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ABSTRACT

Few-shot-learning seeks to find models that are capable of fast-adaptation to novel
tasks which are not encountered during training. Unlike typical few-shot learning
algorithms, we propose a contrastive learning method which is not trained to solve a
set of tasks, but rather attempts to find a good representation of the underlying data-
generating processes (functions). This allows for finding representations which
are useful for an entire series of tasks sharing the same function. In particular,
our training scheme is driven by the self-supervision signal indicating whether
two sets of samples stem from the same underlying function. Our experiments on
a number of synthetic and real-world datasets show that the representations we
obtain can outperform strong baselines in terms of downstream performance and
noise robustness, even when these baselines are trained in an end-to-end manner.

1 INTRODUCTION

The ability to learn new concepts from only a few examples is a salient characteristic of intelligent
behaviour. Nevertheless, contemporary machine learning models consume copious amounts of data
to learn even seemingly basic concepts. The mitigation of this issue is the ambition of the few-shot
learning framework, wherein a fundamental objective is to learn representations that apply to a variety
of different problems (Bengio et al., 2019). In this work, we propose a self-supervised method for
learning such representations by leveraging the framework of contrastive learning.

We consider a setting very similar to the one in Neural Processes (NPs) (Garnelo et al., 2018a;b; Kim
et al., 2019): The goal is to solve some task related to an unknown function f after observing just a
few input-output examples Of = {(xi, yi)}i. For instance, the task may consist of predicting the
function value y at unseen locations x, or it may be to classify images after observing only a few
pixels (in that case x is the pixel location and y is the pixel value). To solve such a task, the example
dataset Of needs to be encoded into some representation of the underlying function f . Finding a
good representation of a function which facilitates solving a wide range of tasks, sharing the same
function, is the object of the present paper.

Most existing methods approach this problem by optimizing representations in terms of reconstruction
i.e., prediction of function values y at unseen locations x (see e.g. NPs (Garnelo et al., 2018a;b; Kim
et al., 2019) and Generative Query Networks (GQNs) (Eslami et al., 2018)). A problem with this
objective is that it can cause the model to waste its capacity on reconstructing unimportant features,
such as static backgrounds, while ignoring the visually small but important details in its learned
representation (Anand et al., 2019; Kipf et al., 2019). For instance, in order to manipulate a small
object in a complex scene, the model’s ability to infer the object’s shape carries more importance
than inferring its color or reconstructing the static background.

To address this issue, we propose an approach which contrasts functions, rather than attempting to
reconstruct them. The key idea is that two sets of examples of the same function should have similar
latent representations, while the representations of different functions should be easily distinguishable.
To this end, we propose a novel contrastive learning framework which learns by contrasting sets of
input-output pairs (partial observations) of different functions. We show that this self-supervised
training signal allows the model to meta-learn task-agnostic, low-dimensional representations of
functions which are not only robust to noise but can also be reliably used for a variety of few-
shot downstream prediction tasks defined on those functions. To evaluate the effectiveness of the
proposed method, we conduct comprehensive experiments on diverse downstream problems including
classification, regression, parameter identification, scene understanding and reinforcement learning.
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Figure 1: FCRL for self-supervised scene representation learning: The representations are learned
by mapping the context points of each scene closer in the latent space while separating it from the
other scenes. The context points correspond to the tuples of camera viewpoints xi ∈ X := Rd and
the images taken from those viewpoints yi ∈ Y ⊆ Rd′ . Seen here, TriFinger (Wüthrich et al., 2020).

We consider different datasets, ranging from simple 1D and 2D regression functions to the challenging
simulated and real-world scenes. In particular, we find that a downstream predictor trained with
our (pre-trained) representations performs comparable or better than related methods on these tasks,
including the ones wherein the predictor is trained jointly with the representation.

Contributions.

• Our key contribution is the insight that the good representation of an underlying data-generating
function can be learned by aligning the representations of the samples that stem from it. This
perspective of learning functions’ representations is different from the typical regression methods
and is new to our knowledge.

• We propose a novel contrastive learning framework, Function Contrastive Representation Learning
(FCRL), to learn such representation of a function, using only its few observed samples.

• With experiments on diverse datasets, we show that the functions’ representations learned by FCRL
are not only robust to noise in inputs but also transfer well to multiple downstream problems.

2 PRELIMINARIES

2.1 PROBLEM SETTING

Consider a data-generating function f : X → Y with X = Rd and Y ⊆ Rd′ :

y = f(x) + ξ; ξ ∼ N (0, σ2) (1)

where ξ ∼ N (0, σ2) is Gaussian noise. Let Of = {(xi, yi)}Ni=1 be a set of few observed samples of
a function f , referred to as the context set and T = {Tt}Tt=1 be a set of unknown downstream tasks
that can be defined on f . The downstream tasks T can take the form of classification, regression
and/or reinforcement learning problems and the targets in each task Tt vary accordingly. Our goal
is to learn the representation of a given function f from only the context set Of , such that the
representation retains the maximum useful information about f and can interchangeably be used for
multiple downstream tasks T , defined on the same function (without requiring retraining).

Few-shot Interpretation. Note that the downstream tasks T are defined directly on the function’s
representation. Since the representation is inferred from a few observations Of , the overall down-
stream problem becomes a few-shot prediction problem. In the following, we regard the downstream
problems as few-shot problems, unless stated otherwise.

2.2 BACKGROUND

While there exist a variety of methods (Xu et al., 2019; Finn et al., 2017) that take different approaches
towards few-shot learning for functions, a class of methods that is particularly relevant to our setting
is that of conditional neural processes (CNPs) and NPs (Garnelo et al., 2018a;b).

Conditional Neural Processes (CNPs). The key proposal in CNPs (applied to few-shot learning) is
to express a distribution over predictor functions given a context set. To this end, they first encode
the context Of into individual representations ri = hΦ(xi, yi) ∀i ∈ [N ], where hΦ is a neural
network. The representations are then aggregated via a mean-pooling operation into a fixed size
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vector r = 1/N(r1 + r2 + ...+ rN ). The idea is that r captures all the relevant information about f
from the context dataset Of ; accordingly, the predictive distribution is approximated by maximizing
the conditional likelihood of the target distribution p(yT |xT , Of ), where Tt = {(xTi , yTi )}N+M

i=N is
the target set of size M .

Generative Query Networks (GQN). GQN (Eslami et al., 2018) can be seen as an extension of NPs
for learning 3D scenes representations. The context dataset Of in GQN consists of tuples of camera
viewpoints in 3D space (X ) and the images taken from those viewpoints (Y). Like NPs, GQN learns
to infer the latent representation of the scene (a function) by conditioning on the aggregated context
and maximizing the likelihood of generating the target image corresponding to a target viewpoint.

