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Abstract

The workhorse of machine learning is stochastic gradient descent. To access
stochastic gradients, it is common to consider iteratively input/output pairs of a
training dataset. Interestingly, it appears that one does not need full supervision
to access stochastic gradients, which is the main motivation of this paper. After
formalizing the "active labeling" problem, which focuses on active learning with
partial supervision, we provide a streaming technique that provably minimizes
the ratio of generalization error over the number of samples. We illustrate our
technique in depth for robust regression.

1 Introduction

A large amount of the current hype around artificial intelligence was fueled by the recent successes
of supervised learning. Supervised learning consists in designing an algorithm that maps inputs to
outputs by learning from a set of input/output examples. When accessing many samples, and given
enough computation power, this framework is able to tackle complex tasks. Interestingly, many of
the difficulties arising in practice do not emerge from choosing the right statistical model to solve
the supervised learning problem, but from the problem of collecting and cleaning enough data (see
Chapters 1 and 2 of Géron, 2017, for example). Those difficulties are not disjoint from the current
trends toward data privacy regulations (Council of European Union, 2016). This fact motivates this
work, where we focus on how to efficiently collect information to carry out the learning process.
In this paper, we formalize the “active labeling” problem for weak supervision, where the goal is
to learn a target function by acquiring the most informative dataset given a restricted budget for
annotation. We focus explicitly on weak supervision that comes as a set of label candidates for
each input, aiming to partially supervise input data in the most efficient way to guide a learning
algorithm. We also restrict our study to the streaming variant where, for each input, only a single
partial information can be collected about its corresponding output. The crux of this work is to
leverage the fact that full supervision is not needed to acquire unbiased stochastic gradients, and
perform stochastic gradient descent.
The following summarizes our contributions.

1. First, we introduce the “active labeling” problem, which is a relevant theoretical framework
that encompasses many useful problems encountered by practitioners trying to annotate their
data in the most efficient fashion, as well as its streaming variation, in order to deal with
privacy preserving issues. This is the focus of Section 2.

2. Then, in Section 3, we give a high-level framework to access unbiased stochastic gradients
with weak information only. This provides a simple solution to the streaming “active labeling”
problem.

3. Finally, we detail this framework for a robust regression task in Section 4, and provide an
algorithm whose optimality is proved in Section 5.
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As a proof of concept, we provide numerical simulations in Section 6. We conclude with a high-level
discussion around our methods in Section 7.

Related work. Active query of information is relevant to many settings. The most straightforward
applications are searching games, such as Bar Kokhba or twenty questions (Walsorth, 1882). We
refer to Pelc (2002) for an in-depth survey of such games, especially when liars introduce uncertainty,
and their relations with coding on noisy channels. But applications are much more diverse, e.g. for
numerical simulation (Chevalier et al., 2014), database search (Qarabaqi and Riedewald, 2014), or
shape recognition (Geman and Jedynak, 1993), to name a few.
In terms of motivations, many streams of research can be related to this problem, such as experimental
design (Chernoff, 1959), statistical queries (Kearns, 1998; Fotakis et al., 2021), crowdsourcing (Doan
et al., 2011), or aggregation methods in weak supervision (Ratner et al., 2020). More precisely,
“active labeling”2 consists in having several inputs and querying partial information on the labels. It
is close to active learning (Settles, 2010; Dasgupta, 2011; Hanneke, 2014), where there are several
inputs, but exact outputs are queried; and to active ranking (Valiant, 1975; Ailon, 2011; Braverman
et al., 2019), where partial information is queried, but there is only one input. The streaming variant
introduces privacy preserving constraints, a problem that is usually tackled through the notion of
differential privacy (Dwork et al., 2006).
In terms of formalization, we build on the partial supervision formalization of Cabannes et al.
(2020), which casts weak supervision as sets of label candidates and generalizes semi-supervised
learning (Chapelle et al., 2006). Finally, our sequential setting with a unique final reward is similar to
combinatorial bandits in a pure-exploration setting (Garivier and Kaufmann, 2016; Fiez et al., 2019).

