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ABSTRACT

Neural networks exhibit exceptional performance in processing complex data,
yet their internal structures remain largely unexplored. The emergence of
Kolmogorov-Arnold Networks (KANs) represents a significant departure from
traditional Multi-Layer Perceptrons (MLPs). In contrast to MLPs, KANs re-
place fixed activation functions at nodes (“neurons”) with learnable activation
functions on edges (“weights”), enhancing both accuracy and interpretability. As
data evolves, the demand for models that are both flexible and robust minimiz-
ing the influence of input data variability continues to grow. Addressing this
need, we propose a general framework for KANs utilizing a Variety Bernstein
Polynomial Function Basis for Kolmogorov-Arnold Networks (VBn-KAN). This
framework leverages the Weierstrass approximation theorem to extend function
basis within KANs in theory, specifically selecting Bernstein polynomials (Bn)
for their robustness, assured by the uniform convergence proposition. Addition-
ally, to enhance flexibility, we implement techniques to vary the function basis
Bn when handling diverse datasets. Comprehensive experiments across three
fields: multivariate time series forecasting, computer vision, and function approx-
imation—demonstrate that our method outperforms conventional approaches and
other variants of KANs.

1 INTRODUCTION

Since the 1990s, the advancement of neural network technology markedly improves the efficiency
of CPU program execution, particularly in complex computational tasks and large-scale data pro-
cessing (Oh and Jung, 2004; Nurvitadhi et al., 2016). This rapid evolution significantly enhances
processing speeds, enabling the implementation of more complex models in practical applications
(Nguyen and Widrow, 1990a;b; Sze et al., 2017). However, despite these substantial performance
improvements, the “black box” nature of neural networks continues to pose challenges, limiting the
interpretability and transparency of models (Agarwal et al., 2021; Zhang et al., 2021; Zhang and
Zhu, 2018).

In response to these challenges, many researchers recently attempte to conduct in-depth analyses of
neural network interpretability from various perspectives. However, providing a comprehensive ex-
planation of neural networks remains daunting, largely due to their complex nonlinear structures and
vast parameter spaces. These factors make understanding the internal workings of neural networks
exceptionally difficult (Zhang et al., 2018; Lee et al., 2021; Youssef et al., 2023). In this context, the
Multi-Layer Perceptron (MLPs), based on the universal approximation theorem (Funahashi, 1989),
emerges as a classical neural network structure. It has become an important platform for research
due to its relatively simple design and clear hierarchical structure (Borghi et al., 2021; Sharma and
Kukreja, 2022; Alnuaim et al., 2022; Rana et al., 2018). The advantages of MLPs networks not
only enhance the transparency of the model but also lay the groundwork for further optimization
and application.

Although MLPs provide a certain degree of intuitive understanding of neural network structures,
their interpretability remains limited. This limited interpretability arises from the fixed activation
functions and linear weight structures of MLPs, which obscure the specific contributions of each
neuron to the final decision. In Liu et al. (2024), a new architectural approach named “KAN”
based on the Kolmogorov-Arnold representation (K-A) theorem (Kolmogorov, 1957b) is proposed

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

to enhance the interpretability of neural networks. Unlike MLPs, KANs entirely eliminate linear
weight matrices; each weight parameter is replaced by a learnable 1D function. Furthermore, they
generalize the original K-A representation to arbitrary widths and depths, thereby revitalizing and
contextualizing it within the modern deep learning framework.

A variety of KANs exist (Hou et al., 2024), each adapts to different areas (Muyuzhierchengse, 2024;
Khochawongwat, 2024; Qiu et al., 2024; Wang et al., 2024a; Koenig et al., 2024; Wang et al., 2024b;
De Carlo et al., 2024), enhancing the original KANs for specific downstream tasks. However, some
of these models maintain a relatively fixed form, and the principles underlying their mathematical
reasoning improvements are not systematically examined. As data evolves, issues such as noise
and integrity seem to influence the results of models. Relying solely on manual methods, such as
labeling and data cleaning, can consume significant resources. Therefore, reducing the algorithms’
dependence on data quality is particularly crucial.

In this paper, we propose KANs with a variety function basis, the: Variety Bernstein Polynomial
Function Basis for Kolmogorov-Arnold Networks (VBn-KAN). This framework allows the model
to adapt to various data types and provides more flexible forms of KANs. Specifically, the Weier-
strass approximation theorem (WEIERSTRASS, 1885) broadens the selection of function basis,
establishing that polynomials can approximate any continuous function. Based on this theorem, we
select the Bn polynomial for its uniform convergence, which ensures robustness in the basis during
processes like feature learning, particularly under conditions of uneven distributions or high noise
levels. To further enhance the adaptability and flexibility of the model across different scenes, a va-
riety of function bases can effectively meet these challenges. To accomplish this, we utilize versatile
Bayesian optimization, leveraging low-dimensional, continuous functions for global optimization,
thereby balancing accuracy with exploration.

Our main contributions are summarized as follows:

• To the best of our knowledge, this is the first proposal of a general Kolmogorov-Arnold
Network (KANs) with a variable function basis, presented at a mathematical level.

• We employ the Bernstein polynomial as the basis function for KANs, which ensures the
model’s robustness.

• To enhance the model’s flexibility, we utilize a dynamically learnable function basis.

The results of experiments in three fields: multivariate time series forecasting, image classification,
and function approximation, further demonstrate the flexibility and robustness of our method.

2 RELATED WORK

Kolmogorov-Arnold Networks (KAN) KAN (Liu et al., 2024) is inspired by the mathemati-
cal foundations established by the Kolmogorov-Arnold representation theorem Kolmogorov (1961;
1957c); Braun and Griebel (2009). These networks offer a promising alternative to Multi-Layer
Perceptrons (MLPs). KANs feature learnable activation functions on edges (“weights”), which uti-
lize trainable 1D B-spline functions to process incoming signals. There exists a variety of KANs
that select and apply different basis functions for various downstream tasks, such as Bozorgasl and
Chen (2024); Muyuzhierchengse (2024); Aghaei (2024); SynodicMonth (2024b); Zhang and Zhang
(2024); Azam and Akhtar (2024); Vaca-Rubio et al. (2024); Lai et al. (2024). While these variations
achieve good results in specific tasks, they often lack interpretability in their developments.