2.3 MOTIVATION AND INTUITION

Learning about data-generating functions is ubiquitous in machine learning. Whether it is about
learning scenes as deterministic functions that map camera viewpoints to the images (Eslami et al.,
2018) or digital soil mapping where one is given a set of soil samples taken from some regions, and
asked to predict the nature of soil in another region (Minasny & McBratney, 2016). In practice, we
only observe a few views Of of such functions and the goal is to predict certain properties regarding
those functions. More importantly, the observed samples often do not follow any order, are noisy and
exhibit sampling biases, i.e. some samples are more informative than others. For instance, in learning
a scene representation from multiple views, a single sampled view can have some objects occluded.

An ideal representation of a function, therefore, should not only be invariant to the permutations
in the order of the observed samples, but also to noise and sampling of partial views Of . Such an
invariance to input order and sampling is important, as at test time we do not know the input order
of the samples or how informative a certain sample is. In this work, we seek to learn such invariant
representations of functions from only their few observations Of . The inductive bias pertaining
to permutation invariance is introduced via sum-decomposable encoder architecture (Zaheer et al.,
2017). Whereas, invariance to the sampling of partial views is enforced via the contrastive objective.
The idea is to align the representations of different samples stemming from the same function such
that they are invariant to where they are sampled.

3 FUNCTION-CONTRASTIVE REPRESENTATION LEARNING (FCRL)

We take the perspective here that the sets of context points Of provide a partial observation of an
underlying function f . Our goal is to find an encoder g(φ,Φ) which maps such partial observations
to low-dimensional representations of the underlying function. The key idea is that a good encoder
g(φ,Φ) should map different observations of the same function to be close in the latent space, such
that they can easily be identified among observations of different functions. This motivates the
contrastive-learning objective which we will detail in the following.

Encoder Structure. Since the inputs to the encoder g(φ,Φ) are sets, it needs to be permutation
invariant with respect to input order and able to process inputs of varying sizes. We enforce this
permutation invariance in g(φ,Φ) via sum-decomposition, proposed by (Zaheer et al., 2017). We first
average-pool the point-wise transformations of Of to get the encoded representations.

r =
1

N

N∑
i=1

hΦ(xi, yi) ∀(xi, yi) ∈ Of (2)

where hΦ(.) is the encoder network. We then obtain a nonlinear projection of this encoded repre-
sentation g(φ,Φ)(O

f ) = ρφ(r). Note that the function ρφ can be any nonlinear function. We use an
MLP with one hidden layer which also acts as the projection head for learning the representation.
Similar to (Chen et al., 2020), we found that it is beneficial to define the contrastive objective on
these projected representations ρφ(r) than directly on the encoded representations r. More details
can be found in our ablation study Appendix A.1.

Encoder Training. At training time, we are provided with the few observationsO1:K ofK functions.
Each observation is a set ofN examplesOk = {(xki , yki )}Ni=1. To ensure that different observations of
the same functions are mapped to similar representations, we will now formulate a contrastive-learning
objective. To apply contrastive learning, we need to create different observations of the same function
k by splitting each example setOk into J subsets of sizeN/J . Defining tj := ((j−1)N/J, ..., jN/J)
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we hence obtain a split of Ok into J disjoint subsets of equal size

Ok = ∪Jj=1O
k
tj with Okti ∩O

k
tj = ∅ if i 6= j (3)

where each subset Oktj is a partial observation of the underlying function k. We need at least two
distinct observations (J ≥ 2) per function for contrastive learning. Hence, J is a hyper-parameter and
can vary in the range of [2, N ] while ensuring the even division of N . Its value is empirically chosen
based on the data domain. E.g. in 1D and 2D regression, the number of examples per observation is
relatively large, since a single context point does not provide much information about the underlying
function, whereas in scenes, a few (or even one) images provide enough information. We can now
formulate the contrastive learning objective as follows:

L(φ,Φ, O1:K) =

K∑
k=1

∑
1≤i<j≤J

log
exp

(
sim

(
g(φ,Φ)(O

k
tj ), g(φ,Φ)(O

k
ti)
)
/τ
)

∑K
m=1 exp

(
sim

(
g(φ,Φ)(O

k
tj ), g(φ,Φ)(O

m
ti )
)
/τ
)
 (4)

where sim(a, b) := a>b
‖a‖‖b‖ is the cosine similarity measure. Intuitively, it acts as a discriminatory

function and predicts for each observation Oktj which of the J observations it was jointly drawn
with, by assigning high scores to the pairs jointly drawn and low to other pairs. In other words, the
objective function in Equation (4) enables learning the differences between the distributions of K
underlying functions by discriminating between pairs of observations coming from the same function
k, called positives, and observations stemming from different functions, called negatives. The τ is a
temperature parameter which scales the scores, returned by the inner product. Similar to SimCLR
(Chen et al., 2020), we find that temperature adjustment is important for learning good representations.
We treat it as a hyperparameter and perform an ablation study in Appendix A.1. The overall FCRL
algorithm is described in Algorithm 1.

Note that even when J > 2, we only consider two positives at a time for computing the contrastive
loss i.e. for each view, we have only one positive match. We then compute the contrastive loss for all
the pairwise combinations of the positives and then sum them up. For instance, when J=3, we have
3C2 = 3 combinations of positives. The term

∑
1≤i<j≤J in Equation (4) refers to that summation

over all the combinations.

3.1 APPLICATION TO DOWNSTREAM TASKS

Once representation learning using FCRL has been completed, hΦ is fixed and can now be used
for any few-shot downstream prediction task T = {Tt}Tt=1 that can be defined on the underlying
data-generating function. To solve a particular downstream prediction problem, one only optimize a
parametric decoder pψ(.|r) which conditions on the learned representation r. Specifically, the decoder
maps the representations learned in the previous step to the variable we are trying to predict in the
given task. Depending on the nature of the downstream prediction task, the conditional distributions
and the associated objectives can be defined in different ways.

4 EXPERIMENTS

To illustrate the benefits of learning function representations without an explicit decoder, we consider
four different experimental settings. In all the experiments, we first learn the encoder, and then fix it
and optimize decoders for the specific downstream problems in the second stage.

Baselines. We compare the downstream predictive performance of FCRL based representations
with the representations learned by the closest task-oriented, meta-learning baselines. For a fair
comparison, all the baselines and FCRL have the same encoding architecture. For instance, for
1D and 2D regression functions, we considered CNPs and NPs as the baselines which have the
same contextual embedding framework but optimize directly for the predictive distribution p(y|x).
Similarly for scene datasets, we took GQN as the baseline which explicitly learns to reconstruct
scenes using a limited number of context sets.

