

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING WHAT TO DO AND WHAT NOT TO DO: OF- FLINE IMITATION FROM EXPERT AND UNDESIRABLE DEMONSTRATIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

Offline imitation learning typically learns from expert and unlabeled demonstrations, yet often overlooks the valuable signal in explicitly undesirable behaviors. In this work, we study offline imitation learning from contrasting behaviors, where the dataset contains both expert and undesirable demonstrations. We propose a novel formulation that optimizes a difference of KL divergences over the state-action visitation distributions of expert and undesirable (or bad) data. Although the resulting objective is a DC (Difference-of-Convex) program, we prove that it becomes *convex* when expert demonstrations outweigh undesirable demonstrations, enabling a practical and stable non-adversarial training objective. Our method avoids adversarial training and handles both positive and negative demonstrations in a unified framework. Extensive experiments on standard offline imitation learning benchmarks demonstrate that our approach consistently outperforms state-of-the-art baselines.

1 INTRODUCTION

Imitation learning (Garg et al., 2021; Kim et al., 2021; Li et al., 2023; Hoang et al., 2024a; Xu et al., 2022) offers a compelling alternative to Reinforcement Learning (RL) (Sutton & Barto, 2018; Puterman, 2014; Mnih et al., 2015) by enabling agents to learn directly from expert demonstrations without the need for explicit reward signals. This paradigm has been successfully applied in various domains, even with limited expert data, and is particularly effective in capturing complex human behaviors and preferences.

Imitation learning typically assumes access to high-quality expert demonstrations, which can be expensive and difficult to obtain (Ross et al., 2011; Torabi et al., 2018; Zhu et al., 2020). In practice, datasets often contain a mixture of expert and sub-optimal demonstrations. Recent advances in imitation learning have begun to address this more realistic setting, aiming to develop algorithms that can leverage informative signals from both expert and non-expert data (Brown et al., 2019; Myers et al., 2022; Hoang et al., 2024a).

In the offline setting, imitation learning methods typically assume the presence of a labeled expert dataset and an unlabeled dataset of mixed quality (which can contain expert, non-expert, and bad data), and further assume that the unlabeled demonstrations are not drastically different from expert behavior. This allows for framing the learning problem as mimicking both expert and unlabeled trajectories—albeit with different weights (Kim et al., 2021; 2022; Xu et al., 2022). However, in practice, unlabeled data may contain poor or undesirable demonstrations that the agent should explicitly avoid. For example, in autonomous driving, undesirable demonstrations may include unsafe lane changes or traffic violations, which should not be imitated under any circumstances. Another example can be found in healthcare applications, where undesirable demonstrations may correspond to incorrect diagnosis or unsafe treatment plans that could harm patients if imitated.

Unfortunately, existing imitation learning approaches are ill-equipped to deal with scenarios where both expert and undesirable demonstrations coexist within the dataset (Wu et al., 2019; Zhang et al., 2021; Hoang et al., 2024a). It is important to note that learning by mimicking expert or mildly sup-optimal demonstrations is often tractable, as the corresponding objective—typically framed as divergence minimization—is convex (Kim et al., 2021; 2022). However, incorporating objectives that explicitly avoid bad (or undesirable) demonstrations can introduce non-convexities, making the

optimization significantly more challenging. In this paper, we propose a unified framework that addresses these challenges, aiming to bridge this gap in the current imitation learning literature.

Specifically, we focus on the setting of *offline imitation learning* (no interaction with the environment) where the dataset contains both *expert* and *undesirable* demonstrations¹. We make the following key contributions:

- We formulate the learning problem with the goal of matching expert behavior while explicitly avoiding undesirable demonstrations. Although the resulting training objective is expressed as the difference between two KL divergences (and is therefore difference-convex), we prove that it becomes *convex* when the expert component outweighs the undesirable one. This convexity is critical, as it enables us to reformulate the learning problem over the state-action visitation distribution as a more tractable unconstrained optimization via Lagrangian duality. Our objective stands in contrast to most existing distribution-matching imitation learning approaches, which typically rely solely on divergence minimization and naturally yield convex objectives. By introducing a divergence maximization term to account for undesirable behavior, we demonstrate that the overall objective *remains convex and manageable*.
- We further enhance the learning objective by proposing a surrogate objective that lower-bounds the original one, offering the advantage of a non-adversarial and convex optimization problem in the Q-function space. In addition, we introduce a novel Q-weighted behavior cloning (BC) approach, supported by theoretical guarantees, for efficient policy extraction.
- Extensive experiments on standard imitation learning benchmarks show that our method consistently outperforms existing approaches, both in conventional settings where datasets contain expert and unlabeled demonstrations, and in more realistic scenarios where explicitly undesirable demonstrations are included.

2 RELATED WORKS

Imitation Learning. Imitation learning trains agents to mimic expert behavior from demonstrations, with Behavioral Cloning (BC) serving as a foundational method by maximizing the likelihood of expert actions. However, BC often suffers from distributional shift (Ross et al., 2011). Recent work addresses this issue by leveraging the strong generalization capabilities of generative models (Zhao et al., 2023; Chi et al., 2023). Inspired by GANs (Goodfellow et al., 2014), methods like GAIL (Ho & Ermon, 2016) and AIRL (Fu et al., 2018) use a discriminator to align the learner’s policy with the expert’s, while SQIL (Reddy et al., 2019) simplifies reward assignment by distinguishing expert and non-expert behaviors. Although effective, these approaches typically require online interaction, which may be impractical in many real-world scenarios.

To address this, offline methods such as AlgaeDICE (Nachum et al., 2019) and ValueDICE (Kostrikov et al., 2020) employ Stationary Distribution Correction Estimation (DICE), though they often encounter stability issues. Building on ValueDICE, O-NAIL (Arenz & Neumann, 2020) avoids adversarial training, enabling stable offline imitation. More recently, several approaches have extended the DICE framework with stronger theoretical foundations and improved empirical performance (Lee et al., 2021; Mao et al., 2024). In parallel, IQ-Learn (Garg et al., 2021) has emerged as a unified framework for both online and offline imitation learning, inspiring a range of follow-up works (Al-Hafez et al., 2023; Hoang et al., 2024c). However, all these approaches rely on the presence of many expert demonstrations, which may not always be available.

Offline imitation learning from suboptimal demonstrations: Several approaches have been developed to tackle the challenges of offline imitation learning from suboptimal data, which is common in real-world scenarios. A notable direction involves preference-based methods, where algorithms infer reward functions by leveraging ranked or pairwise-compared trajectories to guide learning (Kim et al., 2023; Kang et al., 2023; Hejna & Sadigh, 2024). Recent works, such as SPRINQL (Hoang et al., 2024a), take advantage of demonstrations that exhibit varying levels of suboptimality, enabling the learner to better generalize beyond near-optimal behaviors. Another

¹In practice, while desirable demonstrations can be collected from expert decisions, undesirable ones can also be identified by experts (or even through fine-tuned LLMs (Mu & Others, 2024))

108 important line of research explores the use of unlabeled demonstrations in conjunction with a limited
 109 number of expert trajectories. Techniques like DemoDICE (Kim et al., 2021), SMODICE (Ma et al.,
 110 2022), and ReCOIL (Sikchi et al., 2024) apply Distribution Correction Estimation (DICE) (Sunehag
 111 et al., 2017; Lee et al., 2021; Mao et al., 2024) to re-weight trajectories and align the state or state-
 112 action distributions with those of the expert. In parallel, classifier-based methods, such as DWBC (Xu
 113 et al., 2022), ISW-BC (Li et al., 2023), and ILID (Yue et al., 2024), use discriminators to distinguish
 114 expert-like behaviors within mixed-quality data and assign them greater importance. Collectively,
 115 these strategies aim to enhance policy robustness and performance in offline settings where high-
 116 quality expert data is scarce or expensive to obtain. However, all of these approaches are primarily
 117 focused on imitating and are unable to avoid undesirable or bad demonstrations, which is crucial in
 118 domains such as self driving where there are many unsafe behaviors that would need to be avoided.
 119 There is prior work that focuses on learning explicitly from undesirable demonstrations (Jang et al.,
 120 2024; Hoang et al., 2024b), but these approaches cannot handle scenarios where both expert and
 121 undesirable datasets are available.

122 In this paper, we aim to optimize on the principle of "*Imitate the Good and Avoid the Bad*", which
 123 has recently gained attention in reference and safe RL (Abdolmaleki et al., 2025; Hoang et al.,
 124 2024a; Gong et al., 2025) and large language model training (Lu et al., 2025). We extend this
 125 idea to the offline imitation setting by proposing a novel and efficient method that learns from
 126 expert demonstrations while avoiding undesirable ones. To our knowledge, this is the first offline
 127 imitation learning approach to efficiently learn policies by jointly utilizing both expert and undesirable
 128 demonstrations.

3 PRELIMINARIES

133 **Markov Decision Process (MDP).** We consider a MDP defined by the following tuple $\mathcal{M} =$
 134 $\langle S, A, r, P, \gamma, s_0 \rangle$, where S denotes the set of states, s_0 represents the initial state set, A is the set of
 135 actions, $r : S \times A \rightarrow \mathbb{R}$ defines the reward function for each state-action pair, and $P : S \times A \rightarrow S$ is
 136 the transition function, i.e., $P(s'|s, a)$ is the probability of reaching state $s' \in S$ when action $a \in A$
 137 is made at state $s \in S$, and γ is the discount factor. In reinforcement learning (RL), the aim is to find
 138 a policy that maximizes the expected long-term accumulated reward: $\max_{\pi} \{ \mathbb{E}_{(s,a) \sim d^{\pi}} [r(s, a)] \}$,
 139 where d^{π} is the occupancy measure (or state-action visitation distribution) of policy π : $d^{\pi}(s, a) =$
 140 $(1 - \gamma)\pi(a|s) \sum_{t=1}^{\infty} \gamma^t P(s_t = s | \pi)$.

141 **Offline Imitation Learning.** Recent imitation learning (IL) approaches have adopted a distribution-
 142 matching formulation, where the objective is to minimize the divergence between the occupancy
 143 measures (i.e., state-action visitation distributions) of the learning policy and the expert pol-
 144 icy: $\min_{d^{\pi}} \{ D_f(d^{\pi} \| d^E) \}$, where D_f denotes an f -divergence between the occupancy distri-
 145 butions d^{π} (induced by the learning policy π) and d^E (induced by the expert policy). In par-
 146 ticular, when the Kullback–Leibler (KL) divergence is used, the learning objective becomes:
 147 $\min_{d^{\pi}} \mathbb{E}_{(s,a) \sim d^{\pi}} \left[\log \left(\frac{d^{\pi}(s,a)}{d^E(s,a)} \right) \right]$. In the space of state-action visitation distributions (d^{π}), the
 148 training can be formulated as a convex constrained optimization problem. To enable efficient training,
 149 Lagrangian duality is typically employed to recast the problem into an unconstrained form (Lee et al.,
 150 2021; Kim et al., 2021).

151 **Offline IL with unlabeled data.** In offline imitation learning with unlabeled data, it is
 152 typically assumed that a limited set of expert demonstrations \mathcal{B}^E is available, along with
 153 a larger set of unlabeled demonstrations \mathcal{B}^{MIX} . Distribution-matching approaches have been
 154 widely adopted to handle this setting. Prior methods often formulate the objective as a
 155 weighted sum of divergences between the learning policy and both expert and unlabeled data:
 156 $\min_{d^{\pi}} \{ D_f(d^{\pi} \| d^E) + \alpha D_f(d^{\pi} \| d^{\text{MIX}}) \}$, where $\alpha \geq 0$. Other approaches construct mixtures of
 157 occupancy distributions, such as $d^{\pi, \text{MIX}} = \alpha d^{\pi} + (1 - \alpha) d^{\text{MIX}}$ and $d^{E, \text{MIX}} = \alpha d^E + (1 - \alpha) d^{\text{MIX}}$, and
 158 minimize the divergence between $d^{\pi, \text{MIX}}$ and $d^{E, \text{MIX}}$ (Kim et al., 2021; 2022; Ma et al., 2022; Sikchi
 159 et al., 2024). In most existing approaches along this line of research, the convexity of the objective
 160 with respect to d^{π} has been heavily leveraged to derive tractable learning objectives. However, when
 161 a divergence *maximization* term is introduced—as in our approach—this convexity may no longer
 hold, rendering many existing methods inapplicable.

162 **4 DUALCOIL: OFFLINE IMITATION LEARNING FROM CONTRASTING
163 BEHAVIORS**

165 We begin by introducing a novel learning objective based on the difference between two KL di-
166 vergences. Leveraging the convexity of this formulation, we derive a tractable and unconstrained
167 optimization problem. Given that the resulting objective includes exponential terms that may lead to
168 numerical instability, we enhance this by proposing a lower-bound approximation. This approxima-
169 tion enables us to reformulate the learning process as a more tractable, non-adversarial Q-learning
170 objective, which remains convex in the space of Q-functions.

172 **4.1 DUAL KL-BASED FORMULATION**

174 Assume that we have access to three sets of demonstrations: good dataset \mathcal{B}^G contains *good* or *expert*
175 demonstrations, bad dataset \mathcal{B}^B contains *bad* or *undesirable* demonstrations that the agent should
176 avoid, and the unlabeled dataset \mathcal{B}^{MIX} is a large set of unlabeled demonstrations used to support
177 offline training. **Here, we assume that \mathcal{D}^B may contain some low-reward or unsafe demonstrations
178 that are undesirable to imitate, though not necessarily ones that must be avoided at all costs.** We
179 consider the realistic scenario where the identified datasets \mathcal{B}^G and \mathcal{B}^B are limited in size, while \mathcal{B}^{MIX}
180 is significantly larger—an assumption that aligns with typical settings in offline imitation learning
181 from unlabeled demonstrations.

182 Let $d^\pi(s, a)$, $d^G(s, a)$, and $d^B(s, a)$ denote the state-action visitation distributions induced by the
183 learned policy π , the good policy, and the bad policy, respectively. Following the DICE frame-
184 work (Nachum et al., 2019; Kostrikov et al., 2020), we propose to optimize the following objective:

$$185 \min_{d^\pi} f(d^\pi) = D_{\text{KL}}(d^\pi \| d^G) - \alpha D_{\text{KL}}(d^\pi \| d^B), \quad (1)$$

187 where $\alpha > 0$ is a tunable hyperparameter. The goal of this objective is twofold: (1) to minimize the
188 divergence between the learned policy and the good policy, and (2) to *maximize* the divergence from
189 the bad policy, thereby avoiding undesirable behavior.

190 This formulation differs from all existing DICE-based approaches in the literature, which primarily
191 focus on minimizing KL divergence—even when dealing with undesirable or unsafe demonstrations.
192 By contrast, our approach introduces a principled mechanism to explicitly repel the learned policy
193 from undesirable behavior while still aligning it with good data.

194 While the presence of a KL divergence maximization term in the objective may raise concerns about
195 the convexity of the training problem, we observe that the objective in equation 1 takes the form of a
196 difference between two convex functions. This is, in general, not convex and can be challenging to
197 optimize. Fortunately, we show that under a mild condition, the overall objective remains convex.
198 Specifically, if the weight on the bad policy divergence term is smaller than that on the good policy
199 (i.e., $\alpha < 1$), then the objective becomes convex in d^π .

200 **Proposition 4.1.** *If $\alpha \leq 1$, then the objective function $f(d^\pi) = D_{\text{KL}}(d^\pi \| d^G) - \alpha D_{\text{KL}}(d^\pi \| d^B)$ is
201 convex in d^π .*

202 Convexity is essential in most DICE-based frameworks, as it enables the use of Lagrangian duality to
203 construct well-behaved and tractable training objectives. Our goal is to develop a Q-learning method
204 that recovers a policy minimizing the objective in equation 1. To this end, we formulate the problem
205 as the following constrained optimization:

$$207 \min_{d, \pi} f(d, \pi) = D_{\text{KL}}(d \| d^G) - \alpha D_{\text{KL}}(d \| d^B) \quad (2)$$

$$208 \text{s.t. } d(s, a) = (1 - \gamma)p_0(s)\pi(a | s) + \gamma\pi(a | s) \sum_{s', a'} d(s', a')T(s | s', a'), \quad \forall s \in S, a \in A$$

211 where $d(s, a)$ is the state-action visitation distribution, and T is the environment transition function.
212 Let $\mathcal{B}^U = \mathcal{B}^G \cup \mathcal{B}^{\text{MIX}}$ denote the union dataset, and let d^U be the state-action visitation distribution
213 derived from it. The following proposition gives an another formulation for the objective in equation 1:

214 **Proposition 4.2.** *The objective function in equation 2 can be written as: $f(d, \pi) = (1 -$
215 $\alpha)D_{\text{KL}}(d \| d^U) - \mathbb{E}_{(s, a) \sim d} [\Psi(s, a)]$, where $\Psi(s, a) = \log \frac{d^G(s, a)}{d^U(s, a)} - \alpha \log \frac{d^B(s, a)}{d^U(s, a)}$.*

This formulation introduces a KL-based regularization centered on the reference distribution d^U , with $\Psi(s, a)$ acting as a correction term that incorporates information from the labeled good and bad demonstrations. The reformulated objective in Proposition 4.2 further confirms that the function $f(d, \pi)$ remains convex in d when $\alpha \leq 1$. Here we note that, under the same condition $\alpha \leq 1$, convexity may not hold for other f -divergences (a detailed discussion is provided in the appendix).

The reformulated objective in Proposition 4.2 takes the conventional form of maximizing a long-term surrogate reward $\Psi(s, a)$, subtracted by a KL divergence between two occupancy measures. Hence, we can follow the approach in DUARL Sikchi et al. (2024) to further reformulate it into a practical Q-learning objective (the detailed derivation is given in Appendix).

$$\begin{aligned} \max_{\pi} \min_Q & \left\{ (1 - \gamma) \mathbb{E}_{(s, a) \sim p_0, \pi} [Q(s, a)] \right. \\ & \left. + (1 - \alpha) \mathbb{E}_{(s, a) \sim d^U} \left[\exp \left(\frac{\Psi(s, a) + \gamma \mathbb{E}_{(s', a') \sim T, \pi} [Q(s', a')] - Q(s, a)}{1 - \alpha} \right) \right] \right\} \quad (3) \end{aligned}$$

To further enhance the efficiency of Q-learning, we adopt the well-known Maximum Entropy (MaxEnt) reinforcement learning framework by incorporating an entropy term into the training objective (Garg et al., 2021; Haarnoja et al., 2018). This leads to the following objective:

$$\begin{aligned} L(Q, \pi) &= (1 - \gamma) \mathbb{E}_{(s, a) \sim p_0, \pi} \left[Q(s, a) - \beta \log \frac{\pi(a | s)}{\mu^U(a | s)} \right] \\ &+ (1 - \alpha) \mathbb{E}_{(s, a) \sim d^U} \left[\exp \left(\frac{\Psi(s, a) + \gamma \mathbb{E}_{(s', a') \sim T, \pi} [Q(s', a') - \beta \log \frac{\pi(a' | s')}{\mu^U(a' | s')}] - Q(s, a)}{1 - \alpha} \right) \right]. \end{aligned}$$

where $\mu^U(a | s)$ is the behavior policy representing the union dataset \mathcal{B}^U . We now define the soft value function and the soft Bellman operator as follows:

$$V_Q^\pi(s) = \mathbb{E}_{a \sim \pi(\cdot | s)} \left[Q(s, a) - \beta \log \frac{\pi(a | s)}{\mu^U(a | s)} \right], \quad \mathcal{T}^\pi[Q](s, a) = Q(s, a) - \gamma \mathbb{E}_{s' \sim \mathcal{T}(\cdot | s, a)} [V_Q^\pi(s')].$$

Using these definitions, the training objective can be rewritten as:

$$L(Q, \pi) = (1 - \gamma) \mathbb{E}_{s \sim p_0} [V_Q^\pi(s)] + (1 - \alpha) \mathbb{E}_{(s, a) \sim d^U} \left[\exp \left(\frac{\Psi(s, a) - \mathcal{T}^\pi[Q](s, a)}{1 - \alpha} \right) \right]. \quad (4)$$

This formulation shares structural similarities with IQ-Learn, where $\mathcal{T}^\pi[Q](s, a)$ is referred to as the *inverse Bellman operator* and is often interpreted as a reward function expressed in terms of the Q-function itself.

