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Abstract

As the world changes, we need to be able to update our mod-
els and correct false information without costly retraining.
Knowledge-based model editing enables precise modifications
to the weights of large language models in order to modify
the information encoded within. Recent approaches have seen
success in enabling recall of edited information for thousands
of edits at once. However, these approaches fail to produce
edits that account for associated contextual information. We
present K-Edit, an effective approach to generating contextu-
ally consistent knowledge edits. By using knowledge graphs,
which maintain contextual consistency when an edge is edited,
we are able to generate additional contextual edits that en-
sure consistency of related information in the language model.
Our experiments demonstrate significant improvements in
multi-hop question answering while maintaining the general
effectiveness and scalability of model edits.

1 Introduction
The ability to pinpoint and edit knowledge within the parame-
ters of a Large Language Model (LLM) is a powerful tool for
maintaining alignment with an ever-changing world. Existing
approaches to direct model editing make shallow edits that
fail to integrate with contextual knowledge the model pos-
sesses (Zhong et al. 2023). This work proposes and explores
a simple solution to better enhance knowledge reasoning over
edits by including contextual and associated knowledge in
the editing process. We use the contextual consistency of
knowledge graphs when edited to improve the consistency of
language models under direct model editing.

Direct Model Editing (or Knowledge-based Model Edit-
ing) aims to change the implicit knowledge in an LLM’s
weights with no other changes to how the model is used
(Wang et al. 2023b; Mazzia et al. 2023; Yao et al. 2023).
Prior methods have focused on the ability to edit and recall a
new fact without affecting neighboring facts or general gen-
eration ability (Zhu et al. 2020; Mitchell et al. 2021; Meng
et al. 2022a,b). Recently, however, researchers have begun
to question the effectiveness of these edits through bench-
marks evaluating the ability of models to use these edits for
multi-hop reasoning (Zhong et al. 2023). For example, if
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we edit the British Prime Minister to be Rishi Sunak instead
of Boris Johnson, we would expect the model to be able to
answer Who is the British Prime Minister’s wife? with the
correct answer Akshata Murty. Existing direct model editing
techniques largely fail in this regard. We address this issue
by utilizing the relational information in knowledge graphs.

In this work, we propose K-Edit, a simple, yet effective,
approach of adding more contextual knowledge into the edit-
ing process. In contrast to text (and thus LLMs), knowledge
graphs are very simple to edit. Knowledge graphs are graph
databases encoding the relations between real-world entities.
Since the structure of knowledge is explicit in a knowledge
graph, editing a single edge immediately updates connected
associations as well. We propose a method that incorporates
these automatic associations into the editing process. After
an edit is made, we extract related contextual information
from a knowledge graph. We then construct contextual edits
that ensure the context is ingrained in addition to the initial
edit. Figure 1 shows the advantage of this approach.

Our results show that this method significantly helps with
the primary goal, as measured by significant improvement on
multi-hop reasoning over edited information. We even show
that such edits improve multi-hop reasoning even when the
required reasoning path does not directly appear in the con-
text. Our results also indicate that there is no cost to quality
as measured by other knowledge editing metrics, and that
thousands of such edits can be applied without degradation
compared to baselines.

Our contributions are

1. K-Edit, a new direct model editing algorithm for im-
proving contextual and associated knowledge awareness
through incorporation of knowledge graph data.

2. Experimental evaluation that shows improved multi-hop
reasoning with K-Edit and its ability to generalize.

3. Additional experiments and ablations showing no degra-
dation to other knowledge editing metrics and the ability
to apply thousands of such edits at a time.

2 Background
2.1 Knowledge Graphs
Knowledge graphs encode real world entities and the rela-
tions between them. The most prominent knowledge graphs
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Figure 1: Example of how K-Edit improves model editing. Whereas existing methods edit the model so that it recalls the correct
updated information, that new information is not associated with contextual information. The result is that the LLM is left with
an inconsistent world model in which “The Prime Minister is Rishi Sunak”, and “Rishi Sunak is married to Akshata Murty”,
but “The Prime Minister’s spouse is Carrie Johnson”. K-Edit fixes this by querying a knowledge graph (such as Wikidata) for
contextual information, and then turning that information into contextual edits, and applying it to the LLM to improve multi-hop
reasoning and consistency.

contain billions of edges covering a vast array of sub-
jects, such as Wikidata (Vrandečić and Krötzsch 2014)
and DBPedia (Lehmann et al. 2015). We define a knowl-
edge graph K = (E ,R, T ) where E is the set of enti-
ties, R is the set of relations, and T is the set of edges
(s, r, o) ∈ E × R × E that represent true relationship in
the knowledge base between subject s and o. For example, if
(Blank Space, performer, Taylor Swift) ∈ T , then the state-
ment “The performer of Blank Space is Taylor Swift” is
considered true. One feature of knowledge graphs is that if an

edge is updated, all multi-hop relations associated with that
edge will be correct without any additional explicit updates.