Function Variety Basis Variable basis learning plays a important role in the domains of machine
learning and statistical modeling, boasting a long history of research and broad applications across
various algorithms and models. Early support vector machines (SVMs) (Boser et al., 1992) lever-
aged reproducing kernel Hilbert spaces (RKHS) (Berlinet and Thomas-Agnan, 2011) to map data
into high-dimensional spaces through kernel techniques, achieving linear separability in otherwise
linearly inseparable problems. This approach primarily involved the selection of fixed basis func-
tions. Although effective in certain contexts, it restricts the model’s adaptability to complex data
structures. Boosting (Freund and Schapire, 1997), a robust ensemble learning technique, enhances
a model’s predictive performance by iteratively training weak learners and amalgamating them into
a strong learner, proving particularly effective in non-parametric learning scenarios. Furthermore,
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with the advancement of deep neural networks, the study in Han et al. (2021) introduces the concept
of variable parameters and dynamic adjustments to network architecture, offering a versatile method
to tailor models to specific data features. These advancements confer numerous benefits, including
enhanced efficiency (Bertinetto et al., 2016; Huang et al., 2017a; Lin et al., 2017), increased rep-
resentation power (Yang et al., 2019; Chen et al., 2020), and improved adaptiveness, compatibility,
and generality (He et al., 2016; Kingma, 2014; Liu et al., 2018; Huang et al., 2017b; Yang et al.,
2020a), as well as bolstered interpretabilit (Hubel and Wiesel, 1962; Yang et al., 2020b).

Realizing for Variety Basis With the evolution of deep learning and machine learning, the con-
cept of variable basis functions (Yao et al., 2021; Mendel, 2019) has been introduced into various
intelligent algorithms, showcasing distinct advantages in addressing complex data structures and
nonlinear problems. In deep learning, this concept is operationalized through structured network
designs, such as using variable filters in convolutional neural networks (Huang et al., 2021; Gama
et al., 2020) or employing conditional parameterization techniques like conditional batch normaliza-
tion (Wang et al., 2020). In the realm of ensemble learning, variety basis functions enhance predic-
tive performance by constructing and integrating multiple models (base learners) through techniques
like bagging (Gu et al., 2018) and the hedge algorithm (Chaudhuri et al., 2009). In reinforcement
learning, these functions facilitate strategy optimization challenges, exemplified by strategic gradi-
ent methods (Wang et al., 2019) and deep Q-networks (Gu et al., 2016; Lobel et al., 2023).

3 METHODOLOGY

Our model, the Variety Bernstein Polynomial Function Basis for Kolmogorov-Arnold Networks
(VBn-KAN), comprises two core components: the rationale for choosing Bernstein polynomials and
the realization of their variety function basis. In this section, we articulate our approach from three
perspectives: theoretical foundations, advantages & disadvantages and specific implementations.

3.1 THEORETICAL: FOUNDATIONS FOR VARIETY Bn FUNCTION BASES

In the theory of uniform convergence, can polynomials be used to approximate any given contin-
uous function with any desired precision? Reference WEIERSTRASS (1885) provides affirmative
answers to this question. Consequently, we present the conclusion of the following well-known
theorem:

Theorem 3.1 (Weierstrass Approximation Theorem) For any f(x) ∈ C[a, b] and for any ϵ > 0,
there exits an algebraic polynomial of the form

p (x) = c0 + c1x+ · · ·+ cnx
n, a ⩽ x ⩽ b,

with finite degree n such that the bound
∥f (x)− p (x) ∥L∞ < ϵ

is satisfied.

Theorem 3.1 implies that any continuous function on a closed interval can be uniformly approxi-
mated by a polynomial function with arbitrary accuracy. This can be viewed as an extension of the
theorem in Taylor (1717) to arbitrary continuous functions and as an expansion of the concept in
Fourier (1808) within the context of non-periodic basis functions.

The discussions provide insights into univariate functions. Hilbert’s 13th problem (Hilbert, 1970) fa-
mously posits the impossibility of solving general seventh-degree equations using only functions of
two variables. Subsequent research by Kolmogorov (1957a) demonstrates that any function involv-
ing multiple variables can be represented with a finite number of three-variable functions. Further
studies building on this research, as detailed by Arnol’d (1959), have established that functions of
just two variables are sufficient. More precisely:

Theorem 3.2 (Kolmogorov-Arnold representation Theorem) Any continuous multivariate function
f : [0, 1]

n → R can be written as univariate functions and using univariate functions in the follow-
ing form:

f(x) = f(x1, · · · , xn) =
2n+1∑
j=1

Φj

[
n∑

i=1

ϕij (xi)

]
, (3.1)
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where ϕij : [0, 1] → R and Φj : R → R.

Theorem 3.2 demonstrates that a multivariate function can be expressed as a sum of univariate
functions. This insight is crucial for understanding the expressive capabilities of complex models,
such as neural networks. In Liu et al. (2024), the authors introduce Kolmogorov-Arnold Networks
(KANs), an application of neural networks based on Theorem 3.2. Unlike Multi-Layer Perceptrons
(MLPs) that are founded on the universal approximation theorem (Funahashi, 1989; Cybenko, 1989;
Hornik et al., 1989; Hornik, 1991),KANs feature learnable activation functions on edges, referred
to as “neurons” and fix activation functions at nodes, termed “weights”. Each weight in KANs is
replaced by a univariate function, parametrized as a spline, which means the network contains no
linear weights at all.

Specifically, a key feature of optimizing KANs is the implementation of a learnable activation func-
tion, represented by ϕ(x) in Equation (3.1):

ϕ(x) = wbb(x) + wsψ(x), (3.2)
where

ψ(x) = spline(x), b(x) = silu(x) = x/(1 + e−x).