Note that, when $\alpha = 1$, according to Proposition 4.2, the training objective reduces to a standard offline RL problem with reward function $\Psi(s, a)$: $\max_d \mathbb{E}_{(s, a) \sim d} [\Psi(s, a)] = \max \mathbb{E} [\sum_{t=0}^{\infty} \gamma^t \Psi(s_t, a_t)]$.

4.2 TRACTABLE LOWER BOUNDED OBJECTIVE

In this section, we propose an additional step to improve the stability and tractability of the learning objective introduced above. We first observe that the exponential term in equation 4 may lead to instability during training. To address this issue, we propose to approximate the exponential using a linear lower bound, which not only improves stability but also preserves a similar optimization objective.

Proposition 4.3. *Let the surrogate objective be defined as:*

$$\tilde{L}(Q, \pi) = (1 - \gamma) \mathbb{E}_{s \sim p_0} [V_Q^\pi(s)] - \mathbb{E}_{d^U} [\delta(s, a) \mathcal{T}^\pi[Q](s, a)] + (1 - \alpha) \mathbb{E}_{d^U} [\delta(s, a)]. \quad (5)$$

where $\delta(s, a) = \exp \left(\frac{\Psi(s, a)}{1 - \alpha} \right)$. Then $\tilde{L}(Q, \pi)$ is a lower bound of $L(Q, \pi)$, with equality when $\mathcal{T}^\pi[Q](s, a) = 0$ for all (s, a) .

The lower-bound approximation $\tilde{L}(Q, \pi)$ offers several benefits. First, as a valid lower bound of $L(Q, \pi)$, maximizing $\tilde{L}(Q, \pi)$ promotes the original objective. Second, its structure—linear in Q

270 and concave in π —leads to a simplified, non-adversarial training procedure (see Proposition 4.4).
 271 Finally, its optimization goals remain aligned with those of $L(Q, \pi)$, encouraging high expected soft
 272 value under the initial state distribution and consistency between the soft Bellman residual and the
 273 guidance signal $\Psi(s, a)$.
 274

275 **Remark.** *The training objective in equation 5 generalizes the IQ-Learn objective (Garg et al.,
 276 2021) as a special case. In particular, $\tilde{L}(Q, \pi)$ reduces exactly to the IQ-Learn objective when $\alpha = 0$
 277 (i.e., the undesirable dataset is ignored) and $\mathcal{B}^G \equiv \mathcal{B}^U$ (i.e., the good dataset coincides with the
 278 union dataset). To see this, observe that when $\alpha = 0$ and $d^G = d^U$, the term $\Psi(s, a)$ becomes zero
 279 for all (s, a) . As a result, the surrogate objective simplifies to: $\tilde{L}(Q, \pi) = (1 - \gamma) \mathbb{E}_{s \sim p_0} [V_Q^\pi(s)] -$
 280 $\mathbb{E}_{(s, a) \sim d^G} [\mathcal{T}^\pi [Q](s, a)]$, which is exactly the training objective proposed in IQ-Learn. Thus, our
 281 formulation can be viewed as a principled extension of IQ-Learn that explicitly accounts for and
 282 contrasts between good and bad behaviors.*

283 We now present several key properties of the training objective $\tilde{L}(Q, \pi)$ that make it particularly
 284 convenient and tractable for use, as formalized in Proposition 4.4 below.
 285

286 **Proposition 4.4.** *The following properties hold:*

287 (i) $\tilde{L}(Q, \pi)$ is linear in Q and concave in π . As a result, the max–min optimization can be equiv-
 288 alently reformulated as a min–max problem: $\max_{\pi} \min_Q \tilde{L}(Q, \pi) = \min_Q \max_{\pi} \tilde{L}(Q, \pi)$.
 289
 290 (ii) The min–max problem $\min_Q \max_{\pi} \tilde{L}(Q, \pi)$ reduces to the following non-adversarial prob-
 291 lem:
 292

$$293 \min_Q \left\{ \tilde{L}(Q) = (1 - \gamma) \mathbb{E}_{s \sim p_0} [V_Q(s)] - \mathbb{E}_{(s, a) \sim d^U} \left[\exp \left(\frac{\Psi(s, a)}{1 - \alpha} \right) \mathcal{T}[Q](s, a) \right] \right\},$$

295 where the soft value function $V_Q(s)$ is defined as: $V_Q(s) = \beta \log \left(\sum_a \mu^U(a|s) \exp(Q(s, a)/\beta) \right)$, and the soft Bellman residual operator is given by:
 296 $\mathcal{T}[Q](s, a) = Q(s, a) - \gamma V_Q(s)$. Moreover $\tilde{L}(Q)$ is convex in Q .
 297
 298

300 5 PRACTICAL ALGORITHM

301
 302 **Estimating Occupancy Ratios.** The training objective involves several ratios between state-action
 303 visitation distributions, which are not directly observable. These quantities can be estimated by
 304 solving corresponding discriminator problems. Specifically, to estimate the ratio $\frac{d^G(s, a)}{d^U(s, a)}$, we train a
 305 binary classifier $c^G : \mathcal{S} \times \mathcal{A} \rightarrow [0, 1]$ by solving the following standard logistic regression objective:
 306

$$307 \max_{c^G} \{ \mathbb{E}_{(s, a) \sim d^G} [\log c^G(s, a)] + \mathbb{E}_{(s, a) \sim d^U} [\log(1 - c^G(s, a))] \}. \quad (6)$$

309 Let $c^{G*}(s, a)$ be optimal solution to this problem, then the ratio can be computed as: $\frac{d^G(s, a)}{d^U(s, a)} =$
 310 $\frac{c^{G*}(s, a)}{1 - c^{G*}(s, a)}$. Similar discriminators can be trained to estimate other ratios such as $\frac{d^B(s, a)}{d^U(s, a)}$.
 311
 312

313 **Implicit V -Update and Regularizers.** In the surrogate objective $\tilde{L}(Q)$, the value function
 314 V_Q is typically computed via a log-sum-exp over Q , which becomes intractable in large or
 315 continuous action spaces. To address this, we adopt Extreme Q-Learning (XQL) (Garg et al.,
 316 2023), which avoids the log-sum-exp by introducing an auxiliary optimization over V , jointly
 317 updated with Q . Specifically, V is optimized using the *Extreme- V* objective: $J(V \mid Q) =$
 318 $\mathbb{E}_{(s, a) \sim d^U} [e^{t(s, a)} - t(s, a) - 1]$, where $t(s, a) = \frac{Q(s, a) - V(s)}{\beta}$. The main training objective
 319 with fixed V is:

$$320 \tilde{L}(Q \mid V) = (1 - \gamma) \mathbb{E}_{s \sim p_0} [V(s)] - \mathbb{E}_{(s, a) \sim d^U} \left[\exp \left(\frac{\Psi(s, a)}{1 - \alpha} \right) (Q(s, a) - \gamma \mathbb{E}_{s'} [V(s')]) \right]. \quad (7)$$

321 The overall optimization proceeds by alternating: (i) updating Q via minimizing $\tilde{L}(Q \mid V)$, and
 322 (ii) updating V via minimizing $J(V \mid Q)$. Both sub-problems are convex, enabling efficient and
 323

stable training. To further enhance stability, we follow (Garg et al., 2021; 2023) and add a convex regularizer $\phi(\mathcal{T}[Q](s, a))$ to prevent reward divergence. We use the χ^2 -divergence, $\phi(t) = t^2/2$, a common choice in Q-learning.

Policy Extraction. Once the Q and V functions are obtained, a common approach for expert policy extraction is to apply advantage-weighted behavior cloning (AW-BC) (Kostrikov et al., 2021; Garg et al., 2023; Hejna & Sadigh, 2024; Sikchi et al., 2024):

$$\max_{\pi} \sum_{(s, a) \sim \mathcal{B}^U} \exp \left(\frac{1}{\beta} (Q(s, a) - V(s)) \right) \log \pi(a | s). \quad (8)$$

A key limitation of this formulation is that the value function $V(s)$ is only an approximate estimate from the Extreme-V objective, potentially introducing noise and bias into advantage computation and degrading policy quality. To address this, we propose a Q -only alternative that avoids reliance on $V(s)$. The following proposition shows that this Q -based objective can, in theory, recover the same optimal policy as the original advantage-weighted BC formulation.

Proposition 5.1. *The following Q -weighted behavior cloning (BC) objective yields the same optimal policy as the original advantage-weighted BC formulation in equation 8:*

$$\max_{\pi} \sum_{(s, a) \sim \mathcal{B}^U} \exp \left(\frac{1}{\beta} Q(s, a) \right) \log \pi(a | s). \quad (9)$$

While the Q -weighted BC objective is theoretically equivalent to the advantage-weighted BC objective in terms of the optimal policy it recovers, it provides a simpler and more practical formulation. This simplification can lead to more stable and accurate optimization in practice. Our experimental results further demonstrate that the Q -weighted formulation consistently yields significantly better training outcomes compared to the advantage-weighted BC baseline. Bringing all components together, we present our **DUAL-COIL (Dual-KL COntrastive Imitation Learning)** algorithm in Algorithm 1.

Algorithm 1 DualCOIL

Require: Datasets $\mathcal{B}^G, \mathcal{B}^B, \mathcal{B}^{\text{MIX}}$; training steps N_{μ}, N ; models: $c_{w_G}^G, c_{w_B}^B, \pi_{\theta}, Q_{w_q}, V_{w_v}$

- 1: Assign $\mathcal{B}^U = \mathcal{B}^G \cup \mathcal{B}^{\text{MIX}}$
- 2: **# Train discriminator** $c_{w_G}^G$ and $c_{w_B}^B$
- 3: **for** $i = 1$ to N_{μ} **do**
- 4: Update (w_G, w_B) to minimize Objective 6.
- 5: **end for**
- 6: **# Train** Q_{w_q} and V_{w_v} , and policy π_{θ}
- 7: **for** $i = 1$ to N **do**
- 8: Update w_q to minimize $\tilde{F}(Q_{w_q} | V_{w_v})$
- 9: Update w_v to minimize $J(V_{w_v} | Q_{w_q})$
- 10: Update θ via QW-BC:

$$\max_{\pi} \left\{ \sum_{(s, a) \sim \mathcal{B}^U} e^{Q(s, a) / \beta} \log \pi(a | s) \right\}$$
- 11: **end for**

6 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate our method, focusing on the following key questions: **(Q1)** Can DualCOIL effectively leverage both labeled good and bad data to outperform existing baselines? **(Q2)** How does the size of the bad dataset \mathcal{B}^B affect the performance of DualCOIL? **(Q3)** DualCOIL relies on an important parameter α to balance the objectives for good and bad data—how does this parameter affect overall performance? Appendix provides a comprehensive set of supplementary materials, including missing proofs and additional experiments that further validate the utility of our method.

6.1 EXPERIMENT SETTING

Environments and Dataset Generation. We evaluate our method in the context of learning from the good dataset \mathcal{B}^G and avoid the bad dataset \mathcal{B}^B with a support from an additional unlabeled dataset \mathcal{B}^{MIX} . Our experiments span four MuJoCo locomotion tasks: CHEETAH, ANT, HOPPER, WALKER, as well as four hand manipulation tasks from Adroit: PEN, HAMMER, DOOR, RELOCATE, and one task from FrankaKitchen: KITCHEN—all sourced from the official D4RL benchmark (Fu et al., 2020). For each MuJoCo task from D4RL, we have three types of datasets: RANDOM, MEDIUM, and EXPERT. The good dataset \mathcal{B}^G is constructed using a single trajectory from the EXPERT dataset. The bad dataset

\mathcal{B}^B consists of 10 trajectories selected from either the RANDOM or MEDIUM dataset. To construct the unlabeled dataset \mathcal{B}^{MIX} , we combine the entire RANDOM or MEDIUM dataset (i.e., the same source as \mathcal{B}^B) with 30 additional trajectories from the EXPERT dataset. This setup mirrors the challenging RANDOM+FEW-EXPERT and MEDIUM+FEW-EXPERT scenarios introduced in ReCOIL (Sikchi et al., 2024). These three datasets— \mathcal{B}^G , \mathcal{B}^B , and \mathcal{B}^{MIX} —form the foundation of our training pipeline. We use the same dataset construction strategy for Adroit and FrankaKitchen tasks, yielding 18 distinct dataset combinations. Please refer to the Appendix for detailed descriptions of all dataset combinations.

Baselines. We compare our method against several baselines. First, we evaluate two naive BC approaches: one that learns directly from the large unlabeled dataset \mathcal{B}^{MIX} (BC-MIX), and one that learns solely from the good dataset \mathcal{B}^G (BC-G). Next, we include comparisons with state-of-the-art methods designed to leverage both expert (or good) data \mathcal{B}^G and unlabeled data \mathcal{B}^{MIX} , including SMODICE (Ma et al., 2022), ILID (Yue et al., 2024), and ReCOIL (Sikchi et al., 2024). We exclude DWBC (Xu et al., 2022) from this experiment since both DWBC and ILID use discriminator-based objectives, and ILID has been shown to outperform DWBC. In addition, based on our proposed objective in equation 5, we include a variant of our method that only learns from \mathcal{B}^G and \mathcal{B}^{MIX} (i.e., $\alpha = 0$), called as DualCOIL-G. For methods that incorporate support from bad data \mathcal{B}^B , we evaluate our approach against SafeDICE (Jang et al., 2024). Given the limited number of existing baselines that effectively utilize poor-quality data in offline imitation learning, we also propose a simple adaptation of DWBC, which is called as DWBC-GB to jointly learn from \mathcal{B}^G , \mathcal{B}^B , and \mathcal{B}^{MIX} . Detailed implementation of these baselines are provided in the Appendix.

Evaluation Metrics. We evaluate all methods using five training seeds. For each seed, we collect the results from the last 10 evaluations (each evaluation consist 10 different environment seeds), then aggregate all evaluations across seeds to compute the mean and standard deviation, which reflect the converged performance of each method. Across all experiments, we report the normalized score commonly used in D4RL tasks (Normalized Score = $\frac{\text{Score} - \text{Random Score}}{\text{Expert Score} - \text{Random Score}}$). This normalization provides a consistent performance measure across different environments.

6.2 MAIN COMPARISON

Task	unlabeled \mathcal{B}^{MIX}	learning from \mathcal{B}^G and \mathcal{B}^{MIX} only					learning with \mathcal{B}^B				Expert
		BC-MIX	BC-G	SMODICE	ILID	ReCOIL	DualCOIL-G	SafeDICE	DWBC-GB	DualCOIL	
CHEETAH	RANDOM+EXPERT	2.3 \pm 0.0	-0.6 \pm 0.3	4.6 \pm 1.2	21.1 \pm 3.4	2.0 \pm 0.3	84.4 \pm 2.4	-0.0 \pm 0.0	2.8 \pm 0.5	86.7\pm2.2	90.6
	MEDIUM+EXPERT	42.5 \pm 0.2	-0.6 \pm 0.3	42.4 \pm 1.6	40.3 \pm 7.0	42.5 \pm 0.3	48.6 \pm 2.0	37.7 \pm 0.1	5.6 \pm 1.9	77.6\pm3.6	90.6
ANT	RANDOM+EXPERT	30.9 \pm 0.0	-7.2 \pm 4.6	4.6 \pm 9.7	71.8 \pm 8.7	56.2 \pm 5.0	100.6 \pm 9.9	-2.6 \pm 0.0	6.5 \pm 3.4	112.7\pm5.8	117.5
	MEDIUM+EXPERT	91.2 \pm 0.8	-7.2 \pm 4.6	88.5 \pm 4.2	39.6 \pm 11.5	100.8 \pm 4.0	102.4 \pm 3.5	88.1 \pm 0.4	-4.3 \pm 2.4	107.4\pm4.9	117.5
HOPPER	RANDOM+EXPERT	4.9 \pm 0.1	17.9 \pm 2.7	56.4 \pm 0.2	81.6 \pm 14.3	81.0 \pm 14.7	79.4 \pm 14.8	41.1 \pm 1.4	40.8 \pm 9.5	93.6\pm9.2	109.6
	MEDIUM+EXPERT	52.2 \pm 0.6	17.9 \pm 2.7	53.0 \pm 1.7	87.9 \pm 3.3	46.1 \pm 8.3	70.6 \pm 8.0	55.8 \pm 1.7	21.6 \pm 4.0	103.7\pm7.3	109.6
WALKER	RANDOM+EXPERT	1.5 \pm 0.0	3.8 \pm 1.5	106.6 \pm 0.7	100.1 \pm 4.4	29.8 \pm 14.9	97.5 \pm 10.7	23.0 \pm 0.8	17.4 \pm 7.5	107.4\pm1.7	107.7
	MEDIUM+EXPERT	70.8 \pm 0.3	3.8 \pm 1.5	6.0 \pm 2.2	89.7 \pm 10.6	72.1 \pm 5.4	99.8 \pm 6.9	60.2 \pm 1.3	25.6 \pm 7.4	108.2\pm0.4	107.7
PEN	CLONED+EXPERT	56.0 \pm 0.5	8.8 \pm 1.4	10.9 \pm 6.5	1.9 \pm 2.1	79.2 \pm 0.6	66.3 \pm 9.6	19.9 \pm 2.1	9.5 \pm 3.9	96.4\pm8.7	107.0
	HUMAN+EXPERT	18.3 \pm 0.6	8.8 \pm 1.4	-2.5 \pm 0.2	5.1 \pm 2.1	99.9 \pm 8.5	95.5 \pm 8.8	21.8 \pm 2.5	6.5 \pm 2.4	101.5\pm8.4	107.0
HAMMER	CLONED+EXPERT	0.4 \pm 0.4	1.4 \pm 0.3	0.8 \pm 0.4	0.4 \pm 0.6	3.4 \pm 2.1	66.5 \pm 11.8	0.0 \pm 0.1	2.8 \pm 2.5	74.3\pm8.0	119.0
	HUMAN+EXPERT	12.8 \pm 3.3	1.4 \pm 0.3	1.9 \pm 2.1	1.2 \pm 1.4	113.2 \pm 5.5	113.2 \pm 7.2	0.6 \pm 0.4	3.4 \pm 1.9	120.0\pm3.7	119.0
DOOR	CLONED+EXPERT	0.4 \pm 0.3	-0.1 \pm 0.0	-0.1 \pm 0.0	-0.1 \pm 0.1	19.3 \pm 7.5	92.6 \pm 5.1	-0.0 \pm 0.0	-0.1 \pm 0.0	102.4\pm1.7	105.3
	HUMAN+EXPERT	4.0 \pm 1.2	-0.1 \pm 0.0	-0.1 \pm 0.3	0.2 \pm 0.7	100.3 \pm 2.9	104.7 \pm 0.7	0.9 \pm 0.4	1.1 \pm 0.5	105.0\pm0.5	105.3
RELOCATE	CLONED+EXPERT	-0.1 \pm 0.0	-0.1 \pm 0.0	0.1 \pm 0.1	-0.1 \pm 0.0	1.4 \pm 1.1	34.5 \pm 6.2	-0.1 \pm 0.0	-0.2 \pm 0.0	92.1\pm5.0	100.9
	HUMAN+EXPERT	0.0 \pm 0.0	-0.1 \pm 0.0	-0.2 \pm 0.0	-0.2 \pm 0.1	72.3 \pm 5.6	99.1 \pm 3.1	0.0 \pm 0.0	-0.1 \pm 0.0	102.6\pm2.4	100.9
KITCHEN	PARTIAL+COMPLETE	45.5 \pm 0.8	2.5 \pm 2.2	5.5 \pm 3.7	27.3 \pm 2.4	48.8 \pm 4.0	45.8 \pm 6.6	2.8 \pm 0.5	19.4 \pm 2.1	53.1\pm5.9	75.0
	MIXED+COMPLETE	42.1 \pm 0.5	2.2 \pm 1.7	3.1 \pm 2.6	13.5 \pm 1.4	50.6\pm1.7	20.3 \pm 6.3	1.5 \pm 0.8	6.7 \pm 2.0	48.9 \pm 7.3	75.0
Average		26.4	2.9	21.2	32.4	56.6	78.8	19.5	9.2	94.1	

Table 1: Comparison with other baselines in MuJoCo, Adroit, and FrankaKitchen. The results are normalized score in mean and standard error.

