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Abstract
While recent years have seen rapid progress001
in image-conditioned text generation, image002
captioning still suffers from the fundamental003
issue of hallucinations, namely, the generation004
of spurious details that cannot be inferred from005
the given image. Existing methods largely use006
closed-vocabulary object lists to mitigate or007
evaluate hallucinations in image captioning, ig-008
noring the long-tailed nature of hallucinations009
that occur in practice. To this end, we propose010
a framework for addressing hallucinations in011
image captioning in the open-vocabulary set-012
ting. Our framework includes a new bench-013
mark, OpenCHAIR, that leverages generative014
foundation models to evaluate open-vocabulary015
object hallucinations for image captioning, sur-016
passing the popular and similarly-sized CHAIR017
benchmark in both diversity and accuracy. Fur-018
thermore, to mitigate open-vocabulary hallu-019
cinations without using a closed object list,020
we propose MOCHa, an approach harnessing021
advancements in reinforcement learning. Our022
multi-objective reward function explicitly tar-023
gets the trade-off between fidelity and adequacy024
in generations without requiring any strong su-025
pervision. MOCHa improves a large variety026
of image captioning models, as captured by027
our OpenCHAIR benchmark and other existing028
metrics. We will release our code and models.029

1 Introduction030

Image captioning, the task of generating text that031

describes an image, is one of the most fundamen-032

tal machine learning tasks combining vision and033

language. Unfortunately, hallucinations plague the034

current state-of-the-art (SOTA), making it less us-035

able for practical tasks that require confidence in036

the factual correctness of generated captions. Con-037

sider, for instance, the image in Figure 1. SOTA038

image captioning models can generate text that is039

highly semantically related to its associated im-040

agery, but also contains spurious details (“skate-041

board”). Such hallucinated spurious details either042

BLIP-2
A group of people jumping 
on a skateboard.

BLIP-2 + MOCHa
Several people jumping up 
and down a flight of stairs.

Figure 1: Hallucinated details (shown as highlighted
text) are prevalent in the outputs of modern image cap-
tioning models, such as the above generation sampled
from BLIP2 (Li et al., 2023a). By considering hallu-
cinations in the open-vocabulary setting, we can both
quantify and mitigate their effects, illustrated by the
improvement provided by our RL-based MOCHa frame-
work (+MOCHa).

damage user confidence or lead to uncritical accep- 043

tance of fallacious (and even potentially dangerous) 044

generated content (Chong et al., 2022; McGowan 045

et al., 2023; Chong et al., 2023). 046

Hallucinations may take a variety of forms in 047

text. However, prior work addressing hallucina- 048

tions in image captioning has largely focused on de- 049

tecting or mitigating hallucinations by using closed- 050

vocabulary object lists. While this simplifies the 051

problem under consideration, it fails to capture 052

the diversity of hallucinations observed in mod- 053

ern image captioning models. Thus, we propose 054

a framework for both quantifying and mitigating 055

hallucinations in the open-vocabulary setting. 056

While established benchmarks and metrics for 057

quantifying hallucinations in captioning models ex- 058

ist for closed-vocabulary object sets, they do not 059

exist (to our knowledge) in an open-vocabulary 060

setup. Accordingly, we introduce OpenCHAIR, 061

a new benchmark for quantifying object halluci- 062

nations in an open-vocabulary setting. We con- 063

struct our benchmark using text-to-image models 064

and large language models (LLMs) for generating 065

data and performing evaluation. This allows for 066

capturing and accurately quantifying a wide variety 067

of object hallucination types without being limited 068
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A dog with a hat running near a tree
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A cat is playing with a dog

A dragon running near a castle

A unicorn and an owl in a forest

A dragon stands near a wall

A horse is running from an owl
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Dataset Construction Evaluation

Figure 2: The OpenCHAIR Benchmark. We illustrate the construction of the OpenCHAIR benchmark via an LLM
and text-to-image generation model, and its usage for evaluating image captioning models. We first use captions
from MS-COCO as seeds to generate diverse synthetic captions. Using syntactic parsing and filtering heuristics, we
select for captions containing various open-vocabulary objects. We then generate images corresponding to these
captions, producing our benchmark of images linked with object annotations. To evaluate a captioning model, we
run it on this benchmark and compare predicted and GT object categories.

to a fixed set of categories. Moreover, our open-069

vocabulary evaluation method considers free-text070

predictions without referencing a fixed synonym071

list. Our evaluations show that this outperforms the072

CHAIR closed-vocabulary metric (Rohrbach et al.,073

2018) at capturing performance over diverse hal-074

lucinations, providing a complementary measure075

to CHAIR’s evaluation over eighty common object076

types on natural images.077

Equipped with this metric, we turn to hallu-078

cination mitigation. A major cause for halluci-079

nations in image captioning are deficiencies in080

the standard language modeling (LM) objective.081

The token-level language modeling objective does082

not directly optimize the sequence-level quality of083

generated text, and factual groundedness is inher-084

ently a sequence-level property of text. Yet, many085

prior works that directly optimize hallucinations086

in image captioning limit their scope to a fixed087

set of possible object tokens, e.g. objects in MS-088

COCO (Biten et al., 2021; Liu et al., 2022; Petryk089

et al., 2023), which is incompatible with an open-090

vocabulary setting.091

To mitigate hallucinations without using a092

closed-vocabulary object list, we introduce093

MOCHa, a Multi-Objective reinforcement learn-094

ing (RL) based approach for Mitigating Open-095

vocabulary Caption Hallucinations. We observe096

that RL applied to caption fidelity alone fails to097

preserve the semantic adequacy (i.e. descriptive-098

ness) of output text, while optimizing for the latter099

does not enforce factually grounded text. Our key100

insight is that these two goals can be jointly opti-101

mized at the sequence-level by applying RL with102

a multi-objective reward function. Furthermore,103

we perform this optimization fully automatically104

by leveraging SOTA text-based learned metrics,105

without requiring direct supervision. By consider-106

ing hallucinations in an open setting, we are able 107

to improve performance across diverse hallucina- 108

tion types, as demonstrated by our OpenCHAIR 109

benchmark as well as other metrics. Moreover, we 110

show that our approach can be flexibly applied to a 111

variety of captioning architectures and sizes. 112

Explicitly stated, our key contributions are: (i) 113

OpenCHAIR, a benchmark for open-vocabulary 114

object hallucinations in image captioning. (ii) 115

MOCHa, a framework for optimizing a wide ar- 116

ray of VLMs to produce high-quality factually- 117

grounded output. (iii) Experiments showing the 118

advantage of OpenCHAIR for measuring halluci- 119

nations in the open setting, and of MOCHa for 120

reducing them. 121

2 The OpenCHAIR Benchmark 122

To measure object hallucination in the open- 123

vocabulary setting, we propose the OpenCHAIR 124

(OCH) benchmark, consisting of ∼5K images il- 125

lustrating diverse object types in context, accom- 126

panied by an evaluation procedure to measure ob- 127

ject hallucinations in captioning models. Follow- 128

ing existing works (Minderer et al., 2022; Bravo 129

et al., 2023; Chatterjee et al., 2024), we consider 130

our benchmark to be open-vocabulary as it con- 131

tains diverse and uncommon items reflecting the 132

unlimited distribution found in the real world, as 133

well as having the ability to perform evaluation 134

against arbitrary strings. OpenCHAIR modifies 135

the previous object hallucination metric CHAIR 136

(Rohrbach et al., 2018), by relaxing its strong re- 137

liance on the object annotations in the MS-COCO 138

dataset, which constitute only 80 common object 139

types. We control the diversity of object types in 140

our benchmark by leveraging generative models to 141

produce synthetic caption-image pairs, providing 142

a complementary measure to CHAIR’s evaluation 143
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of a closed set of 80 commmon objects over nat-144

