as sensitivity indicator.

5 Simulation216

In this section, we validated whether our DPIIL can effectively achieve an automation performance217

of a robot more safely than the prior algorithms in the following two simulation domains: (i) an218

aperture-passing task (Fig. 3) and (ii) a ring-threading task with a 6-DOF UR5e robot (Fig. 4).219

Evaluation Metrics: The DPIIL performance is considered during the training and deployment test220

phases. For the former, the interactive performance was evaluated as the probability of the task’s221

success over all the training episodes of the IIL approaches. For the latter, the robot-autonomous222

performance was evaluated as the probability of the task’s successful deployment of the learned223

policy after training without expert assistance. Both metrics were assessed in both simulations224

(§5.1,§5.2) and real-robot experiments (§6).225

Comparison Methods: In this evaluation, we compared our methods (DPIILUCB and DPIILµ) as226

a baseline to the following other imitation learning methods: (i) Behavior Cloning (BC)[19]: A227

conventional imitation learning that learns a policy without any interactions; (ii) Dataset Aggre-228

gation (DAgger)[10]: a conventional IIL that randomly requests human intervention; (iii) Ensem-229

bleDAgger [4]: A state-of-the-art IIL that only uses policy decision uncertainty σ2
θL as Risk(st).230

(iv) ThriftyDAgger [7]: A state-of-the-art IIL where a precision estimator is learned through colli-231

sion experiences. (v) HG-DAgger [11]: A state-of-the-art IIL where an algorithmic expert decides232

when to intervene or not. Our evaluation assumes an example problem where the ratio of states233

assigned as risky is sufficient and fair across risk-aware approaches (EnsembleDAgger, ThriftyDAg-234

ger, and DPIIL). To achieve this, we set the threshold χ for each method at the value of approxi-235

mately the top 20% of the estimated risk in the training dataset, similar to previous works [5, 6, 7].236

Its sensitivity is analyzed in §5.1.237

Demonstration Setting: Initially, speed transformation function fv is defined by the Euclidean238

norm of the difference in position-related states spost ∈ st, which are generally included as the state239

space of robotic tasks (e.g., positions of agent center or end effector): fv(st, st+1) = ∥spost+1−spost ∥22.240

Under this initial setting, demonstrations are provided by an algorithmic expert, especially where a241

human-like risk-sensitive movement [13] is implemented as shown in Fig. 3(a) and Fig. 4(a). Such242

movement is simulated by specifying agent’s action for each state: fast in open areas (e.g., far from243

walls), and slow in small clearance areas (e.g., aperture traversal), while injecting state-dependent244

Gaussian noise [16] as described in §4.1. For an algorithmic expert in HG-DAgger, the timing of245

the intervention is also specified to prevent failure during interactions in §5.1.246
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5.1 Aperture-passing Simulation247

An aperture-passing task involving multiple narrow apertures was initially performed in the OpenAI248

gym [20] environment (Fig. 3(a)). In this experiment, interactive and robot-autonomous perfor-249

mances are evaluated in a challenging environment that includes states where such physical contacts250

are likely to occur as passing through narrow apertures, although no contacts are allowed for task251

success.252

5.1.1 Task Setting253

The task goal is to move the agent (black circles with a 0.25 cm radius) clock-wise from the starting254

position through the apertures (each of which has a width of 3.0 cm and 1.5 cm sequentially) to the255

goal without colliding with the walls (gray). The system state and action are the agent’s position256

(e.g., x, y-axis coordinates) and velocity (e.g., x, y-axis). The initial state is deviated by additive257

uniform noise ϵs0 ∼ U(−2 cm, 2 cm).258

5.1.2 Learning Setting259

Under these experimental parameters, we collected three initial demonstration trajectories (248260

state-action pairs) by the expert policy for all the comparisons. This dataset is used to optimize ini-261

tial learned policy πθL
0

and precision estimator Preλ0
. For DPIIL and each IIL comparison method,262

an interactive demonstration is performed where the control mode switches between the auto and263

expert mode, only collecting state-action pairs that the expert controlled (i.e., expert mode). After264

collecting 200 state-action pairs, the policy and precision estimator were updated on the accumu-265

lated dataset. If the agent collides with a wall, fails to reach the goal position within the time limit266