2 The “active labeling” problem

Supervised learning is traditionally modeled in the following manner. Consider X an input space, Y
an output space, ℓ : Y × Y → R a loss function, and 𝜌 ∈ ΔX×Y a joint probability distribution. The
goal is to recover the function

𝑓 ∗ ∈ arg min
𝑓 :X→Y

R( 𝑓 ) := E(𝑋,𝑌 )∼𝜌 [ℓ( 𝑓 (𝑋), 𝑌 )], (1)

yet, without accessing 𝜌, but a dataset of independent samples distributed according to 𝜌, D𝑛 =

(𝑋𝑖 , 𝑌𝑖)𝑖≤𝑛 ∼ 𝜌⊗𝑛. In practice, accessing data comes at a cost, and it is valuable to understand the
cheapest way to collect a dataset allowing to discriminate 𝑓 ∗.
We shall suppose that the input data (𝑋𝑖)𝑖≤𝑛 are easy to collect, yet that labeling those inputs to get
outputs (𝑌𝑖)𝑖≤𝑛 demands a high amount of work. For example, it is relatively easy to scrap the web or
medical databases to access radiography images, but labeling them by asking radiologists to recognize
tumors on zillions of radiographs will be both time-consuming and expensive. As a consequence, we
assume the (𝑋𝑖)𝑖≤𝑛 given but the (𝑌𝑖)𝑖≤𝑛 unknown. As getting information on the labels comes at a
cost (e.g., paying a pool of label workers, or spending your own time), given a budget constraint, what
information should we query on the labels?
To quantify this problem, we will assume that we can sequentially and adaptively query 𝑇 information
of the type 1𝑌𝑖𝑡 ∈𝑆𝑡 , for any index 𝑖𝑡 ∈ {1, · · · , 𝑛} and any set of labels 𝑆𝑡 ⊂ Y (belonging to a specified
set of subsets of Y). Here, 𝑡 ∈ {1, · · · , 𝑇} indexes the query sequence, and 𝑇 ∈ N is a fixed budget.
The goal is to optimize the design of the sequence (𝑖𝑡 , 𝑆𝑡) in order to get the best estimate of 𝑓 ∗ in
terms of risk minimization (1). In the following, we give some examples to make this setting more
concrete.
Example 1 (Classification with attributes). Suppose that a labeler is asked to provide fine-grained
classes on images (Krause et al., 2016; Zheng et al., 2019), such as the label “caracal” in Figure 6.
This would be difficult for many people. Yet, it is relatively easy to recognize that the image
depicts a “feline” with “tufted-ears” and “sandy color”. As such, a labeler can give the weak
information that 𝑌 belongs to the set “feline”, 𝑆1 = {“cat”, “lion”, “tiger”, . . .}, and the set “tufted
ears”, 𝑆2 = {“Great horned owl”, “Aruacana chicken”, . . .}. This is enough to recognize that
𝑌 ∈ 𝑆1 ∩ 𝑆2 = {“caracal”}. The question 1𝑌 ∈𝑆1 , corresponds to asking if the image depicts a feline.

2Note that the wording “active labeling” has been more or less used as synonymous of “active learning” (e.g.,
Wang and Shang, 2014). In contrast, we use “active labeling” to design “active weakly supervised learning”.
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Literature on hierarchical classification and autonomic taxonomy construction provides interesting
ideas for this problem (e.g., Cesa-Bianchi et al., 2006; Gangaputra and Geman, 2006).
Example 2 (Ranking with partial ordering). Consider a problem where for a given input 𝑥, character-
izing a user, we are asked to deduce their preferences over 𝑚 items. Collecting such a label requires
knowing the exact ordering of the 𝑚 items induced by a user. This might be hard to ask for. Instead,
one can easily ask the user which items they prefer in a collection of a few items. The user’s answer
will give weak information about the labels, which can be modeled as knowing 1𝑌𝑖 ∈𝑆 = 1, for 𝑆 the set
of total orderings that satisfy this partial ordering. We refer the curious reader to active ranking and
dueling bandits for additional contents (Jamieson and Nowak, 2011; Bengs et al., 2021).
Example 3 (Pricing a product). Suppose that we want to sell a product to a consumer characterized
by some features 𝑥, this consumer is ready to pay a price 𝑦 ∈ R for this product. We price it 𝑓 (𝑥) ∈ R,
and we observe 1 𝑓 (𝑥)<𝑦 , that is if the consumer is willing to buy this product at this price tag or not
(Cesa-Bianchi et al., 2019; Liu et al., 2021). Although, in this setting, the goal is often to minimize
the regret, which contrasts with our pure exploration setting.

