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ABSTRACT

Offline imitation learning typically learns from expert and unlabeled demonstra-
tions, yet often overlooks the valuable signal in explicitly undesirable behaviors. In
this work, we study offline imitation learning from contrasting behaviors, where the
dataset contains both expert and undesirable demonstrations. We propose a novel
formulation that optimizes a difference of KL divergences over the state-action vis-
itation distributions of expert and undesirable (or bad) data. Although the resulting
objective is a DC (Difference-of-Convex) program, we prove that it becomes convex
when expert demonstrations outweigh undesirable demonstrations, enabling a prac-
tical and stable non-adversarial training objective. Our method avoids adversarial
training and handles both positive and negative demonstrations in a unified frame-
work. Extensive experiments on standard offline imitation learning benchmarks
demonstrate that our approach consistently outperforms state-of-the-art baselines.

1 INTRODUCTION

Imitation learning (Garg et al. 2021 |[Kim et al.| 2021} [Li et al., |2023; Hoang et al.| |2024a};  Xu
et al., [2022) offers a compelling alternative to Reinforcement Learning (RL) (Sutton & Bartol 2018}
Puterman, |2014; Mnih et al.,[2015) by enabling agents to learn directly from expert demonstrations
without the need for explicit reward signals. This paradigm has been successfully applied in various
domains, even with limited expert data, and is particularly effective in capturing complex human
behaviors and preferences.

Imitation learning typically assumes access to high-quality expert demonstrations, which can be
expensive and difficult to obtain (Ross et al., 2011} [Torabi et al.l 2018; [Zhu et al.;|2020). In practice,
datasets often contain a mixture of expert and sub-optimal demonstrations. Recent advances in
imitation learning have begun to address this more realistic setting, aiming to develop algorithms that
can leverage informative signals from both expert and non-expert data (Brown et al., 2019} [Myers
et al.,[2022; |Hoang et al.| [2024a).

In the offline setting, imitation learning methods typically assume the presence of a labeled expert
dataset and an unlabeled dataset of mixed quality (which can contain expert, non-expert, and bad
data), and further assume that the unlabeled demonstrations are not drastically different from expert
behavior. This allows for framing the learning problem as mimicking both expert and unlabeled
trajectories—albeit with different weights (Kim et al., 2021; [2022; | Xu et al.| 2022). However,
in practice, unlabeled data may contain poor or undesirable demonstrations that the agent should
explicitly avoid. For example, in autonomous driving, undesirable demonstrations may include unsafe
lane changes or traffic violations, which should not be imitated under any circumstances. Another
example can be found in healthcare applications, where undesirable demonstrations may correspond
to incorrect diagnosis or unsafe treatment plans that could harm patients if imitated.

Unfortunately, existing imitation learning approaches are ill-equipped to deal with scenarios where
both expert and undesirable demonstrations coexist within the dataset (Wu et al., 2019} [Zhang et al.
2021; [Hoang et al., [2024a). It is important to note that learning by mimicking expert or mildly
sup-optimal demonstrations is often tractable, as the corresponding objective—typically framed as
divergence minimization—is convex (Kim et al.,[2021} |2022)). However, incorporating objectives
that explicitly avoid bad (or undesirable) demonstrations can introduce non-convexities, making the
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optimization significantly more challenging. In this paper, we propose a unified framework that
addresses these challenges, aiming to bridge this gap in the current imitation learning literature.

Specifically, we focus on the setting of offline imitation learning (no interaction with the environment)
where the dataset contains both expert and undesirable demonstrations[ﬂ We make the following key
contributions:

* We formulate the learning problem with the goal of matching expert behavior while explicitly
avoiding undesirable demonstrations. Although the resulting training objective is expressed
as the difference between two KL divergences (and is therefore difference-convex), we
prove that it becomes convex when the expert component outweighs the undesirable one.
This convexity is critical, as it enables us to reformulate the learning problem over the
state-action visitation distribution as an more tractable unconstrained optimization via
Lagrangian duality. Our objective stands in contrast to most existing distribution-matching
imitation learning approaches, which typically rely solely on divergence minimization and
naturally yield convex objectives. By introducing a divergence maximization term to account
for undesirable behavior, we demonstrate that the overall objective remains convex and
manageable.

» We further enhance the learning objective by proposing a surrogate objective that lower-
bounds the original one, offering the advantage of a non-adversarial and convex optimization
problem in the Q-function space. In addition, we introduce a novel Q-weighted behavior
cloning (BC) approach, supported by theoretical guarantees, for efficient policy extraction.

» Extensive experiments on standard imitation learning benchmarks show that our method
consistently outperforms existing approaches, both in conventional settings where datasets
contain expert and unlabeled demonstrations, and in more realistic scenarios where explicitly
undesirable demonstrations are included.

2 RELATED WORKS

Imitation Learning. Imitation learning trains agents to mimic expert behavior from demonstrations,
with Behavioral Cloning (BC) serving as a foundational method by maximizing the likelihood of
expert actions. However, BC often suffers from distributional shift (Ross et al.l 2011). Recent work
addresses this issue by leveraging the strong generalization capabilities of generative models (Zhao
et al.,[2023; |Chi et al., 2023). Inspired by GANs (Goodfellow et al.,2014), methods like GAIL (Ho
& Ermon, |2016)) and AIRL (Fu et al.| 2018) use a discriminator to align the learner’s policy with
the expert’s, while SQIL (Reddy et al., 2019) simplifies reward assignment by distinguishing expert
and non-expert behaviors. Although effective, these approaches typically require online interaction,
which may be impractical in many real-world scenarios.

To address this, offline methods such as AlgaeDICE (Nachum et al.,|2019) and ValueDICE (Kostrikov
et al., 2020) employ Stationary Distribution Correction Estimation (DICE), though they often en-
counter stability issues. Building on ValueDICE, O-NAIL (Arenz & Neumann, [2020) avoids adver-
sarial training, enabling stable offline imitation. More recently, several approaches have extended the
DICE framework with stronger theoretical foundations and improved empirical performance (Lee
et al., 2021; Mao et al.l[2024). In parallel, IQ-Learn (Garg et al.| 2021) has emerged as a unified
framework for both online and offline imitation learning, inspiring a range of follow-up works (Al
Hafez et al.||2023; Hoang et al., [ 2024c). However, all these approaches rely on the presence of many
expert demonstrations, which may not always be available.

Offline imitation learning from suboptimal demonstrations: Several approaches have been
developed to tackle the challenges of offline imitation learning from suboptimal data, which is
common in real-world scenarios. A notable direction involves preference-based methods, where
algorithms infer reward functions by leveraging ranked or pairwise-compared trajectories to guide
learning (Kim et al.l 2023; Kang et al., [2023} [Hejna & Sadigh| 2024). Recent works, such as
SPRINQL (Hoang et al., 2024a)), take advantage of demonstrations that exhibit varying levels of
suboptimality, enabling the learner to better generalize beyond near-optimal behaviors. Another

'In practice, while desirable demonstrations can be collected from expert decisions, undesirable ones can
also be identified by experts (or even through fine-tuned LLMs (Mu & Others| |2024)))
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important line of research explores the use of unlabeled demonstrations in conjunction with a limited
number of expert trajectories. Techniques like DemoDICE (Kim et al.,2021), SMODICE (Ma et al.,
2022), and ReCOIL (Sikchi et al.||2024) apply Distribution Correction Estimation (DICE) (Sunehag
et al|2017; Lee et al.| 2021; Mao et al.,[2024) to re-weight trajectories and align the state or state-
action distributions with those of the expert. In parallel, classifier-based methods, such as DWBC (Xu
et al.;,2022), ISW-BC (Li et al.| 2023)), and ILID (Yue et al.,|2024), use discriminators to distinguish
expert-like behaviors within mixed-quality data and assign them greater importance. Collectively,
these strategies aim to enhance policy robustness and performance in offline settings where high-
quality expert data is scarce or expensive to obtain. However, all of these approaches are primarily
focused on imitating and are unable to avoid undesirable or bad demonstrations, which is crucial in
domains such as self driving where there are many unsafe behaviors that would need to be avoided.
There is prior work that focuses on learning explicitly from undesirable demonstrations (Jang et al.
2024; |[Hoang et al.| 2024b)), but these approaches cannot handle scenarios where both expert and
undesirable datasets are available.

In this paper, we aim to optimize on the principle of "Imitate the Good and Avoid the Bad”, which
has recently gained attention in reference and safe RL (Abdolmaleki et al., [2025} [Hoang et al.|
2024a; |Gong et al., [2025) and large language model training (Lu et al., |2025). We extend this
idea to the offline imitation setting by proposing a novel and efficient method that learns from
expert demonstrations while avoiding undesirable ones. To our knowledge, this is the first offline
imitation learning approach to efficiently learn policies by jointly utilizing both expert and undesirable
demonstrations.

3 PRELIMINARIES

Markov Decision Process (MDP). We consider a MDP defined by the following tuple M =
(S, A,r, P,~,so), where S denotes the set of states, sq represents the initial state set, A is the set of
actions,  : S x A — R defines the reward function for each state-action pair,and P : S x A — S'is
the transition function, i.e., P(s’|s, a) is the probability of reaching state s’ € S when action a € A
is made at state s € S, and -y is the discount factor. In reinforcement learning (RL), the aim is to find
a policy that maximizes the expected long-term accumulated reward: max, {E(s q)~ar[r(s,a)]},
where d™ is the occupancy measure (or state-action visitation distribution) of policy 7: d” (s, a) =

(1= )m(als) 3272, 7' P(se = s|m).

Offline Imitation Leaning. Recent imitation learning (IL) approaches have adopted a distribution-
matching formulation, where the objective is to minimize the divergence between the occupancy
measures (i.e., state-action visitation distributions) of the learning policy and the expert pol-
icy: ming~ {Dy (d" || d¥)}, where Dy denotes an f-divergence between the occupancy distri-

butions d™ (induced by the learning policy 7) and d” (induced by the expert policy). In par-
ticular, when the Kullback-Leibler (KL) divergence is used, the learning objective becomes:

ming~ B q)agr {log (3;((22)))} . In the space of state-action visitation distributions (d™), the

training can be formulated as a convex constrained optimization problem. To enable efficient training,
Lagrangian duality is typically employed to recast the problem into an unconstrained form (Lee et al.|
2021; |[Kim et al., [2021)).