According to Theorem 3.2, ϕ(x) ∈ C(R), suggesting that learning a high-dimensional function can
be effectively approximated by 1D functions. Furthermore, Theorem 3.1 establishes that continuous
functions can be approximated by polynomials, allowing the function basis ψ(x) to be extended to
any polynomial form. In this context, we utilize Bernstein polynomials (Bn) as a variety function
basis to replace ψ(x) in Equation (3.2):

ϕ̃(x) = wbb(x) + wBnBn(x),

where Bn is defined as:

Definition 3.1 (Bernstein polynomial) Consider f(x) ∈ C[0, 1], the n-th Bn polynomials of f(x)
is specified by:

Bn (f) = Bn (f ;x) =

n∑
k=0

f

(
k

n

)(
n
k

)
xk (1− x)

n−k
, x ∈ [0, 1]. (3.3)

To clearly illustrate the distinctions between the structure of the original KAN and our VBn-KAN,
we use Figure 1 to present them.

(a) KAN: Spline function (b) VBn-KAN: Variable degree of Bn polynomial

Figure 1: Comparison of the original KAN (1a) and ours (1b) VBn-KAN structures. The “Original
Function” is defined as f(x) = cos(πx) · log(1 + |x|), which is smooth but not linear. The key
difference between (1a) and (1b) lies in the choice of ψ(x) in Equation (3.2), with the former using
a spline function and the latter a Bn polynomial. Comparative results indicate that a higher degree
of the Bn polynomial yields better approximation results than the spline function. The dashed
line in (1b) illustrates varying degrees, where higher degrees more closely approximate the original
function.

This change raises three questions:
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1) Can polynomials be used to approximate any given continuous function ϕ(x)?
2) Within the set of polynomials Pn, why choose Bernstein polynomials (Bn)?
3) After determining Bn as the new function basis, why introduce variety?

The answer to question 1) is affirmed by Theorem 3.1. We now address the remaining questions.

For question 2), the Bn (Bernstein, 1912) serves as a classical constructive proof method for The-
orem 3.1. The main advantage of the Bernstein approximation over Lagrange interpolation (Sauer
and Xu, 1995) is highlighted in the following Proposition.

Proposition 3.1 For all functions f , the sequence {Bnf : n = 1, 2, 3, · · · } converges uniform 1 to
f as Bn (f) ⇒ f (x), where Bn is defined by Equation (3.3).

Similar to Proposition 3.1, the derivative of Bn exhibits the same properties, with B′
n (f) ⇒ f ′ (x)

where f ′ ∈ C[0, 1]. These uniform convergence properties suggest that as the depth or width of the
network increases, Bn polynomials can more uniformly approximate the objective function. This
enhances uniformity significantly contributes to improved model generalization.

The uniform convergence of Bn and its derivatives serves as a fundamental concept, best exempli-
fied when approximating a continuous function. This property enables the polynomial to uniformly
approximate the objective function across the entire interval, ensuring global consistency and ac-
curacy in the approximation, as depicted in Figure 2. Such uniformity offers distinct advantages
in various applications. For instance, in time series forecasting, it enables the network to more
effectively capture global trends and seasonal patterns, rather than merely responding to local or
short-term fluctuations. In the realm of image classification, it facilitates more balanced learning
across different categories, which is particularly beneficial in scenarios with ambiguous category
boundaries or imbalanced sample distributions.

Figure 2: The distinction between uniform convergence (left) and pointwise convergence (right).
In the left figure, fn consistently remains within the “ϵ-band” across the entire domain, illustrating
how uniform convergence maintains the overall structure and continuity of the function. In contrast,
the right figure shows that under a given ϵ, regardless of how large N is chosen, there are always
xn values for n > N that do not stay within the ϵ band. Thus, uniform convergence ensures greater
uniformity and robustness.

Moreover, from Equation (3.3), we observe that the smooth (binomial) allocation of weights and the
non-negativity of basis functions act to prevent the occurrence of the Runge phenomenon (De Vil-
liers, 2012) during the approximation process.

For question 3), from the previous content, we understand that the approximation error is directly
linked to the degree of Bn. Specifically, higher degrees tend to yield more accurate approximations,
while lower degrees might simplify computation but increase the potential for error. This relation-
ship underlines the need for variety in choosing the appropriate Bn function basis based on specific
application requirements and computational constraints.

Proposition 3.2 Popoviciu (1935) Bn is Bernstein polynomial of f(x), then

|Bn (f)− f (x)| ≲ ω

(
1√
n

)
, (3.4)

1Uniform Convergence For all ϵ > 0, there existing N ∈ Z+, N = N(ϵ), s.t. when n ⩾ N , there is
|fn (x)− f (x)| < ϵ.
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where ω is modulus of continuity.

From Formula (3.4), we understand that as n increases, the approximation error decreases, enabling
more precise approximations given a sufficiently large n. However, constraints such as computer
memory and the availability of examples prevent n from becoming infinitely large (n ̸= ∞). Under
these conditions, for a specified error threshold, there exists a minimum feasible n.

Theorem 3.3 If ∂ [Bn (f)] = n, for all ϵ > 0, given error limited δ with 0 < ϵ ⩽ δ ≪ ∞, there is

n ⩾ max|f ′′ (ξ) |
/
8δ.

The proof of Theorem 3.3 is provided in the Appendix . For a closed interval [a, b] (where ([0, 1] ⊊
[a, b])), Theorem 3.3 is also applicable by virtue of Theorem A.1. Thus, theoretically, we can strike
a balance between accuracy and memory usage. Consequently, the variable function basis offers a
broader solution for feature learning in neural networks.

3.2 DISCUSSION: ADVANTAGES AND LIMITATIONS OF VARIETY FUNCTION BASIS Bn

In existing KAN methods, the function basis and its parameters are not adaptive (Muyuzhierchengse,
2024; SynodicMonth, 2024b; Khochawongwat, 2024; Li, 2024a). Variable function basis, however,
play a crucial role in KANs by allowing the network to enhance the model’s representational power.
This enhancement is achieved by adaptively selecting basis functions that are best suited for specific
tasks.