ural images. The use of synthetic images for this145

purpose is further motivated by prior works which146

show that models training on synthetic image data147

may generalize to favorable performance on real148

images (Tian et al., 2024), as well as the recent149

growth in usage of synthetic data in general (Sun150

et al., 2024; Betker et al., 2023). We provide an151

overview of OpenCHAIR below; further implemen-152

tation details are provided in the appendix.153

In order to create a new benchmark that enables154

measuring the hallucination rate of arbitrary ob-155

jects, while still maintaining high quality ground-156

truth captions, we use the pipeline illustrated in157

Figure 2. We first prompt the LLM Llama-2 (Tou-158

vron et al., 2023) with few-shot examples of image159

captions from MS-COCO, having it generate cap-160

tions with a similar style but containing diverse161

details (and in particular, objects that are likely not162

contained in the closed set of MS-COCO object163

labels). We then parse these synthetic captions164

with a syntactic parsing model, identify nouns with165

high concreteness scores (Brysbaert et al., 2014)166

(as these generally represent concrete objects), and167

balance the generated captions among object types168

to cover a wide array of objects. Subsequently, we169

utilize the text-to-image diffusion model Stable Dif-170

fusion XL (Podell et al., 2023) to generate images171

from these newly formed captions. This process172

results in a dataset that consists of synthetic im-173

ages with corresponding captions including diverse,174

open-vocabulary objects. While this approach natu-175

rally scales to any number of desired image-caption176

pairs, we generate 5K such pairs (the same order of177

items found in the widely-used MS-COCO Karpa-178

thy test split) and perform manual filtering to assure179

each pair’s alignment and general quality. In total,180

we removed a small minority (3%) of generated181

image-caption pairs. Figure 3 shows examples of182

image-captions pairs from OpenCHAIR.183

Captioning models may predict free-text objects184

semantically matching the ground-truth while tak-185

ing a different surface form (e.g. chihuahua vs.186

dog). To capture this in the open-vocabulary set-187

ting (rather than using a fixed list of synonyms as188

done in CHAIR), we evaluate captioning models189

as follows: After predicting a caption for each im-190

age in the OpenCHAIR dataset, we parse them to191

identify objects as described above. For each ex-192

tracted object o, we compare it to the ground-truth193

synthetic caption c by prompting an LLM, asking194

it whether an image with caption c contains the ob-195

“A green emerald is

perched on a rock

in a cave."

“A group of

mushrooms in the

forest."

“A dog dressed as a

human with a wig

and eyeglasses."

Figure 3: OpenCHAIR Examples. We show examples
of images from the OpenCHAIR benchmark along with
their accompanying ground-truth captions, illustrating
its diverse coverage of object types. Long captions are
truncated due to space considerations.

GT: A child playing the drums

CHAIROpenCHAIR

LLM: Man ∉ GT
LLM: Guitar ∉ GT

Hallucinations: {Man, Guitar}

Man ≈ Child
Guitar ∉ COCO list

Hallucinations: {}

Prediction: A man playing the guitar

Figure 4: OpenCHAIR vs. CHAIR. In the above the
predicted object guitar would not be counted by CHAIR
since it is not in its fixed vocabulary, while man would
not be classified as a hallucination since it is defined
by CHAIR as a synonym of child. In contrast, Open-
CHAIR’s LLM classifies both as hallucinations.

ject o and using its answers to count hallucinations. 196

Following CHAIR, we calculate the hallucination 197

rate as nh/ntot, where nh is the number of hallu- 198

cinated objects (no answers) and ntot is the total 199

number of objects considered. Figure 4 illustrates 200

the difference between OpenCHAIR evaluation and 201

the closed-vocabulary CHAIR metric. 202

3 The MOCHa Framework 203

To mitigate captioning hallucinations in the open- 204

vocabulary setting, we propose MOCHa, an RL- 205

based pipeline using SOTA methods for stable rein- 206

forcement along with a carefully designed reward 207

function that jointly optimizes for caption fidelity 208

and semantic adequacy. Figure 5 presents it. We 209

turn to describe the learning procedure and objec- 210

tives used in MOCHa. We start with preliminaries, 211

then describe the reward function that MOCHa op- 212

timizes (Section 3.1), and finally present the RL 213

algorithm used for optimization (Section 3.2). 214

Preliminaries. In general, RL views a model as an 215

agent that interacts with the external environment 216

and receives a reward, learning to optimize for this 217

reward via exploring the environment (Sutton and 218

Barto, 2018). In the case of image captioning, this 219

model is a VLM operating in an environment of 220

images and reference captions (Rennie et al., 2017). 221
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generated 
captions KL-Penalty

Regularization
BERTScore
Adequacy

NLI
Fidelity

reference caption
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𝑃( ) ⋅ 𝑟𝑛 

+

+

PPO Objective

backprop

Multi-Objective Reward Model

M

generated captions

M

Figure 5: MOCHa scheme. The algorithm iteratively collects a minibatch of data from an image captioning model
M (left side) and then applies an optimization step to the captioning model (right side). The multi-objective reward
reinforces M to produce captions closer to the high-scoring captions and further from the low-scoring captions.

During training, the agent generates a caption by222

sampling from its own predicted distribution as223

shown in Figure 5 (left), receiving a reward based224

on an estimate of the caption quality. After collect-225

ing a full batch of rewards, a RL optimization step226

is applied as shown in Figure 5 (right), and this227

process repeats iteratively until convergence.228

We use the following notation: Let T and I be229

the sets of possible texts and images, with joint dis-230

tribution X . Given image i ∈ I , an image caption-231

ing model M with weights θ induces a conditional232

probability distribution πθ(·|·) over generated cap-233

tions ĉ ∈ T conditioned on images i ∈ I . In the234

RL context, we refer to πθ as the policy. A reward235

function r : T × T × I → R assigns reward (or236

score) r(ĉ; c, i) to generated caption ĉ relative to237

ground-truth caption c and image i.238

3.1 Reward Function239

We wish to optimize for the competing objectives240

of output fidelity (low hallucination rate) and ade-241

quacy (including sufficient details to describe the242

input image), as optimizing for one of these alone243

causes the other to deteriorate (as shown in our244

ablations). We also wish to preserve other desired245

generation properties such as fluency and diver-246

sity. To achieve this, we design a reward function247

combining multiple objectives as follows:248

Fidelity Objective. (rf ). To measure output fi-249

delity to the input image, we use the GT refer-250

ence captions as a proxy, checking for logical con-251

sistency via a pretrained Natural Language Infer-252

ence (NLI) model. This outputs the probability253

p(ĉ, c) that the generated text ĉ logically contra-254

dicts c, serving as a strong signal for fidelity, as255

details which contradict ground-truth information256

about the image are guaranteed to be hallucina-257

tions. We scale to the range [−1, 1] by using258

rf (ĉ; c) := 1− 2p(ĉ, c) as the fidelity reward. We259

implement this with BART (Lewis et al., 2019) fine- 260

tuned on the MNLI dataset (Williams et al., 2018). 261

We average values over all reference captions. 262

Adequacy Objective. (ra). To measure adequacy 263

(whether the output caption contains sufficient de- 264

tail), we use BERTScore (Zhang et al., 2019), a 265

pretrained model measuring text quality relative 266

to ground-truth references. We calculate its F1 267

value, scaled scale to be approximately in the range 268

[−1, 1] as described in the appendix. 269

KL Regularization. Following prior work (Jaques 270

et al., 2017, 2019; Ziegler et al., 2020; Stiennon 271

et al., 2020; Ouyang et al., 2022), we add a Kull- 272

back–Leibler (KL) divergence penalty to the re- 273

ward model which constrains the agent to stay 274

close to its initial policy π0. This serves to prevent 275

mode collapse (i.e. preserving diversity of outputs) 276

and adversarial policies which over-optimize the 277

reward function. The KL penalty adds a term pro- 278

portional to K(ĉ; i) := − log(πθ(ĉ|i)/π0(ĉ|i)) to 279

the reward, which limits the agent from excessively 280

distancing itself from the initial policy. 281

Combined Objective. Our total reward function 282

takes the form r(ĉ; c, i) := α · rf (ĉ; c) + (1− α) · 283

ra(ĉ; c) + βK(ĉ; i), where α ∈ [0, 1] and β > 0 284

control the trade-off between objectives. 285

3.2 Learning Procedure 286

To optimize for caption generations that satisfy the 287

desired properties (described above in Section 3.1), 288

we adopt the Proximal Policy Optimization (PPO) 289

RL algorithm (Schulman et al., 2017), which has 290

been used by recent works on text generation as 291

discussed in Section 5. This is a policy gradient al- 292

gorithm, meaning that it optimizes the parameters θ 293

in order to (approximately) maximize the expected 294

reward L(θ) = Ei,c∼X,ĉ∼πθ(ĉ|i) [r(ĉ; c, i)]. PPO 295

extends the REINFORCE algorithm (Sutton and 296

Barto, 2018), also known as SCST in the context 297
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of image captioning (Rennie et al., 2017), by using298