To answer Question (Q1), we present a comprehensive comparison between our method and existing baselines across 18 different datasets, as shown in Table 1. First, both BC-MIX and BC-G fail to achieve satisfactory performance across tasks. When learning from the good dataset \mathcal{B}^G and the unlabeled dataset \mathcal{B}^{MIX} , methods like SMODICE and ILID perform reasonably well on the four MuJoCo locomotion tasks (CHEETAH, ANT, HOPPER, WALKER) but completely fail on the five hand manipulation tasks. In contrast, ReCOIL and our method variant (DualCOIL-G) are

able to successfully learn in both locomotion and manipulation tasks, demonstrating more robust generalization.

In the setting that incorporates additional low-quality data \mathcal{B}^B , SafeDICE shows similar performance to SMODICE and ILID—again failing on the manipulation tasks. Furthermore, DWBC-GB fails to learn entirely, highlighting that a naive adaptation for leveraging poor-quality data can harm the learning process. These results suggest that incorporating bad data \mathcal{B}^B introduces new challenges, and that effectively utilizing such data requires a carefully designed algorithm grounded in strong theoretical principles. Overall, our method successfully leverages the bad dataset \mathcal{B}^B and consistently outperforms all other baselines across both locomotion and manipulation tasks.

6.3 EFFECT OF NUMBER OF BAD DEMONSTRATIONS

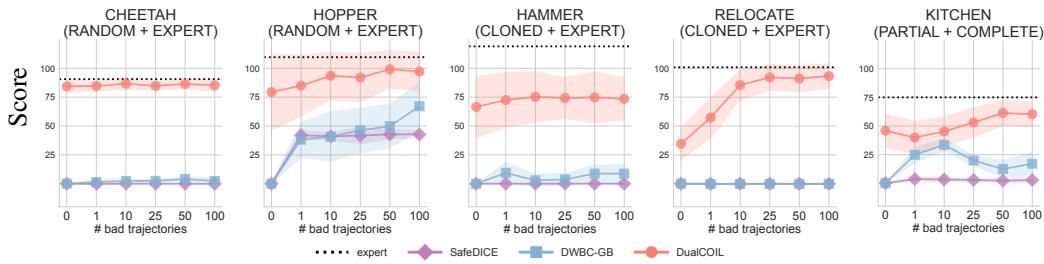


Figure 1: Effect of bad dataset size \mathcal{B}^B on performance: Results, averaged over 5 seeds and reported as normalized scores, show that our method effectively leverages increasing numbers of bad trajectories, whereas baselines such as SafeDICE and DWBC-GB fail to do so.

To answer question **(Q2)**, we investigate the impact of the size of the undesirable (bad) dataset on methods designed to learn from bad data. Specifically, we gradually increase the size of the bad dataset \mathcal{B}^B and evaluate how the performance of each algorithm is affected. The experimental results are presented in Figure 1. Overall, SafeDICE fails to effectively utilize the bad demonstrations, while DWBC-GB is only able to learn in the HOPPER task. In contrast, our method demonstrates strong scalability with respect to the size of the bad dataset, maintaining good performance even when provided with as few as a single bad trajectory.

6.4 SENSITIVITY ANALYSIS OF α

We introduce a hyperparameter $0 \leq \alpha < 1$, which controls the weighting of the bad data objective—this relates to question **(Q3)**. To evaluate the sensitivity of our method to α , we vary its value and observing the effect on final performance, as shown in Figure 2. While α does have a noticeable impact, our method remains robust across a broad range of values, with optimal performance observed within this range. The specific α values used for each task are provided in the Appendix.

7 CONCLUSION

We introduced a new offline imitation learning framework that leverages both expert and explicitly undesirable demonstrations. By formulating the learning objective as the difference of KL divergences over visitation distributions, we capture informative contrasts between good and bad behaviors. While the resulting DC program is generally non-convex, we establish conditions under which it becomes convex—specifically, when expert data dominates—leading to a practical, stable, and non-adversarial training procedure. Our unified approach to handling both expert and undesirable demonstrations

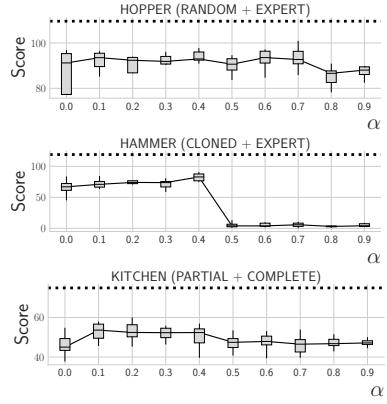


Figure 2: Sensitivity analysis on the trade-off parameter α .

486 yields superior performance across a range of offline imitation learning benchmarks, setting a new
 487 standard for learning from contrasting behaviors.

488 **Limitations and Future Work.** While our method demonstrates strong empirical performance, it is
 489 currently limited to settings where $\alpha \leq 1$. Relaxing this constraint would make the learning objective
 490 more difficult to optimize but represents a promising direction for future research. In addition, we
 491 assume access to well-labeled expert and undesirable demonstrations, which may not always be
 492 available in practical scenarios. Developing robust algorithms capable of learning effectively from
 493 noisy or weakly labeled data would thus be a valuable extension of this work. **Moreover, we assume**
 494 **that the undesirable dataset contains undesirable demonstrations that are not necessarily catastrophic**
 495 **or must be avoided at all costs. Addressing more safety-critical settings would require incorporating**
 496 **ideas from hard-constrained RL, which we consider a promising avenue for future exploration.**

497 REPRODUCIBILITY STATEMENT

500 We provide detailed hyperparameters and network architectures for each task in the Appendix. The
 501 source code has been submitted as supplementary material and will be made publicly available to
 502 ensure reproducibility and comparison. In addition, all datasets used are either publicly available or
 503 clearly described in the Appendix.

504 REFERENCES

505 Abbas Abdolmaleki, Bilal Piot, Bobak Shahriari, Jost Tobias Springenberg, Tim Hertweck, Michael
 506 Bloesch, Rishabh Joshi, Thomas Lampe, Junhyuk Oh, Nicolas Heess, Jonas Buchli, and Martin
 507 Riedmiller. Learning from negative feedback, or positive feedback or both. In *The Thirteenth*
 508 *International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=4FVGowGzQb>.

509 Firas Al-Hafez, Davide Tateo, Oleg Arenz, Guoping Zhao, and Jan Peters. Ls-iq: Implicit re-
 510 ward regularization for inverse reinforcement learning. In *Eleventh International Conference*
 511 *on Learning Representations (ICLR)*, 2023. URL <https://openreview.net/pdf?id=o3Q4m8jg4BR>.

512 Oleg Arenz and Gerhard Neumann. Non-adversarial imitation learning and its connections to
 513 adversarial methods. *arXiv preprint arXiv:2008.03525*, 2020.

514 Daniel Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond sub-
 515 optimal demonstrations via inverse reinforcement learning from observations. In *International*
 516 *conference on machine learning*, pp. 783–792. PMLR, 2019.

517 Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
 518 and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *The*
 519 *International Journal of Robotics Research*, pp. 02783649241273668, 2023.

520 Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse reinforce-
 521 ment learning. In *International Conference on Learning Representations*, 2018.

522 Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
 523 data-driven reinforcement learning, 2020.

524 Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, and Stefano Ermon. Iq-learn:
 525 Inverse soft-q learning for imitation. *Advances in Neural Information Processing Systems*, 34:
 526 4028–4039, 2021.

527 Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme q-learning: Maxent rl
 528 without entropy. In *International Conference on Learning Representations (ICLR)*, 2023. URL
 529 <https://arxiv.org/abs/2301.02328>.

530 Ze Gong, Akshat Kumar, and Pradeep Varakantham. Offline safe reinforcement learning using trajec-
 531 tory classification. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39,
 532 pp. 16880–16887, 2025.

540 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 541 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. *Advances in neural information*
 542 *processing systems*, 27, 2014.

543

544 Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
 545 Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
 546 applications. *arXiv preprint arXiv:1812.05905*, 2018.

547 Joey Hejna and Dorsa Sadigh. Inverse preference learning: Preference-based rl without a reward
 548 function. *Advances in Neural Information Processing Systems*, 36, 2024.

549

550 Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. *Advances in neural*
 551 *information processing systems*, 29, 2016.

552 Huy Hoang, Tien Mai, and Pradeep Varakantham. Imitate the good and avoid the bad: An incremental
 553 approach to safe reinforcement learning. In *Proceedings of the AAAI Conference on Artificial*
 554 *Intelligence*, volume 38, pp. 12439–12447, 2024a.

555 Huy Hoang, Tien Mai, and Pradeep Varakantham. Uniq: Offline inverse q-learning for avoiding
 556 undesirable demonstrations. *arXiv preprint arXiv:2410.08307*, 2024b.

557

558 Huy Hoang, Tien Anh Mai, and Pradeep Varakantham. SPRINQL: Sub-optimal demonstrations
 559 driven offline imitation learning. In *The Thirty-eighth Annual Conference on Neural Information*
 560 *Processing Systems*, 2024c. URL <https://openreview.net/forum?id=uDD44NRoot>.

561 Youngsoo Jang, Geon-Hyeong Kim, Jongmin Lee, Sungryull Sohn, Byoungjip Kim, Honglak Lee,
 562 and Moontae Lee. Safedice: offline safe imitation learning with non-preferred demonstrations.
 563 *Advances in Neural Information Processing Systems*, 36, 2024.

564 Yuchen Kang, Diyuan Shi, Jinxin Liu, Li He, and Donglin Wang. Beyond reward: Offline preference-
 565 guided policy optimization. In *International Conference on Machine Learning*, pp. 15753–15768.
 566 PMLR, 2023.

567

568 Changyeon Kim, Jongjin Park, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee. Preference
 569 transformer: Modeling human preferences using transformers for rl. In *The Eleventh International*
 570 *Conference on Learning Representations*, 2023.

571 Geon-Hyeong Kim, Seokin Seo, Jongmin Lee, Wonseok Jeon, HyeongJoo Hwang, Hongseok
 572 Yang, and Kee-Eung Kim. Demodice: Offline imitation learning with supplementary imperfect
 573 demonstrations. In *International Conference on Learning Representations*, 2021.

574

575 Geon-Hyeong Kim, Jongmin Lee, Youngsoo Jang, Hongseok Yang, and Kee-Eung Kim. Lobsdice:
 576 Offline learning from observation via stationary distribution correction estimation. *Advances in*
 577 *Neural Information Processing Systems*, 35:8252–8264, 2022.

578 Ilya Kostrikov, Ofir Nachum, and Jonathan Tompson. Imitation learning via off-policy distribution
 579 matching. In *International Conference on Learning Representations*, 2020.

580

581 Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
 582 q-learning. *arXiv preprint arXiv:2110.06169*, 2021.

583

584 Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
 585 reinforcement learning. *Advances in Neural Information Processing Systems*, 33:1179–1191, 2020.

586

587 Jongmin Lee, Wonseok Jeon, Byungjun Lee, Joelle Pineau, and Kee-Eung Kim. Optidice: Offline
 588 policy optimization via stationary distribution correction estimation. In *International Conference*
 589 *on Machine Learning*, pp. 6120–6130. PMLR, 2021.

590

591 Ziniu Li, Tian Xu, Zeyu Qin, Yang Yu, and Zhi-Quan Luo. Imitation learning from imperfection:
 592 Theoretical justifications and algorithms. In *Advances in Neural Information Processing Systems*
 593 37, 2023.

594

595 Yuxiao Lu, Arunesh Sinha, and Pradeep Varakantham. Semantic loss guided data efficient supervised
 596 fine tuning for safe responses in LLMs. In *The Thirteenth International Conference on Learning*
 597 *Representations*, 2025. URL <https://openreview.net/forum?id=k00Dg007hW>.

594 Yecheng Ma, Andrew Shen, Dinesh Jayaraman, and Osbert Bastani. Versatile offline imitation from
 595 observations and examples via regularized state-occupancy matching. In *International Conference*
 596 *on Machine Learning*, pp. 14639–14663. PMLR, 2022.

597

598 Liyuan Mao, Haoran Xu, Weinan Zhang, and Xianyuan Zhan. ODICE: Revealing the mystery of
 599 distribution correction estimation via orthogonal-gradient update. In *The Twelfth International*
 600 *Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=L8UNn7Llt4>.

601

602 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
 603 Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
 604 through deep reinforcement learning. *nature*, 518(7540):529–533, 2015.

605

606 Tong Mu and Others. Rule based rewards for language model safety. In *NeurIPS 2024*, 2024. URL
 607 <https://arxiv.org/abs/2411.01111>. ArXiv preprint arXiv:2411.01111.

608

609 Vivek Myers, Erdem Biyik, Nima Anari, and Dorsa Sadigh. Learning multimodal rewards from
 610 rankings. In *Conference on robot learning*, pp. 342–352. PMLR, 2022.

611

612 Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, and Dale Schuurmans. Algaedice:
 613 Policy gradient from arbitrary experience. *arXiv preprint arXiv:1912.02074*, 2019.

614

615 Martin L Puterman. *Markov decision processes: discrete stochastic dynamic programming*. John
 616 Wiley & Sons, 2014.

617

618 Siddharth Reddy, Anca D Dragan, and Sergey Levine. Sqil: Imitation learning via reinforcement
 619 learning with sparse rewards. *arXiv preprint arXiv:1905.11108*, 2019.

620

621 Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
 622 prediction to no-regret online learning. In *Proceedings of the fourteenth international conference*
 623 *on artificial intelligence and statistics*, pp. 627–635. JMLR Workshop and Conference Proceedings,
 624 2011.

625

626 Harshit Sikchi, QinQing Zheng, Amy Zhang, and Scott Niekum. Dual rl: Unification and new methods
 627 for reinforcement and imitation learning. In *Proceedings of the 12th International Conference*
 628 *on Learning Representations (ICLR)*, 2024. URL <https://openreview.net/forum?id=xt9Bu66rqv>.

629

630 Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
 631 Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
 632 networks for cooperative multi-agent learning. *arXiv preprint arXiv:1706.05296*, 2017.

633

634 Richard S. Sutton and Andrew G. Barto. *Reinforcement Learning: An Introduction*. The MIT Press,
 635 second edition, 2018. URL <http://incompleteideas.net/book/the-book-2nd.html>.

636

637 Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. *arXiv preprint*
 638 *arXiv:1805.01954*, 2018.

639

640 Yueh-Hua Wu, Nontawat Charoenphakdee, Han Bao, Voot Tangkaratt, and Masashi Sugiyama. Imita-
 641 tion learning from imperfect demonstration. In *International Conference on Machine Learning*, pp.
 642 6818–6827. PMLR, 2019.

643

644 Haoran Xu, Xianyuan Zhan, Honglei Yin, and Huling Qin. Discriminator-weighted offline imitation
 645 learning from suboptimal demonstrations. In *Proceedings of the 39th International Conference on*
 646 *Machine Learning*, pp. 24725–24742, 2022.

647

648 Sheng Yue, Jiani Liu, Xingyuan Hua, Ju Ren, Sen Lin, Junshan Zhang, and Yaoxue Zhang. How
 649 to leverage diverse demonstrations in offline imitation learning. In *Forty-first International*
 650 *Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=oOlooUu2Sb>.

648 Songyuan Zhang, Zhangjie Cao, Dorsa Sadigh, and Yanan Sui. Confidence-aware imitation learning
649 from demonstrations with varying optimality. *Advances in Neural Information Processing Systems*,
650 34:12340–12350, 2021.

651

652 Tony Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
653 manipulation with low-cost hardware. *Robotics: Science and Systems XIX*, 2023.

654

655 Henry Zhu, Justin Yu, Abhishek Gupta, Dhruv Shah, Kristian Hartikainen, Avi Singh, Vikash Kumar,
656 and Sergey Levine. The ingredients of real world robotic reinforcement learning. In *International
657 Conference on Learning Representations*, 2020. URL [https://openreview.net/forum?
658 id=rJe2syrtvS](https://openreview.net/forum?id=rJe2syrtvS).