2.2 Knowledge-based Model Editing
We define some background notation and concepts for
knowledge-based model editing. Here we deal with edits
of the form, (s, r, o→ o∗), meaning we want to edit subject
s such that the relationship r now refers to object o∗ instead
of o. We define a text prompt tr(s) for the edit (also referred
to as a cloze statement) in which o∗ is the desired output, e.g.



Algorithm 1: K-Edit Algorithm

Require: Model θ0, Batch of initial edits B,
KG K = (E ,R, T ), context depth k

1: θ1 ← BatchEdit(θ0, B)
2: for i ∈ [2, ..., k] do
3: C ← GetContextualEdits(B,K, i) # edits of depth i
4: θi ← BatchEdit(θi−1, C)
5: end for
6: return θk # Returns the final model parameters

tprime minister(United Kingdom) = “The Prime Minister of {the
United Kingdom} is”. In this example the United Kingdom
is the entity for which we want to modify the Prime Minis-
ter association. In general, knowledge-based model editing
approaches seek to modify the model parameters θ such that
the prompt tr(s) will lead to the generation of text o∗.

2.3 Batch Editing
In order for our approach, K-Edit, to succeed, we rely on the
ability to make edits in a batch. Our approach works with
any such algorithm. For our experiments, we use MEMIT,
a state-of-the-art batch editing algorithm that can scale to
thousands of edits at once (Meng et al. 2022b). MEMIT is
the best option to use with K-Edit, and the only option that
can scale to large numbers of edits.

MEMIT has three key properties: (1) it computes the de-
sired model parameter changes for thousands of edits inde-
pendently, (2) it precisely targets associations of the subjects
to be edited, and (3) it can apply all edits together without
significant model degradation. Further background details on
how MEMIT works can be found in Appendix C as well as
in their paper.

3 K-Edit Algorithm
K-Edit leverages knowledge graphs to improve the quality
of model edits by incorporating contextual information. The
algorithm consists of three main steps that work together to
create more comprehensive knowledge updates.

Existing approaches modify representations of the subject
s such that the model generates the desired association o∗

for relationship r. However, generating the associated text
is not the same as internalizing the association. K-Edit uses
external knowledge bases to improve the quality of model
edits such that the new subject representation is integrated
with connected contextual associations.

K-Edit works according to the following steps. (1) initial
edits are applied the model using a batch editing approach
(e.g. MEMIT). (2) Contextual knowledge is extracted from a
knowledge graph around the edit and converted to contextual
edits. (3) The contextual edits are applied using the same
batch editing approach from step 1. This can be repeated for
deeper depths of multi-hop contextual knowledge. Algorithm
1 shows the high level algorithm for implementing K-Edit.

3.1 Creating Contextual Edits
Contextual edits are model editing prompts that are con-

structed to not just reinforce a simple edited fact, but also

Algorithm 2: GetContextualEdits

Require: Batch of initial edits B, KG K = (E ,R, T ),
current context depth d

1: C1 ← B
2: for i in [2, ..., d] do
3: Ci ← ∅ # Contextual edits of depth i
4: for all (s, r1, ..., ri−1 → o∗i−1) ∈ Ci−1 do
5: # Next-hops based on previous depth’s target object
6: N ← {(si, ri, oi) ∈ T | si = o∗i−1}
7: for all (o∗i−1, ri, o

∗
i ) ∈ N do

8: # Construct new edits using the next-hop edges
9: e← (s, r1, ..., ri−1, ri → o∗i )

10: Ci ← Ci ∪ {e}
11: end for
12: end for
13: end for
14: O ← ∅
15: for all (s, r1, ..., rd → o∗d) ∈ Cd do
16: # Create text prompts for each edit of depth d
17: O ← O ∪ {trd(rd−1(...(r1(s)))→ o2}
18: end for
19: return O # Returns all contextual edits of depth d

to ensure the fact is linked with connected facts (Examples
of connected facts in figure 1). With this goal in mind, we
design contextual edits that both require the model to recall
the edited information on its own and require the model to
follow the multi-hop relationships. The following section
describes the construction of such prompts.