4.1 1-D SINUSOIDAL FUNCTIONS

In the first experiment, we consider a distribution over sinusoidal functions, proposed by (Finn
et al., 2017). The amplitude and the phase of the functions are sampled uniformly from [0.1, 0.5]
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(a) (b)

Figure 2: (a) Qualitative comparison of different methods on 5-shot regression task on three different
sinusoid waves. The decoder trained on FCRL’s representation is able to predict the correct form of
the waves. (b) shows how we adapt the representation for the downstream few-shot regression task.

and [0, π] respectively. To generate a context set of a particular function f , the x-coordinates are
uniformly sampled from [−5.0, 5.0] and then f is applied to obtain the y-coordinates. The dataset
contains 20, 000 training, 1000 validation and 1000 test functions. Once the representation is learned,
we define two downstream tasks on the learned representation T1D = {Tfsr, Tfspi}, where Tfsr
corresponds to few-shot regression task and Tfspi corresponds to few-shot parameter identification
task. We use the same training data to train both the encoder in the representations learning phase
and the decoders in the downstream transfer learning phase.

Representation Learning Stage. For training the encoder g(φ,Φ), we have a dataset O = (Ok)Kk=1
at our disposition, where each k corresponds to a function fk which has been sampled as described
above. Each of these individual datasets Ok = {(xki , yki )}Ni=1 consists of N input-output pairs from
that particular function fk, such that yki = fk(xki ). We fix the maximum number of context sets to 20
and the number of examples N is chosen randomly in [2, 20] for each k. The encoder g(φ,Φ) is then
trained as described in Section 3 by splitting each context set Ok into two observations i.e. J = 2.

4.1.1 DOWNSTREAM TASKS ON 1-D SINUSOIDAL FUNCTIONS

After training the encoder g(φ,Φ), we discard the projection head ρφ and use the trained encoder hΦ

to extract the representations. The decoders for the downstream tasks are trained as following.

Few-shot Regression (FSR). FSR for 1-D functions is a well-studied problem in meta-learning
frameworks (Garnelo et al., 2018a; Finn et al., 2017; Kim et al., 2019; Xu et al., 2019). For each
sampled function fk, the target data is of the form T kfsr = {(xTi , yTi )}Mi=1, where M is the number of
unseen target samples of function k. The number M is chosen randomly in [0, 20−N ]. The goal is
to predict the function values fk(xT ) at unseen inputs xT , given some context Ok. The predictive
distribution for T kfsr is Pψ(yT |xT , Ok) and the decoder pψ is trained to optimize the following
conditional log probability

min
ψ

Efk∼p(f)[ E
N+M

[logPψ({yk}N+M
i=1 |{xk}N+M

i=1 , rk)]] (5)

where rk is the encoded representation of fk, obtained by the context set Ok and the trained encoder
hΦ, following Equation (2). Figure 2(b) how the downstream decoder pψ is trained on rk. The
decoder pψ is a multi-layer perceptron with two hidden layers and is trained with the same training
data as hΦ. The decoder learns to output the Gaussian mean and variance of yT to quantify uncertainty
in the point estimates. The qualitative results on test sets in Figure 2(a) show that our model is able to
quickly adapt with only 5 context points. We compare our method with CNP and NP and show that
the predictions of our method are closer to the groundtruth, even though the encoder and decoder in
both CNP and NP are explicitly trained to directly maximize the log likelihood to fit the wave.

Few-shot Parameter Identification (FSPI). The goal here is to identify the amplitude and phase of
the sampled sine wave fk. For each fk, the target data is of the form T kfspi = {ykamp, ykphase}, where
ykamp and ykphase are the amplitude and phase values of fk. We train a linear decoder pψ on top of the
representations by maximizing the likelihood of the sine wave parameters. The predictive distribution
is Pψ(T kfspi|Ok) and the objective is:

min
ψ

Efk∼p(f)[logPψ(ykamp, y
k
phase|rk)] (6)
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Few-shot Regression Few-shot Parameter Identification
Models 5-shot 20-shot 5-shot 20-shot
NP 0.310± 0.05 0.218± 0.02 0.0087± 0.0007 0.0037± 0.0005
CNP 0.265± 0.03 0.149± 0.02 0.0096± 0.0007 0.0049± 0.0011
FCRL 0.172± 0.04 0.100± 0.02 0.0078± 0.0004 0.0032± 0.0002

Table 1: Mean squared error for all the target points in 5 and 20 shot regression and parameter
identification tasks on test sinusoid functions. The reported values are the mean and standard
deviation of three independent runs.

where rk is the encoded representation of fk, obtained by the context set Ok and the trained encoder
hΦ, following Equation (2). Similar to FSR, we use the same training data. In Table 1, we report
the mean squared error for three independent runs, averaged across all the test tasks for 5-shots and
20-shots FSR and FSPI. In both prediction tasks, the decoders trained on FCRL representations
outperform CNP and NP. More details on the experiment are given in Appendix G.

4.2 MODELING IMAGES AS 2-D FUNCTIONS

In the second experiment, we consider a harder regression dataset where images are modelled as 2-D
functions. This form of image modeling has been considered in the context of image completion
by (Garnelo et al., 2018a;b; Gordon et al., 2020; Kim et al., 2019). More specifically, the 2-D pixel
coordinates of an image are considered as the inputs xi while the corresponding pixel intensities
the outputs yi. We consider images of MNIST hand-written digits (LeCun et al., 1998) where xi
are the normalized pixel coordinates [0, 1]2 and yi the grayscale pixel intensities [0, 1]. Similar to
the previous section, we first describe how we learn the representations, and then we formulate
two downstream prediction tasks on the learned representation: T2D = {Tfsic, Tfscc}, where Tfsci
corresponds to few-shot image completion and Tfscc corresponds to few-shot content classification
task. The training data consists of 60, 000 MNIST training samples whereas the validation is done
with the 10, 000 test samples. We use the same data to train both the encoder in the representations
learning phase and the decoders in the downstream transfer learning phase.

Representation Learning Stage. For training the encoder g(φ,Φ), we use the same training procedure
as was used for 1-D functions. We have a context set O = (Ok)Kk=1 of K functions at our disposition,
where each k corresponds to an MNIST digit. Here, each individual context set Ok = {(xki , yki )}Ni=1
corresponds to N sampled pixels, where xi is the pixel location and yi is the corresponding pixel’s
intensity. We fix the maximum number of context sets to 200 and the number of examples N is
chosen randomly in [2, 200] for each k. The encoder g(φ,Φ) is then trained as described in Section 3
by splitting each context set Ok into 40 observations i.e. J = 40.