(200 steps), or moves beyond the task space, it is considered a failure. This process is denoted as one267

k iteration in Algorithm 1 and is repeated K = 5 times in this experiment. For BC, demonstration268

datasets are additionally provided by expert policy only until the number of expert actions is roughly269

equivalent to the other IIL algorithms.270

5.1.3 Results271

The results are shown in Fig. 3.272

Qualitative Analysis: In terms of interactive performance, the interactive trajectories of the IIL273

methods (DAgger, EnsembleDAgger, and DPIIL) are compared in (Fig. 3(a)). In DAgger, the timing274

of an expert’s intervention is randomly decided during interactive demonstrations. Even if the agent275

has drifted away from the demo trajectories, expert intervention may not be requested timely, leading276

to failures (e.g., leaving the task space). EnsembleDAgger requests expert intervention when the277

uncertainty of the policy decision is high due to a lack of demo data. Although this interaction278

design allows the robot to avoid drastic deviations from the demo trajectories, it cannot detect a279

collision risk in narrow states where slight deviations are unacceptable; expert intervention is not280

requested, resulting in failure (e.g., collisions). In contrast, our method (DPIIL) implicitly estimates281

the precision of the environment by observing the expert’s demonstrations. When the estimated282

precision is applied to detect the collision risk, expert interventions are encouraged in narrow states,283

resulting in successful interactions that avoid collisions.284

In terms of robot-autonomous performance, learned policies of BC and DPIIL are compared in285

(Fig. 3(b)). In BC, the policy learned only near the initial trajectories, accumulating errors and286

failing execution. In contrast, DPIIL can train the policy that recovers to the initial trajectory through287

interaction, resulting in successful execution.288

Quantitative Analysis: We compared our methods with other baseline schemes regarding the inter-289

active and robot-autonomous performances (Fig. 3(c)). In terms of interaction performance, DAgger290

had poor performance (52%) since its robot cannot be aware of any risks during the learned-policy291

execution. Although EnsembleDAgger has better performance (73%) by considering the uncertainty292

of policy decisions and promoting expert intervention in highly uncertain states, it has next poor per-293

formance since it does not ask experts to intervene in states where collisions may occur, as predicted294

7



t
Expert

Ensemble
DAgger

BC

DPIIL 𝜇

DAgger

DPIILUCB

n. s.

EnsembleDAgger

DPIIL (Ours)DAgger

Z
-a

x
is

 [
m

]

X-axis [m]
Number of Expert Action

UncertaintyPrecision

0                  24                      48                      72                      96                     120

Initial demo

Success

Fail

Fail

In
te

ra
c
t.

P
e

rf
o

rm
a
n

c
e

R
o

b
o

t-
a
u

to
.

P
e

rf
o

rm
a
n

c
e

(b) Quantitative(a) Qualitative

0.0 1.00.3 0.0 1.00.3

Expert Mode 

Auto Mode 

Figure 4: Ring-threading simulation: (a): Algorithmic expert’s demonstration includes two high-precision phases as a robot
reaches to grasp a ring and inserts it into a peg. Precision and uncertainty results were obtained by analyzing an initial demo
using a precision estimator and a policy learned on the initial demo dataset. Based on this expert, interactive trajectories of
IIL algorithms (DAgger, EnsembleDAgger, DPIIL (Ours)) were compared. (b): Averaged performances of interactive (top)
and robot-autonomous (bottom) were evaluated by repeating each experiment ten times with random seeds. Other details are
identical as previous analysis (Fig. 3).