Offline IL with unlabeled data. In offline imitation learning with unlabeled data, it is
typically assumed that a limited set of expert demonstrations B¥ is available, along with
a larger set of unlabeled demonstrations BM*. Distribution-matching approaches have been
widely adopted to handle this setting. Prior methods often formulate the objective as a
weighted sum of divergences between the learning policy and both expert and unlabeled data:
ming~ { Dy (d™ || d¥) + aDy (d™ || d™*)} , where a > 0. Other approaches construct mixtures of
occupancy distributions, such as d™M* = ad™ + (1 — a)d"™* and d¥M* = ad® + (1 — a)d™™, and
minimize the divergence between d™™™ and dEMx (Kim et al.,2021;/2022; [Ma et al., 2022: [Sikchi
et al.,|2024). In most existing approaches along this line of research, the convexity of the objective
with respect to d™ has been heavily leveraged to derive tractable learning objectives. However, when
a divergence maximization term is introduced—as in our approach—this convexity may no longer
hold, rendering many existing methods inapplicable.
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4 DUALCOIL: OFFLINE IMITATION LEARNING FROM CONTRASTING
BEHAVIORS

We begin by introducing a novel learning objective based on the difference between two KL di-
vergences. Leveraging the convexity of this formulation, we derive a tractable and unconstrained
optimization problem. Given that the resulting objective includes exponential terms that may lead to
numerical instability, we enhance this by proposing a lower-bound approximation. This approxima-
tion enables us to reformulate the learning process as a more tractable, non-adversarial Q-learning
objective, which remains convex in the space of Q-functions.

4.1 DUAL KL-BASED FORMULATION

Assume that we have access to three sets of demonstrations: good dataset B contains good or expert
demonstrations, bad dataset BZ contains bad or undesirable demonstrations that the agent should
avoid, and the unlabeled dataset BM™ is a large set of unlabeled demonstrations used to support
offline training. Here, we assume that DB may contain some low-reward or unsafe demonstrations
that are undesirable to imitate, though not necessarily ones that must be avoided at all costs. We
consider the realistic scenario where the identified datasets B and B are limited in size, while BM™*
is significantly larger—an assumption that aligns with typical settings in offline imitation learning
from unlabeled demonstrations.

Let d™(s,a), d%(s,a), and d® (s, a) denote the state-action visitation distributions induced by the
learned policy , the good policy, and the bad policy, respectively. Following the DICE frame-
work (Nachum et al.l 2019} Kostrikov et al., 2020), we propose to optimize the following objective:

min  f(d") = D (d" [|d°) ~ @ D (d" || d®), (M)

where o > 0 is a tunable hyperparameter. The goal of this objective is twofold: (1) to minimize the
divergence between the learned policy and the good policy, and (2) to maximize the divergence from
the bad policy, thereby avoiding undesirable behavior.

This formulation differs from all existing DICE-based approaches in the literature, which primarily
focus on minimizing KL divergence—even when dealing with undesirable or unsafe demonstrations.
By contrast, our approach introduces a principled mechanism to explicitly repel the learned policy
from undesirable behavior while still aligning it with good data.

While the presence of a KL divergence maximization term in the objective may raise concerns about
the convexity of the training problem, we observe that the objective in equation [I|takes the form of a
difference between two convex functions. This is, in general, not convex and can be challenging to
optimize. Fortunately, we show that under a mild condition, the overall objective remains convex.
Specifically, if the weight on the bad policy divergence term is smaller than that on the good policy
(i.e., @ < 1), then the objective becomes convex in d”.

Proposition 4.1. If o < 1, then the objective function f(d™) = Dy, (d™ || d%) — a Dg(d™ || dP) is
convex in d”.

Convexity is essential in most DICE-based frameworks, as it enables the use of Lagrangian duality to
construct well-behaved and tractable training objectives. Our goal is to develop a Q-learning method
that recovers a policy minimizing the objective in equation[I] To this end, we formulate the problem
as the following constrained optimization:

min  f(d,7) = Dyo.(d|d%) — o Dy (d ]| d7) )
st. d(s,a) = (1 —7)po(s)m(a|s)+ym(a]s) Z d(s',a\T(s|s',d"), Vs S,ae A
where d(s, a) is the state-action visitation distribution, and T is the environment transition function.

Let BY = BE U BM* denote the union dataset, and let dU be the state-action visitation distribution
derived from it. The following proposition gives an another formulation for the objective in equation [T}

Proposition 4.2. The objective function in equation 2| can be written as: f(d,nm) = (1 —
G B
@)D (Al]dV) = B(aapea [¥(5, )], where U(s, a) = log Jr(=2 — alog G (24,
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This formulation introduces a KL-based regularization centered on the reference distribution dv,
with ¥(s, a) acting as a correction term that incorporates information from the labeled good and
bad demonstrations. The reformulated objective in Proposition [4.2] further confirms that the function
f(d, ) remains convex in d when o < 1. Here we note that, under the same condition o < 1,
convexity may not hold for other f-divergences (a detailed discussion is provided in the appendix).

The reformulated objective in Proposition [f.2]takes the conventional form of maximizing a long-term
surrogate reward ¥ (s, a), subtracted by a KL divergence between two occupancy measures. Hence,
we can follow the approach in DUARL [Sikchi et al|(2024)) to further reformulate it into a practical
Q-learning objective (the detailed derivation is given in Appendix).

max ngn {(1 =) E(s,a)~po,x [Q(5, a)]

+ (1~ Q)E (s gymav [exp (‘I'(s,a) + VE(sl,a')IT_,wiQ(s/,a')] — Q(s, a))] } 3)

To further enhance the efficiency of Q-learning, we adopt the well-known Maximum Entropy
(MaxEnt) reinforcement learning framework by incorporating an entropy term into the training
objective (Garg et al.|[2021; [Haarnoja et al.| | 2018)). This leads to the following objective:

m(a | 8)}

u7(afs)
(s,0) + 7 By a)rn [ Q5 0) = Blog HER |~ Q(s,a)

1—«

L(Qvﬂ-) = (1 - 7) ]E(s,a)NpO,Tr [Q(s,a) - Blog

+ (1 - O‘)E(s,a)de exp

where 1Y (als) is the behavior policy representing the union dataset BY. We now define the soft
value function and the soft Bellman operator as follows:

m(a|s)
¥ (als)
Using these definitions, the training objective can be rewritten as:

V5 (8) = Eqnn(s) |Q(s,a) — Blog ] , TTQI(s,a) = Q(s,a) =y Egr(js,a) [VS ()] -

ﬂ U(s,a) — T Q](s,a
L(Q>7T) = (1 - ’7) ]ESNPO [VQ (S)} + (1 - a)E(s,a)NdU I:exp ( ( ) 1— a[ ]( )>:| . (4)
This formulation shares structural similarities with [Q-Learn, where 7™[Q](s, a) is referred to as
the inverse Bellman operator and is often interpreted as a reward function expressed in terms of the

Q-function itself.

Note that, when a = 1, according to Proposition 2] the training objective reduces to
a standard offline RL problem with reward function W(s,a): maxg E4)a[V(s,a)] =

maxE >0 v U (s, ar)]

4.2 TRACTABLE LOWER BOUNDED OBIJECTIVE

In this section, we propose an additional step to improve the stability and tractability of the learning
objective introduced above. We first observe that the exponential term in equation ] may lead to
instability during training. To address this issue, we propose to approximate the exponential using
a linear lower bound, which not only improves stability but also preserves a similar optimization
objective.

Proposition 4.3. Let the surrogate objective be defined as:

L(@Q,7) = (1 =) Esnpy [V ()] = Eqv [6(5,)T7[Q)(s, )] + (1 = )Eqv [6(s,a)] . (5)

where §(s,a) = exp (@) Then Z(Q, ) is a lower bound of L(Q, ), with equality when

o .

T™[Q](s,a) = 0 for all (s, a).

The lower-bound approximation E(Q, ) offers several benefits. First, as a valid lower bound of
L(Q, 7), maximizing L(Q, 7) promotes the original objective. Second, its structure—linear in
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and concave in 7—Ileads to a simplified, non-adversarial training procedure (see Proposition f.4).
Finally, its optimization goals remain aligned with those of L(Q, 7), encouraging high expected soft
value under the initial state distribution and consistency between the soft Bellman residual and the
guidance signal ¥(s, a).

Remark. The training objective in_equation Bl generalizes the 1Q-Learn objective (Garg et al))

2021) as a special case. In particular, L(Q, ) reduces exactly to the IQ-Learn objective when o = 0
(i.e., the undesirable dataset is ignored) and B = BY (i.e., the good dataset coincides with the
union dataset). To see this, observe that when o = 0 and d© = dY, the term ¥ (s, a) becomes zero

forall (s,a). As a result, the surrogate objective simplifies to: L(Q,m) = (1 — v) Egp, [Vg(s)] -
E(s,a)~ac [TTQ](s, a)] , which is exactly the training objective proposed in IQ-Learn. Thus, our
formulation can be viewed as a principled extension of 1Q-Learn that explicitly accounts for and
contrasts between good and bad behaviors.

We now present several key properties of the training objective E(Q, m) that make it particularly
convenient and tractable for use, as formalized in Proposition 4.4 below.

Proposition 4.4. The following properties hold:

(i) E(Q, m) is linear in QQ and concave in . As a result, the max—min optimization can be equiv-
alently reformulated as a min—max problem: max, ming L(Q, 7) = ming max, L(Q, 7).

(ii) The min—max problem ming max, E(Q, ) reduces to the following non-adversarial prob-

lem:

[~ U(s,a)

win {E(Q) = (1= ) Burg W9 ~ B o0 (122 ) QU500 |
where the soft value function Vg(s) is defined as: Vo(s) =

Blog (Za 1Y (als) exp(Q(s, a)/ﬂ)) , and the soft Bellman residual operator is given by:
TIQ](s,a) = Q(s,a) — vVg(s). Moreover L(Q) is convex in Q.

5 PRACTICAL ALGORITHM

Estimating Occupancy Ratios. The training objective involves several ratios between state-action

visitation distributions, which are not directly observable. These quantities can be estimated by

G
solving corresponding discriminator problems. Specifically, to estimate the ratio ZUE?Z; , We train a

binary classifier ¢ : S x A — [0, 1] by solving the following standard logistic regression objective:
n;gx{IE(s)a)Ndc [log ¢ (s,a)] + E(s,q)~av [log(1 — c(s,a))]}. (6)

G
Let ¢“*(s, a) be optimal solution to this problem, then the ratio can be computed as: gUEjzg =

G * B
c ! Similar discriminators can be trained to estimate other ratios such as ZU EEZ; .

5,a)
1—c%*(s,a) "

Implicit V-Update and Regularizers. In the surrogate objective L(Q), the value function
Vg is typically computed via a log-sum-exp over (), which becomes intractable in large or
continuous action spaces. To address this, we adopt Extreme Q-Learning (XQL) (Garg et al.|
2023), which avoids the log-sum-exp by introducing an auxiliary optimization over V, jointly
updated with Q). Specifically, V' is optimized using the Extreme-V objective: J(V | Q) =

E(sayav [€15% = t(s,a) — 1], where t(s,a) = w The main training objective
with fixed V is:

Y (s, a)
l1-«a

L@Q| V)= (1= Egupy [V(5)] = Es.aymar [exp ( ) (Q(s,a) —vE4 [V(sH)|. ()

The overall optimization proceeds by alternating: (i) updating ) via minimizing L(Q | V), and
(ii) updating V' via minimizing J(V | Q). Both sub-problems are convex, enabling efficient and
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stable training. To further enhance stability, we follow (Garg et al.l 2021};2023) and add a convex
regularizer ¢(7[Q](s, a)) to prevent reward divergence. We use the y-divergence, ¢(t) = t?/2, a
common choice in Q-learning.