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 APPENDIX
703704 This appendix includes the following materials:
705706 **Missing Proofs:** Proofs omitted from the main paper are provided in Appendix A and some additional
707 discussions B.708 **Experimental Details:** We describe the following aspects in detail:
709710 • Full pseudocode (Appendix C.1)
711 • Dataset construction (Appendix C.2)
712 • Baseline implementations (Appendix C.3)
714 • Hyperparameter selections (Appendix C.4)
715 • Computational resources (Appendix C.5)
717718 **Additional Experiments:** We further present supplementary results:
719720 • Effect of the size of the bad dataset (Appendix D.1)
721 • Effect of the number of expert demonstrations in the good dataset \mathcal{B}^G (Appendix D.2)
722 • Discussion: How many bad trajectories in \mathcal{B}^B are sufficient to replace a good trajectory in
723 \mathcal{B}^G for DualCOIL? (Appendix D.3)
724
725 • Comparison of advantage-weighted BC and Q-weighted BC for policy extraction (Ap-
726 pendix D.4)
727 • Performance across varying quality levels of the unlabeled dataset \mathcal{B}^{MIX} (Appendix D.5)
728
729 • Comparison with adapted offline reinforcement learning methods (Appendix D.8)
730
731 • Discussion: distribution-matching vs. preference-based approaches (Appendix D.9)
732
733 • Additional comparison with “avoid-bad-only” baselines (Appendix D.10)
734
735 • Ablations and experiments with $\alpha > 1$ (Appendix D.11)
736
737 • Comparison between $L(Q, \pi)$ and its surrogate $\tilde{L}(Q, \pi)$ (Appendix D.12)
738 • Sensitivity analysis of β (Appendix D.13)739 **Stress Tests:** We conduct additional stress-test experiments by:
740741 • Increasing the proportion of bad data in the unlabeled dataset \mathcal{B}^{MIX} to very high levels
742 (Appendix D.6)
743 • Generating more bad data to enlarge the bad dataset \mathcal{B}^B (Appendix D.7)
744745 CONTENTS
746747
748 **A Missing Proofs** 16
749
750 **B Additional Discussions** 19
751 B.1 Derivation of the Q-learning Objective 19
752 B.2 A Note on DualCOIL under f -Divergence 20
753 B.3 Possible Failure Modes in Avoiding Bad Demonstrations 20
754 B.4 Tightness of the Surrogate Lower Bound and the Role of Regularization 20
755

756	C Experiment Settings	22
757	C.1 Full Pseudo Code	22
758	C.2 Dataset Construction	23
759	C.3 Baselines Implementation	24
760	C.4 Hyper Parameters	24
761	C.5 Computational Resource	25
762		
763		
764		
765	D Additional Experiments	27
766	D.1 Impact of the Size of the Bad Dataset: Full Details	27
767	D.2 Impact of the Number of Expert Demonstrations in good dataset \mathcal{B}^G	28
768	D.3 Discussion: How Many Bad Trajectories in \mathcal{B}^B Are Sufficient to Replace a Good Trajectory in \mathcal{B}^G for DualCOIL?	29
769	D.4 Comparison of Advantage-weighted BC and Q-weighted BC for the Policy Extraction	30
770	D.5 Performance Across Varying Quality Levels of the Unlabeled Dataset \mathcal{B}^{MIX}	30
771	D.6 Effect of Increasing the Proportion of Bad Data in the Unlabeled Dataset	31
772	D.7 Experiments with Extremely Large Bad Dataset	32
773	D.8 Comparison with Adapted Offline RL Methods	32
774	D.9 Discussion: Distribution-matching Approach vs Preference-based Approach	32
775	D.10 Comparison with UNIQ: A State-of-the-Art Algorithm for Learning from Bad Demonstrations	33
776	D.11 Adaptations and Experiments with $\alpha > 1$	33
777	D.12 Comparison Between $L(Q, \pi)$ and the Surrogate $\tilde{L}(Q, \pi)$	35
778	D.13 Sensitivity Analysis of β	36
779	D.14 Comparison with Offline RL Methods	36
780	D.15 Extreme-V versus Log-sum-exp for Value Function Estimation	36
781	D.16 DualCOIL for Safety Tasks	38
782		
783		
784		
785		
786		
787		
788		
789		
790		
791		
792		
793		
794		
795		
796		
797		
798		
799		
800		
801		
802		
803		
804		
805		
806		
807		
808		
809		

A MISSING PROOFS

Proposition equation 4.1: *If $\alpha \leq 1$, then the objective function $f(d^\pi) = D_{KL}(d^\pi \parallel d^G) - \alpha D_{KL}(d^\pi \parallel d^B)$ is convex in d^π .*

Proof. We write the objective function as:

$$\begin{aligned} f(d^\pi) &= \sum_{(s,a) \sim d^\pi} \log \frac{d^\pi(s,a)}{d^G(s,a)} - \alpha \sum_{(s,a) \sim d^\pi} \log \frac{d^\pi(s,a)}{d^B(s,a)} \\ &= \sum_{s,a} (1-\alpha)d^\pi(s,a) \log d^\pi(s,a) + d^\pi(s,a)(\alpha d^B(s,a) - d^G(s,a)) \end{aligned} \quad (10)$$

We can see that the first term is convex in d^π since $\alpha \leq 1$ and $d^\pi(s,a) \log d^\pi(s,a)$ is convex in d^π . Moreover, the second term is linear in d^π . This implies that $f(d^\pi)$ is convex in π if $\alpha \leq 1$, as desired. \square

Proposition 4.2: *The objective function in equation 2 can be written as: $f(d, \pi) = (1 - \alpha)D_{KL}(d \parallel d^U) - \mathbb{E}_{(s,a) \sim d} [\Psi(s,a)]$, where $\Psi(s,a) = \log \frac{d^G(s,a)}{d^U(s,a)} - \alpha \log \frac{d^B(s,a)}{d^U(s,a)}$.*

Proof. We can expand the objective function as:

$$f(d, \pi) = \mathbb{E}_{(s,a) \sim d} \left[\log \frac{d(s,a)}{d^G(s,a)} \right] - \alpha \mathbb{E}_{(s,a) \sim d} \left[\log \frac{d(s,a)}{d^B(s,a)} \right].$$

We can rewrite the objective using d^U as an intermediate distribution:

$$\begin{aligned} f(d, \pi) &= \mathbb{E}_{(s,a) \sim d} \left[\log \frac{d(s,a)}{d^G(s,a)} \right] - \alpha \mathbb{E}_{(s,a) \sim d} \left[\log \frac{d(s,a)}{d^B(s,a)} \right] \\ &= \mathbb{E}_{(s,a) \sim d} \left[\log \frac{d(s,a)}{d^U(s,a)} + \log \frac{d^U(s,a)}{d^G(s,a)} \right] - \alpha \mathbb{E}_{(s,a) \sim d} \left[\log \frac{d(s,a)}{d^U(s,a)} + \log \frac{d^U(s,a)}{d^B(s,a)} \right] \\ &= (1-\alpha) \mathbb{E}_{(s,a) \sim d} \left[\log \frac{d(s,a)}{d^U(s,a)} \right] - \mathbb{E}_{(s,a) \sim d} [\Psi(s,a)], \\ &= (1-\alpha)D_{KL}(d \parallel d^U) - \mathbb{E}_{(s,a) \sim d} [\Psi(s,a)] \end{aligned}$$

where $\Psi(s,a) = \log \frac{d^G(s,a)}{d^U(s,a)} - \alpha \log \frac{d^B(s,a)}{d^U(s,a)}$. \square

Proposition 4.3: *Let the surrogate objective be defined as:*

$$\tilde{L}(Q, \pi) = (1-\gamma) \mathbb{E}_{s \sim p_0} [V_Q^\pi(s)] - \mathbb{E}_{d^U} [\delta(s,a) \mathcal{T}^\pi[Q](s,a)] + (1-\alpha) \mathbb{E}_{d^U} [\delta(s,a)]. \quad (11)$$

where $\delta(s,a) = \exp \left(\frac{\Psi(s,a)}{1-\alpha} \right)$. Then $\tilde{L}(Q, \pi)$ is a lower bound of $L(Q, \pi)$, with equality when $\mathcal{T}^\pi[Q](s,a) = 0$ for all (s,a) .

Proof. We first write $L(Q, \pi)$ as:

$$\begin{aligned} L(Q, \pi) &= (1-\gamma) \mathbb{E}_{s \sim p_0} [V_Q^\pi(s)] \\ &\quad + (1-\alpha) \mathbb{E}_{(s,a) \sim d^U} \left[\exp \left(\frac{\Psi(s,a) - \mathcal{T}^\pi[Q](s,a)}{1-\alpha} \right) \right] \\ &= (1-\gamma) \mathbb{E}_{s \sim p_0} [V_Q^\pi(s)] \\ &\quad + (1-\alpha) \mathbb{E}_{(s,a) \sim d^U} \left[\exp \left(\frac{\Psi(s,a)}{1-\alpha} \right) \exp \left(\frac{-\mathcal{T}^\pi[Q](s,a)}{1-\alpha} \right) \right] \\ &= (1-\gamma) \mathbb{E}_{s \sim p_0} [V_Q^\pi(s)] \\ &\quad + (1-\alpha) \mathbb{E}_{(s,a) \sim d^U} \left[\delta(s,a) \exp \left(\frac{-\mathcal{T}^\pi[Q](s,a)}{1-\alpha} \right) \right], \end{aligned}$$

864 where we define $\delta(s, a) := \exp\left(\frac{\Psi(s, a)}{1-\alpha}\right)$.
 865

866 Now, we use the inequality $e^t \geq t + 1$ (which follows from the convexity of e^t and is tight at $t = 0$),
 867 to obtain:

$$868 \exp\left(\frac{-\mathcal{T}^\pi[Q](s, a)}{1-\alpha}\right) \geq -\frac{\mathcal{T}^\pi[Q](s, a)}{1-\alpha} + 1.$$

870 Substituting this into the expression for $L(Q, \pi)$, we get:
 871

$$872 L(Q, \pi) \geq (1-\gamma) \mathbb{E}_{s \sim p_0} [V_Q^\pi(s)] + (1-\alpha) \mathbb{E}_{(s, a) \sim d^U} \left[\delta(s, a) \left(-\frac{\mathcal{T}^\pi[Q](s, a)}{1-\alpha} + 1 \right) \right] =: \tilde{L}(Q, \pi).$$

874 Equality holds in the inequality $e^t \geq t + 1$ when $t = 0$, which corresponds to $\mathcal{T}^\pi[Q](s, a) = 0$. That
 875 is, the equality $L(Q, \pi) = \tilde{L}(Q, \pi)$ holds when the rewards represented by the Q -function are zero
 876 everywhere. This completes the proof. \square
 877

878 **Proposition 4.4:** *The following properties hold:*
 879

880 (i) $\tilde{L}(Q, \pi)$ is linear in Q and concave in π . As a result, the max–min optimization can be equiv-
 881 alently reformulated as a min–max problem: $\max_\pi \min_Q \tilde{L}(Q, \pi) = \min_Q \max_\pi \tilde{L}(Q, \pi)$.
 882

883 (ii) The min–max problem $\min_Q \max_\pi \tilde{L}(Q, \pi)$ reduces to the following non-adversarial prob-
 884 lem:

$$885 \min_Q \left\{ \tilde{L}(Q) = (1-\gamma) \mathbb{E}_{s \sim p_0} [V_Q(s)] - \mathbb{E}_{(s, a) \sim d^U} \left[\exp\left(\frac{\Psi(s, a)}{1-\alpha}\right) \mathcal{T}[Q](s, a) \right] \right\},$$

886 where the soft value function $V_Q(s)$ is defined as: $V_Q(s) = \beta \log \left(\sum_a \mu^U(a | s) \exp(Q(s, a) / \beta) \right)$, and the soft Bellman residual operator is given by:
 887 $\mathcal{T}[Q](s, a) = Q(s, a) - \gamma V_Q(s)$. Moreover $\tilde{L}(Q)$ is convex in Q .
 888

889 *Proof.* We first write $\tilde{L}(Q, \pi)$ as:
 890

$$891 \tilde{L}(Q, \pi) = (1-\gamma) \mathbb{E}_{s \sim p_0} [V_Q^\pi(s)] - \mathbb{E}_{(s, a) \sim d^U} [\delta(s, a) (Q(s, a) - \gamma \mathbb{E}_{s' \sim p_0} [V_Q^\pi(s')])] \\ 892 + (1-\alpha) \mathbb{E}_{(s, a) \sim d^U} [\delta(s, a)],$$

893 where we recall that
 894

$$895 V_Q^\pi(s) = \mathbb{E}_{a \sim \pi(\cdot | s)} \left[Q(s, a) - \beta \log \frac{\pi(a | s)}{\mu^U(a | s)} \right].$$

896 Thus, we can observe that $\tilde{L}(Q, \pi)$ is linear in Q .
 897

898 Moreover, the function $V_Q^\pi(s)$ is concave in π , since it is composed of the expectation over a linear
 899 function of π (through $Q(s, a)$) and the negative entropy-regularized KL-divergence term, which is
 900 convex in π and thus its negative is concave. That is,
 901

$$902 V_Q^\pi(s) = \mathbb{E}_{a \sim \pi(\cdot | s)} \left[Q(s, a) - \beta \log \frac{\pi(a | s)}{\mu^U(a | s)} \right]$$

903 is concave in π .
 904

905 Furthermore, since $\delta(s, a) > 0$, the coefficients associated with $V_Q^\pi(s)$ in $\tilde{L}(Q, \pi)$ are non-negative.
 906 This implies that the entire function $\tilde{L}(Q, \pi)$ is concave in π .
 907

908 Now, since $\tilde{L}(Q, \pi)$ is concave in π and linear in Q , we can apply the minimax theorem to swap the
 909 order of the max and min:
 910

$$911 \max_\pi \min_Q \tilde{L}(Q, \pi) = \min_Q \max_\pi \tilde{L}(Q, \pi).$$

912 This holds because the function $\tilde{L}(Q, \pi)$ satisfies the standard conditions of the minimax theorem: it
 913 is concave in π , convex (in fact, linear) in Q , and the optimization domains are convex.
 914

918 Next, observe that in $\tilde{L}(Q, \pi)$, the variable π only appears through the term $V_Q^\pi(s)$, and all coefficients
919 multiplying $V_Q^\pi(s)$ are non-negative. Therefore, maximizing $\tilde{L}(Q, \pi)$ over π is equivalent to
920 maximizing $V_Q^\pi(s)$ for each state s independently. That is,
921

$$922 \max_{\pi} \tilde{L}(Q, \pi) \equiv \max_{\pi} \sum_s c(s) V_Q^\pi(s),$$

923 for some non-negative coefficients $c(s) \geq 0$, which implies it suffices to solve $\max_{\pi} V_Q^\pi(s)$ pointwise.
924

925 Recall the definition:
926

$$927 V_Q^\pi(s) = \mathbb{E}_{a \sim \pi(\cdot | s)} \left[Q(s, a) - \beta \log \frac{\pi(a | s)}{\mu^U(a | s)} \right].$$

928 The inner maximization over $\pi(\cdot | s)$ is a standard entropy-regularized problem, and the optimal
929 policy has the closed-form solution:
930

$$931 \pi^*(a | s) = \frac{\mu^U(a | s) \exp \left(\frac{Q(s, a)}{\beta} \right)}{\sum_{a'} \mu^U(a' | s) \exp \left(\frac{Q(s, a')}{\beta} \right)}.$$

932 This is a weighted softmax over $Q(s, a)$ values, using the baseline distribution $\mu^U(a | s)$ as the
933 reference. Substituting this back into $V_Q^\pi(s)$ yields the closed-form maximized value:
934

$$935 \max_{\pi} V_Q^\pi(s) = \beta \log \left(\sum_a \mu^U(a | s) \exp \left(\frac{Q(s, a)}{\beta} \right) \right).$$

936 Thus:
937

$$938 \min_Q \max_{\pi} \tilde{L}(Q, \pi) = \min_Q \tilde{L}(Q)$$

939 where
940

$$941 \tilde{L}(Q) = (1 - \gamma) \mathbb{E}_{s \sim p_0} [V_Q(s)] - \mathbb{E}_{(s, a) \sim d^U} \left[\exp \left(\frac{\Psi(s, a)}{1 - \alpha} \right) (Q(s, a) - \gamma \mathbb{E}_{s'} [V_Q(s')]) \right],$$

942 and
943

$$944 V_Q(s) = \beta \log \sum_a \mu^U(a | s) \exp \left(\frac{Q(s, a)}{\beta} \right).$$

945 We can now see that $\tilde{L}(Q)$ is convex in Q , due to the following reasons:
946

- 947 • The function $Q(s, a) \mapsto \log \sum_a \mu^U(a | s) \exp \left(\frac{Q(s, a)}{\beta} \right)$ is a softmax (log-sum-exp), which
948 is convex.
- 949 • $V_Q(s)$, being a composition of a convex function with an affine transformation, is convex in
950 Q .
- 951 • Expectations over convex functions (e.g., $\mathbb{E}_{s \sim p_0} [V_Q(s)]$, $\mathbb{E}_{s'} [V_Q(s')]$) preserve convexity.
- 952 • The remaining terms in $\tilde{L}(Q)$, such as $Q(s, a)$, appear linearly and thus preserve convexity.