For a given edit (s, r1, o1 → o∗1), we compute k-hop ed-
its by sampling relationships from the neighborhood of o∗1,
N (o∗1). We then combine these edges with the original edit
to get multi-hop edges of the form (s, r1, o

∗
1), (o

∗
1, r2, o2)

e.g. (United Kingdom, Prime Minister, Rishi Sunak), (Rishi
Sunak, spouse, Akshata Murty). Simply applying the edit
(Rishi Sunak, spouse, Akshata Murty→Akshata Murty)
would not work as the model already knows this information
(o∗1, r2, o2 → o2). Instead, we construct the edit statement in
a way that forces the model to incorporate both the edited
edge and associated edge together. Specifically, we construct
an edit of the format tr2(r1(s)) → o2 e.g. “The spouse of
{the United Kingdom Prime Minister} is→Akshata Murty”.
Here, r1(s) is a text template that maps to the object referred
to from s on relation r1 and presents it in text as a subject-
relation clause. We can see that this edit does not include o∗1
explicitly. As a result, the model must rely on the previously
updated association (s, r1, o1 → o∗1) in order to complete the
prompt.

We also note that we treat the United Kingdom Prime
Minister as the subject to edit which means the [Minister]
token rather than [Kingdom] token is the one that is the target
of the update. We do this in accordance with the findings of
Geva et al. (2023) that the final token of a subject aggregates
the information and relationships from preceding tokens. This
process allows the model to learn the 2nd hop association in
the context of the previous edit as opposed to memorizing
all 2-hop associations for the subject token. We note that



MQuAKE MultiCounterfact

#examples 3,000 10,000
#relations 36 34

Table 1: Dataset statistics.

1-edit 2-edits 3-edits 4-edits

2-hops 513 487 NA NA
3-hops 356 334 310 NA
4-hops 224 246 262 268

Table 2: Breakdown by number of hops and number of edits
for the MQuAKE dataset (MQuAKE-CF-3k version)

this setup is coincidentally similar to the approach used to
analyze models in Yang et al. (2024). It is encouraging that
our approach to edit multi-hop associations corresponds to
the way they discovered models perform latent multi-hop
reasoning in the first place. Algorithm 2 presents the detailed
description for constructing contextual edits of any hop depth.

3.2 Scaling Contextual Edits
One of the challenges with generating multi-hop contextual
edits is that the number of templates for editing rapidly ex-
plodes. For instance, with 50 relationship types, there are
potentially 2,500 different templates required for 2-hop con-
textual edits (though most of those will not exist in practice).
This could be solved naively by generating the templates
with an LLM but that could still get burdensome for larger
KGs or hop depths and could introduce errors. Instead, our
approach employs a linguistic mechanism that enables the
scalable creation of contextual edits for any hop length.

To use this method all that is needed is two text templates
for each relation type r. We require one template tr(s) that
creates a cloze statement for each relation r. This is a fill-
in-the-blank style prompt. For example, the template “The
Prime Minister of {s} is” prompts the model to complete the
association. Additionally we need one more template, r(s)
that creates a subject-relation clause that semantically refers
to the corresponding object e.g. ”the spouse of {s}”. With
these mappings we create a single cloze statement template
for a multi-hop edit, using the template tr1(r2(...(rk(s))).
This means we only need to create 2× |R| templates rather
than |R|k. Note that their is no dependence on depth k. Algo-
rithm 2 presents the method for constructing these contextual
edits. These more simple templates enable the easy use of
LLMs for further generation (Appendix E).

4 Experiments
We run experiments on K-Edit to evaluate its ability to in-
corporate contextual information under edits as well as the
general quality of the model edits produced.

4.1 Datasets
We use two datasets, MQuAKE (Zhong et al. 2023) and
MultiCounterFact(Meng et al. 2022b). Dataset statistics can
be found in Table 1.

The primary dataset, MQuAKE, is used for evaluating
multi-hop reasoning on edits (Zhong et al. 2023). This dataset
contains 3,000 multi-hop questions (2-4 hops) with each an-
swer based on 1-4 counterfactual edits. For example, the
question “What is the headquarters location for the broad-
caster of True Detective?” is paired with two edits: (True

Detective, broadcaster, HBO→ ABC) and (ABC, headquar-
ters location, New York City→ Los Angeles). These edits
are not real in the world, but are plausible counterfactual edits
that could be applied. This example was a two-hop question
with two edits, however, the number of edits does not need
to be the same as the number of hops. The exact breakdown
can be found in Table 2.