Policy Extraction. Once the () and V' functions are obtained, a common approach for expert policy
extraction is to apply advantage-weighted behavior cloning (AW-BC) (Kostrikov et al., 2021} |Garg
et al.,[2023; |Hejna & Sadighl 2024; Sikchi et al., 2024):

1
max Z exp [ = (Q(s,a) —V(s)) | logm(a|s). 8)
B (s,a)~BY <B )

A key limitation of this formulation is that the value function V'(s) is only an approximate estimate
from the Extreme-V objective, potentially introducing noise and bias into advantage computation and
degrading policy quality. To address this, we propose a Q-only alternative that avoids reliance on
V(s). The following proposition shows that this ()-based objective can, in theory, recover the same
optimal policy as the original advantage-weighted BC formulation.

Proposition 5.1. The following Q-weighted behavior cloning (BC) objective yields the same optimal
policy as the original advantage-weighted BC formulation in equation|8}

max Z exp <1Q(s,a)> logm(a| s). )
" (s,a)~BUY ﬂ

While the Q-weighted BC objective is Algorithm 1 DualCOIL

thepretically eqqivalent to the advantage- Require: Datasets B, BB, BMX; training steps N s N
weighted BC objective in terms of the op- models: G, cB 7, Qu.» Vi
- fwge fwp? ) q° v

timal policy it recovers, it provides a sim-

. : .~ 1: Assign BU = B¢ U BM*
pler and more practical formulation. This 2: 4 Train discriminator ¢©.. and B
simplification can lead to more stable and 3: fori— 1 th N, do wa wB
accurate optimization in practice. Our ) S .
experimental results further demonstrate 2: eng?gste (wg, wp) to minimize Objective @
that the (Q-weighted formulation consis- 6: 4 Train Qu, and V., , and policy 7
tently yields significantly better training 7: fori—1 t(l)UqN do Wo? 0
outcomes compared to the advantage- 8: Update w, to minimize I (Qu. Vi)
weighted BC baseline. Bringing all com- 9: Update wq to minimize J (qu 0 Wo
ponents together, we present our DUAL- 1 0: Update § 1\)/ia QW-BC: Wo ot
COIL (Dual-KL COntrastive Imitation ’ )
Learning) algorithm in Algorithm [T} maXz {Z(s,a)NBU @ ®)/Flog 77(“‘3)}

11: end for

6 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate our method, focusing on the following
key questions: (Q1) Can DualCOIL effectively leverage both labeled good and bad data to outperform
existing baselines? (Q2) How does the size of the bad dataset B? affect the performance of Dual-
COIL? (Q3) DualCOIL relies on an important parameter « to balance the objectives for good and bad
data—how does this parameter affect overall performance? Appendix provides a comprehensive set
of supplementary materials, including missing proofs and additional experiments that further validate
the utility of our method.

6.1 EXPERIMENT SETTING

Environments and Dataset Generation. We evaluate our method in the context of learning from the
good dataset B and avoid the bad dataset BZ with a support from an additional unlabeled dataset
BMX_ Qur experiments span four MuJoCo locomotion tasks: CHEETAH, ANT, HOPPER, WALKER, as
well as four hand manipulation tasks from Adroit: PEN, HAMMER, DOOR, RELOCATE, and one task
from FrankaKitchen: KITCHEN—all sourced from the official D4RL benchmark (Fu et al., [2020). For
each MuJoCo task from D4RL, we have three types of datasets: RANDOM, MEDIUM, and EXPERT.
The good dataset B is constructed using a single trajectory from the EXPERT dataset. The bad dataset
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BP consists of 10 trajectories selected from either the RANDOM or MEDIUM dataset. To construct the
unlabeled dataset BM*, we combine the entire RANDOM or MEDIUM dataset (i.e., the same source
as BP) with 30 additional trajectories from the EXPERT dataset. This setup mirrors the challenging
RANDOM+FEW-EXPERT and MEDIUM+FEW-EXPERT scenarios introduced in ReCOIL (Sikchi et al.|
2024). These three datasets—B, BZ, and BMX—form the foundation of our training pipeline.
We use the same dataset construction strategy for Adroit and FrankaKitchen tasks, yielding 18
distinct dataset combinations. Please refer to the Appendix for detailed descriptions of all dataset
combinations.

Baselines. We compare our method against several baselines. First, we evaluate two naive BC
approaches: one that learns directly from the large unlabeled dataset BM* (BC-MIX), and one that
learns solely from the good dataset B (BC-G). Next, we include comparisons with state-of-the-art
methods designed to leverage both expert (or good) data B and unlabeled data BM*, including
SMODICE (Ma et al.| 2022}, ILID (Yue et al., 2024), and ReCOIL (Sikchi et al.| 2024). We exclude
DWBC (Xu et al.}2022) from this experiment since both DWBC and ILID use discriminator-based
objectives, and ILID has been shown to outperform DWBC. In addition, based on our proposed
objective in equation |5} we include a variant of our method that only learns from B% and BM*
(i.e., « = 0), called as DualCOIL-G. For methods that incorporate support from bad data B2, we
evaluate our approach against SafeDICE (Jang et al.||2024). Given the limited number of existing
baselines that effectively utilize poor-quality data in offline imitation learning, we also propose a
simple adaptation of DWBC, which is called as DWBC-GB to jointly learn from BE, BE, and BMx,
Detailed implementation of these baselines are provided in the Appendix.

Evaluation Metrics. We evaluate all methods using five training seeds. For each seed, we collect the
results from the last 10 evaluations (each evaluation consist 10 different environment seeds), then
aggregate all evaluations across seeds to compute the mean and standard deviation, which reflect
the converged performance of each method. Across all experiments, we report the normalized score

Score—Random Score
Expert Score—Random Score

provides a consistent performance measure across different environments.

commonly used in D4RL tasks (Normalized Score = ) This normalization

6.2 MAIN COMPARISON

: G Mix : : B
Task unlabeled BM'™ learning from 5~ and B only learning with 3
BC-MIX BC-G SMODICE ILID ReCOIL DualCOIL-G ~ SafeDICE DWBC-GB  DualCOIL ‘ Expert
CHEETAH RANDOM+EXPERT 2.3+0.0 —0.610.3 4.6+1.2 211434 2.0+0.3 844104 —0.0x0.0 2.8x05 86.712.2 90.6
MEDIUM+EXPERT 425402  —0.6+03 424116 40.3+17.0 42.540.3 48.612.0 377101 5.611.9 776136 90.6
ANT RANDOM+EXPERT 30.9+0.0 —T72446 4.6197 71.8+8.7 56.245.0 100.6+9.9 —2.6+0.0 6.5+3.4 1127455 117.5
MEDIUM+EXPERT 91.210.8 —T7.2446 88.5142 39.6+11.5 100.8440 1024435 88.1+0.4 —4.342.4 1074549 117.5
HOPPER RANDOM+EXPERT 49401 179427 56.419.2 81.6+143 81.0+147 7941148 411414 93.619.2 109.6
MEDIUM+EXPERT 52.240.6 179427 53.041.7 87.945.3 46.1458.3 70.6+58.0 55.841.7 103.7+7.3 109.6
WALKER ~ VANDOM+EXPERT 15t00 3815  106.6z07 1001444 2981140 975107 23.0+0.5 5 1074217 | 107.7
o MEDIUM+EXPERT 70.8+0.3  3.8+15 6.012.2 89.T+106 721454 99.846.9 60.2+1.3 25.6+7.4 108.220.4 107.7
PEN CLONED+EXPERT 56.040.5  8.8+1.4 10.9+6.5 1942 79.249.6 66.3+9.6 19.942, 9.543.9 96.4.5.7 107.0
} HUMAN+EXPERT 18.3+0.6 8.841.4 —2.540.2 5.1+2.1 99.945.5 95.548.8 21.8+42.5 6.5+2.4 101555 4 107.0
HAMMER CLONED+EXPERT 04104 14103 0.840.4 0.4+0.6 34401 66.5111.8 0.0+0.1 2.8425 74.315.0 119.0
HUMAN+EXPERT 128433  l4ios 1.9421 12114 1132455  113.2172 0.6+0.4 34110 120.0-+3.7 119.0
DOOR CLONED+EXPERT 0.4+0.3 —0.1400 —0.140.0 —0.140.1 19.347.5 92.645.1 —0.0+0.0 —0.140.0 1024, 7 105.3
HUMAN+EXPERT 4.041.2 —0.1100 —0.1403 0.240.7 100.342.9 104.7+0.7 0.940.4 11405 105.040.5 105.3
RELOCATE ~ CLFONED+EXPERT —0.140.0 —0.1400 0.140.1 —0.1400 14411 34.546.2 —0.110.0 —0.210.0 92,1450 100.9
T HUMAN+EXPERT 0.0+0.0 —0.140.0 —0.240.0 —0.240.1 723456 99.143.1 0.0+0.0 —0.140.0 102.642 4 100.9
KITCHEN PARTIAL+COMPLETE  45.540.5 2.542.2 5.543.7 27.342.4 48.8+4.0 45.846.6 2.840.5 19.4401 531159 75.0
MIXED+COMPLETE 421405 22417 3.1li26 13.341.4 50.6+1.7 20.3+6.3 1.540.8 6.7+2.0 48.947.3 75.0
Average 26.4 29 21.2 324 56.6 78.8 19.5 9.2 94.1 ‘

Table 1: Comparison with other baselines in MuJoCo, Adroit, and FrankaKitchen. The results are
normalized score in mean and standard error.

To answer Question (Q1), we present a comprehensive comparison between our method and existing
baselines across 18 different datasets, as shown in Table[I] First, both BC-MIX and BC-G fail
to achieve satisfactory performance across tasks. When learning from the good dataset B“ and
the unlabeled dataset BM*, methods like SMODICE and ILID perform reasonably well on the
four MuJoCo locomotion tasks (CHEETAH, ANT, HOPPER, WALKER) but completely fail on the
five hand manipulation tasks. In contrast, ReCOIL and our method variant (DualCOIL-G) are
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able to successfully learn in both locomotion and manipulation tasks, demonstrating more robust
generalization.

In the setting that incorporates additional low-quality data B2, SafeDICE shows similar performance
to SMODICE and ILID—again failing on the manipulation tasks. Furthermore, DWBC-GB fails
to learn entirely, highlighting that a naive adaptation for leveraging poor-quality data can harm the
learning process. These results suggest that incorporating bad data B introduces new challenges,
and that effectively utilizing such data requires a carefully designed algorithm grounded in strong
theoretical principles. Overall, our method successfully leverages the bad dataset B2 and consistently
outperforms all other baselines across both locomotion and manipulation tasks.