953 Hence, the overall objective $\tilde{L}(Q)$ is convex in Q , which completes the proof.
954

955 \square

956
957 **Proposition 5.1** *The following Q -weighted behavior cloning (BC) objective yields the same optimal
958 policy as the original advantage-weighted BC formulation in equation 8:*

$$959 \max_{\pi} \sum_{(s, a) \sim \mathcal{B}^U} \exp \left(\frac{1}{\beta} Q(s, a) \right) \log \pi(a | s). \quad (12)$$

972 *Proof.* The Q-weighted BC objective can be written as:
 973

$$974 \max_{\pi} \sum_{(s,a)} \mu^U(s,a) \exp\left(\frac{1}{\beta}Q(s,a)\right) \log \pi(a \mid s). \\ 975$$

976 This represents a weighted maximum likelihood objective, where the weights are shaped by the
 977 exponential of the Q-values. For each state s , the optimal solution $\pi^*(a \mid s)$ is given by:
 978

$$979 \pi^*(a \mid s) = \frac{\mu^U(s,a) \exp\left(\frac{1}{\beta}Q(s,a)\right)}{\sum_{a'} \mu^U(s,a') \exp\left(\frac{1}{\beta}Q(s,a')\right)}. \\ 980 \\ 981$$

982 Moreover, we recall that:
 983

$$984 V^Q(s) = \beta \log \left(\sum_{a'} \mu^U(s,a') \exp\left(\frac{1}{\beta}Q(s,a')\right) \right), \\ 985$$

986 which allows us to express the optimal policy in terms of the advantage $Q(s,a) - V^Q(s)$ as:
 987

$$988 \pi^*(a \mid s) = \mu^U(s,a) \exp\left(\frac{1}{\beta}(Q(s,a) - V^Q(s))\right). \\ 989$$

990 This is precisely the optimal policy corresponding to the advantage-weighted BC objective defined in
 991 equation 8. This completes the proof. □
 992
 993

994 B ADDITIONAL DISCUSSIONS

995 B.1 DERIVATION OF THE Q-LEARNING OBJECTIVE

996 We provide a detailed derivation of the Q-learning objective presented in Section 4.1 of the main
 997 paper, starting from the primal objective in Proposition 4.2. The optimization problem can be written
 1000 as:

$$1001 \min_{d,\pi} (1-\alpha)D_{\text{KL}}(d \parallel d_U) - \mathbb{E}_{(s,a) \sim d}[\Psi(s,a)] \\ 1002 \\ 1003 \text{s.t. } d(s,a) = (1-\gamma)p_0(s)\pi(a|s) + \gamma\pi(a|s) \sum_{s',a'} T(s|s',a')d(s',a'), \quad (13) \\ 1004$$

1005 where $\Psi(s,a) = \log \frac{d_G(s,a)}{d_U(s,a)} - \alpha \log \frac{d_B(s,a)}{d_U(s,a)}$. This objective is of the same form as the primal
 1006 regularized RL problem analyzed in Sikchi et al. (2024), with reward $r(s,a) = \Psi(s,a)$, reference
 1007 distribution $d_{\text{ref}} = d_U$, and regularization weight $(1-\alpha)$. Following the derivation in DualRL, we
 1008 introduce a Lagrange multiplier $Q(s,a)$ for the occupancy-flow constraint and form the Lagrangian:
 1009

$$1010 \mathcal{L}(d,\pi,Q) = (1-\alpha) \mathbb{E}_d \left[\log \frac{d(s,a)}{d_U(s,a)} \right] - \mathbb{E}_d[\Psi(s,a)] \\ 1011 \\ 1012 + \mathbb{E}_d[Q(s,a) - \gamma \mathbb{E}_{T,\pi}[Q(s',a')]] - (1-\gamma) \mathbb{E}_{p_0,\pi}[Q(s,a)]. \quad (14)$$

1013 Minimizing equation 14 with respect to $d(s,a)$ pointwise gives

$$1014 \frac{\partial \mathcal{L}}{\partial d(s,a)} = 0 \Rightarrow \log \frac{d^*(s,a)}{d_U(s,a)} = \frac{1}{1-\alpha} [\Psi(s,a) + \gamma \mathbb{E}_{T,\pi}[Q(s',a')] - Q(s,a)] + c,$$

1015 which leads to the optimal occupancy distribution

$$1016 d^*(s,a) \propto d_U(s,a) \exp\left(\frac{\Psi(s,a) + \gamma \mathbb{E}_{T,\pi}[Q(s',a')] - Q(s,a)}{1-\alpha}\right). \quad (15)$$

1017 Substituting equation 15 back into the Lagrangian eliminates the dependence on d , yielding the
 1018 following dual optimization problem:
 1019

$$1020 \max_{\pi} \min_Q \left[(1-\gamma) \mathbb{E}_{p_0,\pi}[Q(s,a)] \right. \\ 1021 \\ 1022 \left. + (1-\alpha) \mathbb{E}_{(s,a) \sim d_U} \left[\exp\left(\frac{\Psi(s,a) + \gamma \mathbb{E}_{T,\pi}[Q(s',a')] - Q(s,a)}{1-\alpha}\right) \right] \right]. \quad (16)$$

1026
1027

Equation 16 corresponds exactly to the Q-learning formulation presented in Eq. 3.

1028

Here we note that we adopt the DualRL framework because it provides a principled and unified treatment of regularized reinforcement learning objectives. In particular, DualRL optimizes a KL-regularized objective that naturally arises from our derivation in Proposition 4.2, ensuring theoretical consistency between the recovered reward model and the downstream policy optimization. Moreover, DualRL has demonstrated strong empirical performance across diverse benchmarks and was highlighted as an ICLR 2024 spotlight presentation. Its stability and efficiency make it a more advanced and reliable choice compared to earlier DICE-based estimators or Q-learning variants such as OptDICE or XQL. Integrating DualRL therefore enables us to fully leverage our implicit reward formulation while benefiting from a state-of-the-art optimization framework.

1036

1037

B.2 A NOTE ON DUALCOIL UNDER f -DIVERGENCE

1038

1039

We note that the convexity stated in Proposition 4.1 does not hold under arbitrary f -divergences, even under the same assumptions. To illustrate this, consider the following objective defined using an f -divergence:

1040

1041

$$F(d^\pi) = D_f(d^\pi \| d^G) - \alpha D_f(d^\pi \| d^B),$$

1042

which can be written as:

1043

1044

1045

1046

$$F(d^\pi) = \sum_{(s,a)} d^G(s,a) f\left(\frac{d^\pi(s,a)}{d^G(s,a)}\right) - \alpha d^B(s,a) f\left(\frac{d^\pi(s,a)}{d^B(s,a)}\right).$$

1047

Observe that each term

1048

1049

1050

$$d^G(s,a) f\left(\frac{d^\pi(s,a)}{d^G(s,a)}\right) - \alpha d^B(s,a) f\left(\frac{d^\pi(s,a)}{d^B(s,a)}\right)$$

1051

is not necessarily convex for any $\alpha > 0$. Whether this expression is convex depends on the values of $d^G(s,a)$ and $d^B(s,a)$. In particular, if $d^G(s,a) = 0$ —i.e., the state-action pair (s,a) is never visited by the expert policy—then the term may become concave. Therefore, in general, the objective $F(d^\pi)$ defined under an f -divergence is not convex in d^π for arbitrary choices of α . Thus, the standard Lagrangian duality cannot be applied. For this reason, the KL divergence appears to be an ideal choice for our problem of learning from both expert and undesirable demonstrations.

1052

1053

B.3 POSSIBLE FAILURE MODES IN AVOIDING BAD DEMONSTRATIONS

1054

1055

1056

1057

1058

A known challenge in pushing the policy distribution away from the mean of the bad dataset is the potential emergence of new undesirable behaviors not covered by the dataset—often referred to as a “whack-a-mole” problem. If the bad dataset is incomplete, the policy may still converge to harmful behaviors. In this context, the primal objective $D_{KL}(d^\pi \| d^G) - D_{KL}(d^\pi \| d^B)$ highlights the importance of expert demonstrations, as safe learning requires that the influence of expert behavior outweighs that of bad behavior.

1059

1060

1061

1062

1063

1064

Our framework addresses this by prioritizing imitation of expert behavior whenever available, while using bad demonstrations only to avoid clearly undesirable actions. Thus, expert data anchors the policy, and bad data serves as a supplementary signal rather than requiring exhaustive coverage of all failure modes. This mitigates the “whack-a-mole” issue by ensuring the policy remains primarily guided by expert behavior.

1065

1066

1067

1068

1069

1070

1071

1072

1073

Naturally, when both expert and bad demonstrations are scarce, policy learning becomes difficult—a limitation shared by most IL approaches. Nonetheless, our experiments show that the method is robust and consistently outperforms baselines, even with only limited expert data.

1074

1075

B.4 TIGHTNESS OF THE SURROGATE LOWER BOUND AND THE ROLE OF REGULARIZATION

1076

1077

1078

1079

In our algorithm, we adopt the surrogate objective $\tilde{L}(Q, \pi)$ as a tractable lower bound of the true training objective $L(Q, \pi)$. A natural concern is: *How tight is the lower-bound objective $\tilde{L}(Q, \pi)$ compared to the original objective $L(Q, \pi)$?* While the gap between $L(Q, \pi)$ and its surrogate can be nontrivial—reflecting the difference between the exponential function and its linear approximation—this does not undermine its effectiveness. The surrogate offers tractability while still guiding

1080 the optimization of Q and π in a direction consistent with maximizing the original objective, since
1081 both e^x and $x + 1$ share the same monotonicity. Appendix D.12 provides a detailed comparison, and
1082 ablation studies confirm that the surrogate leads to significantly improved training performance.
1083

1084 Another question is whether DualCOIL benefits primarily from the implicit regularization within
1085 $L(Q, \pi)$ rather than being a faithful proxy for the original $D_{KL}(d^\pi \| d^G) - D_{KL}(d^\pi \| d^B)$ objective.
1086 In practice, this regularization mainly stabilizes training by preventing extreme Q -values, a technique
1087 also found in baselines such as SafeDICE and DWBC. However, regularization alone does not
1088 enable meaningful learning from both expert and undesirable datasets. The superior performance
1089 of DualCOIL arises instead from the structure of $L(Q, \pi)$ itself, which is grounded in the original
1090 KL-divergence formulation.
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134 C EXPERIMENT SETTINGS
11351136 C.1 FULL PSEUDO CODE
11371138 The detailed implementation are provided in Algorithm 2.
11391140 **Algorithm 2** DualCOIL: Offline Imitation Learning from Contrasting Behaviors (full)
1141

1142 **Require:** Good dataset \mathcal{B}_G , Bad dataset \mathcal{B}_B , unlabeled dataset \mathcal{B}_U
 1143 **Require:** Hyperparameters: $\alpha \in [0, 1)$, β, γ, N_μ, N , target update rate τ , batch size B
 1144 1: Initialize networks: $Q_{w_q}(s, a)$, $V_{w_v}(s)$, $\pi_\theta(a|s)$, classifiers $c_{w_G}^G(s, a)$, $c_{w_B}^B(s, a)$
 1145 2: Initialize target Q-network: $Q_{\text{target}} \leftarrow Q_{w_q}$
 1146 3:
 1147 4: **Step 1: Estimate occupancy ratios**
 1148 5: **for** $i = 1$ to N_μ **do**
 1149 6: Sample batch $\{(s_i^G)'\}_{i=1}^B \sim \mathcal{B}_G$; $\{(s_i^B)'\}_{i=1}^B \sim \mathcal{B}_B$; $\{(s_i^U)'\}_{i=1}^B \sim \mathcal{B}_U$
 1150 7: Update $c_{w_G}^G$ by maximizing the objective in equation 6.
 1151 8: Update $c_{w_B}^B$ by maximizing an analogous objective to equation 6 for the bad dataset.
 1152 9: **end for**
 1153 10:
 1154 11: **Step 2: Calculate Ψ function**
 1155 12: Calculate $\Psi(s, a) = \log \left(\frac{c_{w_G}^G(s')}{1 - c_{w_G}^G(s')} \right) - \alpha \log \left(\frac{c_{w_B}^B(s')}{1 - c_{w_B}^B(s')} \right)$.
 1156 13:
 1157 14: **Step 3: Train Q, V, and Policy**
 1158 15: **for** $i = 1$ to N **do**
 1159 16: Sample batch $\{(s_i, a_i, s'_i, \Psi_i)\}_{i=1}^B \sim \mathcal{B}_U$
 1160 17: **Q-Update:** Minimize the objective $\tilde{L}(Q_{w_q}|V_{w_v}) + \frac{1}{2}(Q_{w_q}(s_i, a_i) - \gamma V_{w_v}(s'_i))^2$.
 1161 18: (reference: $\tilde{L}(Q|V)$ from Sec 5/ Eq equation 7)
 1162 19: **V-Update:** Minimize the Extreme-V objective:
 1163 20:
$$\min_{w_v} \frac{1}{B} \sum_{i=1}^B \left[\exp \left(\frac{Q_{\text{target}}(s_i, a_i) - V_{w_v}(s_i)}{\beta} \right) - \frac{Q_{\text{target}}(s_i, a_i) - V_{w_v}(s_i)}{\beta} - 1 \right].$$

 1164 21: **Policy Update:** Maximize the policy by using Q-weighted Behavior Cloning.
 1165 22: (reference: Sec 5/ Eq equation 9)
 1166 23: **Target Q-Update:** Soft update: $Q_{\text{target}} \leftarrow \tau Q_{w_q} + (1 - \tau)Q_{\text{target}}$
 1167 24: **end for**
 1168 25: **return** Trained policy π_θ

1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188 C.2 DATASET CONSTRUCTION
11891190 From the official D4RL dataset we use three different domains:
1191

- 1192 • MuJoCo Locomotion[CHEETAH,ANT,HOPPER,WALKER] with three types of dataset:
 - 1193 – EXPERT
 - 1194 – MEDIUM
 - 1195 – RANDOM
- 1196 • Adroit [PEN,HAMMER,DOOR,RELOCATE] with three types of dataset:
 - 1197 – EXPERT
 - 1198 – HUMAN
 - 1199 – CLONED
- 1200 • FrankaKitchen [KITCHEN] with three types of dataset:
 - 1201 – COMPLETE
 - 1202 – MIXED
 - 1203 – PARTIAL

1204 Following the approach of (Sikchi et al., 2024), we also provide several combinations across all
1205 three domains, as shown in Table 2. Notably, the unlabeled dataset \mathcal{B}^{MIX} is constructed by combining
1206 the entire suboptimal dataset with the expert dataset, resulting in an overlap between \mathcal{B}^G and \mathcal{B}^{MIX} .
1207 Nevertheless, this setup is practical: given a good dataset \mathcal{B}^G and an unlabeled dataset \mathcal{B}^{MIX} , users
1208 can randomly sample trajectories and assign them to either \mathcal{B}^G or \mathcal{B}^{MIX} without the need for any
1209 additional external data.

1213 Task	1214 Unlabeled name	1215 \mathcal{B}^G	1216 \mathcal{B}^B	1217 \mathcal{B}^{MIX}
1218 CHEETAH	RANDOM+EXPERT	1 EXPERT	10 RANDOM	Full RANDOM+30 EXPERT
	MEDIUM+EXPERT	1 EXPERT	10 MEDIUM	Full MEDIUM+30 EXPERT
1220 ANT	RANDOM+EXPERT	1 EXPERT	10 RANDOM	Full RANDOM+30 EXPERT
	MEDIUM+EXPERT	1 EXPERT	10 MEDIUM	Full MEDIUM+30 EXPERT
1222 HOPPER	RANDOM+EXPERT	1 EXPERT	10 RANDOM	Full RANDOM+30 EXPERT
	MEDIUM+EXPERT	1 EXPERT	10 MEDIUM	Full MEDIUM+30 EXPERT
1224 WALKER	RANDOM+EXPERT	1 EXPERT	10 RANDOM	Full RANDOM+30 EXPERT
	MEDIUM+EXPERT	1 EXPERT	10 MEDIUM	Full MEDIUM+30 EXPERT
1226 PEN	CLONED+EXPERT	1 EXPERT	25 CLONED	Full CLONED+100 EXPERT
	HUMAN+EXPERT	1 EXPERT	25 HUMAN	Full HUMAN+100 EXPERT
1228 HAMMER	CLONED+EXPERT	1 EXPERT	25 CLONED	Full CLONED+100 EXPERT
	HUMAN+EXPERT	1 EXPERT	25 HUMAN	Full HUMAN+100 EXPERT
1230 DOOR	CLONED+EXPERT	1 EXPERT	25 CLONED	Full CLONED+100 EXPERT
	HUMAN+EXPERT	1 EXPERT	25 HUMAN	Full HUMAN+100 EXPERT
1232 RELOCATE	CLONED+EXPERT	1 EXPERT	25 CLONED	Full CLONED+100 EXPERT
	HUMAN+EXPERT	1 EXPERT	25 HUMAN	Full HUMAN+100 EXPERT
1234 KITCHEN	PARTIAL+COMPLETE	1 COMPLETE	25 PARTIAL	Full PARTIAL+1 COMPLETE
	MIXED+COMPLETE	1 COMPLETE	25 MIXED	Full MIXED+1 COMPLETE

1235 **Table 2: Dataset Construction.** The numbers in Table 2 indicate the number of trajectories drawn
1236 from each corresponding dataset. For the KITCHEN task, we follow the setting of (Sikchi et al., 2024),
1237 where only a single trajectory from the COMPLETE dataset is included in \mathcal{B}^{MIX} .

1242 C.3 BASELINES IMPLEMENTATION
12431244 We compare our method against several established baselines. For methods with publicly available
1245 code, we utilized their official implementations without algorithmic modifications.
12461247 C.3.1 BEHAVIOR CLONING (BC)
12481249 We employ the standard Behavior Cloning (BC) objective, which aims to minimize the negative
1250 log-likelihood of the demonstrated actions under the learned policy:
1251

1252
$$\min_{\pi} -\mathbb{E}_{(s,a) \sim \mathcal{B}} \log \pi(a | s), \quad (17)$$

1253

1254 where \mathcal{B} denotes the dataset of state-action pairs. Specifically, \mathcal{B} corresponds to \mathcal{B}^{MIX} in the case of
1255 BC-MIX, or \mathcal{B}^G for BC-G.
12561257 C.3.2 OTHER BASELINES WITH OFFICIAL IMPLEMENTATIONS
12581259 For the following baselines, we used their official, unmodified implementations:
12601261

- **SMODICE** (Ma et al., 2022): Applied to both the good dataset (\mathcal{B}^G) and the mixed dataset
1262 (\mathcal{B}^{MIX}). The official code is available at [GitHub].
- **ILID** (Yue et al., 2024): Applied to \mathcal{B}^G and \mathcal{B}^{MIX} . The official code is available at [GitHub].
- **ReCOIL** (Sikchi et al., 2024): Applied to \mathcal{B}^G and \mathcal{B}^{MIX} . The official code is available at
1263 [GitHub].
- **SafeDICE** (Jang et al., 2024): Applied to the bad dataset (\mathcal{B}^B) and the mixed dataset (\mathcal{B}^{MIX}).
1264 The official code is available at [GitHub].