We also use a subset of MultiCounterFact dataset (Meng
et al. 2022b) derived from CounterFact (Meng et al. 2022a).
This dataset contains 30,000 counterfactual edits and is used
to evaluate the strength of an edit, whether unaffected neigh-
boring relations remain unchanged, and the generation ability
of the model post editing. The MultiCounterFact modifica-
tion ensures there are no direct conflicts between edits in the
dataset (i.e. no duplicate edits for a given subject and relation).
We use a subset of 10,000 questions for our experiments.

4.2 Baselines
We compare against a number of alternative direct model
editing baselines.

FT-W is a finetuning approach with weight decay to avoid
altering other memories or changing unrelated model behav-
ior (Zhu et al. 2020).

MEND uses a hypernetwork meta-trained to modify fine-
tuning gradients so that they produce higher quality edits
(Mitchell et al. 2021).

ROME uses counterfactual tracing to locate what layer of
the model contains the information to be edited before updat-
ing the MLP component in that layer (Meng et al. 2022a).

MEMIT (presented above) uses a similar objective to
ROME but modified to enable editing large sets of facts at
once, which none of the other baselines are able to do well
(Meng et al. 2022b). We consider this to be the main baseline
as it is also the editing mechanism we use in our K-Edit
implementation.

While there are a number of knowledge editing approaches
based on retrieval mechanisms, these methods fundamentally
alter the nature of the model. Our focus is on direct model
editing approaches. This is discussed further in the related
works section.

5 Results and Analysis
Our results show that K-Edit improves multi-hop contextual
reasoning over edited information without sacrificing in terms
of scalability or individual edit performance.

Table 3 shows our main results for GPT-J and Falcon-7b
on the MQuAKE dataset. We see that the model’s multi-hop
answering ability vastly exceeds the other baselines with a
relative improvement of 57.6% over the best baseline MEND



Model Algorithm Multi-Hop Multi-Hop CoT

GPT-J-6B

Base† 43.4 42.1

FT-W† 1.6 1.9
MEND† 9.2 11.5
ROME† 7.6 18.1
MEMIT† 8.1 12.3
K-Edit 14.5 (0.64) 17.0 (0.63)

Falcon-7b Base 38.1 43.3

MEMIT 5.87 12.57
K-Edit 11.1 (0.57) 18.43 (0.71)

Table 3: Results on MQuAKE multi-hop question answering and reasoning dataset over edited information. Results show that
K-Edit significantly improves Multi-Hop QA and is similar to ROME on chain-of-thought question answering. Base gives the
results of the unedited model on the original answers. Parenthesis show standard error of the mean estimate. † indicates results
from Meng et al. (2022b)

Model Algorithm Multi-Hop Multi-Hop CoT

MEMIT† 8.1 12.3
GPT-J-6B K-Edit (Generalize) 11.5 (0.58) 14.8 (0.65)

K-Edit 14.5 (0.64) 17.0 (0.63)
MEMIT 5.87 12.57

Falcon-7b K-Edit (Generalize) 8.2 (0.50) 16.3 (0.68)
K-Edit 11.1 (0.57) 18.4 (0.71)

Table 4: Generalization experiment in which the multi-hop edge being evaluated is removed from the contextual edits. This
shows that some of the K-Edit improvement stems from improved representations rather than more broad memorization of
associations. Results are for MQuAKE dataset. Parenthesis show standard error of the mean estimate. † indicates results from
Meng et al. (2022b)

(14.5% versus 9.2%) and close to doubling the performance
of ROME and MEMIT (+90.8% and +79.0% respectively).
Under Chain-of-Thought prompting, K-Edit significantly out-
performs MEMIT while slightly underperforming ROME.
We note that the MQuAKE results are from applying the
edits for one question at a time. ROME has noted weaknesses
when applying edits in bulk as will be discussed later.

We also compare K-Edit to MEMIT for Falcon-7b and
find a even greater improvement than for GPT-J with the
multi-hop accuracy nearly doubling.

While K-Edit significantly improves multi-hop accuracy,
we note that there is still room for improvement. The GPT-J
Base model gets 43.4% accuracy on the unedited answers
which sets a rough upper bound for where we could expect
to see results.