a clipped surrogate objective to avoid instabilities.299

4 Experiments and Results300

OpenCHAIR Analysis. We analyze the utility of301

OpenCHAIR by comparing its distribution of ob-302

jects to the existing closed-vocabulary CHAIR met-303

ric, as well as by performing a human evaluation304

to compare their correlations to human judgements305

of hallucinations.306

In the first column of Table 1 and in Figure 14307

(appendix), we show the difference in the num-308

ber of unique object types found in CHAIR and309

OpenCHAIR, which both contain approximately310

the same number of images (∼5K). The open-311

vocabulary design of OpenCHAIR enables a signif-312

icantly larger coverage of object types; in particu-313

lar, the 2.4K unique object types in OpenCHAIR314

reflect an approximately 30-fold increase relative315

to the 80 object types found in CHAIR. Further-316

more, we find that 53% of object types appear at317

most three times, and 22% appear only once, illus-318

trating OpenCHAIR’s coverage of the long tail of319

uncommon objects. This is also reflected qualita-320

tively, as the closed-vocabulary benchmark is miss-321

ing many common object types, including daily322

objects like shoe and guitar (see the left image in323

Figure 6 for a visual example). In contrast, our324

benchmark includes diverse object types, such as:325

pearl, tiger, sand, tricycle, corkscrew, toy, charcoal,326

text, pine-cone, grandfather, chocolate, wheelchair,327

wand, etc. A large sample of additional objects328

(those not included in CHAIR) can be found in329

openchair_objects.txt. Another source of con-330

fusion is its synonym list (e.g., see Figure 4).331

We show that OpenCHAIR evaluations are332

grounded in human intuitions via a manual evalua-333

tion, comparing its performance to that of CHAIR.334

For each benchmark (OpenCHAIR and CHAIR),335

we generate captions for a random subset of its336

dataset and manually check object-level decisions337

(predicted as existing or hallucinated) for over 400338

random objects. Results using various captioning339

models are found in Table 1. As the presence of hal-340

lucinations is highly imbalanced (the large majority341

of predicted objects are not hallucinated), we report342

balanced accuracy. We provide further details in343

the appendix, including full confusion matrices.344

Surprisingly, although operating over a much345

more diverse scope, OpenCHAIR achieves higher346

accuracy than CHAIR. We identify that this stems347

# Obj
Types

Balanced Accuracy
BLIP2 BLIP-L GIT-B OFA-L

CH 80* 0.844 0.774 0.899 0.810
OCH 2400 0.945 0.944 0.943 0.930

Table 1: Human Evaluation of OpenCHAIR and
CHAIR. We perform a manual evaluation of Open-
CHAIR and CHAIR object-level predictions, as de-
scribed in Section 4. As seen above, OpenCHAIR covers
a much larger variety of unique object types while also
outperforming CHAIR in per-object predictive accuracy
(of whether the given object is present or hallucinated).
*CHAIR includes also a synonym list.

Real Object:
Goose

Prediction:
Duck

CHAIR Object:
Bird

CHAIR:
No Hallucination

Coarse Synonym Lists

Scissors, Pencil, Spool,
Thread, Mat

Limited Vocabulary

Figure 6: CHAIR Limitations. The left image exhibits
CHAIR’s limited vocabulary. Out of all objects pre-
dicted by BLIP2, Scissors is the only object CHAIR
considers during the evaluation. The right image illus-
trates a limitation stemming from CHAIR’s use of a
fixed list of synonyms to coarsely aggregate different,
semantically similar objects. Hallucinations that occur
within the same synonym group are considered as a cor-
rect detection; in this example both Goose and Duck
are defined as synonyms of Bird even though the image
does not display a duck (but rather a goose).

from CHAIR’s heavy reliance on coarse synonym 348

lists, as seen in Figure 6 (right). By assess- 349

ing whether pairs of object names match using a 350

knowledgeable LLM, OpenCHAIR performs finer- 351

grained hallucination measurements and achieves 352

superior accuracy even in the more general open- 353

vocabulary setting. We note that this reflects a 354

trade-off between true and false positives, as pre- 355

dicted objects may not be found in OpenCHAIR 356

ground-truth lists despite being present in the ac- 357

companying images, due to the limited descriptive 358

capacity of text used to generate images. See more 359

details in the Appendix (Tables 3 and 4). 360

As OpenCHAIR was produced by automatic gen- 361

eration followed by manual filtering, we investi- 362

gate the effect of the small proportion of erroneous 363

data removed (3%) on performance. Table 12 (ap- 364

pendix) shows that it only marginally impacts the 365

resulting OpenCHAIR score, validating the high 366

quality of its automatic generation mechanism. 367
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Figure 7: Reducing Hallucinations While Maintaining Caption Quality. We show the relative improvement of
state-of-the-art VLM models when optimized using MOCHa optimization on the COCO Caption Karpathy test
set. CH and OCH refer to Chair and OpenCHAIR respectively. All results are generated by using their officially
provided checkpoints and hyperparameters. Full numeric results are provided in the appendix.

B
A man in a suit
and tie standing
by another man
in a suit and tie

A person taking
a tray of apples
out of an oven

A man sitting
on a couch talk-
ing on a cell
phone

B+M
A man in
a military
uniform talking
to a man in a
suit and tie

A person taking
a pan of food
out of an oven

A man sitting
on a couch us-
ing a laptop
computer

Figure 8: Qualitative results of MOCHa applied to
an image captioning model (BLIP-Large), along with
baseline results without optimization (noted as B+M, B,
respectively). We show captions (over COCO) produced
from each model using beam search decoding with five
beams. Hallucinated details are highlighted. The results
illustrate that MOCHa encourages captions with high
fidelity to the input image (avoiding hallucinations),
while preserving a satisfying level of detail.

MOCHa Implementation Details. We test im-368

age captioning with MOCHa on various SOTA369

image captioning models of varying architectures370

and across various sizes. In particular, we test371

BLIP (Li et al., 2022a), BLIP-2 (Li et al., 2023a)372

and GIT (Wang et al., 2022). Following standard373

practice in RL-based image captioning, we use374

models that have first been fine-tuned on with a375

standard language modeling loss on the caption-376

ing dataset, and then applying PPO reinforcement377

with our reward function (α = 0.5). See the ap-378

pendix for model checkpoints, parameter counts,379

and further training settings and hyperparameters.380

We test our method on the MS-COCO (Lin et al.,381

2015) captioning benchmark, using the data split382

of Karpathy and Fei-Fei (Karpathy and Fei-Fei,383

2015) (113K items for training, 5K for evalua-384

tion). We report standard captioning metrics along385
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Figure 9: Fidelity-Adequacy graphs for pretrained
(“initial”) and MOCHa-optimized BLIP models. As
seen above, varying the reward weighting α adjusts the
trade-off between caption fidelity (x-axis) and adequacy
(y-axis), with intermediate values outperforming the
initial model (“Initial”). This holds both for metrics we
directly optimize (left) and additional metrics (right),
illustrating the generalization ability of our approach.