4.2.1 DOWNSTREAM TASKS ON 2-D FUNCTIONS

Again, after training the encoder g(φ,Φ), we discard the projection head ρφ and use the trained encoder
hΦ to extract the representations. The decoders for the downstream tasks are trained as following.

Few-shot Image Completion (FSIC). For few-shot image completion, we train a decoder pψ to
maximize the conditional likelihood of the target pixel values T kfsic = {(xTi , yTi )}Mi=1, where M is
the number of unseen target pixels of function fk. The number M is chosen randomly in [0, 200−N ].
The conditional likelihood objective is the same as for FSR in 1D sinusoid functions i.e. Equation (5).
The decoder is an MLP with two hidden layers as in CNP and NP. We use the same dataset to train it
as was used to train the encoder.

Qualitative results of FSIC on test images are shown in Figure 3(a). It can be seen that the decoder
trained on FCRL representations is able to predict the pixel intensities even when the number of
context points is as low as 50, i.e., approximately 6% of the image. We compare its performance
against CNP which uses the same architecture. It is important to note that the feature extraction via
FCRL is not explicitly carried out to optimize for this pixel-based reconstruction, and the decoder has
to rely on the signal in the pre-trained representation for this complex image completion task. In other
words, no gradient flows from the decoder to the encoder, and the former is trained independently of
the latter. On the contrary, CNP jointly optimizes both encoder and decoder parameters for predicting
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Figure 3: (a) Qualitative comparison of CNP and FCRL based few-shot image completion. The
context is shown in the second row where target pixels are colored blue. FCRL appears to be slightly
better at predicting the correct form of a digit in low-shot scenario of 50 context points only. (b)
Quantitative evaluation of the models in terms of digit classification from the fixed number of context
points (varying along the x-axis). FCRL achieves substantially higher accuracy.

the pixels values. Despite the fact, it appears that the FCRL-based reconstruction is slightly more
accurate when using only 50 context points.

Few-shot Content Classification (FSCC). To test how much semantic knowledge each model
captures in its representations, we devised a few-shot content classification task Tfscc. The goal is to
predict the class of each MNIST digit, given its few randomly sampled pixel values as context Ok.
The lack of spatial structure in the context points makes it a challenging problem. We consider the
representations of all the functions trained in the previous section and train a linear decoder on top to
maximize the likelihood of the corresponding class labels Tfscc = {ykone hot} i.e.:

min
ψ

Efk∼p(f)[logPψ(ykone hot|rk)] (7)

We use the same data as was used for training the encoders. Figure 3(b) shows the performance of
three independently trained models for each method on MNIST validation set. FCRL has been able
to recognize the semantic labels of the images much better than the competing methods for different
number of fixed context points. This probably also explains why it is able to guess the correct form
of digits in FSIC, albeit a little blurry.

4.3 REPRESENTING SCENES AS FUNCTIONS

Like (Eslami et al., 2018), we represent scenes as deterministic functions which map camera view-
points to images. A specific scene (i.e. function) is given by the underlying factor of variations
(e.g. the position of an object in the scene). To learn scene representations, we use two different
datasets: the real-world robotics dataset, MPI3D (Gondal et al., 2019), and a robotics simulation
dataset (RLScenes), which we created for the present work. Both datasets contain multiple views for
each scene. In the MPI3D dataset, the multi-view setting is formulated by considering the images
corresponding to the camera height factor as views, hence, there are three views per scene. RLScenes
comprises of 36 views per scene, corresponding to 36 uniformly distributed 3D viewpoints. More
details on the datasets are provided in Appendix E.

The purpose of using two different datasets for scenes is to test the generalization capability of the
learned representations to two different types of downstream tasks. The set of downstream tasks on
MPI3D correspond to scene understanding, Tmpi3D = {Tv}6v=1, where v corresponds to a factor of
variation. On the other hand, RLScenes is used to test the generalization of the learned representations
to a reinforcement learning downstream task.

Scenes’ Representation Learning Stage. We use the same setting for learning the representations
on both datasets. Each function fk corresponds to a scene here, and we randomly draw N tuples of
(viewpoints, views) as context sets Ok = {(xki , yki )}Ni=1, where xi is the 3D camera viewpoints and
yi is the corresponding image, taken from that viewpoints. We fix the maximum number of context
sets to 3 in MPI3D dataset and 20 in RLScenes. The number of tuples drawn, N , is then chosen
randomly in [2, 3] for MPI3D and [2, 20] for RLScenes. For more details, see Appendix F.
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Figure 4: Quantitative Comparison of FCRL and GQN on MPI3D downstream classification tasks.

4.3.1 DOWNSTREAM TASKS ON SCENES

After training the encoder g(φ,Φ), we discard the projection head ρφ and use the trained encoder hΦ

to extract the representations rk and train decoders for downstream problems.

Scene Understanding on MPI3D Dataset. In MPI3D, each scene is described by 6 factors of
variations. Therefore for each sampled scene fk, we have 6 different tasks Tmpi3D = {T kv }6v=1. Each
task T kv comprises of a discrete label for a factor of variation i.e. T kv = {ykv}. Hence, we train 6
linear decoders to maximize the likelihood of the labels corresponding to the factors, using the same
objective as in Equation (7). Note that we use only one image to infer the representation rk. Figure 4
shows the linear probes validation performance for five independently trained models on both GQN
learned representations and FCRL learned representations. It can be seen that the representations
learned by FCRL consistently outperform GQN for identifying all the factors of variations in scenes.

Reinforcement Learning on RLScenes Dataset. For RLScenes, instead of training linear decoders
for downstream tasks, we train an RL agent to learn a control policy for the robot finger. The goal
for the agent is to locate the object in the arena, reach it, and stay close to it for the remainder
of the episode. We use the Soft-Actor-Critic (SAC) algorithm (Haarnoja et al., 2018) using the
implementation from (Raffin et al., 2019) to learn a single MLP policy for all the joints of the
robot, and predict their positions by having access only to the representation of the scene. These
representations are inferred from a single view. The positions of the robot-finger and the object
are reset at the beginning of every episode. It should be noted that unlike previous experiments,
the downstream policy is not trained with the same dataset as was used to train the encoder. We
again use the representations trained with GQN as our baselines and evaluate the performance on
five independent runs. The results are shown in Figure 5(a). It can be seen that the RL agent,
learned with FCRL representation clearly outperforms GQN-based RL agent in terms of learning a
data-efficient policy, obtaining convergence level control performance with approximately 2 times
fewer interactions with the environment.
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Figure 5: (a) Comparison between GQN and FCRL on learning a data-efficient control policy
for an object reaching downstream task. FCRL based representations clearly outperform GQN’s
representations. (b) Quantitative comparison for noise robustness on MNIST content classification
downstream task. The representations learned with FCRL are much more robust to noise than GQN’s.
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4.4 ROBUSTNESS TO NOISE CORRUPTIONS