5.1 Generalization
One question that may arise is whether the benefit of K-Edit
is simply from the multi-hop questions being covered by the
contextual edits. Specifically, are the observed gains due to
brute force inclusion of related information or is there an
aspect of K-Edit that improves the edited representations in
a more generalized way? To address this question, we run
additional ablation experiments in which the question edges
from MQuAKE are filtered out of the contextual edits. We

Algorithm Num Hops

2 3 4

MEMIT† 18.2 4.8 10.1
K-Edit (Generalize) +1.9 +5.2 +4.2
K-Edit (Memorize) +6.0 +0.3 +0.4

Table 5: Breakdown by number of hops showing the incre-
mental accuracy gain over MEMIT due to generalization and
memorization. The gain from generalization is spread across
all the question types. While as expected the gain from memo-
rization is concentrated on the two hop questions. Results are
for GPT-J-6B on the MQuAKE dataset using CoT reasoning.

present these experiments in Table 4. We see that while per-
formance does decrease (as expected), it is still significantly
better than the original MEMIT performance. Specifically,
we observe that roughly half of the improvement from K-Edit
generalizes to edges not covered by contextual edits. This is
a somewhat surprising result. Including contextual edits on
tangentially related edges improves the quality of original
edit such that other multi-hop information is easier for the
model to retrieve. The implication of this is that the quality
of K-Edit is not solely limited to the relation types present in



Algorithm Score Efficacy Paraphrase Specificity Fluency Consistency

FT-W@1 64.4 100.0 73.8 43.4 614.7 34.9
MEND@1 62.8 97.2 52.8 53.9 620.6 32.3
ROME@1 91.9 99.9 99.5 79.5 619.9 42.5
MEMIT@1 91.6 99.8 95.2 81.7 621.5 41.5

K-Edit@1 90.1 100.0 (0.0) 91.6 (0.85) 80.8 (0.98) 622.2 (0.53) 40.7 (0.44)

FT-W@1,000 71.1 99.6 75.2 53.1 258.1 17.0
MEND@1,000 48.4 45.2 46.3 54.9 527.4 15.4
ROME@1,000 60.3 68.2 64.4 51.0 509.9 6.8
MEMIT@1,000 90.5 99.7 93.4 80.6 622.0 41.4
K-Edit@1,000 90.6 99.8 (0.14) 95.3 (0.56) 79.5 (0.81) 620.2 (0.55) 41.7 (0.39)

Table 6: Results on MultiCounterfact dataset (from MEMIT) with GPT-J. K-Edit does not degrade and in fact, may actually
improve editing ability. Results@1 indicates performing a single edit at a time. @1,000 indicates performing 1,000 edits at
once. Efficacy measures memorization of the edit. Paraphrase measures robustness to paraphrases. Specificity measures whether
other similar facts remain unchanged. Fluency measures entropy of generated text. Consistency measures the TF-IDF similarity
between generated text about the subject and a reference text about the new object. Formal definitions are in the appendix.

Algorithm Multi-Hop Multi-Hop CoT

MEMIT 8.1 12.3
K-Edit-Parallel 12.6 (0.61) 12.7(0.61)
K-Edit 14.5 (0.64) 17.0 (0.63)

Table 7: Results showing the necessity of sequential updates
in K-Edit.

the knowledge graph.
When we break down these gains by the number of hops,

we see that the gains from generalization are spread across
the dataset, with gains on 2, 3, and 4-hop questions. Table
5 shows the incremental gain from generalization and from
memorization on GPT-J using CoT reasoning. We see that the
incremental gain from memorized associations are concen-
trated on the 2-hop questions. This is expected since we only
use 2-hop contextual edits in our experiments. This is also
evidence that K-Edit could perform even better if contextual
edits of greater depth were included.

When we filter the analysis for questions with only a single
edited hop, we find only a 2.8% accuracy difference perfor-
mance between full K-Edit and the generalization ablation,
and absolutely no difference if employing CoT reasoning.
This makes sense since questions with multi-edits would be
especially hard to generalize. Generalization relies on us-
ing some degree of the LLM’s implicit knowledge. When
that knowledge is also edited, it would be much harder to
associate the correct contextual information.