by our qualitative analysis. Despite utilizing precision estimation, ThriftyDAgger performs (78%)295

similarly to EnsembleDAgger since it requires sufficient collision experience to estimate precision296

properly. In comparison, both our methods (DPIILµ and DPIILUCB) had significantly better perfor-297

mances (89% and 96%) than the others by using precision estimation without the collision experi-298

ence, nearing the performance of an oracle (HG-DAgger) where an algorithmic expert decides when299

to intervene optimally.300

In terms of robot-autonomous performance, BC performed poorly (21%) as predicted by our quali-301

tative analysis. HG-DAgger monotonically increases the performance of the learned policy, but its302

performance is the worst (60%) among the IIL methods. This is because the conservative expert303

repeatedly intervenes in a certain area and cannot generalize to a wider range of states. The next304

worst IIL method is DAgger (79%), since if the robot fails the task during the interactive demonstra-305

tions, it won’t be able to continue training on the rest of the task progress, reducing the efficacy of306

interactive learning. In contrast, risk-aware approaches can significantly improve performance (En-307

sembleDAgger: 96%, ThriftyDAgger: 95%, DPIILµ: 89%). One of our methods (DPIILUCB) had308

the best performance (100%) across all the iterations, suggesting that DPIIL increases the interaction309

safety and ensures efficiency.310

Sensitivity Analysis of χ: We analyzed and compared hyperparameter χ’s sensitivity from the311

prior risk-aware approach (EnsembleDAgger) and our best method (DPIILUCB) (Fig. 3(d)). Ensem-312

bleDAgger, which uses the uncertainty of the policy decision as risk, is sensitive to χ, and the in-313

teractive and robot-autonomous performances are mutual trade-offs in a range of χ ∈ [10−4, 10−3].314

In contrast, our method (DPIILUCB), which uses precision that is combined with uncertainty as a315

collision risk, is more robust to a wider range of χ in the interactive performance and has sufficient316

robot-autonomous performance at χ = 10−3.317

5.2 Ring-threading Simulation318

To evaluate DPIIL’s scalability, a second experiment was conducted for learning a ring-threading319

task with a 6-DOF UR5e robot in a Robosuite [21] environment (Fig. 4). This task has two chal-320

lenges that surpass an aperture-passing task: (i) various physical contact scenarios (e.g., robot vs.321

object, object vs. object) can occur dynamically on high dimensional state-action space, and (ii) the322

ring and robot positions are randomly initialized.323

5.2.1 Task Setting324

The goal is to grasp a ring with the random initial positions and insert it through a peg with a325

fixed position, regardless of the physical contact. The dimension of the state is 51D, consisting of326

the robot’s joint angles and the ring’s position, and the action is 6D, specifying the end-effector327

translation (e.g., x, y, z-axes), rotation (e.g., y, z-axes), and gripper manipulation (e.g., open or328

closed). Further details can be seen at: https://robosuite.ai/.329
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Figure 5: Real-robot experiments: Experiments were conducted for 6-DOF robotic arm (UR5e) assembly tasks with human
experts: (a) reaching a shaft by avoiding obstacles and (b) threading a ring into a peg. Precision and uncertainty results
were obtained by analyzing initial demonstration with a precision estimator and policy learned from initial dataset. Both
measurements were normalized to visualize variations across states. An interactive demonstration of EnsembleDAgger and
DPIIL (Ours) shows trajectories at interactive phase. (c): Illustration of user interface using buttons on a joystick (X-box).
In expert mode, pressing the ”A” button synchronizes the position of the robot’s end effector with that of the human-held
ring. While the ”B” button is pressed, the robot follows the movement of the ring. If the ”B” button is released, the robot
stops moving, and synchronization must be redone by pressing the ”A” button again. In auto mode, while the ”Y” button is
pressed, the robot is moved by learned policy. Note, ”Y” button is only set to ensure safety in verification evaluations, not as
the requirement of our method (DPIIL).

5.2.2 Learning Setting330

The procedure here is similar to §5.1.2, but due to the task’s complexity, the amount of training331

data is increased by a factor of 10. The number of initial demonstration trajectories collected by332

the expert policy is 30 (4,414 state-action pairs), and the number of state-action pairs collected by333

the expert mode in each iteration is 1,000. Accordingly, the amount of training data for BC also334

increased. In addition, the time limit (200 steps) is this task’s only failure condition for evaluating335

the performances under various physical contacts.336

5.2.3 Results337

The results can be seen in Fig. 4(a) and (b).338

Qualitative Analysis: We compared the interactive trajectories of the IIL methods (Fig. 4(a)). As339

described in the previous qualitative analysis (§5.1.3), the randomized intervention timing of DAg-340

ger may induce a robot to fall into a state where the task is infeasible even in the expert mode341