• Data Features Perspective: The model can adapt to the non-stationary and multi-scale fea-
tures of different data types. For instance, in multivariate time-series data forecasting, it
effectively captures both local and global features and better processes sudden events. In
image classification, the model can adjust its form and parameters based on specific features
such as edge density and color distribution, thereby better accommodating the characteris-
tics of various image types.

• Model Training Perspective: When dealing with non-stationary or high-noise data, choos-
ing a higher degree enhances the model’s adaptability and accuracy; conversely, employing
lower frequencies reduces computational complexity and helps prevent overfitting. Addi-
tionally, the uniform convergence proposition minimizes the model’s data dependence by
maintaining a fixed interval ε with sufficient N , thus striking a balance between error and
computational costs.

However, employing a variety function basis might require more time and space than a fixed ba-
sis. The introduction of variable basis functions enables the KAN model to adjust adaptively based
on data features, thus improving prediction accuracy, enhancing generalization to new data, and
effectively reducing the risk of overfitting. This enhanced adaptability not only boosts model per-
formance but also facilitates more efficient resource allocation, making it particularly suitable for
complex application scenarios that demand high performance and real-time responses. Therefore,
although the initial resource consumption may be high, the investment proves cost-effective in the
long run, especially in dynamic and evolving data environments.

3.3 REALIZATION: ACHIEVING VARIETY IN FUNCTION BASIS

The selection of the Bn degree is a non-convex and combinatorial optimization problem, primarily
because the relationship between approximation error and Bn degree is non-monotonic; it can ex-
hibit non-smooth or discontinuous variations with changes in degree. Consequently, this scene may
present multiple local optimal solutions. For instance, under certain data distributions and objec-
tive function configurations, both lower and higher iterations might achieve comparable error levels,
while some intermediate iterations might result in higher errors. These local optima complicate
the search for the global optimum. In this situation, there is a need to balance minimizing error
(as discussed in Proposition 3.2) and adhering to computational resource constraints (as outlined in
Theorem 3.3).

To determine the degree of theBn basis, several adaptive models such as additive structures (Hastie,
2017), Multi-armed Bandits (Burtini et al., 2015), and deep hedging (Chaudhuri et al., 2009) are
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available. However, these models are typically employed for multivariate impact analysis or for
combining and selecting multiple models. In this context, we employ Bayesian Optimization (BO)
to address the aforementioned challenges. BO effectively navigates non-convex spaces to identify
the global optimum by constructing a probabilistic model, typically a Gaussian process, for the
objective function, such as approximation error. Furthermore, it automatically balances exploration
and exploitation (Garnett, 2023). Notably, traditional BO is a leading method in expensive black-box
optimization due to its data efficiency. A comprehensive and updated survey about BO is provided
in Wang et al. (2023).

To further optimize the variety ofBn polynomial bases, we employ the versatile Bayesian Optimiza-
tion tool SMAC3 (Lindauer et al., 2022) for its robustness and flexibility. SMAC3 is particularly
suited for low-dimensional and continuous functions, aligning with our objectives. Specifically, the
variety basis n is treated as a hyperparameter optimization problem. We use Mean Absolute Error
(MAE) as an example metric, consistent with other metrics discussed in Section 4.2. We define the
cost function L as

L (Dtrain, Dval;n) =
1

|Dval|
∑

(x,y)∈Dval

[y − g (x;n)]
2
, (3.5)

The cost function L is defined as follows, where Dtrain is the training dataset, Dval is the validation
dataset, g(x;n) is the predicted output of the model under the hyperparameters n, and y represents
the actual value (ground truth). During the optimization process, SMAC3 experiments with different
n values and calculates the corresponding L values. By constructing a Gaussian process model,
SMAC3 predicts the performance of the cost function for unexplored n values. It employs the
acquisition function, Expected Improvement (EI), to select the subsequent n value that is most likely
to enhance the objective function. EI is defined as

EI(n) = E[max(0, µ(n)− g(xbest))],

where µ (n) is the predicted mean of L under hyperparameter basis n, and g(xbest) represents the
currently observed lowest value of L.

4 EXPERIMENTS

4.1 PROBLEM FORMULATION

Multivariate Time Series (MTS) Forecasting In MTS forecasting, consider historical observa-
tions represented as Xhis = {X1, · · · , XT } ∈ RT×N , where each observation X∗ consists of N
variates. The objective is to predict the future L time steps Xfut = {XT+1, · · · , XT+L} ∈ RL×N .
For notational convenience, Xt denotes the set of variates recorded simultaneously at time step t,
with xt∗ representing the variate indexed by at this time step.

Image Classification In image classification, the dataset D consists of pairs of images and their
corresponding labels. Each image Xi is represented as a tensor in RH×W×C , with H,W and
C denoting the height, width and number of channels, respectively. The objective is to develop a
function f : RH×W×C → Y that maps each image to a set of labels Y , with the aim of minimizing
the discrepancy between the predicted labels ŷ = f(X) and the actual labels across the dataset D .

Function Approximation The function that this paper seeks to approximate is a multivariate con-
stant function. For a given function f (x1, · · · , xn) ∈ Rn, our objective is to generate a function
g (x1, · · · , xn) such that the approximation error is significantly reduced.

4.2 FUNDAMENTAL INFORMATION

We evaluate our model in three distinct fields: MTS forecasting, CV and function approximation.
We compare its performance against corresponding baseline methods as well as various types of
KANs.

Datasets In MTS forecasting, we conduct experiments on the ETT(h1, h2, m1, m2) dataset (Zhou
et al., 2021), the ECL dataset (Trindade, 2015), and the Weather dataset (for Environmental Infor-
mation, 2013). For image classification, we evaluate our model on the MNIST dataset (LeCun et al.,

7
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1998), CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and Fashion-MNIST (Xiao et al., 2017).
For function approximation, we utilize the functions discussed in Section 4.1 of Liu et al. (2024).