As a counter-example, our assumptions are not set to deal with missing data, i.e. if some coordinates
of some input feature vectors 𝑋𝑖 are missing (Rubin, 1976). Typically, this happens when input data
comes from different sources (e.g., when trying to predict economic growth from country information
that is self-reported).

Streaming variation. The special case of the active labeling problem we shall consider consists in
its variant without resampling. This corresponds to the online setting where one can only ask one
question by sample, formally 𝑖𝑡 = 𝑡. This setting is particularly appealing for privacy concerns, in
settings where the labels (𝑌𝑖) contain sensitive information that should not be revealed totally. For
example, some people might be more comfortable giving a range over a salary rather than the exact
value; or in the context of polling, one might not call back a previous respondent characterized by
some features 𝑋𝑖 to ask them again about their preferences captured by 𝑌𝑖 . Similarly, the streaming
setting is relevant for web marketing, where inputs model new users visiting a website, queries model
sets of advertisements chosen by an advertising company, and one observes potential clicks.

3 Weak information as stochastic gradients

In this section, we discuss how unbiased stochastic gradients can be accessed through weak information.
Suppose that we model 𝑓 = 𝑓𝜃 for some Hilbert space Θ ∋ 𝜃. With some abuse of notations, let us
denote ℓ(𝑥, 𝑦, 𝜃) := ℓ( 𝑓𝜃 (𝑥), 𝑦). We aim to minimize R(𝜃) = E(𝑋,𝑌 ) [ℓ(𝑋,𝑌, 𝜃)] . Assume that R is
differentiable (or sub-differentiable) and denote its gradients by ∇𝜃R.
Definition 1 (Stochastic gradient). A stochastic gradient of R is any random function𝐺 : Θ→ Θ such
that E[𝐺 (𝜃)] = ∇𝜃R(𝜃). Given some step size function 𝛾 : N→ R∗, a stochastic gradient descent
(SGD) is a procedure, (𝜃𝑡) ∈ ΘN, initialized with some 𝜃0 and updated as 𝜃𝑡+1 = 𝜃𝑡 − 𝛾(𝑡)𝐺 (𝜃𝑡),
where the realization of 𝐺 (𝜃𝑡) given 𝜃𝑡 is independent of the previous realizations of 𝐺 (𝜃𝑠) given 𝜃𝑠.

In supervised learning, SGD is usually performed with the stochastic gradients ∇𝜃ℓ(𝑋,𝑌, 𝜃). More
generally, stochastic gradients are given by

𝐺 (𝜃) = 1∇𝜃ℓ (𝑋,𝑌,𝜃) ∈𝑇 · 𝜏(𝑇), (2)

for 𝜏 : T → Θ with T ⊂ 2Θ a set of subsets of Θ, and 𝑇 a random variable on T , such that

∀ 𝜃 ∈ Θ, E𝑇 [1𝜃∈𝑇 · 𝜏(𝑇)] = 𝜃. (3)