(e.g., robotic arms getting tangled up), resulting in failure. Although the uncertainty-based interac-342

tion of EnsembleDAgger prevents vast deviations from the demo trajectory, it cannot detect precision343

to request an expert’s intervention in high-precision areas, resulting in repeatedly failing to thread a344

ring due to slight deviations. Contrarily, the DPIIL implicitly detects environmental precision from345

expert demonstrations to promote interventions in high-precision areas (e.g., near a peg), resulting346

in successful interactive demonstrations.347

Quantitative Analysis: The overall results (Fig. 4(b)) show a similar trend to the previous task,348

although due to an increase in the task complexity, even DPIILUCB, which had the best performance349

in the previous results (Fig. 3(c)), required more than 10 times the amount of training data to ex-350

ceed the 90% robot-autonomous performance (93.3%). The other methods fail to even surpass 90%351

despite the extra data. As the amount of training data increased, the overall number of interactions352

also increased. Our methods (DPIILUCB and DPIILµ) still have significantly higher interactive per-353

formance, and the other methods have larger variance than the previous results (Fig. 3(c)) due to354

increased interactions. These findings suggest that DPIIL can effectively address safety concerns in355

the interactive policy learning of clearance-limited tasks while ensuring efficiency.356

6 Real-Robot Experiments with Human Experts357

In this section, we verified the applicability of our method in various real-world scenarios (Fig. 5)358

by conducting an experiment that trains the 6-DOF UR5e robot by human demonstrations of the359

following two assembly tasks:360
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Learning Interact. Perf. [%] Robot-auto. Perf. [%] Total # of interventions
Models Shaft-reach. Ring-thread. Shaft-reach. Ring-thread. Shaft-reach. Ring-thread.

BC N/A N/A 0.0∗ ± 0.0 0.0∗ ± 0.0 N/A N/A

EnsembleDAgger 41.1∗ ± 19.4 39.8∗ ± 19.1 42.5∗ ± 30.3 55.0∗ ± 26.9 16.5± 8.5 20.3± 4.6
DPIILµ (ours) 100.0± 0.0 100.0± 0.0 82.5± 13.0 85.0± 11.2 12.25± 4.76 18.2± 2.6
DPIILUCB (ours) 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 10.5± 2.7 16.0± 2.1

Table 1: Real-robot experiments results: Performance of each learning model is mean and standard deviation of results of
four subjects. Robot-autonomous performance of policies learned by each learning model was measured over ten test execu-
tions. Since BC is not IIL approach, we annotated it as N/A in interactive performances. The total number of interventions
(mode switching from auto to expert) is measured as the factor of human stress. Our methods are significantly better than
task results marked ∗ (t-test, p < 5e−2).

(i) a shaft-reaching task: We assessed the robot’s skill to reach and grasp a shaft while avoiding361

fixed obstacles (Fig. 5(a)). Successfully performing this task within the time limit (150362

steps) is challenging since the environment is prone to physical contact (e.g., robot vs.363

obstacles);364

(ii) ring-threading task: We assessed the robot’s skill of inserting a ring into a peg without365

bumping into another peg for the assembly (Fig. 5(b)). This scenario is more complicated366

than the shaft-reach task since the clearance for inserting the ring is smaller (only 2 mm),367

requiring more precise control and a larger time limit (200 steps).368

6.0.1 Task Setting369

The system state dimension is 12D, which consists of the robot’s joint angles and the 3D coordi-370

nates of its arm and each task’s target assembly part (e.g., a shaft, a peg). The coordinate of each371

object (e.g., a shaft, a peg, obstacles) are tracked by a motion capture system (OptiTrack Flex13) for372

detecting the collision to check task failure automatically. An action is defined as the velocity of the373

robot arm in the x, y, and z-axes. The initial robot end-effector position is deviated with additive374

uniform noise: (i) the shaft-reaching task: ϵs0 ∼ U(−0.05 m, 0.05 m), and (ii) the ring-threading375