with CHAIR (Rohrbach et al., 2018) and Open- 386

CHAIR over generated captions (beam search de- 387

coding with 5 beams). We also provide NLI (p) and 388

BERTScore values, directly optimized by MOCHa, 389

as described in Section 3.1. In the appendix, we 390

provide results on additional captioning datasets 391

and metrics to further demonstrate generalization. 392

MOCHa Results. Figure 7 presents quantitative 393

results of image captioning models on MS-COCO 394

showing the relative improvement of optimizing the 395

baseline SOTA captioning models with MOCHa. 396

As shown there, MOCHa improves measures of 397

hallucinations in image captioning while preserv- 398

ing or even enhancing standard measures of caption 399

quality. We note that this is despite the fact that 400

the trade-off between these qualities may degrade 401

one or the other when using a sub-optimal reward 402

weighting (see ablations below). Figure 8 provides 403

qualitative examples, illustrating that the MOCHa- 404

optimized model generates captions consistent with 405

the image while preserving a satisfying level of de- 406

tail, consistent with our numeric results. 407
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Quality
Hallucination

Closed Open
Model B@4↑ C↑ CHi↓CHs↓OCH ↓ p̄ ↓

BLIP 41.5 138.4 2.3 3.5 19.2 0.244
BLIP+L 5.5 0.0 12.1 35.4 31.8 0.321
BLIP+T 41.3 137.4 1.9 2.8 19.2 0.241
BLIP+M 41.9 139.6 2.1 3.1 18.3 0.206

BLIP-2 43.4 144.3 1.7 2.6 17.0 0.207
BLIP-2+L 5.7 0.0 12.1 33.6 28.4 0.259
BLIP-2+T 43.3 143.5 1.3 2.0 17.0 0.206
BLIP-2+M 44.0 144.3 1.4 2.3 16.6 0.199

Table 2: Comparison To Prior Works. Measured
for BLIP-Large and BLIP-2. +L/T/M refer to LURE,
TLC-A, and MOCHa respectively. B@4, C, CH, OCH,
and p denote BLEU-4, CIDEr, CHAIR, OpenCHAIR,
and NLI p(contr.) metrics respectively. All metrics are
measured over MS-COCO test set, except for OCH
which is measured over our OpenCHAIR benchmark.

Our quantitative results show that MOCHa im-408

proves performance over base captioning models409

by most measures, across model architectures and410

sizes – not only among metrics that we directly op-411

timize but also among non-optimized metrics, mea-412

suring general caption quality (e.g. CIDEr), closed-413

vocabulary hallucinations (CHAIR) and open-414

vocabulary hallucinations (OpenCHAIR). Along415

with our qualitative observations, this justifies our416

holistic approach to reducing hallucinations with-417

out restriction to a closed object list.418

MOCHa Comparisons. In Table 2 we compare419

MOCHa to LURE (Zhou et al., 2024) and TLC-420

A (Petryk et al., 2023), current SOTA methods ad-421

dressing VLM hallucinations, applied to the same422

pretrained BLIP and BLIP-2 models. LURE fails423

in the pure image captioning setting as its train-424

ing procedure encourages long-form, highly de-425

tailed outputs. While these are in-distribution for426

instruction-tuned VLMs, they represent an increase427

in hallucinations relative to concise captions, as428

well as an extreme deviation from the reference429

texts; thus it degrades performance across met-430

rics when applied to captioning models such as431

BLIP and BLIP-2. Regarding TLC-A, as it targets432

the objects in the closed-vocabulary object list of433

CHAIR, it shows an expected advantage in this434

metric, but does not improve the open-vocabulary435

hallucination rate (measured by OpenCHAIR) and436

even degrades other measures of caption quality,437

contrasting with the overall improvement shown by438

our method. More details and results are provided439

in Appendix B.3, B.4 and C.4. 440

A number of prior works have proposed dedi- 441

cated methods for reduced-hallucination image cap- 442

tioning, often using data modification or building 443

multi-component pipelines applied to older vision- 444

language backbones. In Table 8 (appendix), we 445

provide a comparison between these methods and 446

SOTA foundation VLMs applied as-is, reprodduc- 447

ing results for the dedicated methods UD-L (Biten 448

et al., 2021), CIIC (Liu et al., 2022), and COS- 449

NET (Li et al., 2022b). We find SOTA VLMs 450

outperform these methods across all metrics, moti- 451

vating our focus on optimization applied on top of 452

modern foundation models. 453

Ablations. We ablate the components of our re- 454

ward function, finding that optimizing for fidelity 455

alone degrades general caption quality, while opti- 456

mizing for adequacy alone fails to improve hallu- 457

cinations. This is seen in Figure 9 where extreme 458

values of α (0 or 1) correspond to the edges of the 459

curves. Adjusting the parameter α controlling the 460

trade-off between objectives traces a Pareto fron- 461

tier which outperforms the base model, showing 462

that joint optimization of these objectives has a syn- 463

ergistic effect. The effects of each reward function 464

component are also illustrated qualitatively in Fig- 465

ure 15 (appendix); removing rf from the reward 466

function leads to increased hallucinations, and re- 467

moving ra leads to captions that do not contain 468

sufficient details. We provide full numeric results 469

in the appendix, as well as ablating the effect of 470

our chosen RL algorithm and of the KL-Penalty in 471

our reward. 472

5 Related Work 473

We provide a short summary of related works here, 474

with an extended discussion of their methods and 475

differences from our work in the appendix. 476

Measuring VLM Hallucinations. Several works 477

have proposed holistic measures of generated text 478

fidelity with respect to an input image using embed- 479

ding similarities or learned metrics; such methods 480

(the “Similarity Based” metrics of Figure 10) in- 481

clude CLIPScore and variants (Hessel et al., 2022; 482

Shi et al., 2022), Semantic Fidelity (Agarwal et al., 483

2020), VIFIDEL (Madhyastha et al., 2019), and 484

FAIer (Wang et al., 2021). While these metrics 485

may correlate with the presence of hallucinations, 486

they are less interpretable as they do not provide a 487

discrete count of hallucinations in a predicted cap- 488

tion. By contrast, the POPE metric (Li et al., 2023b) 489
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Figure 10: VLM Caption Hallucination Taxonomy. We illustrate metrics (left) and algorithms (right) for
quantifying and mitigating hallucinations in image-conditioned text generation. We propose an explicit metric
for measuring open-vocabulary hallucinations (OpenCHAIR) and an open-vocabulary hallucination mitigation
algorithm (MOCHa). We mark each algorithm with the automatic hallucination rate metric with which it is evaluated
(Green – OpenCHAIR, Red – CHAIR). Further details are provided in Section 5.