Stated otherwise, if you have a way to image a vector 𝜃 from partial measurements 1𝜃∈𝑇 such that you
can reconstruct this vector in a linear fashion (3), then it provides you a generic strategy to get an
unbiased stochastic estimate of this vector from a partial measurement (2).
For 𝜓 : Y → Θ a function from Y to Θ (e.g., 𝜓 = ∇𝜃 (𝑋, ·, 𝜃)), a question 1𝜓 (𝑌 ) ∈𝑇 translates into a
question 1𝑌 ∈𝑆 for some set 𝑆 = 𝜓−1 (𝑇) ⊂ Y , meaning that the stochastic gradient (2) can be evaluated
from a single query. As a proof of concept, we derive a generic implementation for 𝑇 and 𝜏 in
Appendix B. This provides a generic SGD scheme to learn functions from weak queries when there
are no constraints on the sets to query.
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Remark 2 (Cutting plane methods). While we provide here a descent method, one could also develop
cutting-plane/ellipsoid methods to localize 𝜃∗ according to weak information, which corresponds to
the techniques developed for pricing by Cohen et al. (2020) and related literature.

4 Median regression

In this section, we focus on efficiently acquiring weak information providing stochastic gradients for
regression problems. In particular, we motivate and detail our methods for the absolute deviation loss.
Motivated by seminal works on censored data (Tobin, 1958), we shall suppose that we query half-
spaces. For an output 𝑦 ∈ Y = R𝑚 , and any hyper-plane 𝑧 + 𝑢⊥ ⊂ R𝑚 for 𝑧 ∈ R𝑚 , 𝑢 ∈ S𝑚−1, we can
ask a labeler to tell us which half-space 𝑦 belongs to. Formally, we access the quantity sign(⟨𝑦 − 𝑧, 𝑢⟩)
for a given unit cost. Such an imaging scheme where one observes summations of its components
rather than a vector itself bears similarity with compressed sensing. To provide further illustration,
this setting could help to price products while selling bundles: where the context 𝑥 characterizes
some users, web-pages or/and advertisement companies; the label 𝑦 ∈ R𝑚 corresponds to the value
associated to 𝑚 different items, such as stocks composing an index, or advertisement spots; and the
observation sign(⟨𝑦, 𝑢⟩ − 𝑐) (with 𝑐 = ⟨𝑧, 𝑢⟩) captures if the user 𝑥 buys the basket with weights
𝑢 ∈ S𝑚−1 when it is priced 𝑐.

Least-squares. For regression problems, it is common to look at the mean square loss

ℓ(𝑋,𝑌, 𝜃) = ∥ 𝑓𝜃 (𝑋) − 𝑌 ∥2 , ∇𝜃ℓ(𝑋,𝑌, 𝜃) = 2( 𝑓𝜃 (𝑋) − 𝑌 )⊤𝐷 𝑓𝜃 (𝑋),
where 𝐷 𝑓𝜃 (𝑥) ∈ Y ⊗Θ denotes the Jacobian of 𝜃 → 𝑓𝜃 (𝑥). In rich parametric models, it is preferable
to ask questions on 𝑌 ∈ Y rather than on gradients in Θ which is a potentially much bigger space. If
we assume that 𝑌 and 𝑓𝜃 (𝑋) are bounded in ℓ2-norm by 𝑀 ∈ R+, we can adapt (2) and (3) through
the fact that for any 𝑧 ∈ Y , such that ∥𝑧∥ ≤ 2𝑀 , as proven in Appendix B,

E𝑈,𝑉
[
1⟨𝑧,𝑈 ⟩≥𝑉 ·𝑈

]
= 𝑐1 · 𝑧, where 𝑐1 = E𝑈,𝑉

[
1⟨𝑒1,𝑈 ⟩≥𝑉 · ⟨𝑒1,𝑈⟩

]
=

𝜋3/2

2𝑀 (𝑚2 + 4𝑚 + 3)
,

for𝑈 uniform on the sphere S𝑚−1 and 𝑉 uniform on [0, 2𝑀]. Applied to 𝑧 = 𝑓𝜃 (𝑋) −𝑌 , it designs an
SGD procedure by querying information of the type 1⟨𝑌,𝑈 ⟩< ⟨ 𝑓𝜃 (𝑋) ,𝑈 ⟩−𝑉 .