So far in our experiments, we have considered the functions to be noiseless. However, in real-world
settings, the functions are often corrupted with noise which is manifested in their outputs. In this
section, we investigate how robust different representations learning algorithms are to Gaussian
noise with varying levels of noise corruption. We train all the models on the noisy data and evaluate
the quality of the learned representation on downstream tasks, as defined above. We find that the
representations learned by FCRL are far more robust to such noise corruptions than the competing
methods Figure 5(b). In fact, the performance of CNPs, NPs and GQNs drop so much that downstream
tasks achieve random accuracy. This might be because the representations are learned by optimizing
to reconstruct the noisy outputs where signal to noise ratio is very low. On the other hand, FCRL
learns by contrasting the set of examples, extracting the invariant features, and getting rid of any
non-correlated noise in the input. See Appendix B, for noise robustness study on MPI3D dataset.

5 RELATED WORK

Meta-Learning. Supervised meta-learning can be broadly classified into two main categories.
The first category considers the learning algorithm to be an optimizer and meta-learning is about
optimizing that optimizer, for e.g., gradient-based methods (Ravi & Larochelle, 2016; Finn et al.,
2017; Li et al., 2017; Lee et al., 2019) and metric-learning based methods (Vinyals et al., 2016;
Snell et al., 2017; Sung et al., 2018; Allen et al., 2019; Qiao et al., 2019). The second category is
the family of Neural Processes (NP) (Garnelo et al., 2018a;b; Kim et al., 2019; Eslami et al., 2018)
which draw inspirations from Gaussian Processes (GPs). These methods use data-specific priors
in order to adapt to a new task at test time while using only a simple encoder-decoder architecture.
However, they approximate the distribution over tasks in terms of their predictive distributions which
does not incentivize NP to fully utilize the information in the data-specific priors. Our method draws
inspiration from this simple, yet elegant framework. However, our proposed method extracts the
maximum information from the context which is shown to be useful for solving not just one task, but
multiple downstream tasks.

Self-Supervised Learning. Self-supervised learning methods aim to learn the meaningful representa-
tions of the data by performing some pretext learning tasks (Zhang et al., 2017; Doersch et al., 2015).
These methods have recently received huge attention (Tian et al., 2019; Hjelm et al., 2018; Bachman
et al., 2019; Chen et al., 2020; He et al., 2019) mainly owing their success to noise contrastive learning
objectives (Gutmann & Hyvärinen, 2010). At the same time, different explanations have recently
come out to explain the success of such methods for e.g. from both empirical perspective (Tian et al.,
2020; Tschannen et al., 2019) and theoretical perspective (Wang & Isola, 2020; Arora et al., 2019).
The goal of these methods has mostly been to extract useful, low-dimensional representation of the
data while using downstream performance as a proxy to evaluate the quality of the representation. In
this work, we take inspiration from these methods and propose a self-supervised learning method
which meta-learn the representation of the functions. Instead of using randomly augmented views of
the data points, our self-supervised loss uses partially observed views, sampled from the underlying
functions. More recently, (Doersch et al., 2020) pointed out the generalization issue in meta-learning
algorithms, namely the supervision collapse, and proposed self-supervised pre-training to address
this issue. Similar setup is used by (Medina et al., 2020) for prototypical networks (Snell et al., 2017).
However, these methods study generalization to tasks defined on new datasets. In contrast to these
methods, we study generalization in terms of downstream tasks, defined on functions.

6 CONCLUSION

In this work, we proposed a novel self-supervised representations learning algorithm for few-shot
learning problems. We deviate from the commonly-used, task-specific training routines in meta-
learning frameworks and propose to learn the representations of the relevant functions independently
of the prediction task. Experiments on widely different datasets and the related set of downstream
few-shot prediction tasks show the effectiveness of our method. The flexibility to reuse the same
representation for different task distributions defined over functions brings us one step closer towards
learning a generic meta-learning framework. In the future, we plan to adapt this framework to tackle
multiple challenging few-shot problems such as object detection, segmentation, visual question
answering etc. all of them using the same generic representations of the data-generating processes.
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A APPENDIX

A.1 ABLATION STUDY

Role of Number of Observations (J) The number of observations J corresponds to the number
of partial observations that we have of a functions fk. Ideally, we only need two such observations to
learn the representations via contrastive objective. However, it has been shown that having more
positive pairs result in learning better representations (Chen et al., 2020; Tian et al., 2019). It also
corresponds to reducing the amount of Bayesian surprise in the models, as more observations from
the same function results in reducing the entropy.
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Figure 6: Ablation for observations (J), critics and temperature for learning FCRL on MNIST
validation dataset.

It should be noted that in our setting, the number of observed context sets N do not necessarily
correspond to the number of observations J . This is because for some datasets, we aggregate the
context points to get one partial observation. This is important for the simple 1D and 2D regression
functions where a single context point does not provide much information, hence the individual
partial observations need more than one context sets. In our setting, we treat J as a hyperparameter
whose optimal value varies depending on the function space. For instance, the MPI3D scene dataset
has only three views per scene, therefore J can not be greater than 3 and we keep it fixed. For 1D
and 2D regression functions, we observe that for a fixed number of context points N , the optimal
number of observations J varies. For understanding the role of J better in these experiments, we
perform the ablation study on MNIST2D validation dataset where three models with different seeds
are trained on the the varying number of J while N is fixed to 200, Figure 7.

It can be seen that varying the number of observations J contributes to very small changes. However,
its values seems to be highly dependent on the critic and the temperature parameter as well. For
MNIST2D, we fixed J = 10. For training on RLScene dataset, we fixed the maximum number of
context points to be N = 20 and found the optimal number of partial observations to be J = 4.

Role of Critics and Temperature τ . We regard the discriminative scoring functions, including
the projection heads as critics. The simplest critic function does not contain any projection
layer, regarded as dot product critic, where the contrastive objective is defined directly on the
representations returned by the base encoder hΦ. However, recently the role of critics in learning
better representations has been explored (Oord et al., 2018; Chen et al., 2020). Building on these
findings, we evaluate the role played by different critics in learning the functions representations.
Figure 7 shows the ablation for three different critics on MNIST2D validation dataset. It can be seen
that the performance of critics is also linked with the temperature parameter τ .