compares ground-truth objects with a model’s an-490

swers when asked if each object is present; this491

is open-vocabulary but differs from our setting as492

it does not score predicted captions but rather as-493

sesses a VQA model’s general knowledge (indi-494

cated as “Model Assessing” in Figure 10(left)).495

Reducing VLM Hallucinations. Various methods496

for mitigating hallucinations in image captioning497

have been proposed (see Figure 10 (right)). Until498

recently, research on mitigating hallucinations in499

captions has largely considered object (noun) hal-500

lucinations, typically confined to a closed vocabu-501

lary, for instance, objects defined in MS-COCO.502

Such works include UD-L (Biten et al., 2021),503

CIIC (Liu et al., 2022), TLC (Petryk et al., 2023),504

ObjMLM (Dai et al., 2023), and Woodpecker (Yin505

et al., 2023). Unlike these works, we mitigate hallu-506

cinations in the more challenging open-vocabulary507

setting. The contemporary work LURE (Zhou et al.,508

2024) proposes a method for the open setting, but509

their proposed approach (complementary to ours)510

was not evaluated automatically in an open vocab-511

ulary setting due to the lack of an existing bench-512

mark. Figure 10 illustrates which explicit halluci-513

nation metric was used to evaluate each algorithm.514

As instruction-following VLMs rapidly develop,515

multiple concurrent works have considered halluci-516

nations in related tasks such as visual question-517

answering (VQA), applying RL-based methods518

adopted from research on LLMs (Gunjal et al.,519

2023; Sun et al., 2023a,b). These methods, which520

do not directly target our task, also require labo-521

rious human annotation to train a supervised re-522

ward model to penalize hallucinations, while our523

approach does not require any explicit supervision.524

Deep RL for VLM Text Generation. Deep RL 525

has been widely applied to text generation tasks 526

and specifically for optimizing classical image- 527

captioning metrics (Rennie et al., 2017; Stefanini 528

et al., 2022). Another more recent development 529

is the rise of deep RL for LLMs, which com- 530

monly uses the Reinforcement Learning from Hu- 531

man Feedback (RLHF) framework, which requires 532

manual human preference annotation for training a 533

reward model (Ziegler et al., 2020; Stiennon et al., 534

2020; Ouyang et al., 2022). Beyond LLMs, RLHF 535

has been recently applied to aligning multimodal 536

models with human preferences (Abramson et al., 537

2022). While such methods succeed in optimizing 538

sequence-level properties, they often suffer from in- 539

creased hallucinations as a side-effect of optimizing 540

for human preferences or standard NLG sequence- 541

level metrics (as illustrated in Appendix C.4). 542

6 Conclusion 543

We have shown the significance of operating in 544

an open-vocabulary setting to effectively quantify 545

and mitigate caption hallucinations. These are ex- 546

plicitly measured by our OpenCHAIR benchmark, 547

and our MOCHa framework allows for optimizing 548

captioning models to reduce such hallucinations 549

while preserving caption quality. This reduction is 550

demonstrated on our benchmark and other existing 551

metrics. Our method and benchmark may be ap- 552

plied flexibly to a variety of model sizes and archi- 553

tectures, which we foresee providing a framework 554

for future work on hallucination-aware captioning. 555
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7 Limitations556

While OpenCHAIR provides diverse coverage of557

object types, it does not directly measure non-558

object hallucinations (e.g. hallucinated attributes or559

relations between entities), which are also targeted560

by sequence-level approaches such as our MOCHa561

optimization. We have focused on objects as a562

natural extension of the existing closed-vocabulary563

object hallucination benchmark CHAIR, and due to564

the fact that extracting and comparing objects from565

image captions is a relatively well-defined task. Fu-566

ture work may consider extending our OpenCHAIR567

concept to non-objects, specifically, constructing568

a robust benchmark for evaluating hallucinations569

on the attribute-, relation-, predicate-level, or of570

other types, utilizing elements of our methodology571

such as open-vocabulary LLM evaluation. Further-572

more, we acknowledge that captioning models may573

show different performance on the synthetic images574

found in OpenCHAIR relative to natural images, al-575

though we have found it to correlate empirically to576

other hallucinations metrics and human intuition.577

We emphasize that our work does not solve578

the hallucination problem completely, although it579

presents a significant step towards this goal. Note580

also that we have focused in this work on the image581

captioning domain, while modern VLMs are often582

applied to diverse tasks such as VQA and visual583

instruction-following for which hallucinations also584

pose a significant challenge. We hope that our pro-585

posed strategy will pave the way for future research586

on hallucination reduction in all of these domains,587

in which open-vocabulary approaches also present588

significant promise.589

8 Ethics Statement590

This work focuses on measuring and mitigating591

hallucinations in visual-language models (VLMs).592

As such it is expected to increase the reliability of593

VLMs and the ability to measure their performance,594

which is important when using them in real world595

systems. This is expected to have a positive impact596

on the use of VLMs in the society. However, we do597

recognize that the foundation models used in the598

OpenCHAIR construction and evaluation pipeline599

and those used to calculate the MOCHa reward600

function could propagate biases. We anticipate601

further research into such biases before relying on602

our work beyond the research environment.603
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A Interactive Visualization868

For additional qualitative results, we refer the869

reader to the interactive visualization tool provided870

at index.html.871

We provide image captioning results using BLIP-872

Large with and without MOCHa for 350 randomly873

selected test images from MS-COCO (Lin et al.,874

2015) and Flickr30K (Young et al., 2014).875

To visually emphasize the hallucination rate in876

the predictions, for each model we calculate the877

NLI contradiction probability1 between the top878

beam and a ground-truth caption (which is depicted879

below the image), and report the difference in the880

contradiction probability between the two models.881

Samples are ordered via n-gram similarity between882

the predictions of both models, listing the most883

different predictions first, allowing for better em-884

phasizing items with evident differences first. This885

is calculated by considering the top 5 beams of886

BLIP as reference texts and the top 5 beams of887

BLIP+MOCHa as candidate sentences; we then888

compute the average BLEU (Papineni et al., 2002)889

score between each candidate and all references.890

B Additional Details891

B.1 MOCHa Implementation Details892

As discussed in Rennie et al. (Rennie et al., 2017),893

we reduce variance in gradient estimates by shifting894

the reward function to have zero mean; we apply895

this to the reward function before adding the KL896

penalty. To perform this shifting, we subtract the897

sample mean of this reward (without KL penalty)898

among all predictions for a given image in a mini-899

batch.900

During each training iteration, we build mini-901

batches by selecting 10 images and then generat-902

ing 10 predictions per image (hence 100 image-903

prediction pairs total). We use nucleus sam-904

pling (Holtzman et al., 2019) with p = 0.9 and905

temperature t = 1.2, and we cap generations to906

be at most 40 tokens. We apply PPO reinforce-907

ment with clipping parameter ϵ = 0.2. For our908

reward function, we use coefficients α = 0.5 and909

β ∈ [0.004, 0.06] (depending on the model opti-910

mized).911

During MOCHa training, we freeze the image912

encoder of all models, training the text encoder913

components alone. For BLIP-Large and BLIP-Base914

1Using the same pretrained NLI model described in the
main paper.

we use gradient clipping of 5, learning rate of 1e- 915

6 and 4 PPO steps in each iteration. BLIP-2 is 916

trained with low rank adapters (LoRA) over the 917

keys and values of the decoder attention layers (Hu 918

et al., 2021) with a learning rate of 1e-6. GIT-base 919

is trained with a learning rate of 1e-5 with 4 PPO 920

steps and gradient clipping of 5. 921

All model checkpoints are taken from the Hug- 922

ging Face Model Hub2): 923

• salesforce/blip-image-captioning-large 924

• salesforce/blip-image-captioning-base 925

• salesforce/blip2-opt-2.7b-coco 926

• microsoft/git-base-coco 927

We train these models for the following number of 928

iterations: 350 for BLIP-B, 1200 for BLIP-L, 3400 929

for BLIP-2, and 600 for GIT-B. 930

B.2 OpenCHAIR Implementation details 931

Generating Diverse Captions We start by pars- 932

ing all objects in MS-COCO’s human-annotated 933

captions by first identifying nouns via syntactic 934

parsing3. We then filter these for highly concrete 935

nouns, by using the values recorded by Hessel et 936

al. (Hessel et al., 2018) with threshold 4.5. We 937

used these objects, coupled with their correspond- 938

ing captions, to prompt an instruction-tuned LLM4 939

to rephrase the captions with different objects. We 940

used stochastic sampling with top-p of 0.9 and tem- 941

perature of 0.6 for this LLM generation. While this 942

stage increases the object diversity, we notice that 943

the output still includes many common objects that 944

have a significant overlap with those in MS-COCO. 945

To overcome this issue, we filter out all captions 946

that do not include rare objects, defining an object 947

as rare if its appearance frequency in the dataset is 948

in the lowest 10th percentile. The remaining cap- 949

tions are used as few-shot examples for a LLM5 950

(base, not instruction-tuned) to generate new cap- 951

tions, to further increase diversity. We used 10 few 952

shot example for each generated caption, and text 953

is generated using sampling with temperature 0.8. 954

We generate 2,000 captions from the LLM and feed 955

them as prompts to the text-to-image generation 956

model Stable Diffusion XL (Podell et al., 2023), 957

2https://www.huggingface.co/models
3Using the en_core_web_md pipeline from the

SpaCy (Honnibal and Montani, 2017) library.
4meta-llama/Llama-2-70b-chat-hf (4-bit quant.)
5meta-llama/Llama-2-13b
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which generates a single image for each caption.958