6.3 EFFECT OF NUMBER OF BAD DEMONSTRATIONS

CHEETAH HOPPER HAMMER RELOCATE KITCHEN
(RANDOM + EXPERT) (RANDOM + EXPERT) (CLONED + EXPERT) (CLONED + EXPERT) (PARTIAL + COMPLETE)

100 100 100 100 polnrnnnsliosnnchan oot e« 100

Score

50 50 50 50 50

25 25 25 25 25

0 1 10 25 50 100 0 1 10 25 50 100 0 1 10 25 50 100 0 1 10 25 50 100 0 1 10 25 50 100
# bad trajectories # bad trajectories # bad trajectories # bad trajectories #bad trajectories

""" expert SafeDICE DWBC-GB DualCOIL

Figure 1: Effect of bad dataset size BZ on performance: Results, averaged over 5 seeds and reported as
normalized scores, show that our method effectively leverages increasing numbers of bad trajectories,
whereas baselines such as SafeDICE and DWBC-GB fail to do so.

To answer question (Q2), we investigate the impact of the size of the undesirable (bad) dataset on
methods designed to learn from bad data. Specifically, we gradually increase the size of the bad
dataset BZ and evaluate how the performance of each algorithm is affected. The experimental results
are presented in Figure[I] Overall, SafeDICE fails to effectively utilize the bad demonstrations, while
DWBC-GB is only able to learn in the HOPPER task. In contrast, our method demonstrates strong
scalability with respect to the size of the bad dataset, maintaining good performance even when
provided with as few as a single bad trajectory.

HOPPER (RANDOM + EXPERT)

6.4 SENSITIVITY ANALYSIS OF «

g 100
We introduce a hyperparameter 0 < o < 1, which controls - M

the weighting of the bad data objective—this relates to

«
question (Q3). To evaluate the sensitivity of our method ... HAMMER (CLONED -+ EXPERT)
to «, we vary its value and observing the effect on final g™
performance, as shown in Figure 2| While o does have & ™ m
a noticeable impact, our method remains robust across a © 00 o1 0z 03 04 05 05 o7 o8 09
broad range of values, with optimal performance observed a

Wlthln thlS range' The SpeCiﬁC o Values used for each '[aSk ..............................................

are provided in the Appendix. g W—ﬁ_ﬁ\é—%_%

7 CONCLUSION @

Figure 2: Sensitivity analysis on the
We introduced a new offline imitation learning frame- trade-off parameter .
work that leverages both expert and explicitly undesirable
demonstrations. By formulating the learning objective as the difference of KL divergences over
visitation distributions, we capture informative contrasts between good and bad behaviors. While
the resulting DC program is generally non-convex, we establish conditions under which it becomes
convex—specifically, when expert data dominates—leading to a practical, stable, and non-adversarial
training procedure. Our unified approach to handling both expert and undesirable demonstrations
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yields superior performance across a range of offline imitation learning benchmarks, setting a new
standard for learning from contrasting behaviors.

Limitations and Future Work. While our method demonstrates strong empirical performance, it is
currently limited to settings where o < 1. Relaxing this constraint would make the learning objective
more difficult to optimize but represents a promising direction for future research. In addition, we
assume access to well-labeled expert and undesirable demonstrations, which may not always be
available in practical scenarios. Developing robust algorithms capable of learning effectively from
noisy or weakly labeled data would thus be a valuable extension of this work. Moreover, we assume
that the undesirable dataset contains undesirable demonstrations that are not necessarily catastrophic
or must be avoided at all costs. Addressing more safety-critical settings would require incorporating
ideas from hard-constrained RL, which we consider a promising avenue for future exploration.

REPRODUCIBILITY STATEMENT

We provide detailed hyperparameters and network architectures for each task in the Appendix. The
source code has been submitted as supplementary material and will be made publicly available to
ensure reproducibility and comparison. In addition, all datasets used are either publicly available or
clearly described in the Appendix.
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APPENDIX

This appendix includes the following materials:

Missing Proofs: Proofs omitted from the main paper are provided in Appendix[A]and some additional
discussions

Experimental Details: We describe the following aspects in detail:

* Full pseudocode (Appendix [C.I])

* Dataset construction (Appendix [C.2)

» Baseline implementations (Appendix [C.3)
* Hyperparameter selections (Appendix [C.4)
» Computational resources (Appendix [C.3))

Additional Experiments: We further present supplementary results:

* Effect of the size of the bad dataset (Appendix [D.T))
» Effect of the number of expert demonstrations in the good dataset B (Appendix |D.2))

+ Discussion: How many bad trajectories in B are sufficient to replace a good trajectory in
BS for DualCOIL? (Appendix [D.3))

* Comparison of advantage-weighted BC and Q-weighted BC for policy extraction (Ap-
pendix

* Performance across varying quality levels of the unlabeled dataset BM* (Appendix

* Comparison with adapted offline reinforcement learning methods (Appendix

* Discussion: distribution-matching vs. preference-based approaches (Appendix [D.9)

* Additional comparison with “avoid-bad-only” baselines (Appendix

* Ablations and experiments with o > 1 (Appendix [D.TT)

« Comparison between L((Q, 7) and its surrogate L(Q, 7) (Appendix

« Sensitivity analysis of 3 (Appendix

Stress Tests: We conduct additional stress-test experiments by:

¢ Increasing the proportion of bad data in the unlabeled dataset BM* to very high levels
(Appendix [D.6)
» Generating more bad data to enlarge the bad dataset BZ (Appendix |D.7)
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A MISSING PROOFS

Proposition equation If a < 1, then the objective function f(d™) = Dgy(d™ || d¥) —
a Dgi(d™ || dP) is convex in d™.

Proof. We write the objective function as:

fldm) = Z logdﬂ(s’a)—a Z log d"(s,a)

G B
(0. ade d%(s,a) (o) dB(s,a)
= Z(l —a)d"(s,a)logd™(s,a) + d"(s,a)(ad?(s,a) — d°(s,a)) (10)

We can see that the first term is convex in d™ since o < 1 and d™ (s, a) log d™ (s, a) is convex in d”.
Moreover, the second term is linear in d”. This implies that f(d™) is convex in 7 if o < 1, as desired.

O

Proposition The objective function in equation IZ| can be written as: f(d,m) = (1 —
G B
@)D (d]|dV) = Eg ayma [¥(s, )], where (s, a) = log %9 — o log 420

dU (s,a) dU(s,a)"’
Proof. We can expand the objective function as:
d(s,a) d(s,a)
d - ]E s.a)~ ]. e N | E s,a)~ 1 :
F00m) =By 108 35255 | 0 Brc s 505
We can rewrite the objective using dV as an intermediate distribution:
d(s,a) d(s,a)
d,m) =Es.a)ma |l0g —57—=| — @E (5 0)~a |l0g 77—
Fhm) = Beoayea {Og dG(s,aJ B {Og d5(s,0)
d(s,a) dY(s,a) d(s,a) dY (s, a)
=Ea)a |1 1 —aEsq)oq |log ———< + log 17—
et 8 4108 G = Bt o 0+ o
d(s,a)
= (1 - Ot) E(s,a)Nd |:10g dU(s,a)} - E(s,a)Nd [\11(570“)] )
= (1 - a)DKL(deU) - ]E(s,a)fvd [\II(S, CL)]
— log 45(s:0) d?(s,a)
where W (s, a) = log o705 — alog gy O

Propositiond.3;  Le the surrogate objective be defined as:
L(Q,7) = (1 =) Esnpy [V (5)] — Eav [3(s,)T™[Q)(5,0)] + (1 — )Bgv [3(s,@)] . (11)

where §(s,a) = exp (%) . Then Z(Q,TF) is a lower bound of L(Q, ), with equality when
T7[Q](s,a) = 0 forall (s,a).

Proof. We first write L(Q, ) as:
L(Q,m) = (1—7) Espo [Vér(s_)]
_exp (\11(87 a’) — Tﬂ[Q](Sv a) >:|

1—a)E
+ ( a) (s,a)~dV 1_a

= (=) By [V5 (5)]
+ (1= Q)E o gyav |exp (‘Ii(f Z)) exp <_TZ[?]S’ 2 ﬂ
= (1= 7) By, [V5(9)]

4 B [s5010ep (TE0Y],

l—«a
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where we define §(s, a) := exp (M)

-«

Now, we use the inequality e® > t + 1 (which follows from the convexity of e and is tight at t = 0),

to obtain:
exp <_TW[Q](S7 a)) > _TW[Q](Sv a) +1.
1-« 1-«o
Substituting this into the expression for L(Q, 7), we get:
L) 2 (1) Bangy V(9] +(1-0) g apmar [305.0) (~T100 1 1) = E(Qum),

Equality holds in the inequality e! > ¢ + 1 when ¢ = 0, which corresponds to 7™[Q](s,a) = 0. That

is, the equality L(Q, w) = E(Q, ) holds when the rewards represented by the Q-function are zero
everywhere. This completes the proof. O

Propositiond.d;  The following properties hold:

(i) E(Q, ) is linear in Q and concave in . As a result, the max—min optimization can be equiv-
alently reformulated as a min—max problem: max, ming L(Q, ) = ming max, L(Q, 7).

(ii) The min—max problem ming maxy E(Q, ) reduces to the following non-adversarial prob-

lem:

~ v
win {E(Q) = (1= ) Buvye W9 = B o0 (1220 ) QU510 | |
where the soft value function Vg(s) is defined as: Vo(s) =

Blog (3, 1Y (als) exp(Q(s,a)/B)) , and the soft Bellman residual operator is given by:
TIQl(s,a) = Q(s,a) — vV (s). Moreover L(Q) is convex in Q.

Proof. We first write E(Q, ) as:
Z(Q, 7T) = (1 - '7) IE:swpo [V(S(S)] - E(s,a)de [5(53 a) (Q(Sv a) - FY]ES’ [ch(sl)]”
+ (1 - a)E(s,a)~dU [6(8,@)] R

where we recall that
m(al s)
V5(8) = Eqmn(s {Q(s,a) — Blog } )
Q (:]s) uU(als)
Thus, we can observe that Z(Q, ) is linear in Q.

Moreover, the function V) (s) is concave in 7, since it is composed of the expectation over a linear
function of 7 (through Q(s, a)) and the negative entropy-regularized KL-divergence term, which is
convex in 7 and thus its negative is concave. That is,

is concave in 7.

Furthermore, since 6(s, a) > 0, the coefficients associated with Vi (s) in L(Q, m) are non-negative.

This implies that the entire function L(Q, 7) is concave in .

Now, since E(Q, m) is concave in 7 and linear in (), we can apply the minimax theorem to swap the
order of the max and min:

max Inén L(Q,m) = Hgn max L(Q, 7).