Such hyperparameter grid search (done for MNIST2D) is very expensive for the ablation studies
on the bigger datasets i.e., the MPI3D and RLScenes datasets. We therefore performed a random
sweep of 80 models with randomly selected hyper-parameter values for critic and temperature on
MPI3D dataset. We did not find any pattern for the effect of temperature τ on the downstream tasks,
however the pattern emerged for the class of critics. Figure 7 shows the ablation for critics on MPI3D
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dataset. Again, it can be seen that the nonlinear critic performs good in extracting features which are
useful for the downstream classification tasks. Because of this trend across two different datasets, we
therefore performed all our experiments with nonlinear critic. The project head in nonlinear critics is
defined as an MLP with one hidden layer and batch normalization in between.
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Figure 7: Ablation for critics on MPI3D validation dataset.

B ROBUSTNESS TO NOISE

Functions with additive noise have been well-studied, however, the contemporary literature in meta-
learning mostly considers them to be noise free. In this work, we explore whether the learned
representations of the functions are prone to the additive Gaussian noise. We consider the form of
the function as given in Equation (1) and vary the standard deviation of the added noise. It can be
seen that with the increased level of noise the features in the image start to diminish, shown in the
Figure 8. GQN approach the learning problem by reconstructing these noisy images where the signal
is already very weak. On the other hand, FCRL learns to contrast the scene representations with other
scenes without requiring any reconstruction in the pixel space. This helps it in extracting invariant
features in the views of a scene, thus getting rid of any non-correlated noise in the input.
In addition to the analysis on MNIST 2D regression task in Figure 5, we test the performance of these
representations learning algorithm on MPI3D factors identification task in Figure 9. It can be seen
that FCRL representations can recover the information about the data factors, even in the extreme
case where the noise level is very high (standard deviation of 0.2). Whereas, GQN performs very
poorly such that the downstream probes achieve the random accuracy.

C PSEUDOCODE FOR SCRL ALGORITHM

For the sake of completeness, we provide the pseudocode for FCRL representations learning algo-
rithm:
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Figure 8: MPI3D dataset with the varying level of additive noise.
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Figure 9: Quantitative comparison for noise robustness on MPI3D downstream tasks.

Algorithm 1: FCRL algorithm.

input: batch size K, a dataset of functions with input-output pairs Of = (x,y),
maximum number of context points M , constant τ, J , networks hΦ, ρφ.
for sampled minibatch of K functions {Of}Kk=1 do

draw a number N from range [2, M]
# define observation size
tj := ((j − 1)N/J, ..., jN/J) ∀j = 1, . . . , J

for all k ∈ {1, . . . ,K} do
draw N context points Ok = {(xi, yi)}Ni=1

# split context into disjoint observations
Ok =∪Jj=1O

k
tj with Okti ∩O

k
tj = ∅ if i 6= j

for i ∈ {1, . . . , J} and j ∈ {1, . . . , J}do
zki = ρφ( 1

|Oti
|
∑|Oti

|
m=1 hΦ(Oktim))

zkj = ρφ( 1
|Otj
|
∑|Otj

|
m=1 hΦ(Oktjm))

ski,j = z>i zj/(‖zi‖‖zj‖) ∀ i 6= j
end for

end for
L (Φ, φ,O1:K) =

∑K
k=1

∑
1≤i<j≤J − log

exp(ski,j/τ)∑K
m=1 exp(ski,m/τ)

update networks hΦ and ρφ to minimize L.
end for
return base encoder network hΦ(·)
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D ESTIMATING DENSITY RATIOS CORRESPONDING TO THE FUNCTIONS

The contrastive objective in Equation (4), in essence, tries to solve a classification problem i.e. to
identify whether the given observation Oi comes from the function f i or not. The supervision signal
is provided by taking another observation Ô from the same function f i as an anchor (a target label),
thus making it a self-supervised method. This self-supervised, view-classification task, for a function
f i, leads to the estimation of density ratios between the joint distribution of observations p(O1, O2|i)
and their product of marginals p(O1|i)p(O2|i). This joint distribution in turn corresponds to the
joint distribution of the input-output pairs of the function p(x, y|i). This way of learning a function’s
distribution is different from the typical regression objectives, which learn about a given function f i
by trying to approximate the predictive distribution p(y|x).

By assuming the universal function approximation capability of g(φ,Φ), and the availability of
infinitely many functions fk ∼ p(f) with fixed number of context points N each, the model posterior
learned by the optimal classifier corresponding to Equation (4) would be equal to the true posterior
given by Bayes rule.

fk ∼ P (f) ∀ k ∈ {1, ..,K} (8)

Ok ∼ P (O|fk) ∀k ∈ {1, ..,K} (9)
i ∼ U(K) (10)

f̂ = f i (11)

Ô ∼ P (O|f̂) (12)

p(i|O1:K , Ô) =
p(O1:K , Ô|i)p(i)∑
i p(O

1:K , Ô|i)p(i)
(13)

=
p(Oi, Ô|i)p(i)

∏
k 6=i p(O

k|i)p(Ô|i)∑
j p(O

j , Ô|j)p(j)
∏
k 6=j p(O

k|j)p(Ô|j)
(14)

=

p(Oi,Ô|i)
p(Oi)p(Ô)

p(i)∑
j
p(Oj ,Ô|j)
p(Oj)p(Ô)

p(j)
(15)

The posterior probability for a function f i is proportional to the class-conditional probability density
function p(Oi, Ô|i), which shows the probability of observing the pair (Oi, Ô) from function f i.
The optimal classifier would then be proportional to the density ratio given below

exp(sim(φ,Φ)(Ô, O
i)) ∝ p(Oi, Ô)

p(Oi)p(Ô)
(16)

Similar analysis has been shown by the (Oord et al., 2018) for showing the mutual information
perspective associated with self-supervised contrastive objective (infoNCE). The joint distribution
over the pair of observations correspond to the distribution of the underlying function f i. Thus, given
some observation of a function, an optimal classifier would attempt at estimating the true density of
the underlying function.

E SCENES’ DATASETS

MPI3D Dataset. The MPI3D dataset (Gondal et al., 2019) is introduced to study transfer in
unsupervised representations learning algorithms. The dataset comes in three different formats,
varying in the levels of realism i.e. real-world, simulated-realistic and simulated-toy. Each dataset
contains 1, 036, 800 images of a robotic manipulator each, encompassing seven different factors
of variations i.e., object colors (6 values), object shapes (6 values), object sizes (2 values), camera
heights (3 values), background colors (3 values), rotation along first degree of freedom ((40 values))
and second degree of freedom ((40 values)). Thus, each image represents a unique combination of all
the factors. See Figure 10(a) to see a sample of the dataset.
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Figure 10: Datasets for Scenes Representation Learning (a) MPI3D (Gondal et al., 2019) has three
camera viewpoints, with images of a robotics arm manipulating an object. (b) RLScenes has 36
possible camera viewpoints for capturing an arena consisting of a robot finger and an object.