For image generation, we use 40 sampling steps959

and guidance scale of 10. We also employ negative960

prompting using the prompt “unclear, deformed,961

out of image, disfigured, body out of frame" to en-962

courage generation of clear objects in the output963

images.964

Evaluation on the OpenCHAIR Benchmark965

Evaluating a captioning model on OpenCHAIR966

is performed as follows: First, all the objects in967

the caption generated by the captioning model are968

extracted using the parsing method described in969

the previous paragraph. For each detected ob-970

ject, an LLM4 is prompted to determine whether971

the object is in the GT caption or not using the972

prompt: “<s>[INST] An image has the following973

caption: “⟨input caption⟩". Does the image con-974

tain the following object? “⟨input object⟩". Answer975

yes/no/unsure. The answer is: [/INST]" . We use976

greedy decoding for this stage. Objects for which977

the LLM answers “no” are counted as hallucina-978

tions and objects for which the LLM answers “yes”979

are counted as existing objects. We ignore objects980

that receive any other response, and report that the981

amount of such objects are <2% of the total objects982

considered. Finally, the OpenCHAIR hallucina-983

tion rate is calculated as OCH := nh/(nh + ne),984

where nh is the number of hallucinated objects and985

ne is the number of existing objects. We note that986

we added a short list of objects to ignore: [’paint-987

ing’, ’drawing’, ’photo’, ’picture’, ’portrait’, ’pho-988

tograph’]. Since the prefix of the prediction tends989

to have the following form: “A photograph of...”,990

“A picture of...”, these words are identified as con-991

crete objects and then classified as hallucinations992

by the LLM (as they dont appear in the GT caption),993

hence should be ignored.994

B.3 LURE Comparison995

To evaluate LURE (Zhou et al., 2024) in our setup,996

we followed the authors’ instructions6 and applied997

their pre-trained model (YiyangAiLab/LURE, over998

MiniGPT-4 with VICUNA-13b) to our predicted999

captions. Both BLIP-L’s and BLIP-2’s predictions1000

(with beam search decoding, 5 beams) were sup-1001

plied to LURE’s revisor along with the probabil-1002

ities of each predicted token for the highest scor-1003

5Reference ground truth captions: Painting of oranges, a
bowl, candle, and a pitcher (left) and A giraffe grazing on a
tree in the wilderness with other wildlife (right).

6https://github.com/YiyangZhou/LURE/blob/main/
README.md
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Figure 11: Precision-recall curve for selecting TLC-A
threshold. As detailed in (Petryk et al., 2023), we com-
pute a precision-recall curve over the predicted object
confidences. As illustrated above, the 99% precision
threshold recommended by Petryk et al. (Petryk et al.,
2023) cannot be achieved by BLIP-Large on the COCO
Karpathy validation set. Hence, in our setting we must
adjust the threshold to find a reasonable balance be-
tween precision and recall.

∅ a painting of oranges
and a silver pitcher on
a table

two giraffes eating
leaves from a tree

−rkl a painting of some
items

some giraffes in the
field

r a painting of a pitcher,
oranges, and a candle
on a table

a giraffe eating leaves
from a tree in a field

Figure 12: Ablating the KL-penalty reward. Above
we show captions sampled from various models: the
initial model (BLIP-Large) before optimization (∅),
the model with MOCHa optimization applied and KL
penalty ablated (−rkl), and an optimized model with
our full reward function (r). As is seen above, while
the base model outputs various hallucinations (e.g. a
silver pitcher), the model optimized without KL penalty
outputs generic texts without adequate detail, due to
over-optimization of the fidelity objective. Optimizing
with the full reward function yields captions that are
both descriptive and consistent with the input condition.
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BLIP2 Pred = ‘E’ Pred = ‘H’

GT = ‘E’ 332 42
GT = ‘H’ 0 54

BLIP-L Pred = ‘E’ Pred = ‘H’

GT = ‘E’ 353 44
GT = ‘H’ 0 31

GIT-B Pred = ‘E’ Pred = ‘H’

GT = ‘E’ 325 36
GT = ‘H’ 1 66

OFA-L Pred = ‘E’ Pred = ‘H’

GT = ‘E’ 336 45
GT = ‘H’ 1 46

Table 3: Human Evaluation of OpenCHAIR Bench-
mark. The tables illustrate a correlation measurement
between OpenCHAIR’s automatic hallucination anno-
tations (Pred) and manual human hallucination annota-
tions (GT). ‘E’, ‘H’ stand for ’object Exists’, ’object
Hallucinated’, respectively. BLIP2, BLIP-L, GIT-B and
OFA-L stand for BLIP2-2.7b, BLIP-Large, GIT-Base,
OFA-Large, all fine-tuned for image-captioning over
COCO.

ing beam. After additional parsing, LURE revised1004

BLIP-L’s and BLIP-2’s sentences, which we then1005

evaluated with various metrics. An example of this1006

procedure is given below:1007

• Original caption from BLIP-L, masked by1008

LURE’s algorithm: a woman standing in a1009

kitchen with [IDK]1010

• LURE instruction: According to the picture,1011

remove the information that does not exist in1012

the following description:1013

• LURE output revision: In the image, a smiling1014

woman is standing in a kitchen with various1015

food items spread out on a table. She seems1016

to be posing and enjoying the scene, perhaps1017

taken during a cooking session. The table1018

is filled with food, including several pieces1019

of sushi placed near the center, along with1020

some pasta on the left side, cucumbers near1021

the right side, and a couple of apples towards1022

the back.1023

B.4 TLC-A Comparison1024

In order to compare our method to TLC-A (Petryk1025

et al., 2023), we received code from its authors and1026

BLIP2 Pred = ‘E’ Pred = ‘H’

GT = ‘E’ 416 3
GT = ‘H’ 4 5

BLIP-L Pred = ‘E’ Pred = ‘H’

GT = ‘E’ 413 2
GT = ‘H’ 4 9

GIT-B Pred = ‘E’ Pred = ‘H’

GT = ‘E’ 412 1
GT = ‘H’ 3 12

OFA-L Pred = ‘E’ Pred = ‘H’

GT = ‘E’ 418 2
GT = ‘H’ 3 5

Table 4: Human Evaluation of CHAIR Benchmark.
The tables illustrates a correlation measurement between
CHAIR’s automatic hallucination annotations (Pred)
and manual human hallucination annotations (GT). ‘E’,
‘H’ stand for ’object Exists’, ’object Hallucinated’, re-
spectively. BLIP2, BLIP-L, GIT-B and OFA-L stand
for BLIP2-2.7b, BLIP-Large, GIT-Base, OFA-Large, all
fine-tuned for image-captioning over COCO.

implemented it in our setup. TLC-A is a decoding- 1027

time method applied to auto-regressive captioning 1028

models, and in our setting we apply it to differ- 1029

ent models (e.g. BLIP-Large) than those tested by 1030

Petryk et al (e.g. OFA). Of particular note is that 1031

TLC-A requires selecting a threshold confidence 1032

value, which is used in the decoding phase to re- 1033

rank generated beams according to the confidence 1034

assigned to COCO object tokens. Petryk et al. rec- 1035

ommend calibrating this threshold using the COCO 1036

validation set to achieve a precision level of at least 1037

99%; however, in our experiments we find that this 1038

value cannot be achieved by the models we con- 1039

sider without sacrificing most of the recall, as illus- 1040

trated in Figure 11. Therefore, we instead use the 1041

COCO validation set to select the best-performing 1042

threshold with respect to the CHAIR metric, as 1043

shown in Table 5. The selected confidence thresh- 1044

old is 0.33 and it achieves a precision of 98.3% and 1045

a recall of 84% over the validation set. 1046

C Additional Results 1047

C.1 Full Quantitative Results 1048

We show in Table 6 the full results, comparing the 1049

MOCHa optimized models (marked by +M) to the 1050

baselines (Figure 7 was prepared using this data). 1051
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TH P R B@4↑ C↑ CHi↓ CHs↓ p̄ ↓ BSc ↑

- - - 41.5 138.4 2.3 3.5 0.246 0.679

0.10 0.978 0.99 41.4 138.0 2.2 3.38 0.246 0.677
0.21 0.980 0.94 41.4 137.7 2.1 3.14 0.243 0.677
0.33 0.983 0.84 41.2 137.5 1.91 2.82 0.243 0.676
0.52 0.986 0.61 41.1 136.7 1.97 2.9 0.242 0.675
0.56 0.988 0.55 41.2 136.8 1.94 2.86 0.243 0.675
0.94 1 0.01 41.4 137.7 2.21 3.32 0.247 0.677

Table 5: Selecting a threshold for TLC-A. We evaluate TLC-A with different thresholds (as described by Petryk et
al. (Petryk et al., 2023)) over the COCO caption Karpathy validation set. In the first row we have BLIP without
TLC-A. We indicate the selected threshold which achieves the best CHAIR scores overall in bold. B@4, C, CHi,
CHs, BSc, p denote BLEU-4, CIDEr, CHAIR instance and CHAIR sentence, BERTScore, and NLI p(contr.) metrics
respectively. P, R are the precision and recall that each threshold (for predicted object confidences) achieves over
the validation set.