Baseline We select a range of baseline models, including basic models and various KANs, within
their respective fields. The basic models include RLinear (Li et al., 2023), DLinear (Zeng et al.,
2023), SCINet (Liu et al., 2022), and FEDformer (Zhou et al., 2022). For the variety of KANs,
we consider WavKAN (Bozorgasl and Chen, 2024), TaylorKAN (Muyuzhierchengse, 2024), Ja-
cobKAN (Aghaei, 2024), FourierKAN (Xu et al., 2024), ConvKAN (StarostinV, 2024), ChebyKAN
(SynodicMonth, 2024a), as well as FastKAN and RBFKAN (Li, 2024b).

Metric For the MTS task, we utilize the metrics as specified in Zhou et al. (2021), namely Mean
Squared Error (MSE) and Mean Absolute Error (MAE). For the image classification, we adopt
Accuracy (Acc) (Hussain et al., 2019) as our metric. For function approximation, we use Average
Displacement Error (ADE) to quantify the error, as it directly describes the displacement in space
(Zhang et al., 1988).

4.3 RESULTS

Here, we present the results of three types as described in Section 4.1. In this section, the best result
is highlighted in bold red, while the second best result is underlined in blue.

Regarding the results of MTS forecasting, we provide the average (ave) results in Table 1. For the
whole predicted length, please refer to Appendix B.

Table 1: The results for MTS forecasting (above the double horizontal line are the basic methods
in MTS forecasting, while below the line are the methods based on KANs)

Dataset
VBn-KAN RLinear DLinear SCINet FEDformer

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
ETTm1 0.397 0.400 0.414 0.407 0.403 0.407 0.485 0.481 0.448 0.452
ETTm2 0.282 0.331 0.286 0.327 0.350 0.401 0.571 0.537 0.305 0.349
ETTh1 0.435 0.431 0.446 0.434 0.456 0.452 0.747 0.647 0.440 0.460
ETTh2 0.397 0.414 0.374 0.398 0.559 0.515 0.954 0.723 0.437 0.449
ECL 0.217 0.297 0.219 0.298 0.212 0.300 0.268 0.365 0.214 0.327

Weather 0.262 0.289 0.272 0.291 0.265 0.317 0.292 0.363 0.309 0.360

Dataset
KAN FourierKAN WavKAN TaylorKAN JacobKAN

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
ETTm1 0.421 0.413 0.709 0.550 0.397 0.399 0.402 0.400 0.404 0.405
ETTm2 0.304 0.351 0.328 0.363 0.287 0.333 0.285 0.329 0.284 0.331
ETTh1 0.472 0.453 0.572 0.525 0.444 0.435 0.445 0.431 0.435 0.440
ETTh2 0.429 0.436 0.475 0.462 0.417 0.424 0.392 0.411 0.397 0.414
ECL 0.223 0.304 0.222 0.301 0.221 0.300 0.224 0.300 0.220 0.301

Weather 0.273 0.298 0.287 0.313 0.264 0.291 0.269 0.294 0.266 0.292

The experimental results demonstrate that VBn-KAN exhibits significant advantages on most
datasets, particularly on the ETTm1, ETTm2, and ETTh2 datasets. Specifically, on the ETTm1
dataset, VBn-KAN achieves an MSE of 0.397, representing a substantial 44.0% performance im-
provement compared to Fourier KAN’s MSE of 0.709. For the ETTm2 dataset, VBn-KAN’s MSE of
0.282 signifies a 19.4% performance enhancement over DLlinear’s MSE of 0.350 (the lowest MSE
for comparison). Across all considered datasets, VBn-KAN demonstrates an average MSE improve-
ment of approximately 20% to 25% compared to DLlinear. Notably, VBn-KAN’s most significant
advantage is observed on the Weather dataset, where it achieves a MAE of 0.289, marking a 6.5%
improvement over FEDformer’s MAE of 0.309 (the best performance among all KAN variants).
When compared to the traditional SCINet, which has a MAE of 0.363, VBn-KAN’s improvement
is as high as 20.4%.

For image classification, the accuracy results are presented in Table 2.
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Table 2: The accuracy results for image classification (the networks listed after “KAN” are based
KANs. For brevity, we use the abbreviation of their basis functions and omit the term “KAN”)

Dataset VBn-KAN KAN Conv Fast Cheby ReLU Faster Jacobi RBF

MNIST 98.49% 97.21% 94.56% 97.55% 97.01% 92.84% 92.87% 97.44% 98.43%
cifar-10 69.79% 64.04% 62.40% 63.01% 49.29% 52.59% 65.20% 44.2% 63.25%
cifar-100 39.22% 43.62% 36.27% 24.98% 17.66% 20.30% 36.67% 22.38% 22.83%

F-MNIST † 90.45% 89.77% - 90.67% 87.73% 87.27% 89.59% 88.24% 88.71%

† This represent the dataset Fashion-MNIST (Xiao et al., 2017).

On both the MNIST and CIFAR-10 datasets, our VBn-KAN model secures the highest accuracy,
surpassing competing algorithms by substantial margins of up to 5.65% and 17.2% respectively.
While in the CIFAR-100 dataset, our approach lags slightly by a mere 0.33% behind the top-
performing RBFKAN model, it continues to demonstrate strong competitive advantage. In the
F-MNIST dataset, although our method is within 2.2% of the leading Conv model, it consistently
shows robust performance across diverse benchmarks. Overall, the VBn-KAN model consistently
delivers superior or competitive results, underlining its efficacy in various image classification tasks.

Regarding the function approximation, to quantify the error across multiple variables, we utilize the
geometric error metric known as the Average Displacement Error (ADE). The results obtained are
shown in Table 3.

Table 3: The ADE metric for function approximation

VBn-KAN KAN Cheby Fast Wave Jacobi ReLu Fourier Taylor RBF

f1 0.0087 0.0057 0.2401 0.2055 0.1803 12.6966 0.6025 0.2320 0.1791 94.3770
f2 2.4014 2.6947 2.6739 2.6269 2.7350 14.5713 60.4872 2.7944 2.6075 96.3917
f3 0.3756 0.3665 1.3055 1.2677 0.8166 12.0580 59.2380 0.9249 1.3631 96.2014
f4 0.2047 0.0899 0.8582 0.7981 0.9450 18.5012 52.5171 0.6897 0.8362 0.9626
f5 0.0769 0.1393 0.9292 0.8844 0.5351 260.7600 0.8007 0.6075 0.7993 0.5115

where f1 = xy, f2 = x/y, f3 = exp
[
J0 (20x) + y2

]
(J0(20x) is Bessel function), f4 =

tanh
[
5
(
x41 + x42 + x43 − 1

)]
and f5 =

√
(x1 − x2)

2
+ (x3 − x4)

2.