12651266 C.3.3 DWBC-GB
12671268 DWBC-GB is our adaptation of DWBC (Xu et al., 2022) (original official implementation: [GitHub]).
1269 While the original DWBC is designed for scenarios involving \mathcal{B}^G and \mathcal{B}^{MIX} , our modified version,
1270 DWBC-GB, is extended to handle all three dataset types: \mathcal{B}^G , \mathcal{B}^B , and \mathcal{B}^{MIX} .
12711272 This adaptation involves training two discriminators: c^G for good data and c^B for bad data. Their
1273 respective loss functions are:
1274

1275
$$\begin{aligned} L_{c^G} = \eta \mathbb{E}_{(s,a) \sim \mathcal{B}^G} &[-\log c^G(s, a, \log \pi(a|s))] \\ &+ \mathbb{E}_{(s,a) \sim \mathcal{B}^{\text{MIX}}} [-\log(1 - c^G(s, a, \log \pi(a|s)))] \\ &- \eta \mathbb{E}_{(s,a) \sim \mathcal{B}^G} [-\log(1 - c^G(s, a, \log \pi(a|s)))] \end{aligned} \quad (18)$$

1276

1277
$$\begin{aligned} L_{c^B} = \eta \mathbb{E}_{(s,a) \sim \mathcal{B}^B} &[-\log c^B(s, a, \log \pi(a|s))] \\ &+ \mathbb{E}_{(s,a) \sim \mathcal{B}^{\text{MIX}}} [-\log(1 - c^B(s, a, \log \pi(a|s)))] \\ &- \eta \mathbb{E}_{(s,a) \sim \mathcal{B}^B} [-\log(1 - c^B(s, a, \log \pi(a|s)))] \end{aligned} \quad (19)$$

1278

1279 The policy π is then learned by minimizing the objective:
1280

1281
$$\begin{aligned} \min_{\pi} \left(\mathbb{E}_{(s,a) \sim \mathcal{B}^G} \left[-\log \pi(a|s) \cdot \left(\alpha - \frac{\eta}{c(s, a) (1 - c(s, a))} \right) \right] \right. \\ \left. + \mathbb{E}_{(s,a) \sim \mathcal{B}^{\text{MIX}}} \left[-\log \pi(a|s) \cdot \frac{1}{1 - c(s, a)} \right] \right), \end{aligned} \quad (20)$$

1282

1283 where $c(s, a) = c^G(s, a) - c^B(s, a)$. (Note: η and α are hyperparameters.)
12841285 C.4 HYPER PARAMETERS
12861287 Our method features two primary hyperparameters: α (weighting for balancing positive and negative
1288 samples) and β (Extreme-V update). Sections 6.4, D.11, and D.13 present ablation studies detailing
1289 the sensitivity to these parameters.
1290

	Task	Unlabeled name	α	β
1296	CHEETAH	RANDOM+EXPERT	0.6	20.0
1297		MEDIUM+EXPERT	0.6	15.0
1298	ANT	RANDOM+EXPERT	0.6	15.0
1299		MEDIUM+EXPERT	0.6	15.0
1300	HOPPER	RANDOM+EXPERT	0.4	30.0
1301		MEDIUM+EXPERT	0.4	30.0
1302	WALKER	RANDOM+EXPERT	0.6	20.0
1303		MEDIUM+EXPERT	0.6	20.0
1304	PEN	CLONED+EXPERT	0.4	15.0
1305		HUMAN+EXPERT	0.4	10.0
1306	HAMMER	CLONED+EXPERT	0.2	10.0
1307		HUMAN+EXPERT	0.6	20.0
1308	DOOR	CLONED+EXPERT	0.4	15.0
1309		HUMAN+EXPERT	0.4	10.0
1310	RELOCATE	CLONED+EXPERT	0.4	30.0
1311		HUMAN+EXPERT	0.8	3.0
1312	KITCHEN	PARTIAL+COMPLETE	0.1	20.0
1313		MIXED+COMPLETE	0.3	20.0

Table 3: Hyper parameters.

Specific parameters for all tasks are provided in Table 3 below:

Beyond these, all other hyperparameters are consistently applied across all benchmarks and settings. The policy, Q-function, V-function, and discriminator all utilize a 2-layer feedforward neural network architecture with 256 hidden units and ReLU activation functions. For the policy, Tanh Gaussian outputs are used. The Adam optimizer is configured with a weight decay of 1×10^{-3} , all learning rates are set to 3×10^{-4} , mini batch size is 1024, and a soft critic update parameter $\tau = 0.005$ is used. These hyperparameters are summarized in Table 4:

Hyperparameter	Value
Network Architecture (Policy, Q-func, V-func, Discriminator)	2-layer Neural Network
Hidden Units per Layer	256
Batch size	1024
Activation Function (Hidden Layers)	ReLU
Policy Output Activation	Tanh Gaussian
Optimizer	Adam
Learning Rate (all networks)	3×10^{-4}
Weight Decay (Adam)	1×10^{-3}
Soft Critic Update Rate (τ)	0.005

Table 4: Consistent hyperparameters used across all benchmarks and settings.

C.5 COMPUTATIONAL RESOURCE

Our experiments were conducted using a pool of 12 NVIDIA GPUs, including L40, A5000, and RTX 3090 models. For each experimental configuration, five training seeds were executed in parallel, sharing a single GPU, eight CPU cores, and 64 GB of RAM. Under these shared conditions, completing 1 million training steps across all five seeds took approximately 30 minutes. The software environment was based on JAX version 0.4.28 (with CUDA 12 support), running on CUDA version 12.3.2 and cuDNN version 8.9.7.29.

Moreover, we evaluated all methods using the CHEETAH (RANDOM+EXPERT) task under identical hardware conditions: a single NVIDIA L40 GPU, 8 CPU cores, and 64GB of RAM. For SafeDICE, we were unable to utilize GPU acceleration with TensorFlow; consequently, the method was run in CPU-only mode, resulting in slower training times. For DualCOIL, we trained two discriminators,

1350 which required approximately 5 minutes; this duration is included in the total training time. A
1351 complete training time for a single seed are reported in Table 5.
1352

	DWBC-GB	SafeDICE (CPU)	SMODICE	ILID	ReCOIL	DualCOIL
time	~130 mins	~150 mins	~110 mins	~80 mins	~20 mins	~25 mins

1353 Table 5: Comparison of training time across methods.
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

D ADDITIONAL EXPERIMENTS

D.1 IMPACT OF THE SIZE OF THE BAD DATASET: FULL DETAILS

To support the experiment in Section 6.3, we present the complete results for all MuJoCo Locomotion and Adroit manipulation tasks. In particular, we progressively increase the size of the suboptimal dataset \mathcal{B}^B and evaluate the impact on each algorithm’s performance. The results, shown in Figure 3, demonstrate that DualCOIL consistently outperforms all other baselines across all tasks, effectively leveraging the bad data to achieve superior performance. Notably, the results indicate that with only a single good trajectory in \mathcal{B}^G , increasing the number of bad trajectories in \mathcal{B}^B to just 10 is sufficient for DualCOIL to achieve its highest performance across all tasks.

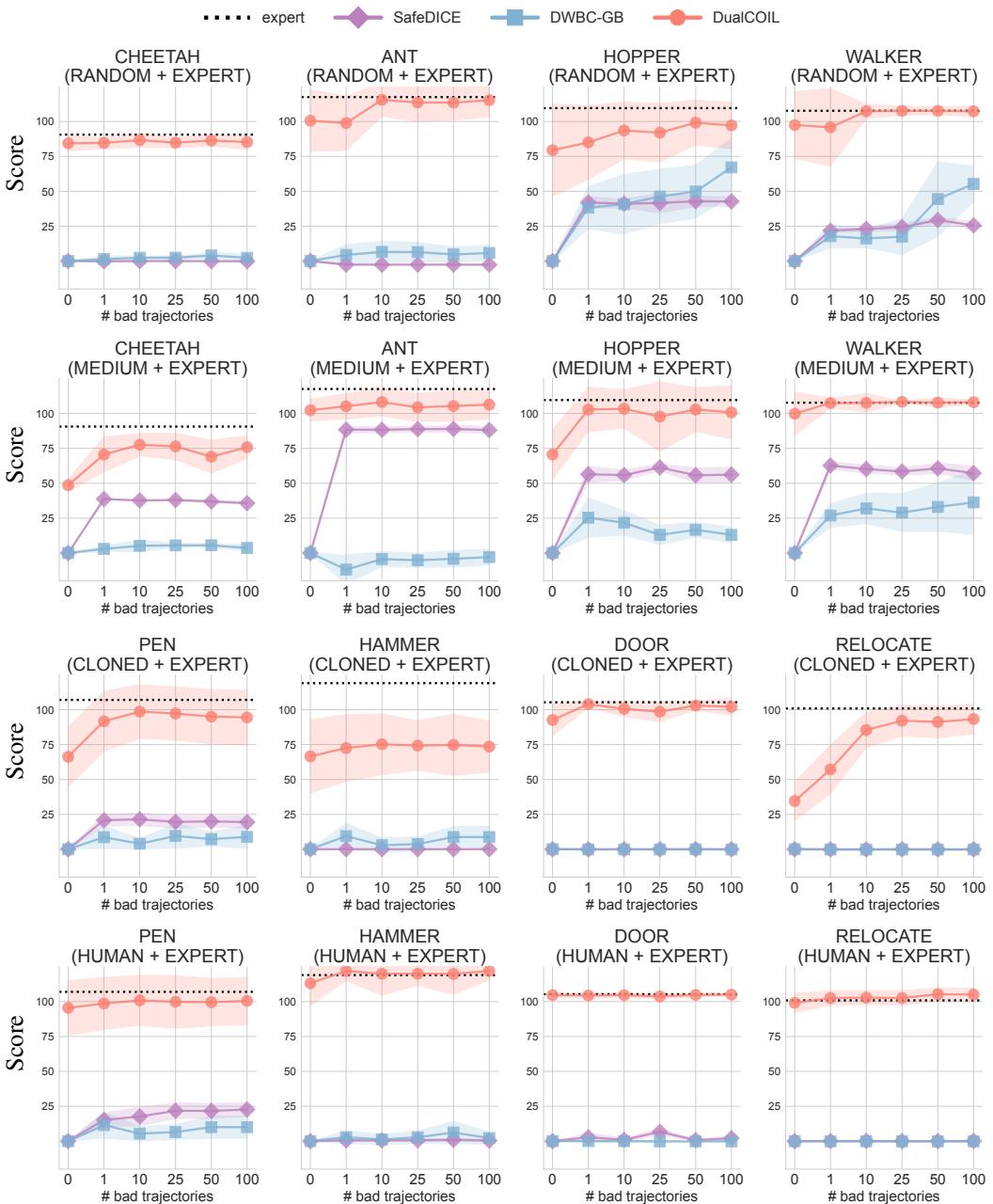


Figure 3: Full bad dataset size effect. SafeDICE and DWBC-GB do not have version that learn from 0 bad trajectory, we assign result 0.0 for them.

1458
1459D.2 IMPACT OF THE NUMBER OF EXPERT DEMONSTRATIONS IN GOOD DATASET \mathcal{B}^G 1460
1461
1462
1463

In this section, we investigate how many expert trajectories in the good dataset \mathcal{B}^G are sufficient to achieve optimal performance. To this end, the quantity of expert trajectories in \mathcal{B}^G was incrementally increased through the set 1,3,5,10,25, while the composition of the unlabeled dataset (\mathcal{B}^{Mix}) remained fixed, as specified in Table 1. The detailed results are presented in Figure 4 and 5.

1464
1465
1466
1467
1468
1469
1470

ILID performs well on the Mujoco locomotion tasks (CHEETAH, ANT, HOPPER, WALKER), but struggles in 3 out of 4 Adroit tasks (HAMMER, DOOR, RELOCATE). This indicates that ILID requires a sufficient number of expert trajectories to achieve stable expert performance, which is not met in the more complex Adroit tasks. In contrast, ReCOIL appears unable to effectively leverage the good data, as its performance does not improve significantly with more expert trajectories. Overall, DualCOIL demonstrates consistently strong performance, **requiring only 3 to 5 expert trajectories** to achieve near-optimal results in all tasks.

1471
1472
1473
1474
1475
1476

Discussion on the Use Cases of ILID and DualCOIL: Through this experiment, we observe that in the Mujoco tasks, ILID can outperform DualCOIL-G when the size of the good dataset is sufficiently large. This highlights a limitation of DualCOIL, where the policy extraction objective is defined as $\max_{\pi} \left\{ \sum_{(s,a) \sim \mathcal{B}^U} \exp\left(\frac{1}{\beta} Q(s,a)\right) \log \pi(a|s) \right\}$. This objective uses data from the union dataset \mathcal{B}^U , which may assign high weights to poor-quality transitions, potentially harming training.

1477
1478
1479
1480

In contrast, ILID only retains transitions that are connected to good data and explicitly discards irrelevant or undesirable transitions (refer to the implementation details of ILID for more information). This targeted filtering strategy enables ILID to avoid the negative effects of poor transitions and scale more effectively with increasing amounts of good data.

1481
1482
1483
1484
1485

These observations suggest a potential direction for improving DualCOIL by incorporating similar data filtering mechanisms. Specifically, enhancing DualCOIL to better isolate high-quality transitions could help it perform competitively with ILID in scenarios where the good dataset is large. We leave this exploration for future work, as it requires a careful study of how to construct an optimal dataset using Q-based methods.

1486
1487
1488
1489

In summary, ILID is a strong approach that scales well with the quality and size of the expert dataset. Practitioners may prefer discriminator-based methods like ILID when sufficient high-quality expert data is available, while DualCOIL remains a robust choice in settings where such data is limited and scalable with bad dataset.

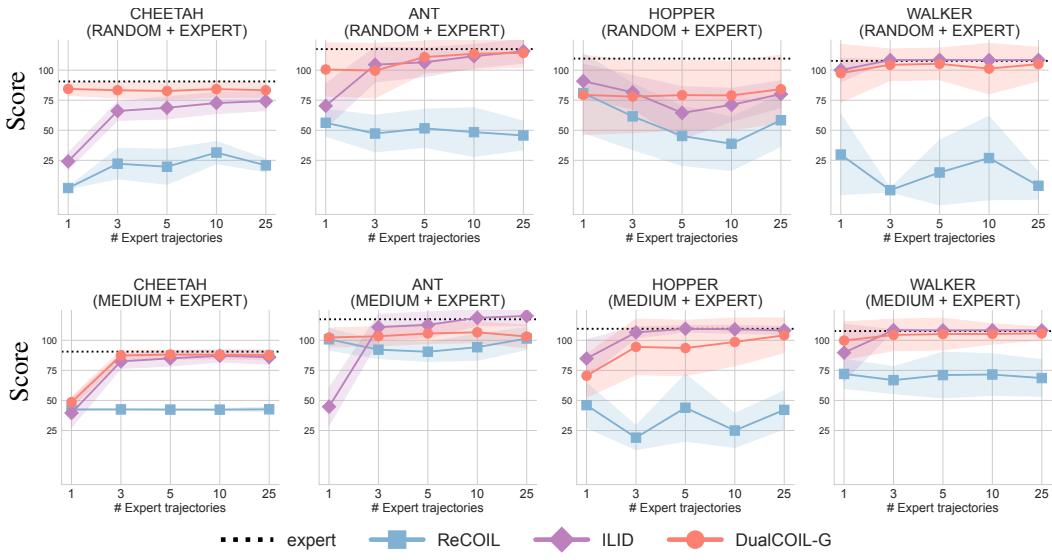
1510
1511

Figure 4: Different of good dataset size without impact from bad dataset in MuJoCo Locomotion tasks.

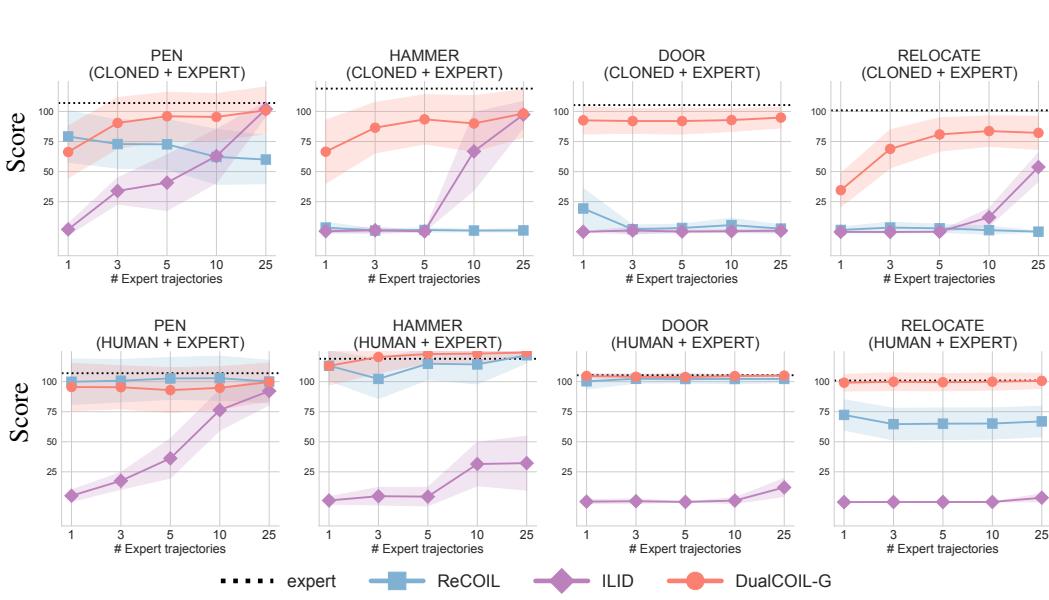


Figure 5: Different of good dataset size without impact from bad dataset in Adroit Manipulation tasks.

D.3 DISCUSSION: HOW MANY BAD TRAJECTORIES IN \mathcal{B}^B ARE SUFFICIENT TO REPLACE A GOOD TRAJECTORY IN \mathcal{B}^G FOR DUALCOIL?

Based on the previous experiments:

- Section D.1 addresses the question: How does the size of the bad dataset \mathcal{B}^B affect the performance of DualCOIL?
- Section D.2 investigates an additional question: How does the size of the good dataset \mathcal{B}^G affect the performance of DualCOIL?

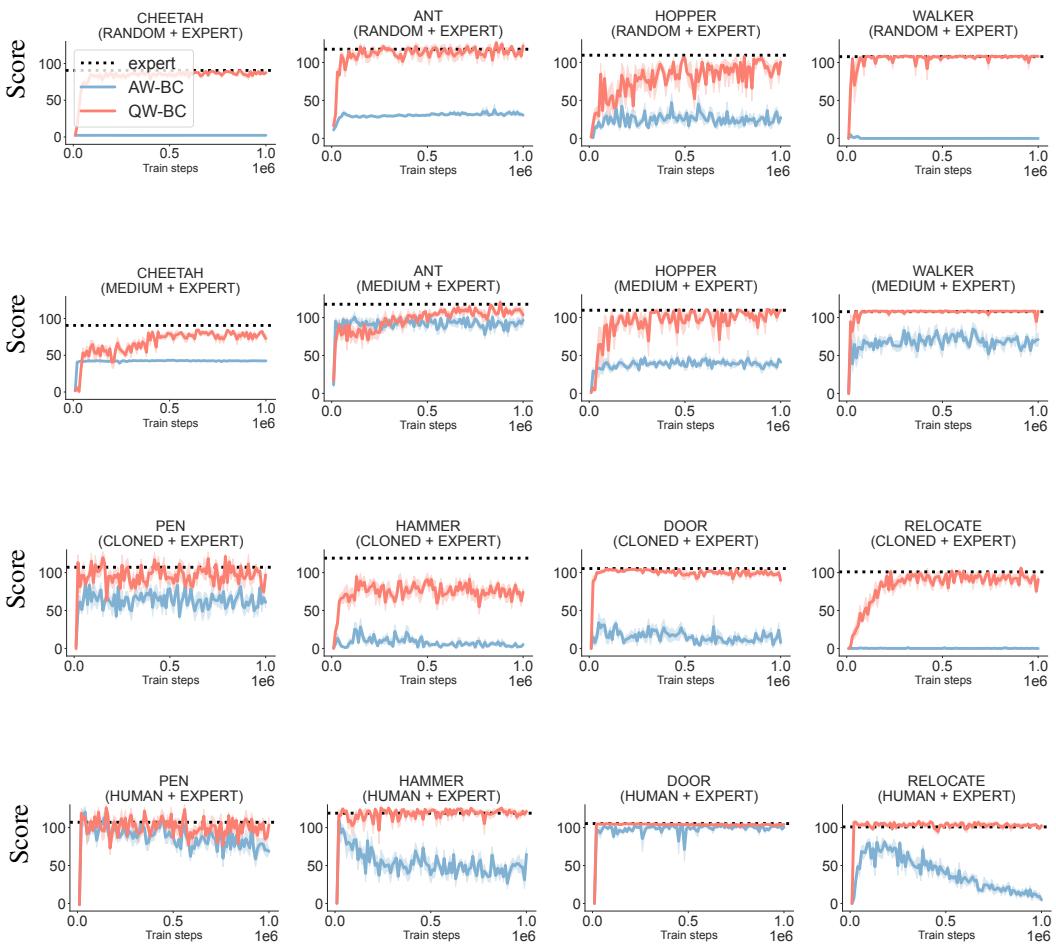
From these experiments, we derive the following observations:

- With only one good trajectory in \mathcal{B}^G , adding 10 bad trajectories in \mathcal{B}^B is sufficient for DualCOIL to achieve its best performance.
- Without any bad data \mathcal{B}^B , 3 to 5 good trajectories in \mathcal{B}^G are enough to reach peak performance.