5.2 Edit Quality Remains High for Standard
Metrics and Larger Scales

K-Edit’s edit quality remains high when evaluated under
metrics other than multi-hop accuracy (see Table 6). These
experiments show the results of running editing algorithms
when only a single edit is applied at a time (@1) or when
batches of 1,000 edits are applied at a time (@1,000). We see

that K-Edit is at or near state-of-the-art for all metrics for both
@1 and @1,000. While ROME slightly outperforms K-Edit in
@1 results, it dramatically underperforms in results @1,000.
The overall score (harmonic mean of efficacy, paraphrase,
and specificity) for ROME@1,000 is 60.3 relative to K-Edit’s
90.6.

Compared to MEMIT we see highly comparable scores
across the board. We note that while K-Edit does introduce
additional edits in the form of contextual edits, these edits
are primarily there to reinforce the associated information of
the initial edit. As a result, there is no noticeable impact to
scalability. Though further research is needed to understand
the full scalability limits of K-Edit.

Unfortunately, while the edits in the MultiCounterFact
dataset do not conflict with each other directly, the contextual
edits of K-Edit might conflict with the dataset as we treat
the knowledge graph as a source of truth when applying the
contextual edits. For example, if one question includes the
edit (LA Lakers, owner, Jeanie Buss→ Bill Gates), K-Edit
would include the contextual edit for “The owner of the LA
Lakers was born in→Seattle”. However, if another question
included the edit (Bill Gates, place of birth, Seattle→New
York), it would create a conflict. This could result in lower
Specificity, Efficacy, and Generalization for K-Edit@1,000.
However, this is not common and the affect is not large.

5.3 Sequential Ordering is Important
K-Edit applies the contextual edits after applying the orig-
inal edits. This is so that the contextual edits can refine the
initial edit to incorporate the related information. We find
that running K-Edit in parallel (meaning the model updates
for both original edits and contextual edits are computed at
the same time) leads to significant decline in performance.
Table 7 shows the importance of using sequential edits com-
pared to parallel ones (14.5 to 12.6 and 17.0 to 12.7 for CoT
reasoning). We theorize that when the contextual edits are
not applied after the initial edits, the model may be updating
the wrong associations. For instance, in our running example,



Multi-Hop Accuracy

Edits\Hops 2 3 4 All

1 30.6 7.0 28.1 22.4
2 15.6 9.3 16.67 13.9
3 NA 2.3 5.0 3.5
4 NA NA 8.2 8.2

All 23.3 6.3 13.9

Multi-Hop CoT Accuracy

Edits\Hops 2 3 4 All

1 31.0 5.6 20.5 20.6
2 20.9 7.8 21.5 17.0
3 NA 18.4 12.2 15.6
4 NA NA 6.0 6.0

5 26.1 10.3 14.7

Table 8: GPT-J multi-Hop accuracy on MQuAKE by number of hops and number of edits.

if Boris Johnson is still associated as “the United Kingdom
Prime Minister”, the algorithm may be updating the spouse
of Boris Johnson rather than enhancing the association of
Rishi Sunak as Prime Minister.

5.4 Analysis by number of hops and edits
We see an overall trend of declining performance with in-
creasing number of hops. However, the 4-hop questions have
actually better performance than the 3-hop questions. The
primary reason for this is that the MQuAKE dataset contains
a more limited variety of reasoning paths for 4-hops relative
to 3-hops and the LLM happens to perform better with those
style of questions.

The trend for the number of edits is much clearer in that
the more edits there are that affect a question, the lower the
performance is. This makes sense as each edit increases the
chance of the edit being improperly incorporated. There are
some outliers in this trend such as for 3-hop questions, in-
creasing the number of edits increases the CoT performance.
We suspect there may also be some unexpected interactions
when multiple edits are applied at once. Since, these are coun-
terfactual edits, the surrounding context may actually imply
contradictory information. For instance, if we modify (Hello,
performer, Adele→Taylor Swift) and change (Taylor Swift,
citizenship, United States→Belgium). The contextual edit for
the first edit contains both ”The performer of Hello was born
in”→”United States” which may be slightly contradictory to
the ”citizenship” edit. In a real world setting, the knowledge
graph will change in ways that are consistent with real-world
correlations. As a result, we would not need to worry about
such behavior outside of rare edge cases.