A case for median regression. Motivated by robustness purposes, we will rather expand on median
regression. In general, we would like to learn a function that, given an input, replicates the output
of I/O samples generated by the joint probability 𝜌. In many instances, 𝑋 does not characterize all
the sources of variations of 𝑌 , i.e. input features are not rich enough to characterize a unique output,
leading to randomness in the conditional distributions (𝑌 |𝑋). When many targets can be linked to a
vector 𝑥 ∈ X , how to define a consensual 𝑓 (𝑥)? For analytical reasons, statisticians tend to use the
least-squares error which corresponds to asking for 𝑓 (𝑥) to be the mean of the distribution (𝑌 |𝑋 = 𝑥).
Yet, means are known to be too sensitive to rare but large outputs (see e.g., Huber, 1981), and cannot
be defined as good and robust consensus in a world of heavy-tailed distributions. This contrasts with
the median, which, as a consequence, is often much more valuable to summarize a range of values.
For instance, median income is preferred over mean income as a population indicator (see e.g., US
Census Bureau, 2021).

Median regression. The geometric median is variationally defined through the absolute deviation
loss, leading to

ℓ(𝑋,𝑌, 𝜃) = ∥ 𝑓𝜃 (𝑋) − 𝑌 ∥ , ∇𝜃ℓ(𝑋,𝑌, 𝜃) =
(
𝑓𝜃 (𝑋) − 𝑌
∥ 𝑓𝜃 (𝑋) − 𝑌 ∥

)⊤
𝐷 𝑓𝜃 (𝑋). (4)

Similarly to the least-squares case, we can access weakly supervised stochastic gradients through the
fact that for 𝑧 ∈ S𝑚−1, as shown in Appendix B,

E𝑈 [sign (⟨𝑧,𝑈⟩) ·𝑈] = 𝑐2 · 𝑧, where 𝑐2 = E𝑈 [sign (⟨𝑒1,𝑈⟩) · ⟨𝑒1,𝑈⟩] =
√
𝜋Γ( 𝑚−1

2 )
𝑚Γ( 𝑚2 )

, (5)

where 𝑈 is uniformly drawn on the sphere S𝑚−1, and Γ is the gamma function. This suggests
Algorithm 1.
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Algorithm 1: Median regression with SGD.
Data: A model 𝑓𝜃 for 𝜃 ∈ Θ, some data (𝑋𝑖)𝑖≤𝑛, a labeling budget 𝑇 , a step size rule 𝛾 : N→ R+
Result: A learned parameter 𝜃 and the predictive function 𝑓 = 𝑓𝜃 .
Initialize 𝜃0.
for 𝑡 ← 1 to 𝑇 do

Sample𝑈𝑡 uniformly on S𝑚−1.
Query 𝜀 = sign(⟨𝑌𝑡 − 𝑧,𝑈𝑡⟩) for 𝑧 = 𝑓𝜃𝑡−1 (𝑋𝑡).
Update the parameter 𝜃𝑡 = 𝜃𝑡−1 + 𝛾(𝑡)𝜀 ·𝑈⊤𝑡 (𝐷 𝑓𝜃𝑡−1 (𝑋𝑡)).

Output 𝜃 = 𝜃𝑇 , or some average, e.g., 𝜃 = 𝑇−1 ∑𝑇
𝑡=1 𝜃𝑡 .

5 Statistical analysis

In this section, we quantify the performance of Algorithm 1 by proving optimal rates of convergence
when the median regression problem is approached with (reproducing) kernels. For simplicity, we
will assume that 𝑓 ∗ can be parametrized by a linear model (potentially of infinite dimension).
Assumption 1. Assume that the solution 𝑓 ∗ : X → R𝑚 of the median regression problem (1) and (4)
can be parametrized by some separable Hilbert space H, and a bounded feature map 𝜑 : X → H,
such that, for any 𝑖 ∈ [𝑚], there exists some 𝜃∗

𝑖
∈ H such that ⟨ 𝑓 ∗ (·), 𝑒𝑖⟩Y =

〈
𝜃∗
𝑖
, 𝜑(·)

〉
H , where

(𝑒𝑖) is the canonical basis of R𝑚 . Written into matrix form, there exists 𝜃∗ ∈ Y ⊗ H, such that
𝑓 ∗ (·) = 𝜃∗𝜑(·).