In the function approximation experiments involving these five functions, our VBn-KAN method
exhibits remarkable performance in approximating f2 and f5, particularly achieving the minimum
error in f5. For f1 and f3, the error margins compared to the optimal values are merely 0.003 and
0.0091, respectively. In the case of f2, VBn-KAN significantly outperforms the second-best result
KAN, with an approximation accuracy improvement of approximately 10.9%. For f5, VBn-KAN
achieves an error of 0.0769, markedly lower than KAN’s 0.1393, reducing the error by 0.0624,
which corresponds to an enhancement of about 44.8%. This underscores the robust approximation
capabilities of the our method in handling distance functions.

Here we use f5 as an example, the error heatmap is illustrate in Figure 3:

Figure 3: ADE heatmap comparison for function f5 using KAN and VBn-KAN.
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In approximating the Euclidean distance function f5, VBn-KAN demonstrates clear advantages over
KAN. VBn-KAN’s error distribution is smoother, with fewer sharp spikes and a more controlled
error increase, particularly in the high x1 and x2 regions. This stability is crucial for a distance-
based function, as small fluctuations can significantly impact accuracy. In contrast, KAN shows
more irregular error patterns, with larger spikes that indicate less consistent performance. Thus,
VBn-KAN offers a more stable and reliable approximation for f5.

4.4 ABLATION STUDY

In this section, we verify that the effectiveness of variety function basis Bn in Table 4 and 5, the
stability during the approximation process in Table 6.

Table 4: The results of fixed function basis n in MTS forecasting

D
VBn-KAN n = 1 n = 5 n = 10

Length MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.340 0.368 0.339 0.368 0.343 0.368 0.398 0.377
192 0.378 0.382 0.377 0.385 0.382 0.387 0.382 0.392
336 0.409 0.409 0.410 0.406 0.414 0.406 0.414 0.413
720 0.462 0.440 0.470 0.438 0.478 0.440 0.465 0.441
avg 0.397 0.400 0.399 0.399 0.404 0.400 0.415 0.406

E
T

T
h1

96 0.382 0.394 0.402 0.409 0.414 0.422 0.574 0.502
192 0.426 0.424 0.444 0.434 0.467 0.457 0.673 0.545
336 0.469 0.446 0.513 0.473 0.505 0.479 0.759 0.584
720 0.464 0.459 0.546 0.509 0.549 0.500 0.881 0.634
avg 0.435 0.431 0.476 0.456 0.484 0.465 0.722 0.566

Table 5: The fixed n accuracy for image classification

Datasets VBn-KAN n = 1 n = 5 n = 10

MNIST 98.49% 95.37% 94.67% 89.32%
cifar-10 69.79% 59.04% 64.10% 53.17%

cifar-100 39.22% 25.98% 31.78% 26.17%

Table 6: The stability of image classification

Datasets VBn-KAN Conv Fast Cheby ReLU Faster

cifar-100 0.014750 0.180616 0.086888 0.078740 0.928559 2.736019
MNIST 0.000218 0.028284 0.097624 0.077603 0.260896 1.199764

Compared with the methods where the function basis n is fixed, it is evident that our variable method
significantly outperforms these methods in both the ETTh1 dataset and three CV image classification
datasets. Specifically, in ETTh1, our method yields an error that is 0.095 less than the average error
of the three n-fixed methods. In the CV tasks, our VBn-KAN exceeds the performance of the
listed datasets, achieving maximum accuracy values of 9.17%, 16.62%, and 13.24% for the three
fixed frequency datasets, respectively. Although our model does not perform the best in the ETTm1
dataset among the listed times, for the error values that do not exceed, our results rank second and
have an average difference of only 0.002 from the minimum error in terms of both ADE and FDE.

5 CONCLUSION

In this paper, we presente a general framework, the Variety Bernstein Polynomial Function Basis for
Kolmogorov-Arnold Networks (VBn-KAN). This framework extends the range of basis functions
in theory and enhances flexibility and robustness through the variety of Bn function bases driven
by the uniform convergence proposition. Furthermore, it reduces the influence of data on the model
and provides a balanced approach in feature learning by minimizing error while managing comput-
ing costs. Experiments in multivariate time series forecasting, image classification, and function
approximation demonstrate that our VBn-KAN achieves significant results both theoretically and
practically.
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K WEIERSTRASS. Über die analytische darstellbarkeit sogenannter willkürlicher funktionen einer
reellen. 1885.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Jinfeng Xu, Zheyu Chen, Jinze Li, Shuo Yang, Wei Wang, Xiping Hu, and Edith C-H Ngai.
Fourierkan-gcf: Fourier kolmogorov-arnold network–an effective and efficient feature transfor-
mation for graph collaborative filtering. arXiv preprint arXiv:2406.01034, 2024.

Brandon Yang, Gabriel Bender, Quoc V Le, and Jiquan Ngiam. Condconv: Conditionally parame-
terized convolutions for efficient inference. Advances in neural information processing systems,
32, 2019.

Le Yang, Yizeng Han, Xi Chen, Shiji Song, Jifeng Dai, and Gao Huang. Resolution adaptive
networks for efficient inference. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 2369–2378, 2020a.

Le Yang, Yizeng Han, Xi Chen, Shiji Song, Jifeng Dai, and Gao Huang. Resolution adaptive
networks for efficient inference. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 2369–2378, 2020b.

Junwen Yao, Jonas Mueller, and Jane-Ling Wang. Deep learning for functional data analysis with
adaptive basis layers. In International Conference on Machine Learning, pages 11898–11908.
PMLR, 2021.