In this work, we consider the real-world version of the dataset. The multi-view setting is formulated
by considering the images of a scene captured by three different cameras, placed at different heights.
This effectively gives us 345, 600 scenes with three views each. We split the dataset into training
and validation chunks, where the training dataset contains 310, 000 scenes and the validation dataset
contains the rest 35, 600 scenes, approximately 10% of the dataset.

RLScenes. The RLScenes dataset is generated in simulation using (Joshi et al., 2020) for a single
3-DOF robotic manipulator in a 3D environment. The dataset consists of 40, 288 scenes, each scene
parametrized by: object colors (one of 4), robot tip colours (one of 3), robot positions (uniformly
sampled from the range of feasible joint values), and object positions (uniformly sampled within
an arena bounded by a high boundary as seen in Figure 10). Each scene consists of 36 views,
corresponding to the uniformly distributed camera viewpoints along a ring of fixed radius and fixed
height, defined above the environment. As can be seen in Figure 10, the robot finger might not be
visible completely in all the views, or the object might be occluded in some view. The 36 views help
by capturing a 360 deg holistic perspective of the environment. First a configuration of the above
scene parameters is selected and displayed in the scene, then the camera is revolved along the ring to
capture its multiple views. For learning the scene representations via both FCRL and GQN, we split
the dataset into 35000 training and 5288 validation points.

F DETAILS OF EXPERIMENTS ON SCENE REPRESENTATION LEARNING

For learning the scene representations for both MPI3D dataset and RL Scenes, we used similar
base encoder architecture. More specifically, we adapted the “pool” architecture provided in GQN
(Eslami et al., 2018), as it has been regarded to exhibit better view-invariance, factorization and
compositional characteristics as per the original paper. We further augmented this architecture with
batch-normalization. The architecture we use is as in Figure 11:

Figure 11: Network Architecture used for learning representations for the scenes’ datasets.

F.1 LEARNING SCENES FOR MPI3D DATASET.

Since we have three view per each scene in MPI3D dataset, therefore we are restricted in defining the
number of context points and the number of views. In all our experiments the number of context
points N is fixed to three while the number of views J is set to two. In contrast to the experiments
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for regression datasets where more datapoints per each view resulted in better representations, the
restriction to a single image view in MPI3D dataset did not hurt the representation quality, measured
in terms of downstream performance. In the downstream experiments on MPI3D, we use only one
image to train and validate the probes. Due to the limitation of available views, we could not measure
the effect of varying the number of views on the downstream performance.

Even though no explicit structural constraint was imposed for learning the representation. The
FCRL algorithm implicitly figures out the commonality between the factors in different scenes. We
visualize these latent clusterings in the Figure 12. We plot the 2D TSNE embeddings of the 128D
representations inferred by the model. Thereafter, to visualize the structure corresponding to each
factor, we only vary one factor and fix the rest of them except for first degree of freedom and second
degree of freedom factors. A clear structure can be seen in the learned representations.

Implementation Details. We use the GQNs ‘pool’ architecture with batch normalization as encoder.
As mentioned in the ablation study, we did a random sweep over the range of hyperparameters and
selected the best performing model. Further details on the hyperparameters is provided in Table 2.

F.2 LEARNING SCENES FOR RLSCENES DATASET.

To train the FCRL encoder, we randomly sample the number of views from each scene to lie within
the range [2, 20]: upper-bounded by 20 to restrict the maximum number of images per scene to be
the same as that used in (Eslami et al., 2018), and lower bounded by 2 in case just the one view is
not from a suitable angle. So, here, the maximum number of context points N is 20. The number of
subsets J is set to 8. In the downstream reinforcement learning task, we use only one image to train
the policy network, as is the usual practice, and the same as (Eslami et al., 2018). We kept the joint
ranges from which joint positions are uniformly sampled to randomly reset the robot at the beginning
of every episode while training the policy network to be the same as the ranges used for sampling the
robot position while generating the dataset to train the FCRL encoder. These joint ranges are selected
so as to ensure that there are more scenes in which the robot finger is visible. However, in order to
not constrain the agent’s exploration, we let the action space for training the reaching agent to be
less constrained, and be able to explore the entire range from −pi to pi. So, effectively, the space
seen by the robot during the training of the representations is a subspace of that seen while inferring
the representations from the environment used for this downstream reaching task. Interestingly, the
inferred representations can also work effectively on unseen robot configurations as demonstrated by
the success of the reacher.

Implementation Details. Similar to the encoder training for MPI3D scenes, we learned the en-
coder for RLScenes. However, since the downstream tasks is a reinforcement learning task, it was
hard to judge the quality of representations. Therefore, we took some insights from the MPI3D
experiments and selected the model, trained with hyperparameters, which performed the best on the
RL downstream tasks. Further details on the hyperparameters is provided in Table 2.

G DETAILS OF EXPERIMENTS ON 1D FUNCTIONS

Implementation Details. We used the same encoder architecture for our method and the baselines
(Garnelo et al., 2018a;b) in all experiments. For 1D and 2D functions, the data is fed in the form
of input-output pairs (x, y), where x and y are 1D values. We use MLPs with two hidden layer to
encode the representations of these inputs. The number of hidden units in each layer is d = 50. All
MLPs have relu non-linearities except the final layer, which has no non-linearity.
Encoder: Input(2)→ 2 × (FC(50), ReLU)→ FC(50).
While learning the representations of sinusoid functions with FCRL, we also scale the output scores
with temperature to be 0.07. We used the following hyper-parameter settings to train an encoder with
FCRL.

Downstream Tasks. To learn the subsequent task-specific decoders on the representations, we
adapted the same data processing pipeline as above. For 1D functions, we train decoders for two
different tasks: few-shot regression and few-shot parameter identification. The decoders for each task
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Figure 12: 2D-TSNE projections of 128 dimensional representations learned by FCRL on the MPI3D
dataset. Each individual plot exhibits the latent structure corresponding to the factor mentioned above.
The plot for each factor is generated by varying the factor of interest and keeping the rest of the
factors fixed, except the factors of the first degree of freedom and the second degree of freedom.
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Table 2: Hyperparameters Settings for Scene Representation Learning Experiments.