The curious reader can easily relax this assumption in the realm of reproducing kernel Hilbert
spaces following the work of Pillaud-Vivien et al. (2018a). Under the linear model of Assumption 1,
Algorithm 1 is specified with 𝑢⊤𝐷 𝑓𝜃 (𝑥) = 𝑢 ⊗ 𝜑(𝑥). Note that rather than working with Θ = Y ⊗H
which is potentially infinite-dimensional, empirical estimates can be represented in the finite-
dimensional space Y ⊗ Span {𝜑(𝑋𝑖)}𝑖≤𝑛, and well approximated by small-dimensional spaces to
ensure efficient computations (Williams and Seeger, 2000; Meanti et al., 2020).
One of the key points of SGD is that gradient descent is so gradual that one can use noisy or stochastic
gradients without loosing statistical guarantees while speeding up computations. This is especially
true when minimizing convex functions that are nor strongly-convex, i.e., bounded below by a
quadratic, nor smooth, i.e., with Lipschitz-continuous gradient (see, e.g., Bubeck, 2015). In particular,
the following theorem, proven in Appendix A.1, states that Algorithm 1 minimizes the population
risk at a speed at least proportional to 𝑂 (𝑇−1/2).
Theorem 1 (Convergence rates). Under Assumption 1, and under the knowledge of 𝜅 and 𝑀 two
real values such that E[∥𝜑(𝑋)∥2] ≤ 𝜅2 and ∥𝜃∗∥ ≤ 𝑀, with a budget 𝑇 ∈ N, a constant step size
𝛾 = 𝑀

𝜅
√
𝑇

and the average estimate 𝜃 = 1
𝑇

∑𝑇−1
𝑡=0 𝜃𝑡 , Algorithm 1 leads to an estimate 𝑓 that suffers from

an excess of risk

E
[
R (

𝑓𝜃
) ]
−R( 𝑓 ∗) ≤ 2𝜅𝑀

𝑐2
√
𝑇
≤ 𝜅𝑀𝑚3/2𝑇−1/2, (6)

where the expectation is taken with respect to the randomness of 𝜃 that depends on the dataset (𝑋𝑖 , 𝑌𝑖)
as well as the questions (𝑖𝑡 , 𝑆𝑡)𝑡≤𝑇 .

While we give here a result for a fixed step size, one could retake the extensive literature on SGD to
prove similar results for decaying step sizes that do not require to know the labeling budget in advance
(e.g. setting 𝛾(𝑡) ∝ 𝑡−1/2 at the expense of an extra term in log(𝑇) in front of the rates), as well as
different averaging strategies (see e.g., Bach, 2023). In practice, one might not know a priori the
parameter 𝑀 but could nonetheless find the right scaling for 𝛾 based on cross-validation.

The rate in 𝑂 (𝑇−1/2) applies more broadly to all the strategies described in Section 3 as long as the
loss ℓ and the parametric model 𝑓𝜃 ensure that R(𝜃) is convex and Lipschitz-continuous. Although
the constants appearing in front of rates depend on the complexity to reconstruct the full gradient
∇𝜃ℓ( 𝑓𝜃 (𝑋𝑖 , 𝑌𝑖)) from the reconstruction scheme (3). Those constants correspond to the second
moment of the stochastic gradient. For example, for the least-squares technique described earlier one
would have to replace 𝑐2 by 𝑐1 in (6).
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Theorem 2, proven in Appendix A.3, states that any algorithm that accesses a fully supervised
learning dataset of size 𝑇 cannot beat the rates in 𝑂 (𝑇−1/2), hence any algorithm that collects weaker
information on (𝑌𝑖)𝑖≤𝑇 cannot display better rates than the ones verified by Algorithm 1. This proves
minimax optimality of our algorithm up to constants.
Theorem 2 (Minimax optimality). Under Assumption 1 and the knowledge of an upper bound on
∥𝜃∗∥ ≤ 𝑀, assuming that 𝜑 is bounded by 𝜅, there exists a universal constant 𝑐3 such that for any
algorithm A that takes as input D𝑇 = (𝑋𝑖 , 𝑌𝑖)𝑖≤𝑇 ∼ 𝜌⊗𝑇 for any 𝑇 ∈ N and output a parameter 𝜃,

sup
𝜌∈M𝑀

ED𝑇∼𝜌⊗𝑇
[
R( 𝑓A(D𝑇 ;𝜌) )