This holds because the function Z(Q, ) satisfies the standard conditions of the minimax theorem: it
is concave in 7, convex (in fact, linear) in (), and the optimization domains are convex.
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Next, observe that in L(Q, ), the variable 7 only appears through the term V4 (), and all coeffi-

cients multiplying V/j (s) are non-negative. Therefore, maximizing Z(Q, ) over 7 is equivalent to
maximizing V) (s) for each state s independently. That is,

max L (Q,m) = max Z

for some non-negative coefficients c(s) > 0, which implies it suffices to solve max, V7 (s) pointwise.
Recall the definition:
m(a|s)
VI(s) = By, La) — Bl .
Q(S) a ( |9) |:Q(S a) /B Og /_,LU(G, ‘ S):|

The inner maximization over 7(- | s) is a standard entropy-regularized problem, and the optimal
policy has the closed-form solution:

¥ (a | s)exp (L(Z’“))
S iV (@ | ) exp (25

This is a weighted softmax over (s, a) values, using the baseline distribution Y (a | s) as the
reference. Substituting this back into V{ (s) yields the closed-form maximized value:

max V3 (s) mog(Zﬂ (als exp< (ﬁ“)>>.

m(a]s) =

Thus: _ _
minmax L(Q,7) = min L
sinmax L(Q, m) = min £(Q)

where

U(s,a)

l1—«

E(@) = (1= ) Bump V(o)) - Eguarmar [ex0 (3220} (Qs.0) 1B V(s

and

ﬁlogZu (als eXp( (ﬁ“))

We can now see that E(Q) is convex in (), due to the following reasons:

* The function Q(s,a) + log >, uY(a | s)exp (@) is a softmax (log-sum-exp), which
is convex.

* Vo(s), being a composition of a convex function with an affine transformation, is convex in
* Expectations over convex functions (e.g., Esp, [Vo(s)], Es [Vo(s')]) preserve convexity.
« The remaining terms in L(Q), such as Q(s, a), appear linearly and thus preserve convexity.

Hence, the overall objective E(Q) is convex in (), which completes the proof.
O

Proposition[5.1] The following Q-weighted behavior cloning (BC) objective yields the same optimal
policy as the original advantage-weighted BC formulation in equation|8

max Z exp (;Q(s,a)> logm(a| s). (12)

(s,a)~BY
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Proof. The Q-weighted BC objective can be written as:

1
max Z uY (s, a)exp <BQ(5, a)) logm(a | s).
(s,a)
This represents a weighted maximum likelihood objective, where the weights are shaped by the
exponential of the Q-values. For each state s, the optimal solution 7*(a | s) is given by:

iV (s,0) exp (1Q(s,0))
S 1V (5,0 exp (5Q(s,0))

m(a]s) =

Moreover, we recall that:

Ve(s) = flog (Z WY (s,a') exp <;Q(s,a’)>> ,

which allows us to express the optimal policy in terms of the advantage Q(s,a) — V ?(s) as:

7*(a | s) = uY(s,a)ex l s.a) —V9s
(als) u<,>ep(5<Q<,> v<>>>.

This is precisely the optimal policy corresponding to the advantage-weighted BC objective defined in
equation[§] This completes the proof.

O

B ADDITIONAL DISCUSSIONS

B.1 DERIVATION OF THE Q-LEARNING OBJECTIVE

We provide a detailed derivation of the Q-learning objective presented in Section [.1] of the main
paper, starting from the primal objective in Proposition[4.2] The optimization problem can be written
as:

min (1 — ) Dir(d || dv) = E(s a)~al¥ (s, a)]

st d(s,a) = (1—y)po(s)m(als) +ym(als) Y T(s|s',a’)d(s',a), (13)

s’,a’

da(s,a) dg(s,a)
du (s,a) dy (s,a)
regularized RL problem analyzed in |Sikchi et al.| (2024)), with reward r (s, a) = ¥(s, a), reference
distribution d,.; = dyy, and regularization weight (1 — «). Following the derivation in DualRL, we
introduce a Lagrange multiplier Q(s, a) for the occupancy-flow constraint and form the Lagrangian:

£(d,7,Q) = (1 - ) Eqlog 725 ] — Bg[¥(s, a)]

where U(s,a) = log — «alog This objective is of the same form as the primal

dU( 7(1)
+EdQ(s,0) — Y Er s [Q(s', )] = (1 = 7) Epy [Q(s, a)]. (14)
Minimizing equation with respect to d(s, a) pointwise gives
oL d*(s,a) 1

dd(s,a) [U(s,a) +7Er+[Q(s",a")] = Q(s,a)] +c,

which leads to the optimal occupancy distribution
v E ™ ,7 - )
(5.0 o¢ dy (5,2) eXp( (5,0) + 1 Er,s[Q(s', )] - Qs a>>.

l-—«a
Substituting equation [I3] back into the Lagrangian eliminates the dependence on d, yielding the
following dual optimization problem:

mgxrrgn {(1 =) Epo #[Q(s, a)]

15)

(16)

U(s,a) +vErg[Q(s',a)] — Q(S»“)” }

+ (1 —a)Ew a)vay [exp( &
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Equation [T6] corresponds exactly to the Q-learning formulation presented in Eq. [3]

Here we note that we adopt the DualRL framework because it provides a principled and unified
treatment of regularized reinforcement learning objectives. In particular, DualRL optimizes a
KL-regularized objective that naturally arises from our derivation in Proposition .2} ensuring
theoretical consistency between the recovered reward model and the downstream policy optimization.
Moreover, DualRL has demonstrated strong empirical performance across diverse benchmarks and
was highlighted as an ICLR 2024 spotlight presentation. Its stability and efficiency make it a more
advanced and reliable choice compared to earlier DICE-based estimators or Q-learning variants such
as OptDICE or XQL. Integrating DualRL therefore enables us to fully leverage our implicit reward
formulation while benefiting from a state-of-the-art optimization framework.

B.2 A NOTE ON DUALCOIL UNDER f-DIVERGENCE

We note that the convexity stated in Proposition[d.T]does not hold under arbitrary f-divergences, even
under the same assumptions. To illustrate this, consider the following objective defined using an
f-divergence:

F(d™) = Dy(d" ||d%) — a Dy(d" || d¥),

which can be written as:

.07 (o) s, ()

is not necessarily convex for any o > 0. Whether this expression is convex depends on the values of
d%(s,a) and d® (s, a). In particular, if d% (s, a) = 0—i.e., the state-action pair (s, a) is never visited
by the expert policy—then the term may become concave. Therefore, in general, the objective F'(d™)
defined under an f-divergence is not convex in d” for arbitrary choices of . Thus, the standard
Lagrangian duality cannot be applied. For this reason, the KL divergence appears to be an ideal
choice for our problem of learning from both expert and undesirable demonstrations.

Observe that each term

B.3 POSSIBLE FAILURE MODES IN AVOIDING BAD DEMONSTRATIONS

A known challenge in pushing the policy distribution away from the mean of the bad dataset is the
potential emergence of new undesirable behaviors not covered by the dataset—often referred to
as a “whack-a-mole” problem. If the bad dataset is incomplete, the policy may still converge to
harmful behaviors. In this context, the primal objective Dy, (d™ || d®) — Dy (d™ || d?) highlights
the importance of expert demonstrations, as safe learning requires that the influence of expert behavior
outweighs that of bad behavior.

Our framework addresses this by prioritizing imitation of expert behavior whenever available, while
using bad demonstrations only to avoid clearly undesirable actions. Thus, expert data anchors the
policy, and bad data serves as a supplementary signal rather than requiring exhaustive coverage of all
failure modes. This mitigates the “whack-a-mole” issue by ensuring the policy remains primarily
guided by expert behavior.

Naturally, when both expert and bad demonstrations are scarce, policy learning becomes difficult—a
limitation shared by most IL approaches. Nonetheless, our experiments show that the method is
robust and consistently outperforms baselines, even with only limited expert data.

B.4 TIGHTNESS OF THE SURROGATE LOWER BOUND AND THE ROLE OF REGULARIZATION

In our algorithm, we adopt the surrogate objective L(Q, ) as a tractable lower bound of the true
training objective L(Q), 7). A natural concern is: How tight is the lower-bound objective L(Q, )
compared to the original objective L(Q, ) ? While the gap between L(Q, 7) and its surrogate can
be nontrivial—reflecting the difference between the exponential function and its linear approxima-
tion—this does not undermine its effectiveness. The surrogate offers tractability while still guiding
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the optimization of () and 7 in a direction consistent with maximizing the original objective, since
both e” and = + 1 share the same monotonicity. Appendix provides a detailed comparison, and
ablation studies confirm that the surrogate leads to significantly improved training performance.

Another question is whether Dual COIL benefits primarily from the implicit regularization within
L(Q, ) rather than being a faithful proxy for the original D1, (d™ || d%) — D1 (d™ || dP) objective.
In practice, this regularization mainly stabilizes training by preventing extreme (Q-values, a technique
also found in baselines such as SafeDICE and DWBC. However, regularization alone does not
enable meaningful learning from both expert and undesirable datasets. The superior performance
of DualCOIL arises instead from the structure of L(Q, ) itself, which is grounded in the original
KL-divergence formulation.
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C EXPERIMENT SETTINGS

C.1 FuLL PSEuDO CODE

The detailed implementation are provided in Algorithm 2]

Algorithm 2 DualCOIL: Offline Imitation Learning from Contrasting Behaviors (full)

Require: Good dataset B¢, Bad dataset B, unlabeled dataset 5y,

Require: Hyperparameters: a € [0, 1), 3, v, Ny, N, target update rate 7, batch size B
G

1: Initialize networks: Qu, (s, a), Vi, (s), mo(als), classifiers cG (s, a), c§ (s, a)
2: Initialize target Q- network: Quarget < Qu,
3:

4: Step 1: Estimate occupancy ratios
5: fori = 1to IV, do
6: Sample batch {(s)'}Z; ~ Ba: {(s7) }ily ~ Ba: {(s7) i, ~ Bu
7:  Update cG by maximizing the objective in equationk]
8:  Update cB by maximizing an analogous objective to equatlon@for the bad dataset.
9: end for

10:

11: Step 2: Calculate ¥ function

) . G (s) o, (s)
12: Calculate ¥(s,a) = log e —alog T )
“w g wp
13:
14: Step 3: Train Q, V, and Policy
15: fori =1to N do

16:  Sample batch {(s;, a;, s, ¥;)}B., ~ By

17:  Q-Update: Minimize the objective L(Qu, |Vi,) + 2 (Qu, (5i,a;) — Vi, (51))?