Model B@4↑ C↑ CHi↓ CHs↓ OCH ↓ p̄ ↓ BSc ↑

BLIP-B 24.8 87.5 2.6 2.8 17.6 0.206 0.557
BLIP-B+M (ours) 26.0 91.3 2.2 2.5 16.4 0.176 0.576

BLIP-L 41.5 138.4 2.3 3.5 19.2 0.244 0.679
BLIP-L+M (ours) 41.9 139.6 2.1 3.1 18.3 0.206 0.682

BLIP2 43.4 144.3 1.7 2.6 17.0 0.207 0.684
BLIP2+M (ours) 44.0 144.3 1.4 2.3 16.6 0.199 0.684

GIT-B 38.7 128.1 4.2 2.9 24.7 0.284 0.656
GIT-B+M (ours) 39.0 128.4 3.9 2.7 22.9 0.221 0.657

Table 6: Quantitative results for state-of-the-art VLM models on the COCO Caption Karpathy test set. +M refers
to MOCHa. BSc and p̄ denote BERTScore and NLI contradiction probability rewards. B@4, C, CH, OCH, BSc and
p denote BLEU-4, CIDEr, CHAIR (i for instance, s for sentence), OpenCHAIR, BERTScore, and NLI p(contr.)
metrics respectively. All results are generated by using their officially provided checkpoints and hyperparameters.
Best results are shown in bold.

LLaVa-RLHF BLIP-L+MOCHa

A man sitting on a

chair with a stuffed

animal, specifically a

teady bear, on his lap

a man sitting on a

chair holding a large

stuffed animal

Figure 13: LLaVa-RLHF vs. MOCHa. We illustrate
that RLHF training does not necessarily solve the hal-
lucination problem of VLM models by showing a gen-
eration produced by LLaVa-RLHF (Sun et al., 2023a)
compared to BLIP+MOCHa. For both models, we use
the prompt “a photography of" for generation. See
Table 10 for a quantitative comparison.

C.2 Comparisons of OpenCHAIR and CHAIR 1052

In Tables 3–4 we provide full numeric results for 1053

our human evaluation of OpenCHAIR and CHAIR 1054

across a variety of captioning model predictions, as 1055

we discuss in the main paper. 1056

In Figure 14, we illustrate the number of unique 1057

object types found in these benchmarks. We note 1058

that OpenCHAIR contains a much larger diversity 1059

of object types, even when considering the full 1060

contents of CHAIR’s synonym list. 1061

C.3 Additional Ablations 1062

Reward Ablations. In Table 9, we provide nu- 1063

meric results for ablating the fidelity and adequacy 1064

terms in our reward function. As discussed in the 1065

2Reference ground truth captions: A car with some surf-
boards in a field (left) and A boy holding umbrella while
standing next to livestock (right).
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Model OCH ↓ B@4↑ C↑ CHi↓ CHs↓ p̄ ↓ BSc ↑

BLIP-L 0.270 41.5 138.4 2.3 3.5 0.244 0.679
BLIP-L+M 0.259 41.9 139.6 2.1 3.1 0.206 0.682

−rf 0.267 43.0 142.3 2.8 4.4 0.249 0.691
−ra 0.257 41.1 132.9 1.5 2.3 0.174 0.66
−rkl 0.241 27.6 98.9 1.4 1.9 0.135 0.62
−ppo 0.287 39.4 127.6 2.5 3.76 0.212 0.664

Table 7: Additional ablation results. We ablate the effect of the KL penalty reward rkl and the selection of PPO
algorithm. As seen above, removing rkl causes the model to over-optimize the fidelity reward (p̄), while replacing
PPO with the simpler SCST algorithm (described in Section C.3) leads to instabilities that degrade performance
across metrics.

Model B@4↑ M↑ C↑ CHs↓ CHi↓

Dedicated
UD-L+OccXE 33.9 27.0 110.7 5.9 3.8
UD-L+OccSC 37.7 28.7 125.2 5.8 3.7
CIICXE 37.3 28.5 119.0 5.3 3.6
CIICSC 40.2 29.5 133.1 7.7 4.5
COSNetXE 39.1 29.7 127.4 4.7 3.2
COSNetSC 42.0 30.6 141.1 6.8 4.2

End-to-end
BLIP 41.5 31.1 138.4 3.5 2.3
BLIP-2 43.4 31.7 144.3 2.6 1.7

Table 8: Older dedicated methods for reduced-
hallucination captioning vs. end-to-end modern
VLMs for image captioning. Results are given on
the Karpathy test split of MS-COCO dataset, including
closed-vocabulary hallucination metrics as commonly
reported by such dedicated methods. B@4, C, M, CH
denote BLEU-4, CIDEr, METEOR, and CHAIR metrics
respectively. We see that older, dedicated methods with
weaker backbones are outperformed by modern VLMs
on all metrics, including the smaller BLIP(-Large) and
the larger BLIP-2(-2.7B). XE and SC indicate cross-
entropy and SCST (RL) optimization respectively. Best
and second-best metric values are shown in bold and
underlined text respectively.

main paper, removing either of these reward terms1066

leads to a degradation with respect to either halluci-1067

nations or textual quality, while using both together1068

displays a synergistic effect with hallucinations re-1069

duced (as reflected by metrics such as CHAIR)1070

while preserving or even improving caption quality1071

(as reflected by general textual quality metrics such1072

as BLEU-4). We also show a qualitative illustration1073

of these results in Figure 15.1074

We demonstrate the effect of our KL penalty in1075

the reward function by performing MOCHa opti-1076

mization without this term. As can be observed in1077

Figure 14: Object Type Coverage, CHAIR vs. Open-
CHAIR. We display the object type coverage of CHAIR
(over MS-COCO) and OpenCHAIR, measured as the
number of unique objects. In OPENChair, objects are
found using the parsing method described in Section
B.2. As can be observed, the proposed benchmark has
significantly greater coverage of different objects.

the fifth row of Table 7, optimization without this 1078

penalty improves the NLI-based reward p̄ while 1079

degrading other measures of text quality (including 1080

non-optimized metrics like CIDEr). We hypothe- 1081

size that allowing the model to freely deviate from 1082

its initial distribution encourages it towards a de- 1083

generate solution with respect to p̄, which may 1084

be the easiest reward term to over-optimize in an 1085

unconstrained setting. This is also reflected qual- 1086

itatively as seen in Figure 12. As illustrated in 1087

the figure, captions generated by the model trained 1088

without the KL penalty (−rkl) do not contradict 1089

the image, but rather contain generic text (e.g. a 1090

painting with some items), lacking adequate detail. 1091

By contrast, optimizing with the KL penalty re- 1092

ward yields captions that are both descriptive and 1093

consistent with the input condition, reflected in the 1094

improved scores across metrics in Table 7 and the 1095
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Model B@4↑ C↑ CHi↓ CHs↓ p̄ ↓ BSc ↑

BLIP 41.5 138.4 2.3 3.5 0.246 0.679
BLIP+M 41.9 139.6 2.1 3.1 0.206 0.682

−rf 43.0 142.3 2.8 4.4 0.249 0.691
−ra 41.1 132.9 1.5 2.3 0.174 0.66

Table 9: Reward Ablation. We ablate the effect of the
fidelity rf and adequacy ra terms in our reward func-
tion, finding that using each alone significantly degrades
performance with respect to hallucinations or textual
quality.