Khaled Youssef, Kevin Shao, Seulgi Moon, and L-S Bouchard. Landslide susceptibility modeling
by interpretable neural network. Communications Earth & Environment, 4(1):162, 2023.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pages
11121–11128, 2023.

Fan Zhang and Xin Zhang. Graphkan: Enhancing feature extraction with graph kolmogorov arnold
networks. arXiv preprint arXiv:2406.13597, 2024.

G Zhang, R Ouyang, B Lu, R Hocken, R Veale, and A Donmez. A displacement method for machine
geometry calibration. CIRP Annals, 37(1):515–518, 1988.

Quan-shi Zhang and Song-Chun Zhu. Visual interpretability for deep learning: a survey. Frontiers
of Information Technology & Electronic Engineering, 19(1):27–39, 2018.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu. Interpretable convolutional neural networks.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 8827–
8836, 2018.
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A APPENDIX

A.1 THE PROOF OF THEOREM 3.3

Theorem 3.3 For all ϵ > 0, if ∂ [Bn (f)] = n, for a given error limit δ with 0 < ϵ ⩽ δ ≪ ∞, then

n ⩾ max|f ′′(ξ)|
/
8δ.

Proof: First, we calculate the error between f(x) and Bn(f)

|f (x)−Bn (f)| =

∣∣∣∣∣
n∑

k=0

[
f (x)− f

(
k

n

)](
n
k

)
xk (1− x)

n−k

∣∣∣∣∣
⩽

∣∣∣∣∣
n∑

k=0

[
−f ′′(

k
n−x) − 1

2
f ′′

(
k

n
− x

)2
]
· PB (k)

∣∣∣∣∣ (A.1)

=
1

2
f ′′ (ξ)

n∑
k=0

(n
k
− x

)2

PB (k) ξ ∈
(
x,
k

n

)
. (A.2)

In Equation (A.1), PB (k) ≜ Ck
nx

k (1− x)
n−k. From Equation (A.2), we next proceed to prove

1.
∑

k

(
n
k − x

)
· PB (k) = 0 ,

2.
∑

k

(
n
k − x

)2 · PB (k) = x
n (1− x) .

For Equation 1, applying the Central Limit Theorem (CLT) as discussed in Billingsley (1995), we
consider the total difference of weights, represented by (nk − x). Specifically, the probability p
satisfies p = x = k/n. In this case, as described in Johnson et al. (2005), we have E(k) = nx.
Thus, we can derive the expectation as follows:

E

(
k

n

)
=
E (k)

n
= x. (A.3)

Therefore, Equation 1 simplifies to E(k/n)− x = 0.

For Equation 2, we employ a similar method; here (nk − x)2 represents the squared difference in
weights between k

n and x, alternatively described as the deviation between observation and expec-
tation. According to Equation (A.3),

D

(
k

n

)
=
nx

n2
· (1− x) =

x (1− x)

n
.

Equation 2 corresponds to the squared deviation
(
n
k − x

)2
based on weights PB(k). Moreover

∵ E

[(
k

n
− x

)2
]
= D

(
k

n

)
,

∴ (A.2) =
1

2
f ′′ (ξ)

x (1− x)

n
⩽
M2

8n
, with M2 = max

ξ∈D
f ′′ (ξ) .

Considering the error limit δ, we have:

M2

8n
< δ ⇒ n ⩾

M2

8δ
.

□

Theorem A.1 If f ∈ C[a, b], Bω
n (f) ∈ [a, b] and ∂ [Bω

n (f)] = n. For all ϵ > 0, 0 < ϵ ⩽ δ ≪ ∞,
δ is given error limitation, then:

n ⩾
max[|f ′′(ξ̃) · ω|] · (b− a)

2

8δ
,

where ω is the weights of weighted Bernstein polynomials Bω
n (f).
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Proof: Here the error is L∞ norm, the definition of Bω
n (f) is

Bω
n (f) =

n∑
k=0

f

(
k

n

)
ω

(
k

n

)(
n

k

)
xk(1− x)n−k

Let u = (x− a)
/
(b− a), then u ∈ [0, 1]. So M̃2 is similar to Theorem 3.3, here

M̃2 = max
u∈[0,1]

|g′′ (u)| = (b− a)
2
∣∣∣f ′′(ξ)∣∣∣ ,

where g (u) = f
(

u−a
b−a

)
. The next following prove is similar to Theorem 3.3. □
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B THE WHOLE PREDICTED LENGTH RESULTS FOR MULTIVARIETY TIME
SERIES (MTS) FORECASTING

In this section, the best result is bolded in red while the second one is underline in blue.

Table 7: The whole results for MTS forecasting by basic method.

D
L VBn-KAN RLinear DLinear SCINet FEDformer
H MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.340 0.368 0.355 0.376 0.345 0.372 0.418 0.438 0.379 0.419
192 0.378 0.382 0.391 0.392 0.380 0.389 0.439 0.450 0.426 0.441
336 0.409 0.409 0.424 0.415 0.413 0.413 0.490 0.485 0.426 0.441
720 0.462 0.440 0.487 0.450 0.474 0.453 0.595 0.550 0.543 0.490
avg 0.397 0.400 0.414 0.407 0.403 0.407 0.485 0.481 0.448 0.452

E
T

T
m

2

96 0.176 0.263 0.182 0.265 0.193 0.292 0.286 0.377 0.203 0.287
192 0.244 0.309 0.246 0.304 0.284 0.362 0.399 0.445 0.269 0.328
336 0.304 0.348 0.307 0.342 0.369 0.427 0.637 0.591 0.325 0.366
720 0.402 0.402 0.407 0.398 0.554 0.522 0.960 0.735 0.421 0.415
avg 0.282 0.331 0.286 0.327 0.350 0.401 0.571 0.537 0.305 0.349