18: (reference: L(Q|V') from Sec|5| Eq equation
19:  V-Update: Minimize the Extreme-V objective:

B
. 1 Qtarget(sia ai) - Vw,, (51) Qtarget(sia ai) - Vw,, (51)
Huljlvn B E [exp ( — —1].

i=1 B B
20:  Policy Update: Maximize the policy by using Q-weighted Behavior Cloning.
21: (reference: Sec[5} Eq equation[9)
22:  Target Q-Update: Soft update:Quarget <~ TQuw, + (1 — 7)Qrarget
23: end for
24:

25: return Trained policy 7y
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C.2 DATASET CONSTRUCTION
From the official D4RL dataset we use three different domains:

* MuJoCo Locomotion[ CHEETAH,ANT,HOPPER,WALKER] with three types of dataset:

— EXPERT
— MEDIUM
— RANDOM

* Adroit [PEN,HAMMER,DOOR,RELOCATE] with three types of dataset:

— EXPERT
— HUMAN
— CLONED

* FrankaKitchen [KITCHEN] with three types of dataset:

— COMPLETE
— MIXED
— PARTIAL

Following the approach of (Sikchi et al., [2024)), we also provide several combinations across all
three domains, as shown in Table Notably, the unlabeled dataset BM™ is constructed by combining
the entire suboptimal dataset with the expert dataset, resulting in an overlap between B and BN,
Nevertheless, this setup is practical: given an good dataset 3% and an unlabeled dataset BM™, users
can randomly sample trajectories and assign them to either B“ or BZ without the need for any
additional external data.

Task Unlabeled name ‘ B¢ BE BMx
RANDOM+EXPERT 1 EXPERT 10 RANDOM  Full RANDOM+30 EXPERT
CHEETAH
MEDIUM+EXPERT 1 EXPERT 10 MEDIUM  Full MEDIUM+30 EXPERT
ANT RANDOM+EXPERT 1 EXPERT 10 RANDOM  Full RANDOM+30 EXPERT
MEDIUM+EXPERT 1 EXPERT 10 MEDIUM  Full MEDIUM+30 EXPERT
HOPPER RANDOM+EXPERT 1 EXPERT 10 RANDOM  Full RANDOM+30 EXPERT
MEDIUM+EXPERT 1 EXPERT 10 MEDIUM  Full MEDIUM+30 EXPERT
RANDOM+EXPERT 1 EXPERT 10 RANDOM  Full RANDOM+30 EXPERT
WALKER
MEDIUM+EXPERT 1 EXPERT 10 MEDIUM  Full MEDIUM+30 EXPERT
PEN CLONED+EXPERT 1 EXPERT 25 CLONED  Full CLONED+100 EXPERT
HUMAN+EXPERT 1 EXPERT 25 HUMAN Full HUMAN+100 EXPERT
CLONED+EXPERT 1 EXPERT 25 CLONED Full CLONED+100 EXPERT
HAMMER
HUMAN+EXPERT 1 EXPERT 25 HUMAN Full HUMAN+100 EXPERT
DOOR CLONED+EXPERT 1 EXPERT 25 CLONED Full CLONED+100 EXPERT
HUMAN+EXPERT 1 EXPERT 25 HUMAN Full HUMAN+100 EXPERT
CLONED+EXPERT 1 EXPERT 25 CLONED Full CLONED+100 EXPERT
RELOCATE
HUMAN+EXPERT 1 EXPERT 25 HUMAN Full HUMAN+100 EXPERT
KITCHEN PARTIAL+COMPLETE | 1 COMPLETE 25 PARTIAL  Full PARTIAL+1 COMPLETE
MIXED+COMPLETE 1 COMPLETE 25 MIXED Full MIXED+1 COMPLETE

Table 2: Dataset Construction. The numbers in Table indicate the number of trajectories drawn
from each corresponding dataset. For the KITCHEN task, we follow the setting of (Sikchi et al.| 2024)),
where only a single trajectory from the COMPLETE dataset is included in BM™,
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C.3 BASELINES IMPLEMENTATION

We compare our method against several established baselines. For methods with publicly available
code, we utilized their official implementations without algorithmic modifications.

C.3.1 BEHAVIOR CLONING (BC)

We employ the standard Behavior Cloning (BC) objective, which aims to minimize the negative
log-likelihood of the demonstrated actions under the learned policy:

min —E, oyoplogm(a | s), 17)

where B denotes the dataset of state-action pairs. Specifically, B corresponds to BM™ in the case of
BC-MIX, or BY for BC-G.

C.3.2 OTHER BASELINES WITH OFFICIAL IMPLEMENTATIONS
For the following baselines, we used their official, unmodified implementations:

» SMODICE (Ma et al.,[2022): Applied to both the good dataset (3%) and the mixed dataset
(BMX), The official code is available at|[GitHub].
o ILID (Yue et al.,[2024): Applied to BE and BM™*. The official code is available at [GitHub]|

* ReCOIL (Sikchi et al., [2024): Applied to BE and B, The official code is available at
[GitHub].

* SafeDICE (Jang et al.,[2024)): Applied to the bad dataset (B2) and the mixed dataset (BM™).
The official code is available at|[GitHub].

C.3.3 DWBC-GB

DWBC-GB is our adaptation of DWBC (Xu et al.,[2022)) (original official implementation: [GitHub]).
While the original DWBC is designed for scenarios involving B and BM*, our modified version,
DWBC-GB, is extended to handle all three dataset types: BE, BB, and BMX,

This adaptation involves training two discriminators: ¢ for good data and ¢? for bad data. Their
respective loss functions are:

Lo = n E(s,a)NBG [7 log CG(57 a, log 7r(a|s))]
+ E(5 0)pMix [—log(1 — ¢%(s,a,log m(als)))]
—NE(sq)onc[—log(l — c%(s,a,log(als)))], (18)
LcB = nE(s,a)NBB [_ log CB(Sa a, IOg ﬂ—(a’|8))]
+ E(5,0)pmx [ log(1 — cB(s,a,logm(als)))]
— N E(s.a)~5 [~ l0g(1 — P (s,a,log m(als)))]. (19)
The policy 7 is then learned by minimizing the objective:

min <]E(S,Q)NBG [— logm(als) - (0‘ "~ o(s,q) (177— C(s,a))>]

1
E x |—1 — 2
(s | ogn(als) 10(8’@}), 20)

where c(s,a) = c%(s,a) — c¢P(s,a). (Note: i and « are hyperparameters.)

C.4 HYPER PARAMETERS
Our method features two primary hyperparameters: « (weighting for balancing positive and negative

samples) and 3 (Extreme-V update). Sections ID.11} and present ablation studies detailing
the sensitivity to these parameters.
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Task Unlabeled name | o B
RANDOM+EXPERT 0.6 20.0
HEETAH
¢ MEDIUM+EXPERT 0.6 15.0
RANDOM+EXPERT 0.6 15.0
ANT
MEDIUM+EXPERT 0.6 15.0
RANDOM+EXPERT 0.4 30.0
HOPPER
o MEDIUM+EXPERT 04 30.0
WALKER RANDOM+EXPERT 0.6 20.0
MEDIUM+EXPERT 0.6 20.0
CLONED+EXPERT 04 15.0
PEN
HUMAN+EXPERT 04 10.0
HAMMER CLONED+EXPERT 0.2 10.0
HUMAN+EXPERT 0.6 20.0
DOOR CLONED+EXPERT 04 15.0
HUMAN+EXPERT 04 10.0
RELOCATE CLONED+EXPERT 0.4 30.0
HUMAN+EXPERT 0.8 3.0
KITCHEN PARTIAL+COMPLETE | 0.1 20.0
MIXED+COMPLETE 0.3 20.0

Table 3: Hyper parameters.

Specific parameters for all tasks are provided in Table [3|below:

Beyond these, all other hyperparameters are consistently applied across all benchmarks and settings.
The policy, Q-function, V-function, and discriminator all utilize a 2-layer feedforward neural network
architecture with 256 hidden units and ReLU activation functions. For the policy, Tanh Gaussian
outputs are used. The Adam optimizer is configured with a weight decay of 1 x 1072, all learning
rates are set to 3 x 10™%, mini batch size is 1024, and a soft critic update parameter 7 = 0.005 is
used. These hyperparameters are summarized in Table i}

Hyperparameter Value

Network Architecture

(Policy, Q-func, V-func, Discriminator) 2-layer Neural Network

Hidden Units per Layer 256

Batch size 1024
Activation Function (Hidden Layers) ReLLU

Policy Output Activation Tanh Gaussian
Optimizer Adam
Learning Rate (all networks) 3x 1074
Weight Decay (Adam) 1x1073

Soft Critic Update Rate (7) 0.005

Table 4: Consistent hyperparameters used across all benchmarks and settings.

C.5 COMPUTATIONAL RESOURCE

Our experiments were conducted using a pool of 12 NVIDIA GPUs, including L40, A5000, and
RTX 3090 models. For each experimental configuration, five training seeds were executed in
parallel, sharing a single GPU, eight CPU cores, and 64 GB of RAM. Under these shared conditions,
completing 1 million training steps across all five seeds took approximately 30 minutes. The software
environment was based on JAX version 0.4.28 (with CUDA 12 support), running on CUDA version
12.3.2 and cuDNN version 8.9.7.29.

Moreover, we evaluated all methods using the CHEETAH (RANDOM+EXPERT) task under identical
hardware conditions: a single NVIDIA L40 GPU, 8 CPU cores, and 64GB of RAM. For SafeDICE,
we were unable to utilize GPU acceleration with TensorFlow; consequently, the method was run in
CPU-only mode, resulting in slower training times. For DualCOIL, we trained two discriminators,

25



Under review as a conference paper at ICLR 2026

which required approximately 5 minutes; this duration is included in the total training time.
complete training time for a single seed are reported in Table 5]

DWBC-GB SateDICE (CPU) SMODICE ILID ReCOIL  DualCOIL

time ~130 mins ~150 mins ~110 mins ~80 mins ~20 mins ~25 mins

Table 5: Comparison of training time across methods.
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D ADDITIONAL EXPERIMENTS

D.1

IMPACT OF THE SIZE OF THE BAD DATASET: FULL DETAILS

To support the experiment in Section[6.3] we present the complete results for all MuJoCo Locomotion
and Adroit manipulation tasks. In particular, we progressively increase the size of the suboptimal
dataset B® and evaluate the impact on each algorithm’s performance. The results, shown in Figure
demonstrate that Dual COIL consistently outperforms all other baselines across all tasks, effectively
leveraging the bad data to achieve superior performance. Notably, the results indicate that with only a
single good trajectory in B%, increasing the number of bad trajectories in 3% to just 10 is sufficient
for DualCOIL to achieve its highest performance across all tasks.
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Figure 3: Full bad dataset size effect. SafeDICE and DWBC-GB do not have version that learn from
0 bad trajectory, we assign result 0.0 for them.