6 Related Works
Direct Model Editing Works These approaches include
aforementioned works (Zhu et al. 2020; Mitchell et al. 2021;
Meng et al. 2022b,a). Other works use a hypernetwork to
predict parameter updates for a model Cao, Aziz, and Titov
(2021)

Retrieval Based Editing Works Outside of direct model
editing approaches (Zhu et al. 2020; Meng et al. 2022a;
Mitchell et al. 2021; Meng et al. 2022b; Ma et al. 2023), other
approaches have sought to adapt to changing knowledge via
storing external edit memories and employing various in-
context learning and retrieval mechanisms. IKE and others
add all edits in the LLM context (Zheng et al. 2023; Onoe

et al. 2023); SERAC identifies if a related fact has been edited
and retrieves it (Mitchell et al. 2022); MeLLo and DeepEdit
iteratively retrieve edited memories during the generation
and decoding process (Zhong et al. 2023; Wang et al. 2024).

We note that these retrieval-based editing approaches are
fundamentally different than direct model editing approaches.
Direct model editing leaves the model architecture and code
entirely the same with the only change being to parame-
ter weights. This means any system developed to use the
original model can use the updated model with no other
changes. In contrast, retrieval-based editing systems funda-
mentally change how the model is used and functions. For
example, MeLLo requires setting up a retrieval database,
iteratively prompting the LLM, making multiple calls to
the database, and prompting the LLM to create further sub-
questions (Zhong et al. 2023). This fundamentally changes
the characteristics of the model, increases latency, and alters
model behavior for non-QA tasks.

Additional Aspects of Model Editing Other papers have
looked into other aspects of contextual knowledge for edits
such as reversibility (Ma et al. 2023), multi-linguality (Wang,
Haddow, and Birch 2023; Si, Zhang, and Zhang 2024), or
other implied logical conditions given an edit (Wang et al.
2023a; Cohen et al. 2023; Li et al. 2023).

7 Future Work

Future directions include both straightforward advancements
as well as further analytical directions. Simple advancements
include extending K-Edit to broader and deeper contexts.
This can include more relation types, increasing the num-
ber of iterations to k > 2, and including contextual edges
connected to the edit subject s instead of just o∗. These direc-
tions could yield simple improvements and benchmark gains,
especially on the MQuAKE dataset.

Other interesting future directions include counterfactual
knowledge tracing for contextual information as well as better
measures of contextual knowledge in edited representations
beyond output related metrics. Further, more study on en-
hancing the generalization effect would enable the creation
of better knowledge edits. While K-Edit makes meaningful
advancement in contextual integration for knowledge editing,
there is still more progress to be made.



8 Conclusion
This paper presents a K-Edit, an algorithm for improving
knowledge-based model editing to better incorporate contex-
tual information. Our experiments show that our approach
greatly improves results on multi-hop question answering
tasks when edits have been applied. We further show intrigu-
ing results demonstrating the potential for better contextual
generalization of edits under K-Edit. In addition, our ap-
proach scales to thousands of edits at once with no significant
degradation on standard metrics. These combine to show
that K-Edit is a strong and easy tool for updating and edit-
ing knowledge in LLMs while maintaining consistency of
information.

9 Limitations
Our method and experiments have a number of limitations.
Our experiments are limited to adding context from a single
additional hop from the edit target o∗, and only in the ”for-
ward” direction. However, the evaluation contains up to four
hops and also uses context from edges connected to the sub-
ject s as well. This means that K-Edit could show improved
results if subject context and deeper context were used.

We are also limited by the available datasets. Currently,
there are only English based datasets for evaluating knowl-
edge editing in multi-hop settings. In addition, we do not
know if the multi-hop templating would function the same
way in all languages. However, this could be mitigated with
falling back to LLM-based generations if needed.

Finally, this evaluation is limited to 7 billion parameter
models or less. While model editing approaches generally
become more effective on more capable models, they can
also become more computationally costly.

10 Ethical Statement
We find no major negative ethical implications of this work.
Hopefully, enabling high quality model editing work will
allow providers to avoid retraining models from scratch, thus
avoiding costs and reducing environmental impact.

As noted in the limitations, this work is limited to English.
We hope that the construction of multi-lingual model editing
and multi-hop model editing datasets will enable this work
to be studied under other languages. Since many knowledge
graphs, Wikidata included, are multi-lingual, we see no rea-
son why this work could not be applied in other languages.
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A Hardware
The hardware requirements depend more on the underlying
editing software, in this case MEMIT. We run software using
4 V100-16GB GPUs and make some optimizations for using
multiple-GPUs and improving memory management.

B Definitions for Additional Edit Metrics
These definitions come from prior work and are used in Table
6.

Efficacy is the expectation that the target generation is
more likely than the original fact.

Paraphrase is the expectation that the target generation is
more likely than the original fact under paraphrased prompt-
ing.