Parameter Values
Batch size 64
Representation dimension 128
Temperature: τ 0.88
Number of subsets: J 2
Max number of context points: N 3
Epochs 100
Critic Nonlinear
Objective NCE
Optimizer Adam
Adam: beta1 0.9
Adam: beta2 0.999
Adam: epsilon 1e-8
Adam: learning rate 0.0005
Learning Rate Scheduler Cosine
Number of workers 10
Batch normalization Yes

(a) Hyperparameters to train FCRL based encoder on
the MPI3D Dataset.

Parameter Values
Batch size 32
Representation dimension 256
Temperature: τ 0.46
Number of subsets: J 8
Max number of context points: N 20
Epochs 100
Critic Nonlinear
Objective NCE
Optimizer Adam
Adam: beta1 0.9
Adam: beta2 0.999
Adam: epsilon 1e-8
Adam: learning rate 0.0005
Learning Rate Scheduler Cosine
Number of workers 10
Batch normalization Yes

(b) Hyperparameters to train FCRL based
encoder on the RLScenes Dataset.

Table 3: Hyperparameters Settings for Sinusoid Experiments.

Parameter Values
Batch size 256
Latent space dimension 50
Temperature: τ 0.07
Number of subsets: J 2
Max number of context points: N 20
Epochs 30
Critic Nonlinear
Optimizer Adam
Adam: beta1 0.9
Adam: beta2 0.999
Adam: epsilon 1e-8
Adam: learning rate 0.0003
Learning Rate Scheduler Cosine

(a) Hyperparameters to train FCRL based encoder for
1D sinusoid functions.

Parameter Values
Batch size 256
Epochs 30
Critic Nonlinear
Optimizer Adam
Adam: beta1 0.9
Adam: beta2 0.999
Adam: epsilon 1e-8
Adam: learning rate 0.001
Learning Rate Scheduler Cosine

(b) Hyperparameters to train FSR Decoder
on FCRL learned representations.
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Figure 13: Additional results on 5-shot sinusoid regression. Each column corresponds to a different
sinusoid function where only 5 context points are given. The predictions of the decoder trained on
FCRL based encoder are closer to the groundtruth.

Figure 14: Additional results on 20-shot sinusoid regression. Each column corresponds to a different
sinusoid function where only 20 context points are given. The predictions of the decoder trained on
FCRL based encoder are comparable to CNP and better than NP.

are trained with the same training dataset as was used to train the encoders. The training procedure
for both downstream tasks on sinusoid functions is as follows

• For Few-Shot Regression (FSR), we use an MLP architecture with two hidden layers. The
same architecture are used in CNP (Garnelo et al., 2018a), however in CNP the decoder and
encoder are trained jointly. All the baselines and our model are trained for the same number
of iterations. We used slightly higher learning rate to train the decoder as the training
converges quite easily.
FSR Decoder: Input(50)→ 2 × (FC(50), ReLU)→ FC(1) .

• For Few-Shot Parameter Identification (FSPI), we train a linear decoder without any
activation layers on the representations learned via FCRL and the baseline methods. The
decoder is trained for only one epoch.
FSPI Decoder: Input(50)→ FC(1) .

Additional Results. In Figure 13 and Figure 14, we provide additional results on 5-shot regression
on test sets and compare the results with CNP and NP. The curves generated by the decoder using
FCRL learned representations are closer to the groundtruth. The difference is evident in 5-shot
experiments which supports the quantitative results in Table 1.
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Figure 15: Additional results on 50-shot mnist image completion. The context is shown in the second
row where target pixels are colored blue. Predictions made by a decoder trained on FCRL based
encoder are slightly better than the CNP in terms of guessing the correct form of digits.

Figure 16: Additional results on 200-shot mnist image completion. The context is shown in the
second row where target pixels are colored blue. Predictions made by a decoder trained on FCRL
based encoder are comparable to CNP.

H DETAILS OF EXPERIMENTS ON 2D FUNCTIONS

Implementation Details. In this experiment, we treat MNIST images as 2D functions. We adapt
the architectures of encoders and decoders from the previous 1D experiments. However, due to the
increased complexity of the function distributions we increase the number of hidden units of MLP to
d = 128. Moreover, the input x is 2D as it corresponds to the cartesian coordinates of an image. The
hyperparameter settings to train FCRL based encoder on such 2D function is given in Table 4.

H.1 DOWNSTREAM TASKS.

We consider two different downstream tasks for the representations learned on 2D functions: few-shot
image completion and few-shot content classification. A separate decoder is trained for both of these
tasks.

• For Few-Shot Image Completion (FSIC), we use an MLP based decoder with two hidden
layers. The decoder is trained on the same training data for the same number of iterations.
Details are given in Table 4(b).
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Table 4: Hyperparameters Settings for MNIST as 2D Functions Experiment.

Parameter Values
Batch size 16
Latent space dimension 128
Temperature: τ 0.007
Number of subsets: J 40
Max number of context points: N 200
Epochs 100
Critic Nonlinear
Optimizer Adam
Adam: beta1 0.9
Adam: beta2 0.999
Adam: epsilon 1e-8
Adam: learning rate 0.0006
Learning Rate Scheduler Cosine

(a) Hyperparameters to train FCRL based encoder for
2D functions.

Parameter Values
Batch size 16
Epochs 100
Critic Nonlinear
Optimizer Adam
Adam: beta1 0.9
Adam: beta2 0.999
Adam: epsilon 1e-8
Adam: learning rate 0.001
Learning Rate Scheduler Cosine

(b) Hyperparameters to train Few-Shot Im-
age Completion (FSIC) Decoder trained on
FCRL learned representations.

• For Few-Shot Content Classification (FSCC), we train a linear regression on top of the
representations obtained by both FCRL and the baselines. The decoder is trained for only
one epoch.

Additional Results. In Figure 15 and Figure 16, we provide additional results for 50-shot and
200-shot image completion. We can see that the the results from FCRL based decoder consistently
perform better than CNP in low-shot scenario of 50 context points. In 200-shot scenario, the results
look comparable to CNP.

I SOFTWARE PROGRAMS USED

The following software programs were used for the work done in this paper: PyTorch (Paszke
et al., 2019), Weights and Biases (Biewald, 2020), PyBullet (Coumans & Bai, 2016–2019), Stable
Baselines (Raffin et al., 2019), Gym (Brockman et al., 2016), Jupyter Notebook (Kluyver et al., 2016),
Matplotlib (Hunter, 2007), Seaborn (Waskom et al., 2017), Scikit-learn (Pedregosa et al., 2011),
NumPy (Harris et al., 2020), Python3 (Van Rossum & Drake, 2009).
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