27



Under review as a conference paper at ICLR 2026

D.2 IMPACT OF THE NUMBER OF EXPERT DEMONSTRATIONS IN GOOD DATASET B¢

In this section, we investigate how many expert trajectories in the good dataset B are sufficient to
achieve optimal performance. To this end, the quantity of expert trajectories in B was incrementally
increased through the set 1,3,5,10,25, while the composition of the unlabeled dataset (BM™) remained
fixed, as specified in Table[I] The detailed results are presented in Figure [ and [5]

ILID performs well on the Mujoco locomotion tasks (CHEETAH, ANT, HOPPER, WALKER), but
struggles in 3 out of 4 Adroit tasks (HAMMER, DOOR, RELOCATE). This indicates that ILID requires
a sufficient number of expert trajectories to achieve stable expert performance, which is not met in the
more complex Adroit tasks. In contrast, ReCOIL appears unable to effectively leverage the good data,
as its performance does not improve significantly with more expert trajectories. Overall, Dual COIL
demonstrates consistently strong performance, requiring only 3 to 5 expert trajectories to achieve
near-optimal results in all tasks.

Discussion on the Use Cases of ILID and DualCOIL: Through this experiment, we observe that in
the Mujoco tasks, ILID can outperform DualCOIL-G when the size of the good dataset is sufficiently
large. This highlights a limitation of DualCOIL, where the policy extraction objective is defined as

max, {E(s,a)~BU exp(5Q(s,a))log(als) } This objective uses data from the union dataset BV,
which may assign high weights to poor-quality transitions, potentially harming training.

In contrast, ILID only retains transitions that are connected to good data and explicitly discards
irrelevant or undesirable transitions (refer to the implementation details of ILID for more information).
This targeted filtering strategy enables ILID to avoid the negative effects of poor transitions and scale
more effectively with increasing amounts of good data.

These observations suggest a potential direction for improving Dual COIL by incorporating similar
data filtering mechanisms. Specifically, enhancing DualCOIL to better isolate high-quality transitions
could help it perform competitively with ILID in scenarios where the good dataset is large. We leave
this exploration for future work, as it requires a careful study of how to construct an optimal dataset
using Q-based methods.

In summary, ILID is a strong approach that scales well with the quality and size of the expert dataset.
Practitioners may prefer discriminator-based methods like ILID when sufficient high-quality expert
data is available, while Dual COIL remains a robust choice in settings where such data is limited and
scalalbe with bad dataset.
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Figure 4: Different of good dataset size without impact from bad dataset in MuJoCo Locomotion
tasks.
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Figure 5: Different of good dataset size without impact from bad dataset in Adroit Manipulation
tasks.

D.3 DISCUSSION: HOW MANY BAD TRAJECTORIES IN B2 ARE SUFFICIENT TO REPLACE A
GoOD TRAJECTORY IN B¢ FOR DUALCOIL?

Based on the previous experiments:
* Section addresses the question: How does the size of the bad dataset B affect the
performance of Dual COIL?

. Sectioninvestigates an additional question: How does the size of the good dataset B
affect the performance of DualCOIL?
From these experiments, we derive the following observations:
 With only one good trajectory in B, adding 10 bad trajectories in B% is sufficient for
DualCOIL to achieve its best performance.
* Without any bad data BZ, 3 to 5 good trajectories in B are enough to reach peak perfor-

mance.

These results suggest that Dual COIL can efficiently utilize bad data to reduce the need for good data,
with an estimated ratio of 2 to 5 bad trajectories being roughly equivalent to one good trajectory
across the benchmarks studied in this paper.
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D.4 COMPARISON OF ADVANTAGE-WEIGHTED BC AND Q-WEIGHTED BC FOR THE POLICY
EXTRACTION

In this paper, we propose a novel policy extraction method called QW-BC (Objective equation [J),
in contrast to prior approaches that rely on AW-BC (Objective equation In this section, we
present a comparison between QW-BC and AW-BC, as illustrated in Figure[6] Overall, QW-BC
demonstrates superior policy extraction performance, attributed to its stability derived from relying on
a single network estimation. In contrast, AW-BC often exhibits oscillations and instability, frequently

assigning inconsistent and overly high weights to bad transitions.
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Figure 6: AW-BC and QW-BC comparison.

D.5 PERFORMANCE ACROSS VARYING QUALITY LEVELS OF THE UNLABELED DATASET BM™*

The performance of all methods is influenced by the quality of the unlabeled dataset BM™. To evaluate
the robustness of our method under varying dataset quality, we conduct experiments with different
amounts of expert trajectories combined with the full set of undesirable trajectories in the unlabeled
dataset. We compare our approach against ILID and ReCOIL—which leverage B¢ and BM*—as
well as SafeDICE, which learns from B and BM™*. The detailed results of this study are presented in

Figure

In the Mujoco locomotion tasks, increasing the quality of the unlabeled dataset has minimal effect on
SafeDICE and ILID, and both methods continue to underperform on the Adroit hand manipulation
tasks regardless of the number of expert trajectories included. In contrast, ReCOIL shows improved
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performance as the quality of the unlabeled dataset increases, successfully learning 4 out of 8
tasks across both locomotion and manipulation domains. Overall, our method achieves near-expert
performance on 7 out of 8 tasks while requiring significantly lower-quality unlabeled datasets BM™,

demonstrating its superior data efficiency and robustness.
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Figure 7: Effect of Unlabeled Dataset Quality on Performance: We evaluate the effect of increasing
the number of expert trajectories in the unlabeled dataset BM*. The results are calculated from 5
different training seeds, reported in normalized score. Our method outperforms SafeDICE, ILID and
ReCOIL across both locomotion and manipulation tasks, achieving near-expert performance on most
environments even with a small number of expert demonstrations.

D.6 EFFECT OF INCREASING THE PROPORTION OF BAD DATA IN THE UNLABELED DATASET

In this experiment, we maintain the same good dataset (%) and bad dataset (37) as used in the main
comparison in Section 6.2. Our modification focuses on the unlabeled dataset (B /X). Within BM1X |
the number of EXPERT trajectories remains consistent with Section [6.2} but the RANDOM dataset
within it is duplicated multiple times to increase the proportion of bad data (each dataset contain about
1000 RANDOM trajectories). The results, presented in Table 6} indicate that increasing the amount
of poor-quality data leads to a general decline in performance across all methods. Nevertheless, our
algorithm remains consistently robust and continues to outperform the main baselines under these
more challenging conditions.

CHEETAH (RANDOM + EXPERT) 1xXRANDOM 2xRANDOM 3xRANDOM 5xRANDOM
SafeDICE ’0~0i0.0 '0~0i0.0 'O-OiO.U '0~0i0.1
ILID 211476 29.041.4 247140 26.740.4
ReCOIL 2.040.6 23401 2.040.2 1.840.7
DualCOIL 86.7.50 81.8.157 759121 599,55
RELOCATE (CLONED + EXPERT) 1XRANDOM 2xRANDOM 3xRANDOM 5xRANDOM
SafeDICE '0.1:(:(]»0 -O.Iig_u -0. 1:tU.U -0. lio_g
ILID -0.110.1 -0.240.1 -0.240.0 -0.210.0
ReCOIL 1.4:&2_4 0.4:&0'3 O.liolg O-I:kO.l
DualCOIL 921411, 647154 35.81143 9.3.9.
KITCHEN (PARTIAL + COMPLETE) 1XxRANDOM 2xRANDOM 3xRANDOM 5xRANDOM
SafeDICE 28411 38423 49415 3.0112
ILID 273104 7610 130140 113244
ReCOIL 4884153 41.6418 445,37 443,55
DualCOIL 531191 57.6154 56.510 9 56.847 0

Table 6: Increase the proportion of bad in the unlabeled dataset 3" /X in three different environments.
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D.7 EXPERIMENTS WITH EXTREMELY LARGE BAD DATASET

Although we previously examined the effect of the size of the bad dataset B” in Appendix that
study was restricted to at most 100 trajectories. In this experiment, we aim to further investigate
how enlarging BZ can improve performance. Since the RANDOM dataset from D4RL is relatively
small (which limit the analysis of Appendix [D.I), we augment it by generating additional random
trajectories through direct interaction with the environment. The experiment results are shown in
Table[7

From the results, we observe that increasing the quantity of bad demonstrations generally leads to
improved performance in most cases. This is likely because a richer set of bad data provides better
coverage of the undesirable regions in the action space, which helps the algorithm more effectively
learn what to avoid. However, in a few cases, the performance either improves only marginally or
even slightly decreases. This can be attributed to the fact that adding more bad demonstrations does
not always guarantee broader or more informative coverage of poor actions. If the additional bad data
is redundant or fails to introduce new undesirable behavior patterns, its benefit to learning may be
limited or even slightly detrimental due to noise.

CHEETAH (RANDOM + EXPERT) 100 300 500 1000
DWBC-GB 23409 14113 3.042.3 32401
SafeDICE -0.140.1 0.0+0.0 0.310.1 0.5103
DualCOIL 85351 914115 918:i10 9154038
RELOCATE (CLONED + EXPERT) 100 300 500 1000
DWBC-GB 0.1t01  -021+00 -02+00 -0.210.0
SafeDICE -0.140.0 -0.1+0.0 -0.1+0.0 -0.110.0
DualCOIL 9321107 9611120 9621112 9791116
KITCHEN (PARTIAL + COMPLETE) 100 300 500 1000
DWBC-GB 17.049.8 14.8.1¢.7 10.549.9 153459
SafeDICE 2-7i2A6 l~7iOA7 1.9i1,4 0~4i02
DualCOIL 603110 638195 59257 60.89 4

Table 7: Increasing size of Bad dataset B5.

D.8 COMPARISON WITH ADAPTED OFFLINE RL METHODS

In this section, we compare our approach with offline RL methods adapted to learn from both good
and bad datasets by assigning rewards of +1 to B and —1 to B, and combining all three datasets
into a single offline training set. We evaluate against two widely used baselines, CQL (Kumar et al.|
2020) and IQL (Kostrikov et al.l 2021)), using the same dataset sizes as in Section@]for fairness.
The results in Table 8| show that our method consistently outperforms both baselines.

CHEETAH HOPPER HAMMER RELOCATE KITCHEN

CQL 23111 2684136 03400 -0.310.0 0.0+0.0
IQL -0.510.6 461238 44435 -0.110.0 115465
DualCOIL 86.7:5_0 93-6i20.5 74-3i17.8 92-1i1 1.1 53-1i13.1

Table 8: Comparison of DualCOIL with offline RL methods.

D.9 DISCUSSION: DISTRIBUTION-MATCHING APPROACH VS PREFERENCE-BASED APPROACH

The good and bad data setup is reminiscent of preference-based methods. In this section, we want to
discuss the difference between our approach (distribution-matching) and preference-based approach
with two keys aspects:

* Input data construction: Our approach is based on contrastive demonstrations, explicitly
labeled as good or bad. In contrast, preference-based methods rely on pairwise preference
feedback between trajectories, where both trajectories can be good, bad, or of similar quality.
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* Learning objective: ConstraDICE is designed to explicitly imitate expert behavior while
avoiding bad behavior. Preference-based methods, on the other hand, aim to infer a
reward function or policy that aligns with the provided preferences, without necessarily
distinguishing between good and bad demonstrations in an absolute sense.