Specificity is the expectation that neighborhood prompts
remain correct after an edit. Neighborhood prompts are
prompts for semantically related subjects instead of s.

Fluency is the weighted sum of the entropy of bi- and
tri-gram distributions of the generated text.

Consistency is computed by generating text about s and
checking the TF-IDF similarity with a reference Wikipedia
text about o∗. Specifically measured as cosine similarity be-
tween the TF-IDF vectors.

C MEMIT
MEMIT (Meng et al. 2022b) works as follows. MEMIT de-
termines a small change to the L-th layer activation of the
last token of s (e.g. [Kingdom] in the example above) such
that tr(s) produces the desired output o∗. It then modifies a
subset of the model weights to produce the desired activation
for a whole batch of such edits.

Let hL be the L-th activation of the last token of s. The tar-
get change is zL = hL+ δ where δ is optimized to according
to the following:

δ = argmax
δ

1

P

P∑
j=1

logPθ(hL+=δ)[o
∗|xj ⊕ tr(s)] (1)

This calculates a residual vector to be added to hL such
that when tr(s) is input, the model outputs o∗ with maximum
probability. θ(hL+ = δ) represents the LLM in which δ
is added to hL. A weight decay penalty is applied to δ to
minimize the change. xj are various contextual inputs pre-
pended to tr(s) to improve generalization.

After computing each desired δi for each memory i to be
batch edited, MEMIT then computes how to spread those
changes across a set of ”critical layers” [l0 : L]. Each δi is
split into a residual ri to be added to each layer according
to ri = δi

L−l+1 . This assigns each of the critical layers an
approximately equal amount of modification towards the
desired δi. The following optimization is then applied to the
output matrix of the Multi-Layer Perceptron (MLP) block for
each critical layer:

(2)

Ŵ out
l = argmin

Ŵ

(
n∑

i=1

∥∥∥Ŵki −W out
l ki − ri

∥∥∥2
+

n+u∑
i=n+1

∥∥∥Ŵki −W out
l ki

∥∥∥2)

Where Ŵ out
l is the new final weight matrix of the MLP

block of layer l, W out
l is the original weight matrix, ki is

the activation input to the weight matrix being changed (in-
termediate activation of the MLP block). This computation
modifies W out

l so that n edited associations are modified by
residual ri while not affecting u unchanged associations. The
actual computation is done using a more efficient format that
does not require recomputing large numbers of unchanged
associations. Further details can be found in the original pa-
per.

D Hyperparameters
We introduce no additional hyperparameters beyond hop-
count and use hyperparameters from Meng et al. (2022b)
otherwise.

E Creating New Relation Templates with
LLMs

The composable structure of our templates for contextual
edits allows us to scale K-Edit to exponentially many com-
binations of multi-hop relations from the number of base
templates we have. We note that this approach easily meets
the needs of our experiments.

In actual deployments it may be worthwhile to include
methods for scaling the number of relation types even fur-
ther. Many knowledge graphs include thousands of different
relation types. We introduce an LLM based approach to auto-
matically constructing these base templates. The prompts we
use can be found in figures 2 and 3.



Your task is to construct a new relation template of the following form. The template
involves a subject {subject} and an incomplete sentence to be filled.

<---examples-->

RELATION: plays the sport of
TEMPLATE: The sport played by {subject} is

RELATION: position held
TEMPLATE: The position held by {subject} is

RELATION: employer
TEMPLATE: The employer of {subject} is

<---end examples--->

Complete the following template

RELATION: {relation}
TEMPLATE:

Figure 2: The above prompt can be used to create relation templates of the form tr(s). These are cloze statements in which the
next tokens would match the entity referred to from the subject entity {subject} using relation {relation}. To use this prompt,
“{relation}” would be replaced with relation r.

Your task is to construct a new relation template of the following form. The template
involves a subject {subject} and describes an entity in relation to that subject.

<---examples-->

RELATION: plays the sport of
TEMPLATE: the sport played by {subject}

RELATION: position held
TEMPLATE: the position held by {subject}

RELATION: employer
TEMPLATE: the employer of {subject}

<---end examples--->

Complete the following template

RELATION: {relation}
TEMPLATE:

Figure 3: The above prompt can be used to create relation templates of the form r(s). These are noun-phrase type statements in
which the referenced entity object has relation {relation} from subject {subject}. To use this prompt, “{relation}” would be
replaced with the desired relation r.