These results suggest that DualCOIL can efficiently utilize bad data to reduce the need for good data, with an estimated ratio of 2 to 5 bad trajectories being roughly equivalent to one good trajectory across the benchmarks studied in this paper.

1566 **D.4 COMPARISON OF ADVANTAGE-WEIGHTED BC AND Q-WEIGHTED BC FOR THE POLICY
1567 EXTRACTION**

1569 In this paper, we propose a novel policy extraction method called QW-BC (Objective equation 9),
1570 in contrast to prior approaches that rely on AW-BC (Objective equation 8). In this section, we
1571 present a comparison between QW-BC and AW-BC, as illustrated in Figure 6. Overall, QW-BC
1572 demonstrates superior policy extraction performance, attributed to its stability derived from relying on
1573 a single network estimation. In contrast, AW-BC often exhibits oscillations and instability, frequently
1574 assigning inconsistent and overly high weights to bad transitions.



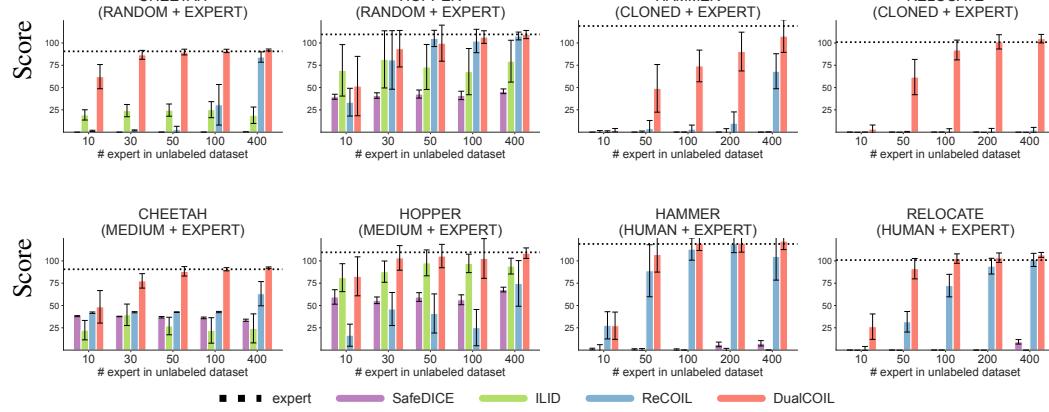
1607 **Figure 6: AW-BC and QW-BC comparison.**

1610 **D.5 PERFORMANCE ACROSS VARYING QUALITY LEVELS OF THE UNLABELED DATASET \mathcal{B}^{MIX}**

1612 The performance of all methods is influenced by the quality of the unlabeled dataset \mathcal{B}^{MIX} . To evaluate
1613 the robustness of our method under varying dataset quality, we conduct experiments with different
1614 amounts of expert trajectories combined with the full set of undesirable trajectories in the unlabeled
1615 dataset. We compare our approach against ILID and ReCOIL—which leverage \mathcal{B}^G and \mathcal{B}^{MIX} —as
1616 well as SafeDICE, which learns from \mathcal{B}^B and \mathcal{B}^{MIX} . The detailed results of this study are presented in
1617 Figure 7.

1618 In the Mujoco locomotion tasks, increasing the quality of the unlabeled dataset has minimal effect on
1619 SafeDICE and ILID, and both methods continue to underperform on the Adroit hand manipulation
tasks regardless of the number of expert trajectories included. In contrast, ReCOIL shows improved

1620 performance as the quality of the unlabeled dataset increases, successfully learning 4 out of 8
 1621 tasks across both locomotion and manipulation domains. Overall, our method achieves near-expert
 1622 performance on 7 out of 8 tasks while requiring significantly lower-quality unlabeled datasets \mathcal{B}^{MIX} ,
 1623 demonstrating its superior data efficiency and robustness.



1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641 **Figure 7: Effect of Unlabeled Dataset Quality on Performance:** We evaluate the effect of increasing
 1642 the number of expert trajectories in the unlabeled dataset \mathcal{B}^{MIX} . The results are calculated from 5
 1643 different training seeds, reported in normalized score. Our method outperforms SafeDICE, ILID and
 1644 ReCOIL across both locomotion and manipulation tasks, achieving near-expert performance on most
 1645 environments even with a small number of expert demonstrations.

1646 1647 D.6 EFFECT OF INCREASING THE PROPORTION OF BAD DATA IN THE UNLABELED DATASET

1648 In this experiment, we maintain the same good dataset (\mathcal{B}^G) and bad dataset (\mathcal{B}^B) as used in the main
 1649 comparison in Section 6.2. Our modification focuses on the unlabeled dataset (\mathcal{B}^{MIX}). Within \mathcal{B}^{MIX} ,
 1650 the number of EXPERT trajectories remains consistent with Section 6.2, but the RANDOM dataset
 1651 within it is duplicated multiple times to increase the proportion of bad data (each dataset contain about
 1652 1000 RANDOM trajectories). The results, presented in Table 6, indicate that increasing the amount
 1653 of poor-quality data leads to a general decline in performance across all methods. Nevertheless, our
 1654 algorithm remains consistently robust and continues to outperform the main baselines under these
 1655 more challenging conditions.

CHEETAH (RANDOM + EXPERT)		1xRANDOM	2xRANDOM	3xRANDOM	5xRANDOM
SafeDICE		-0.0 \pm 0.0	-0.0 \pm 0.0	-0.0 \pm 0.0	-0.0 \pm 0.1
ILID		21.1 \pm 7.6	29.0 \pm 1.4	24.7 \pm 4.0	26.7 \pm 0.4
ReCOIL		2.0 \pm 0.6	2.3 \pm 0.1	2.0 \pm 0.2	1.8 \pm 0.7
DualCOIL		86.7\pm5.0	81.8\pm2.7	75.9\pm2.1	59.9\pm2.5
RELOCATE (CLONED + EXPERT)		1xRANDOM	2xRANDOM	3xRANDOM	5xRANDOM
SafeDICE		-0.1 \pm 0.0	-0.1 \pm 0.0	-0.1 \pm 0.0	-0.1 \pm 0.0
ILID		-0.1 \pm 0.1	-0.2 \pm 0.1	-0.2 \pm 0.0	-0.2 \pm 0.0
ReCOIL		1.4 \pm 2.4	0.4 \pm 0.3	0.1 \pm 0.0	0.1 \pm 0.1
DualCOIL		92.1\pm11.1	64.7\pm2.4	35.8\pm14.3	9.3\pm9.2
KITCHEN (PARTIAL + COMPLETE)		1xRANDOM	2xRANDOM	3xRANDOM	5xRANDOM
SafeDICE		2.8 \pm 1.1	3.8 \pm 2.3	4.9 \pm 1.5	3.0 \pm 1.2
ILID		27.3 \pm 5.4	7.6 \pm 9.7	13.0 \pm 4.9	11.3 \pm 4.4
ReCOIL		48.8 \pm 8.3	41.6 \pm 1.8	44.5 \pm 3.7	44.3 \pm 8.2
DualCOIL		53.1\pm13.1	57.6\pm5.4	56.5\pm9.2	56.8\pm7.0

1672 Table 6: Increase the proportion of bad in the unlabeled dataset \mathcal{B}^{MIX} in three different environments.
 1673

1674 D.7 EXPERIMENTS WITH EXTREMELY LARGE BAD DATASET
1675

1676 Although we previously examined the effect of the size of the bad dataset \mathcal{B}^B in Appendix D.1, that
1677 study was restricted to at most 100 trajectories. In this experiment, we aim to further investigate
1678 how enlarging \mathcal{B}^B can improve performance. Since the RANDOM dataset from D4RL is relatively
1679 small (which limit the analysis of Appendix D.1), we augment it by generating additional random
1680 trajectories through direct interaction with the environment. The experiment results are shown in
1681 Table 7.

1682 From the results, we observe that increasing the quantity of bad demonstrations generally leads to
1683 improved performance in most cases. This is likely because a richer set of bad data provides better
1684 coverage of the undesirable regions in the action space, which helps the algorithm more effectively
1685 learn what to avoid. However, in a few cases, the performance either improves only marginally or
1686 even slightly decreases. This can be attributed to the fact that adding more bad demonstrations does
1687 not always guarantee broader or more informative coverage of poor actions. If the additional bad data
1688 is redundant or fails to introduce new undesirable behavior patterns, its benefit to learning may be
1689 limited or even slightly detrimental due to noise.

CHEETAH (RANDOM + EXPERT)	100	300	500	1000
DWBC-GB	2.3 ± 2.9	1.4 ± 1.3	3.0 ± 2.3	3.2 ± 2.1
SafeDICE	-0.1 ± 0.1	0.0 ± 0.0	0.3 ± 0.1	0.5 ± 0.3
DualCOIL	85.3 ± 5.1	91.4 ± 1.5	91.8 ± 1.0	91.5 ± 0.8
RELOCATE (CLONED + EXPERT)	100	300	500	1000
DWBC-GB	-0.1 ± 0.1	-0.2 ± 0.0	-0.2 ± 0.0	-0.2 ± 0.0
SafeDICE	-0.1 ± 0.0	-0.1 ± 0.0	-0.1 ± 0.0	-0.1 ± 0.0
DualCOIL	93.2 ± 10.7	96.1 ± 12.0	96.2 ± 11.2	97.9 ± 11.6
KITCHEN (PARTIAL + COMPLETE)	100	300	500	1000
DWBC-GB	17.0 ± 9.8	14.8 ± 6.7	10.5 ± 9.2	15.3 ± 8.9
SafeDICE	2.7 ± 2.6	1.7 ± 0.7	1.9 ± 1.4	0.4 ± 0.2
DualCOIL	60.3 ± 10.6	63.8 ± 9.2	59.2 ± 8.7	60.8 ± 9.4

1703 Table 7: Increasing size of Bad dataset \mathcal{B}^B .
17041705 D.8 COMPARISON WITH ADAPTED OFFLINE RL METHODS
1706

1707 In this section, we compare our approach with offline RL methods adapted to learn from both good
1708 and bad datasets by assigning rewards of +1 to \mathcal{B}^G and -1 to \mathcal{B}^B , and combining all three datasets
1709 into a single offline training set. We evaluate against two widely used baselines, CQL (Kumar et al.,
1710 2020) and IQL (Kostrikov et al., 2021), using the same dataset sizes as in Section 6.2 for fairness.
1711 The results in Table 8 show that our method consistently outperforms both baselines.

	CHEETAH	HOPPER	HAMMER	RELOCATE	KITCHEN
CQL	-2.3 ± 1.1	26.8 ± 13.6	0.3 ± 0.0	-0.3 ± 0.0	0.0 ± 0.0
IQL	-0.5 ± 0.6	4.6 ± 2.8	4.4 ± 3.5	-0.1 ± 0.0	11.5 ± 6.5
DualCOIL	86.7 ± 5.0	93.6 ± 20.5	74.3 ± 17.8	92.1 ± 11.1	53.1 ± 13.1

1718 Table 8: Comparison of DualCOIL with offline RL methods.
17191720 D.9 DISCUSSION: DISTRIBUTION-MATCHING APPROACH VS PREFERENCE-BASED APPROACH
1721

1722 The good and bad data setup is reminiscent of preference-based methods. In this section, we want to
1723 discuss the difference between our approach (distribution-matching) and preference-based approach
1724 with two keys aspects:
1725

- **Input data construction:** Our approach is based on contrastive demonstrations, explicitly labeled as good or bad. In contrast, preference-based methods rely on pairwise preference feedback between trajectories, where both trajectories can be good, bad, or of similar quality.

1728
 1729
 1730
 1731
 1732

- **Learning objective:** ConstraDICE is designed to **explicitly imitate expert behavior while avoiding bad behavior**. Preference-based methods, on the other hand, aim to infer a reward function or policy that aligns with the provided preferences, without necessarily distinguishing between good and bad demonstrations in an absolute sense.

1733 Intuitively, this means preference-based learning is conceptually different and not well-suited to
 1734 our setting. Simply enforcing a preference like $r(\text{good}) > r(\text{bad})$ does not capture the critical
 1735 requirement of explicitly avoiding bad behaviors. Even if the method assigns lower rewards to bad
 1736 trajectories, it does not guarantee that the resulting policy will avoid them.

1737 To empirically support this argument, we conducted additional experiments using an offline
 1738 preference-based learning approach which is IPL (Hejna & Sadigh, 2024) with the configuration
 1739 $r(\text{good}) > r(\text{bad})$. The results, presented in Table 9, further demonstrate that preference-based
 1740 methods fail to learn effective policies in our contrastive good-bad setting.

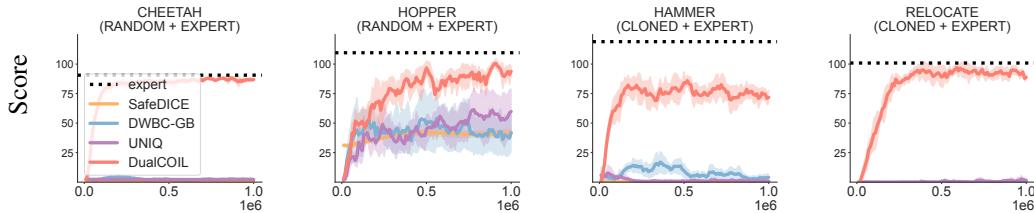
	CHEETAH	HOPPER	HAMMER	RELOCATE	KITCHEN
IPL	1.5 ± 0.1	6.4 ± 0.4	0.5 ± 0.1	-0.1 ± 0.0	34.7 ± 3.7
DualCOIL	86.7 ± 5.0	93.6 ± 20.5	74.3 ± 17.8	92.1 ± 11.1	53.1 ± 13.1

1741
 1742
 1743
 1744
 1745
 1746 Table 9: Comparison of DualCOIL with IPL.
 1747
 1748

1749 **D.10 COMPARISON WITH UNIQ: A STATE-OF-THE-ART ALGORITHM FOR LEARNING FROM
 1750 BAD DEMONSTRATIONS**

1751 In this section, we present an additional experiment comparing our approach with UNIQ (Hoang
 1752 et al., 2024b), a state-of-the-art method specifically designed to avoid bad demonstrations (similar to
 1753 SafeDICE). While both UNIQ and DUALCOIL address offline imitation learning under the presence
 1754 of bad-quality demonstrations, the two methods are fundamentally different in both formulation and
 1755 learning principle. Specifically, UNIQ builds upon the IQ-Learn framework (Garg et al., 2021), which
 1756 optimizes a max–min objective over reward and policy using an entropy-regularized formulation.
 1757 In contrast, DUALCOIL is derived from the DUARL and DICE frameworks (Sikchi et al., 2024),
 1758 employing a tractable reformulation based on minimizing the KL divergence between state–action
 1759 visitation distributions. This yields a Q-learning–style objective that is computationally simpler and
 1760 more stable to optimize. Moreover, DUALCOIL introduces a surrogate approximation (Section 4.2)
 1761 that further enhances efficiency without sacrificing alignment with the original theoretical objective.

1762 For consistency, we adopt the same dataset setup as in Section 6.2, where learning is performed using
 1763 \mathcal{B}^B only. The results in Figure 8 show that, with expert support, DualCOIL achieves the best overall
 1764 performance.