Intuitively, this means preference-based learning is conceptually different and not well-suited to
our setting. Simply enforcing a preference like r(good) > r(bad) does not capture the critical
requirement of explicitly avoiding bad behaviors. Even if the method assigns lower rewards to bad
trajectories, it does not guarantee that the resulting policy will avoid them.

To empirically support this argument, we conducted additional experiments using an offline
preference-based learning approach which is IPL (Hejna & Sadighl, [2024)) with the configuration
r(good) > r(bad). The results, presented in Table [9] further demonstrate that preference-based
methods fail to learn effective policies in our contrastive good-bad setting.

CHEETAH HOPPER HAMMER RELOCATE KITCHEN
IPL 1.540.1 6.4404 0.540.1 -0.140.0 347437
DualCOIL 86.7159 93.6490 5 7431178 92141411 5314431

Table 9: Comparison of DualCOIL with IPL.

D.10 CoOMPARISON WITH UNIQ: A STATE-OF-THE-ART ALGORITHM FOR LEARNING FROM
BAD DEMONSTRATIONS

In this section, we present an additional experiment comparing our approach with UNIQ
2024b), a state-of-the-art method specifically designed to avoid bad demonstrations (similar to
SafeDICE). While both UNIQ and DUALCOIL address offline imitation learning under the presence
of bad-quality demonstrations, the two methods are fundamentally different in both formulation and
learning principle. Specifically, UNTQ builds upon the IQ-Learn framework [2021), which
optimizes a max—min objective over reward and policy using an entropy-regularized formulation.
In contrast, DUALCOIL is derived from the DUARL and DICE frameworks (Sikchi et al.| [2024])),
employing a tractable reformulation based on minimizing the KL divergence between state—action
visitation distributions. This yields a Q-learning—style objective that is computationally simpler and
more stable to optimize. Moreover, DUALCOIL introduces a surrogate approximation (Section 4.2)
that further enhances efficiency without sacrificing alignment with the original theoretical objective.

For consistency, we adopt the same dataset setup as in Section [6.2] where learning is performed using
BB only. The results in Figure show that, with expert support, DualCOIL achieves the best overall
performance.
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Figure 8: Comparison with UNIQ.

D.11 ADAPTATIONS AND EXPERIMENTS WITH o > 1
From our objective function equation[I] we introduce a hyperparameter 0 < a < 1, which controls

the weighting of the bad data objective—this corresponds to question (Q3). To evaluate the sensitivity
of our method to «, we conduct experiments by varying its value and observing its impact on final
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performance. Specifically, we perform a full sweep over a € {0,0.1,0.2,...,0.9} to illustrate how
this key hyperparameter influences learning outcomes.

Interestingly, we observe that in some cases, settings with o > 1 yield favorable performance,
suggesting that avoiding bad data may, at times, be more critical than imitating good data. However,
directly applying a > 1 in our original formulation violates convexity conditions.

To address this, we propose a naive modification of Objective equation[7] that accommodates o > 1
while preserving practical applicability. The revised objective is defined as:

L@Q|V) = (1 =) Esnpy V(5)] = E(saymav [exp (¥(s,a)) (Q(s,a) —1Ex [V(s)])], 1)

which enables empirical investigation into the high-« regime while sidestepping theoretical limitations.
The experiment results are provided in Figure[0] Overall, o > 1 does not provide good performance,
which raises the limitation of the naive adaptation.
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Figure 9: Performance of large o > 1.
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D.12 COMPARISON BETWEEN L(Q, ) AND THE SURROGATE L(Q, )

As shown in Proposition [4.3] the original objective L(Q | V) ( equation [4) is transformed into a
modified version L(Q | V') ( equation . This experiment investigates the performance differences
between the two objectives.z

To improve the stability of the original objective L(Q | V'), we need to address the issue of exponential
terms producing extremely large values, which can lead to numerical instability. A practical approach
is to clip the input to the exponential function to a bounded range [minR, maxR], resulting in the
following formulation:

L(Q,m) =(1 =) Egp, [V (9)]
+ (17— a)E(M)ZU [exp ((\P(S’a) — 7RI, a)) clip(minR, maxR))] .2

l1—«

where minR = —7 and maxR = 7 in our experiments.

The results of this ablation study are presented in Figure [T0] illustrating the performance impact
of this stability-enhancing modification. In general, the clipping technique effectively mitigates
the instability caused by the exponential term, successfully preventing NaN errors during training.
However, this modification also leads to a drop in performance and, in some tasks, causes the method
to fail to learn effectively.
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Figure 10: Exponetial ablation study.
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D.13 SENSITIVITY ANALYSIS OF

In this section, we explore how different values of the 3 parameter affect performance. The experiment
results are provided in Table [T0} The results show that while /3 significantly influences outcomes,
performance remains consistent over a wide range of /3 values, implying that minimal tuning effort is
needed for this hyperparameter.

Task unlabeled BM™ 3 value
CHEETAH RANDOM+EXPERT = 2.25400 2.25400 2.25400  2.24400 832453 85845, 843414

MEDIUM+EXPERT 424402 4294103 53.94838 831149 80.1426 78.7+2.3 76.745.2

RANDOM+EXPERT  39.5+73 69.346.5 60.9+28.7 115.6146 118.0421 1145417 116.0+2.1

ANT MEDIUM+EXPERT  91.0+1.1  90.6+1.7  93.7T+15 104.843.9 106.5424 101.1433 95.1413

HOPPER RANDOM+EXPERT  4.740.4 5.240.9 72413 79419 20.449.7 674479 94.4. 63
MEDIUM+EXPERT  52.1115 46.0110 85.84116 96.31s8.1 96.9+12.5  99.6141 98.045.7

WALKER RANDOM+EXPERT 29406 3.542.9 6.4146 32.5497.7 105.7+4.5 106.242.0 107.5.1 1

MEDIUM4EXPERT  68.3137 65.8432 53.4436 104.942.5 108.140.1 108.210> 108.240.

Table 10: Performance of DualCOIL in different 8 value in MuJoCo locomotion tasks.

D.14 COMPARISON WITH OFFLINE RL METHODS

Keen readers may question the use of the reward function ¥ (s, a), since it is computed using only
two discriminators and can, in principle, be incorporated into other discriminator-based offline IL or
offline RL methods. To examine this, we compare our approach against OPTIDICE (a general offline
RL formulation adopted by DEMODICE and SMODICE), as well as several state-of-the-art offline
RL algorithms, including IQL, XQL, and F-DVL, each of which solves the offline RL problem using
U(s,a) as the reward. The experimental results are presented in Figure
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Figure 11: Compare with offline RL methods that utilize the reward function ¥ (s, a).

In principle, a key advantage of our algorithm lies in its ability to fully leverage the implicit reward
U (s, a) derived from our formulation in Proposition Unlike Q-learning—style offline RL methods
such as IQL and XQL, which optimize only the reward component ¥ (s, a), DualCOIL directly
optimizes the complete KL-regularized objective specified in Proposition [f:2} This allows the
algorithm to exploit the full structure of the learning objective rather than a single term. Furthermore,
compared to prior offline RL methods that explicitly incorporate a KL term—such as ReCOIL and
OptiDICE — DualCOIL is built upon a SOTA KL-regularized framework inspired by DualRL.
Moreover, DualCOIL is built with two additional benefits: (i) a stable and tractable approximation
to the regularized learning objective (Prop.[-4), and (ii) the Q-weighted behavioral cloning update
(Proposition [5.1)), which substantially improves optimization stability and robustness. Our ablation
studies in Appendix[D-4]and Appendix [D.12]further demonstrate that these components jointly enable
DualCOIL to outperform direct offline RL baselines and to utilize the implicit reward signal far more
effectively.

D.15 EXTREME-V VERSUS LOG-SUM-EXP FOR VALUE FUNCTION ESTIMATION

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

In Section 5] we use Extreme-V to estimate the value function V' instead of LogSumExp to handle
continuous action spaces. However, in prior work related to soft Q-learning, in the continuous action
space, researchers estimate V' based on the current ) and policy as V(s) = Q(s,m(a|s)) + oH (7).
where H () is the entropy of the policy 7 and « is a multiplier controlling the contribution of the
entropy to the value function. In this section, we compare the performance of Extreme-V with this
entropy-based estimation. We follow the same « as LS-1Q (Al-Hafez et al} 2023)) for MuJoCo tasks,
while setting a fixed a = 0.01 for all Adroit tasks. The comparison results are provided in Figure[I2]
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Figure 12: Compare Extreme-V with LogSumExp.
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D.16 DUALCOIL FOR SAFETY TASKS

In this section, we evaluate our method in a safe domain where the objective is to maximize return
while ensuring the cost remains below a specified threshold. We utilize the Safety Gymnasium bench-
mark for this experiment, specifically the SafetyPointGoall and SafetyPointButton] environments,
with a cost threshold of 25.0. Trajectories with an accumulated cost exceeding 25.0 are considered
unsafe, while those with an accumulated reward below a specific return threshold are categorized as
low-return.

Policy type SafetyPointGoall SafetyPointButton1

Return Cost Return Cost

Safe High-Return 244456 11.54190 10.2459 16.4433.3
Unsafe High-Return 24.211¢4 59.81413 10.24395 135.31379
Low-Return _4-0:t1.6 21.8i43.9 —0.3:|:0.9 42~7:l:79.2

Table 11: Quality of datasets in two tasks SafetyPointGoall and SafetyPointButtonl in mean and
standard deviation.

We generate three types of policies: safe high-return (using PPO-Lag), unsafe high-return (using
PPO), and low-return (using a random policy). The detailed quality of these datasets is reported in
Table[TT] Using these policies, we construct the following datasets:

* Good dataset (D%): Consists of safe high-return trajectories.
» Bad dataset (D®): Consists of unsafe high-return and low-return trajectories.

* Unlabeled dataset (DM7X): A mixture of unsafe high-return, safe high-return, and low-
return trajectories.

In our experiments, we fix the size of D to 5 safe high-return trajectories. DX is composed
of 500 unsafe high-return, 500 low-return, and 100 safe high-return trajectories. We aim to verify
DualCOIL’s ability to leverage varying sizes of D (comprising 50% unsafe high-return and 50%
low-return data) to assist training, thereby helping the policy avoid constraint violations and low-return
behaviors.

For evaluation, we test the policy over 100 independent episodes. We compute the violation rate,
defined as the proportion of episodes where the return falls below the specified return threshold and
the cost exceeds the cost threshold. Additionally, we report the average Return and Cost for these
runs. Detailed results are provided in Figure[I3] Overall, there are a clearly trend that increasing the
size of bad dataset D” lead to lower violation rate.
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Figure 13: Performance of DualCOIL across different sizes of the bad dataset D” on Safety
Gymnasium tasks. The violation rate reflects the proportion of unsafe or low-return behaviors
exhibited by the current policy during evaluation (lower is better). Higher return indicates better task
performance, while lower cost corresponds to safer behavior.
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