]
−R( 𝑓𝜌; 𝜌) ≥ 𝑐3𝑀𝜅𝑇

−1/2. (7)

The supremum over 𝜌 ∈M𝑀 has to be understood as the supremum over all distributions 𝜌 ∈ ΔX×Y
such that the problem defined through the risk R( 𝑓 ; 𝜌) := E𝜌 [ℓ( 𝑓 (𝑋), 𝑌 )] is minimized for 𝑓𝜌 that
verifies Assumption 1 with ∥𝜃∗∥ bounded by a constant 𝑀 .

The same theorem applies for least-squares with a different universal constant. It should be noted
that minimax lower bounds are in essence quantifying worst cases of a given class of problems. In
particular, to prove Theorem 2, we consider distributions that lead to hard problems; more specifically,
we assumed the variance of the conditional distribution (𝑌 | 𝑋) to be high. The practitioner should
keep in mind that it is possible to add additional structure on the solution, leverage active learning
or semi-supervised strategy such as uncertainty sampling (Nguyen et al., 2021), or Laplacian
regularization (Zhu et al., 2003; Cabannes et al., 2021a), and reduce the optimal rates of convergence.
To conclude this section, let us remark that most of our derivations could easily be refined for
practitioners facing a slightly different cost model for annotation. In particular, they might prefer
to perform batches of annotations before updating 𝜃 rather than modifying the question strategy
after each input annotation. This would be similar to mini-batching in gradient descent. Indeed, the
dependency of our result on the annotation cost model and on Assumption 1 should not be seen as a
limitation but rather as a proof of concept.

6 Numerical analysis

In this section, we illustrate the differences between our active method versus a classical passive
method, for regression and classification problems. Further discussions are provided in Appendix E.
Our code is available online at https://github.com/VivienCabannes/active-labeling.
Let us begin with the regression problem that consists in estimating the function 𝑓 ∗ that maps
𝑥 ∈ [0, 1] to sin(2𝜋𝑥) ∈ R. Such a regular function, which belongs to any Hölder or Sobolev classes
of functions, can be estimated with the Gaussian kernel, which would ensure Assumption 1, and
that corresponds to a feature map 𝜑 such that 𝑘 (𝑥, 𝑥 ′) := ⟨𝜑(𝑥), 𝜑(𝑥 ′)⟩ = exp(− |𝑥 − 𝑥 ′ | /(2𝜎2)) for
any bandwidth parameter 𝜎 > 0.3 On Figure 1, we focus on estimating 𝑓 ∗ given data (𝑋𝑖)𝑖∈[𝑇 ] that
are uniform on [0, 1] in the noiseless setting where 𝑌𝑖 = 𝑓 ∗ (𝑋𝑖), based on the minimization of the
absolute deviation loss. The passive baseline consists in randomly choosing a threshold𝑈𝑖 ∼ N (0, 1)
and acquiring the observations (1𝑌𝑖>𝑈𝑖 )𝑖∈[𝑇 ] that can be cast as the observation of the half-space
𝑆𝑖 =

{
𝑦 ∈ Y

�� 1𝑦>𝑈𝑖 = 1𝑌𝑖>𝑈𝑖
}
=: 𝑠(𝑌𝑖 ,𝑈𝑖). In this noiseless setting, a good baseline to learn 𝑓 ∗ from

the data (𝑋𝑖 , 𝑆𝑖) is provided by the infimum loss characterization (see Cabannes et al., 2020)
𝑓 ∗ = arg min