1775
 1776 Figure 8: Comparison with UNIQ.
 1777

1778 **D.11 ADAPTATIONS AND EXPERIMENTS WITH $\alpha > 1$**
 1779

1780 From our objective function equation 1, we introduce a hyperparameter $0 \leq \alpha < 1$, which controls
 1781 the weighting of the bad data objective—this corresponds to question (Q3). To evaluate the sensitivity
 of our method to α , we conduct experiments by varying its value and observing its impact on final

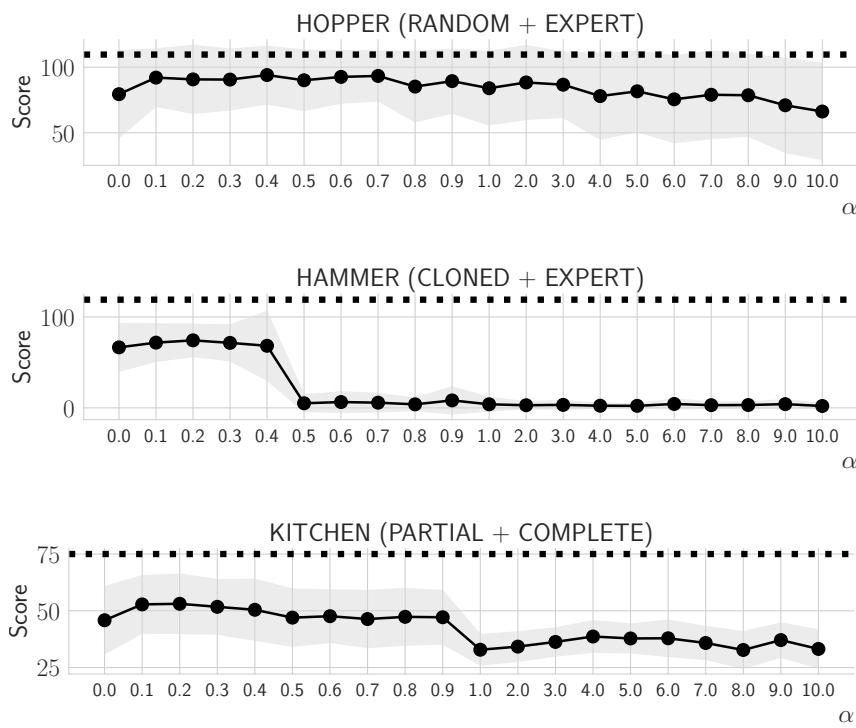
1782 performance. Specifically, we perform a full sweep over $\alpha \in \{0, 0.1, 0.2, \dots, 0.9\}$ to illustrate how
 1783 this key hyperparameter influences learning outcomes.
 1784

1785 Interestingly, we observe that in some cases, settings with $\alpha \geq 1$ yield favorable performance,
 1786 suggesting that avoiding bad data may, at times, be more critical than imitating good data. However,
 1787 directly applying $\alpha \geq 1$ in our original formulation violates convexity conditions.
 1788

1789 To address this, we propose a naive modification of Objective equation 7 that accommodates $\alpha \geq 1$
 1790 while preserving practical applicability. The revised objective is defined as:
 1791

$$1790 \tilde{L}(Q | V) = (1 - \gamma) \mathbb{E}_{s \sim p_0} [V(s)] - \mathbb{E}_{(s, a) \sim d^U} [\exp(\Psi(s, a)) (Q(s, a) - \gamma \mathbb{E}_{s'} [V(s')])], \quad (21)$$

1792 which enables empirical investigation into the high- α regime while sidestepping theoretical limitations.
 1793 The experiment results are provided in Figure 9. Overall, $\alpha \geq 1$ does not provide good performance,
 1794 which raises the limitation of the naive adaptation.
 1795
 1796



1820 Figure 9: Performance of large $\alpha \geq 1$.
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835

1836 D.12 COMPARISON BETWEEN $L(Q, \pi)$ AND THE SURROGATE $\tilde{L}(Q, \pi)$
1837

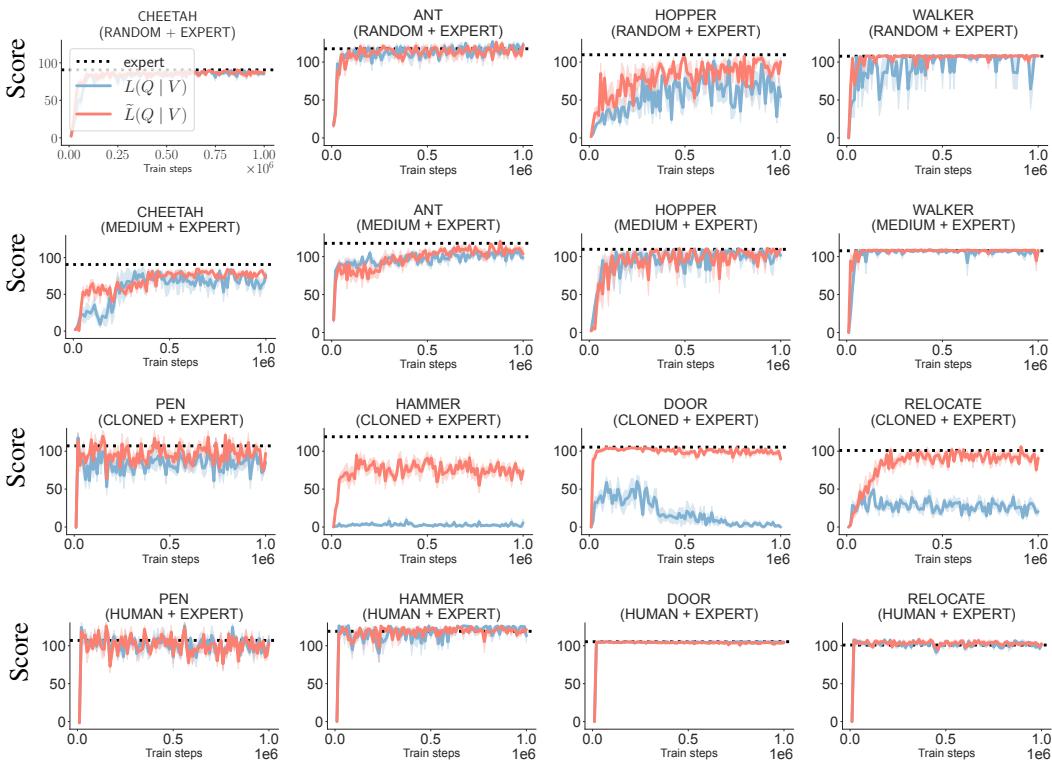
1838 As shown in Proposition 4.3, the original objective $L(Q | V)$ (equation 4) is transformed into a
1839 modified version $\tilde{L}(Q | V)$ (equation 7). This experiment investigates the performance differences
1840 between the two objectives.z

1841 To improve the stability of the original objective $L(Q | V)$, we need to address the issue of exponential
1842 terms producing extremely large values, which can lead to numerical instability. A practical approach
1843 is to clip the input to the exponential function to a bounded range $[\text{minR}, \text{maxR}]$, resulting in the
1844 following formulation:
1845

$$1846 \quad 1847 \quad L(Q, \pi) = (1 - \gamma) \mathbb{E}_{s \sim p_0} [V_Q^\pi(s)] \\ 1848 \quad 1849 \quad + (1 - \alpha) \mathbb{E}_{(s, a) \sim d^U} \left[\exp \left(\left(\frac{\Psi(s, a) - \mathcal{T}^\pi(Q)(s, a)}{1 - \alpha} \right) \cdot \text{clip}(\text{minR}, \text{maxR}) \right) \right], \quad (22)$$

1851 where $\text{minR} = -7$ and $\text{maxR} = 7$ in our experiments.

1852 The results of this ablation study are presented in Figure 10, illustrating the performance impact
1853 of this stability-enhancing modification. In general, the clipping technique effectively mitigates
1854 the instability caused by the exponential term, successfully preventing NaN errors during training.
1855 However, this modification also leads to a drop in performance and, in some tasks, causes the method
1856 to fail to learn effectively.
1857



1884 Figure 10: Exponential ablation study.
1885
1886
1887
1888
1889

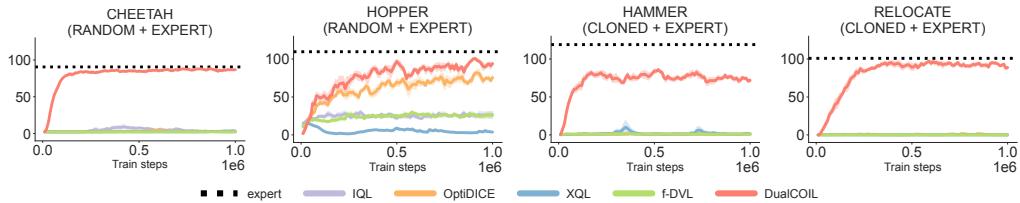
1890 D.13 SENSITIVITY ANALYSIS OF β
1891

1892 In this section, we explore how different values of the β parameter affect performance. The experiment
1893 results are provided in Table 10. The results show that while β significantly influences outcomes,
1894 performance remains consistent over a wide range of β values, implying that minimal tuning effort is
1895 needed for this hyperparameter.

Task	unlabeled \mathcal{B}^{Mix}	β value						
		1	3	5	10	15	20	30
CHEETAH	RANDOM+EXPERT	2.25 ± 0.0	2.25 ± 0.0	2.25 ± 0.0	2.24 ± 0.0	83.2 ± 5.3	85.8 ± 2.1	84.3 ± 1.4
	MEDIUM+EXPERT	42.4 ± 0.2	42.9 ± 0.3	53.9 ± 8.8	83.1 ± 4.9	80.1 ± 2.6	78.7 ± 2.3	76.7 ± 5.2
ANT	RANDOM+EXPERT	39.5 ± 7.3	69.3 ± 6.5	60.9 ± 28.7	115.6 ± 4.6	118.0 ± 2.1	114.5 ± 1.7	116.0 ± 2.1
	MEDIUM+EXPERT	91.0 ± 1.1	90.6 ± 1.7	93.7 ± 1.5	104.8 ± 3.9	106.5 ± 2.4	101.1 ± 3.3	95.1 ± 1.3
HOPPER	RANDOM+EXPERT	4.7 ± 0.4	5.2 ± 0.9	7.2 ± 1.3	7.9 ± 1.9	20.4 ± 9.7	67.4 ± 7.9	94.4 ± 6.3
	MEDIUM+EXPERT	52.1 ± 1.5	46.0 ± 1.0	85.8 ± 11.6	96.3 ± 8.1	96.9 ± 12.5	99.6 ± 4.1	98.0 ± 5.7
WALKER	RANDOM+EXPERT	2.9 ± 2.6	3.5 ± 2.9	6.4 ± 4.6	32.5 ± 27.7	105.7 ± 4.5	106.2 ± 2.0	107.5 ± 1.1
	MEDIUM+EXPERT	68.3 ± 3.7	65.8 ± 3.2	53.4 ± 3.6	104.9 ± 2.5	108.1 ± 0.1	108.2 ± 0.2	108.2 ± 0.1

1908 Table 10: Performance of DualCOIL in different β value in MuJoCo locomotion tasks.
19091910 D.14 COMPARISON WITH OFFLINE RL METHODS
1911

1912 Keen readers may question the use of the reward function $\Psi(s, a)$, since it is computed using only
1913 two discriminators and can, in principle, be incorporated into other discriminator-based offline IL or
1914 offline RL methods. To examine this, we compare our approach against OPTIDICE (a general offline
1915 RL formulation adopted by DEMODICE and SMODICE), as well as several state-of-the-art offline
1916 RL algorithms, including IQL, XQL, and f-DVL, each of which solves the offline RL problem using
1917 $\Psi(s, a)$ as the reward. The experimental results are presented in Figure 11.

1927 Figure 11: Compare with offline RL methods that utilize the reward function $\Psi(s, a)$.
1928

1930 In principle, a key advantage of our algorithm lies in its ability to fully leverage the implicit reward
1931 $\Psi(s, a)$ derived from our formulation in Proposition 4.2. Unlike Q-learning-style offline RL methods
1932 such as IQL and XQL, which optimize only the reward component $\Psi(s, a)$, DualCOIL directly
1933 optimizes the complete KL-regularized objective specified in Proposition 4.2. This allows the
1934 algorithm to exploit the full structure of the learning objective rather than a single term. Furthermore,
1935 compared to prior offline RL methods that explicitly incorporate a KL term—such as ReCOIL and
1936 OptiDICE — DualCOIL is built upon a SOTA KL-regularized framework inspired by DualRL.
1937 Moreover, DualCOIL is built with two additional benefits: (i) a stable and tractable approximation
1938 to the regularized learning objective (Prop. 4.4), and (ii) the Q-weighted behavioral cloning update
1939 (Proposition 5.1), which substantially improves optimization stability and robustness. Our ablation
1940 studies in Appendix D.4 and Appendix D.12 further demonstrate that these components jointly enable
1941 DualCOIL to outperform direct offline RL baselines and to utilize the implicit reward signal far more
1942 effectively.

1943 D.15 EXTREME-V VERSUS LOG-SUM-EXP FOR VALUE FUNCTION ESTIMATION

1944
 1945 In Section 5, we use Extreme-V to estimate the value function V instead of LogSumExp to handle
 1946 continuous action spaces. However, in prior work related to soft Q-learning, in the continuous action
 1947 space, researchers estimate V based on the current Q and policy as $V(s) = Q(s, \pi(a|s)) + \alpha H(\pi)$,
 1948 where $H(\pi)$ is the entropy of the policy π and α is a multiplier controlling the contribution of the
 1949 entropy to the value function. In this section, we compare the performance of Extreme-V with this
 1950 entropy-based estimation. We follow the same α as LS-IQ (Al-Hafez et al., 2023) for MuJoCo tasks,
 1951 while setting a fixed $\alpha = 0.01$ for all Adroit tasks. The comparison results are provided in Figure 12.
 1952

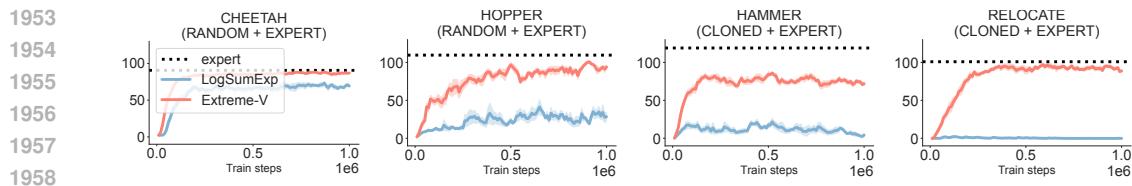


Figure 12: Compare Extreme-V with LogSumExp.

1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997

1998
1999

D.16 DUALCOIL FOR SAFETY TASKS

2000
2001
2002
2003
2004
2005

In this section, we evaluate our method in a safe domain where the objective is to maximize return while ensuring the cost remains below a specified threshold. We utilize the Safety Gymnasium benchmark for this experiment, specifically the SafetyPointGoal1 and SafetyPointButton1 environments, with a cost threshold of 25.0. Trajectories with an accumulated cost exceeding 25.0 are considered unsafe, while those with an accumulated reward below a specific return threshold are categorized as low-return.

2006
2007
2008
2009
2010
2011
2012

Policy type	SafetyPointGoal1		SafetyPointButton1	
	Return	Cost	Return	Cost
Safe High-Return	24.4 \pm 2.6	11.5 \pm 19.0	10.2 \pm 5.0	16.4 \pm 33.3
Unsafe High-Return	24.2 \pm 1.6	59.8 \pm 41.3	10.2 \pm 3.2	135.3 \pm 37.2
Low-Return	-4.0 \pm 1.6	21.8 \pm 43.9	-0.3 \pm 0.9	42.7 \pm 79.2

2013
2014
2015

Table 11: Quality of datasets in two tasks SafetyPointGoal1 and SafetyPointButton1 in mean and standard deviation.

2016
2017
2018
2019

We generate three types of policies: safe high-return (using PPO-Lag), unsafe high-return (using PPO), and low-return (using a random policy). The detailed quality of these datasets is reported in Table 11. Using these policies, we construct the following datasets:

2020
2021
2022
2023
2024

- Good dataset (D^G): Consists of safe high-return trajectories.
- Bad dataset (D^B): Consists of unsafe high-return and low-return trajectories.
- Unlabeled dataset (D^{MIX}): A mixture of unsafe high-return, safe high-return, and low-return trajectories.

2025
2026
2027
2028
2029

In our experiments, we fix the size of D^G to 5 safe high-return trajectories. D^{MIX} is composed of 500 unsafe high-return, 500 low-return, and 100 safe high-return trajectories. We aim to verify DualCOIL’s ability to leverage varying sizes of D^B (comprising 50% unsafe high-return and 50% low-return data) to assist training, thereby helping the policy avoid constraint violations and low-return behaviors.

2030
2031
2032
2033
2034

For evaluation, we test the policy over 100 independent episodes. We compute the violation rate, defined as the proportion of episodes where the return falls below the specified return threshold and the cost exceeds the cost threshold. Additionally, we report the average Return and Cost for these runs. Detailed results are provided in Figure 13. Overall, there is a clear trend that increasing the size of bad dataset D^B leads to lower violation rate.

2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

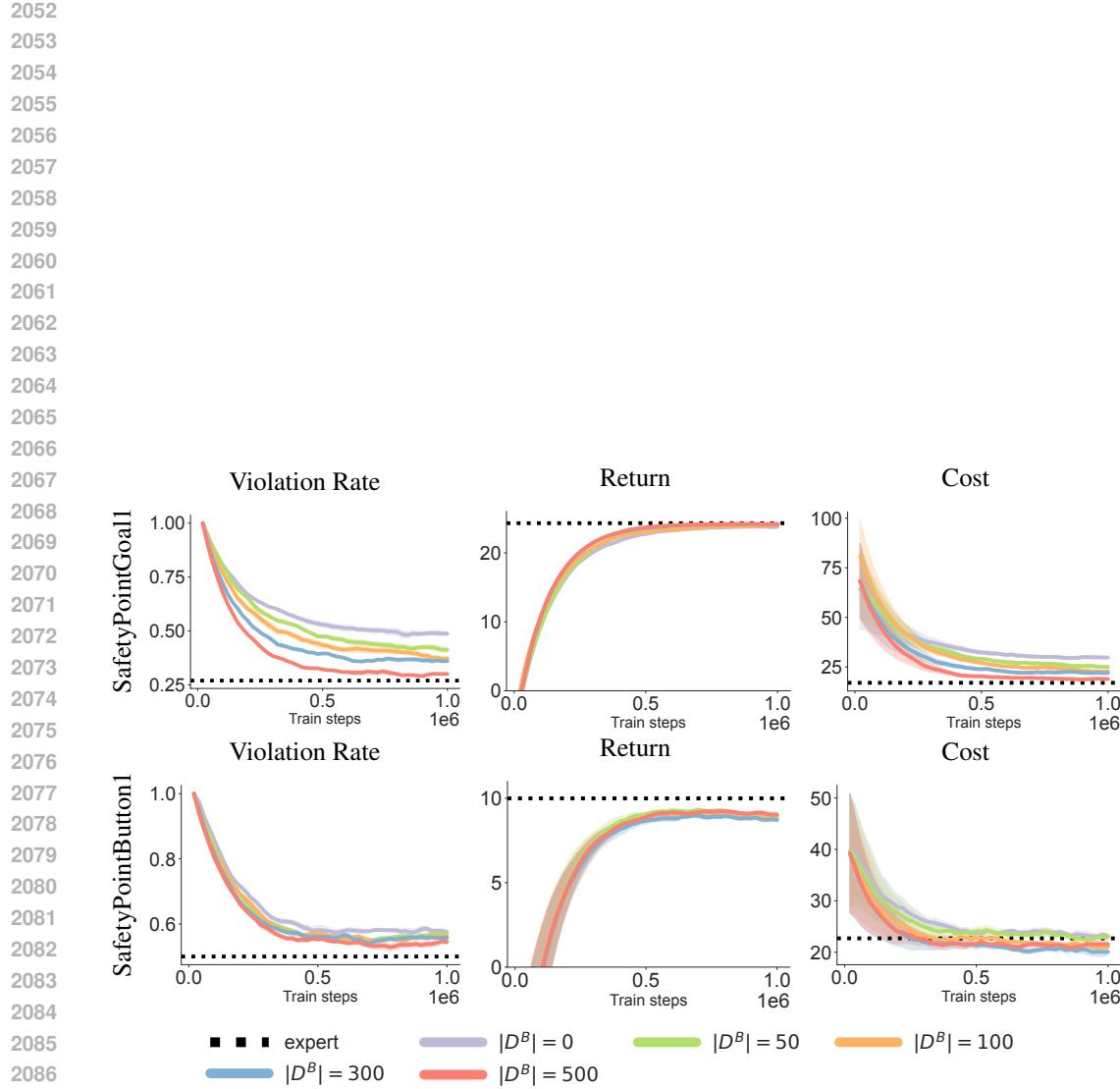


Figure 13: Performance of DualCOIL across different sizes of the bad dataset D^B on Safety Gymnasium tasks. The violation rate reflects the proportion of unsafe or low-return behaviors exhibited by the current policy during evaluation (lower is better). Higher return indicates better task performance, while lower cost corresponds to safer behavior.

2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105