quality of predictions of the full reward model (r)1096

in Figure 12. This is attributed to the ability of the1097

KL penalty to mitigate over-optimization, which1098

benefits both optimized rewards.1099

PPO Ablation. We also ablated the selection of1100

RL algorithm, by replacing PPO with the SCST1101

algorithm upon which it is based (noting that SCST1102

is the common name for the REINFORCE algo-1103

rithm in the context of image captioning) (Sutton1104

and Barto, 2018; Schulman et al., 2017; Rennie1105

et al., 2017). As is seen in Table 7, PPO outper-1106

forms SCST across metrics, consistent with prior1107

work on PPO finding that it avoids instabilities dur-1108

ing optimization that may allow it to converge to1109

a more optimal solution (Schulman et al., 2017;1110

Ouyang et al., 2022; Ziegler et al., 2020).1111

C.4 Additional Comparisons1112

Comparison to Dedicated Models In Table 8 we1113

provide full numeric results for older dedicated1114

models compared to a modern VLM without fur-1115

ther optimization, showing that they are outper-1116

formed by all metrics.1117

Comparison to RLHF-Tuned VLMs. LLaVa-1118

RLHF (Sun et al., 2023a) is a concurrent work,1119

which aims to reduce hallucinations in instruc-1120

tion tuned models using factually-grounded RLHF.1121

In Table 10, we provide a quantitative compar-1122

ison between LLaVa-RLHF and BLIP+MOCHa1123

over 100 samples of the OPENChair benchmark.1124

For LLaVa-RLHF decoding we use both stochas-1125

tic sampling with the default parameters recom-1126

mended by the authors, as well as greedy sampling1127

(as beam search is not implemented for LLaVa-1128

RLHF). For a fair comparison, we use greedy de-1129

coding for BLIP+MOCHa as well. As LLaVa-1130

RLHF tends to generate long paragraphs which1131

follow an image description with subjective com-1132

mentary, we terminate generation after a single1133

∅
This is a picture of a
large old fashioned
car that was parked by
a group of people

People at festival
standing around in
open field

−rf
A car parked in the
grass with a surfer
standing near it

A woman standing
next to a herd of
animals with an
umbrella

−ra
Spectators could enjoy
the old fashions of the
fifties

That are some very
nice people who are
very fun to view them

r
A vintage car parked
on a field next to
people

A young man with a
large umbrella next to
a herd of animals

Figure 15: Ablating our multi-objective reward func-
tion. Above we show captions sampled from models
with different reward functions. Top row depicts the ini-
tial model (before optimization). As can be seen in the
table, generations of the base model (∅) and the model
trained without the fidelity objective (−rf ) contain vari-
ous hallucinations that contradict the image, like stating
that the car was parked by a group of people, confusing
between an ordinary person and a surfer, and stating
that the boy is a woman. In contrast, those from the
model without the adequacy objective (−ra) are generic
and neutral with respect to the image (without explic-
itly contradicting it), e.g. the abstract statement about
the spectators enjoying the old fashions of the fifties.
At last, optimizing for both (r) yields captions that are
both descriptive and consistent with the input condition,
similar to the reference captions2 that were provided by
human annotators.

sentence, which usually corresponds to an image 1134

caption. The instruction given to LLaVa-RLHF 1135

is “describe the image briefly". As seen in the ta- 1136

ble, our method outperforms LLaVa-RLHF by this 1137

measure of open-vocabulary hallucinations. This 1138

is further seen in Figure 13, which shows example 1139

captioning predictions for these models, illustrating 1140

that LLaVa-RLHF may be more prone to halluci- 1141

nations. 1142

Evaluation over Flickr30K dataset. We per- 1143

form a zero-shot generalization test by evaluating 1144

a MOCHa-tuned model on an additional dataset 1145

(different from COCO upon which the model was 1146

MOCHa-tuned). In Table 11 we can see that the 1147

model with MOCHa fine-tuning shows an improve- 1148

ment in metrics (NLI and BERTScore) that were 1149

optimized on the training data from COCO. Fur- 1150

thermore, we see that non-optimized text quality 1151
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Model OCH ↓

LLaVa-RLHFS 0.396
LLaVa-RLHFG 0.401
BLIP-L+MG 0.360

Table 10: OPENChair comparison between LLaVa-
RLHF and BLIP-L+MOCHa over 100 random samples.
For LLaVa-RLHF, S stands for stochastic sampling with
default parameters, and G stands for greedy decoding
(as beam search is not implemented for LLaVa-RLHF).
For fair comparison, we also apply greedy decoding to
BLIP-L+MOCHa.

Model B@4↑ C↑ p̄ ↓ BSc ↑

BLIP 29.0 73.2 0.335 0.603
BLIP+M 28.9 73.6 0.296 0.607

Table 11: Evaluation over Flickr30K dataset. We
perform a zero-shot evaluation of BLIP-Large with and
without MOCHa (performed on COCO) on an addi-
tional dataset. As seen above, improvements to the
optimized metrics (p̄ and BERTScore) transfer to the
new dataset, while other text quality metrics have simi-
lar values before and after MOCHa-tuning, suggesting
that overall text quality is generally preserved.

metrics have similar values between both models,1152

suggesting that MOCHa tuning generally preserves1153

overall text quality. Supporting this quantitative1154

evaluation, we provide detailed qualitative results1155

on the Flickr30K dataset in the attached visualiza-1156

tion tool.1157

D Extended Discussion of Previous Work1158

We provide here an extended discussion of related1159

methods, shown in Figure 10.1160

D.1 Similarity Based Metrics1161

CLIPScore (Hessel et al., 2022) propose CLIP1162

cross-modal similarity for detecting mismatches1163

between text and images, including hallucinations,1164

and Shi et al. (2022) propose a similar embedding-1165

based metric for video captioning. However, Xu1166

et al. (2023) find that CLIP tends to assign high1167

similarity to texts with minor modifications (“hard1168

negatives”) that contradict the corresponding im-1169

age. The Egoshots Semantic Fidelity metric (Agar-1170

wal et al., 2020) and VIFIDEL (Madhyastha et al.,1171

2019) use embedding similarity between object1172

annotations or detections in images and items in1173

predicted captions. FAIEr (Wang et al., 2021)1174

proposes a learned fidelity metric, which must be1175

MOCHa’s Improvement (OCH) in %
Model without filtering with filtering

BLIP-B 4.9% 4.8%
BLIP-L 2.0% 2.3%
BLIP2 7.3% 6.9%
GIT-B 7.0% 7.1%

Table 12: Performance of MOCHa with and with-
out manual filtering. We compare performance on the
OpenCHAIR (OCH) benchmark before and after it is
manually filtered, as measured by the improvement pro-
vided by MOCHa on OpenCHAIR scores across various
models. We observe similar results before and after fil-
tering, corresponding to the relative high quality of the
generated data and consistent with the small proportion
of data that was removed.

trained on automatically-generated scene graphs. 1176

Unlike these methods, our benchmark provides an 1177

explicit measure of hallucinations that can be di- 1178

rectly examined (predicted captions on the Open- 1179

CHAIR benchmark images). 1180

D.2 Closed Vocabulary Algorithms 1181

UD-L (Biten et al., 2021) identifies object halluci- 1182

nations with bias towards the prior distribution of 1183

objects in context found in the training data, and 1184

proposes the use of synthetically debiased captions. 1185

CIIC (Liu et al., 2022) focuses on captioning mod- 1186

els with a closed-vocabulary object detection back- 1187

bone, inserting components into the object detector 1188

and text decoder to reduce spurious correlations. 1189

TLC (Petryk et al., 2023) proposes a text decoding 1190

method applied to existing captioning models, to 1191

avoid generating COCO object tokens if they have 1192

insufficient confidence. The more recent work Ob- 1193

jMLM (Dai et al., 2023) proposes masking objects 1194

from closed vocabulary lists as a training objective. 1195

The concurrent work Woodpecker (Yin et al., 2023) 1196

combines closed-vocabulary object detection with 1197

LLM-guided decoding to avoid hallucinations in 1198

generated text. Unlike these works, our MOCHa 1199

optimization method does not rely on a closed list 1200

of object types. 1201
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