task: ϵs0 ∼ U(−0.02 m, 0.02 m).376

6.0.2 Learning Setting377

In a similar procedure to §5.1.2, the human initially collects 5 demonstration trajectories. The num-378

ber of state-action pairs collected by the human expert in each iteration is 150 for a shaft-reaching379

task and 200 for a ring-threading task, and the number of iterations is 2 (K = 2). Accordingly, the380

amount of BC training data is roughly similar to the other IIL comparisons.381

Comparison Methods: In real-world evaluations, two approaches were compared with our meth-382

ods as follows: (i) BC[19]: a conventional imitation learning; (ii) EnsembleDAgger [4]: a383

state-of-the-art risk-aware IIL. Moreover, to ensure sufficient human analysis, more human actions384

are encouraged by setting threshold χ as 50% of the overall training states that are classified as385

expert modes.386

Demonstration Setting: Demonstrations of each task were performed using a teleoperation system387

(Fig. 5(c)) that synchronizes the robot’s end effector with the position of a ring grasped by a human388

demonstrator. Thus, a robot follows a human hand’s movements in a real-time manner. We used four389

human subjects with robotics experience. To obtain sufficient expert performance from them, the390

following curriculum was applied. Before starting each experiment, all subjects practiced teleoperat-391

ing the robot by performing several task scenarios, ranging from wide clearance (e.g., obstacle-free)392

to narrow clearance (e.g., obstacle-present), until they became achieving success in each scenario393

consecutively. These interactions increased their understanding of environmental precision. In ad-394

dition, during task demonstrations, the subjects were informed of their remaining time by bells at395

every 1/3 interval of the time limit.396

6.0.3 Results397

The results are seen in Fig. 5 and TABLE 1.398
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Qualitative Analysis: The interactive trajectories of the IIL methods are compared in Fig. 5. En-399

sembleDAgger uses the epistemic uncertainty of the policy as an intervention criterion and requests400

human intervention in highly uncertain areas (e.g., randomly initialized starting position). However,401

such policy uncertainty alone does not recognize the latent collision risks in the limited clearance402

areas due to obstacles. Therefore, the robot is operated in the auto mode in narrow areas, and no403

human intervention is requested even when a collision is imminent, resulting in task failure. In con-404

trast, the proposed method (DPIIL) uses human demonstrations to capture environmental precision405

and incorporates it into an intervention criterion to recognize collision risks during the interaction406

phase. Accordingly, the robot is operated in the expert mode during times of high collision risks407

(e.g., near obstacles), thereby reducing their risk.408

Quantitative Analysis: The results (TABLE 1) show that BC has zero robot-autonomous perfor-409

mance in both the clearance-limited tasks. This is because, as noted in a previous work [10], policies410

learned by BC easily lead a robot to deviate from human-demonstrated trajectories, and such devia-411

tions are not allowed in either task. EnsembleDAgger outperformed BC, although it did not exceed412

55% in either one since frequent failures during interaction (less than 50% of the interactive perfor-413

mance) make training on the task’s later part insufficient. Notably, our method (DPIIL) significantly414

improves both the interactive and robot-autonomous performances by at least 30% compared to415

EnsembleDAgger in both tasks, without increasing the total number of interventions (i.e., human416

stress).417

7 Discussion418

This paper presented DPIIL, a safe IIL algorithm that leverages demonstrator-perceived precision to419

mitigate collision risks during interactive policy learning. Our evaluations demonstrate that it can420

effectively learn clearance-limited tasks with significantly improved safety. Although, this paper421

assumes a demonstrator that has high sensitivity to precision, in practice, this situation may vary422

across individuals. For example, a demonstrator who emphasizes swiftly performing tasks at the423

expense of safety may operate the robot at high speeds even when high precision is required. Such424

human sensitivities can be captured as latent variables [22], and our future work will explore how425

this changes DPIIL performances. In addition, we employed a robotic teleoperation system where a426

human movement is directly applied, exploiting human speed characteristics. For other teleoperation427

systems that rely on joystick controls, DPIIL can be extended by redefining speed with human428

decision-making times.429
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