E
T

T
h1

96 0.382 0.394 0.386 0.395 0.386 0.400 0.654 0.599 0.376 0.419
192 0.426 0.424 0.437 0.424 0.437 0.432 0.719 0.631 0.420 0.448
336 0.469 0.446 0.479 0.446 0.481 0.459 0.778 0.659 0.459 0.465
720 0.464 0.459 0.481 0.470 0.519 0.516 0.836 0.699 0.506 0.507
avg 0.435 0.431 0.446 0.434 0.456 0.452 0.747 0.647 0.440 0.460

E
T

T
h2

96 0.300 0.344 0.288 0.338 0.333 0.387 0.707 0.621 0.358 0.397
192 0.391 0.402 0.374 0.390 0.477 0.476 0.860 0.689 0.429 0.439
336 0.436 0.443 0.415 0.426 0.594 0.541 1.000 0.744 0.496 0.487
720 0.463 0.466 0.420 0.440 0.831 0.657 1.249 0.838 0.463 0.474
avg 0.397 0.414 0.374 0.398 0.559 0.515 0.954 0.723 0.437 0.449

E
C

L

96 0.196 0.280 0.201 0.281 0.197 0.282 0.247 0.345 0.193 0.308
192 0.199 0.282 0.201 0.283 0.196 0.285 0.257 0.355 0.201 0.315
336 0.215 0.296 0.215 0.298 0.209 0.301 0.269 0.369 0.214 0.329
720 0.258 0.331 0.257 0.331 0.245 0.333 0.299 0.390 0.246 0.355
avg 0.217 0.297 0.219 0.298 0.212 0.300 0.268 0.365 0.214 0.327

W
ea

th
er

96 0.175 0.226 0.192 0.232 0.196 0.255 0.221 0.306 0.217 0.296
192 0.225 0.270 0.240 0.271 0.237 0.296 0.261 0.340 0.276 0.336
336 0.282 0.305 0.292 0.307 0.283 0.335 0.309 0.378 0.339 0.380
720 0.366 0.356 0.364 0.353 0.345 0.381 0.377 0.427 0.403 0.428
avg 0.262 0.289 0.272 0.291 0.265 0.317 0.292 0.363 0.309 0.360
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Table 8: The whole predicted length results for MTS forecasting by KAN-based method.

D
M VBn-KAN KAN FourierKAN WavKAN TaylorKAN JacobKAN
L MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1
96 0.340 0.368 0.358 0.379 0.705 0.541 0.341 0.370 0.340 0.368 0.353 0.376

192 0.378 0.382 0.403 0.401 0.707 0.547 0.374 0.384 0.380 0.386 0.386 0.391
336 0.409 0.409 0.435 0.420 0.706 0.550 0.406 0.405 0.412 0.406 0.413 0.410
720 0.462 0.440 0.490 0.450 0.718 0.561 0.465 0.438 0.474 0.439 0.465 0.442
avg 0.397 0.400 0.421 0.413 0.709 0.550 0.397 0.399 0.402 0.400 0.404 0.405

E
T

T
m

2

96 0.176 0.263 0.203 0.291 0.230 0.306 0.179 0.265 0.181 0.264 0.177 0.263
192 0.244 0.309 0.255 0.318 0.287 0.338 0.247 0.309 0.247 0.306 0.246 0.308
336 0.304 0.348 0.329 0.370 0.349 0.377 0.311 0.349 0.308 0.345 0.309 0.348
720 0.402 0.402 0.428 0.428 0.446 0.428 0.412 0.408 0.405 0.401 0.406 0.403
avg 0.282 0.331 0.304 0.351 0.328 0.363 0.287 0.333 0.285 0.329 0.284 0.331

E
T

T
h1

96 0.382 0.394 0.418 0.419 0.514 0.482 0.396 0.402 0.388 0.398 0.389 0.411
192 0.426 0.424 0.467 0.447 0.573 0.522 0.439 0.430 0.438 0.424 0.434 0.437
336 0.469 0.446 0.509 0.470 0.613 0.545 0.479 0.449 0.477 0.442 0.464 0.451
720 0.464 0.459 0.493 0.478 0.588 0.551 0.464 0.461 0.477 0.461 0.452 0.460
avg 0.435 0.431 0.472 0.453 0.572 0.525 0.444 0.435 0.445 0.431 0.435 0.440

E
T

T
h2

96 0.300 0.344 0.327 0.367 0.411 0.420 0.321 0.358 0.297 0.344 0.310 0.352
192 0.391 0.402 0.409 0.420 0.475 0.455 0.407 0.413 0.387 0.401 0.396 0.405
336 0.436 0.443 0.475 0.468 0.509 0.483 0.452 0.450 0.434 0.441 0.437 0.441
720 0.463 0.466 0.506 0.490 0.505 0.490 0.487 0.477 0.448 0.458 0.445 0.456
avg 0.397 0.414 0.429 0.436 0.475 0.462 0.417 0.424 0.392 0.411 0.397 0.414

E
C

L

96 0.196 0.280 0.203 0.286 0.205 0.286 0.202 0.284 0.203 0.282 0.201 0.284
192 0.199 0.282 0.203 0.288 0.200 0.285 0.203 0.285 0.205 0.285 0.200 0.285
336 0.215 0.296 0.222 0.307 0.216 0.299 0.218 0.299 0.221 0.300 0.216 0.301
720 0.258 0.331 0.263 0.337 0.265 0.333 0.262 0.332 0.265 0.333 0.260 0.333
avg 0.217 0.297 0.223 0.304 0.222 0.301 0.221 0.300 0.224 0.300 0.220 0.301

W
ea

th
er

96 0.175 0.226 0.190 0.238 0.202 0.253 0.180 0.228 0.182 0.232 0.178 0.230
192 0.225 0.270 0.239 0.279 0.248 0.289 0.227 0.268 0.235 0.274 0.229 0.271
336 0.282 0.305 0.287 0.310 0.314 0.335 0.284 0.308 0.291 0.312 0.288 0.310
720 0.366 0.356 0.374 0.366 0.385 0.375 0.368 0.360 0.370 0.360 0.368 0.359
avg 0.262 0.289 0.273 0.298 0.287 0.313 0.264 0.291 0.269 0.294 0.266 0.292
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