𝑓 :X→Y
E(𝑋,𝑆) [inf

𝑦∈𝑆
ℓ( 𝑓 (𝑋), 𝑦)],

where the distribution over 𝑋 corresponds to the marginal of 𝜌 over X , and the distribution over
(𝑆 | 𝑋 = 𝑥) is the pushforward of𝑈 ∼ N (0, 1) under 𝑠( 𝑓 ∗ (𝑥), ·). The left plot on Figure 1 corresponds
to an instance of SGD on such an objective based on the data (𝑋𝑖 , 𝑆𝑖), while the right plot corresponds
to Algorithm 1. We take the same hyperparameters for both plots, a bandwidth 𝜎 = 0.2 and an SGD
step size 𝛾 = 0.3. We refer the curious reader to Figure 7 in Appendix E for plots illustrating the
streaming history, and to Figure 10 for “real-world” experiments.
To illustrate the versatility of our method, we approach a classification problem through the median
surrogate technique presented in Proposition 3. To do so, we consider the classification problem

3A noteworthy computational aspect of linear models, often refer as the “kernel trick”, is that the features
map 𝜑 does not need to be explicit, the knowledge of 𝑘 : X × X → R being sufficient to compute all quantities
of interest (Scholkopf and Smola, 2001). This “trick” can be applied to our algorithms.
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Figure 1: Visual comparison of active and passive strategies. Estimation in orange of the original signal 𝑓 ∗
in dashed blue based on median regression in a noiseless setting. Any orange point (𝑥, 𝑢) ∈ R2 corresponds
to an observation made that 𝑢 is below 𝑓 ∗ (𝑥), while a blue point corresponds to 𝑢 above 𝑓 ∗ (𝑥). The passive
strategy corresponds to acquiring information based on (𝑈 | 𝑥) following a normal distribution, while the
active strategy corresponds to (𝑢 | 𝑥) = 𝑓𝜃 (𝑥). The active strategy reconstructs the signal much better given
the budget of 𝑇 = 30 observations.

with 𝑚 ∈ N classes, X = [0, 1] and the conditional distribution (𝑌 | 𝑋) linearly interpolating between
Dirac in 𝑦1, 𝑦2 and 𝑦3 respectively for 𝑥 = 0, 𝑥 = 1/2 and 𝑥 = 1 and the uniform distribution for
𝑥 = 1/4 and 𝑥 = 3/4; and 𝑋 uniform on X \ ([1/4 − 𝜀, 1/4 + 𝜀] ∪ [3/4 − 𝜀, 3/4 + 𝜀]).
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Figure 2: Comparison of generalization errors of passive and active strategies as a function of the
annotation budget 𝑇 . This error is computed by averaging over 100 trials. In solid is represented the
average error, while the height of the dark area represents one standard deviation on each side. In order
to consider the streaming setting where 𝑇 is not known in advance, we consider the decreasing step size
𝛾(𝑡) = 𝛾0/

√
𝑡; and to smooth out the stochasticity due to random gradients, we consider the average

estimate 𝜃𝑡 = (𝜃1 + · · · + 𝜃𝑡 )/𝑡. The left figure corresponds to the noiseless regression setting of Figure 1,
with 𝛾0 = 1. We observe the convergence behavior in 𝑂 (𝑇−1/2) of our active strategy. The right setting
corresponds to the classification problem setting described in the main text with 𝑚 = 100, 𝜀 = 1/20, and
approached with the median surrogate. We observe the exponential convergence phenomenon described by
Pillaud-Vivien et al. (2018b); Cabannes et al. (2021b); its kicks in earlier for the active strategy. The two
plots are displayed with logarithmic scales on both axes.

7 Discussion

7.1 Discrete output problems

In this section, we discuss casting Algorithm 1 into a procedure to tackle discrete-output problems, by
leveraging surrogate regression tasks.
Learning problems with discrete output spaces are not as well understood as regression problems.
This is a consequence of the complexity of dealing with combinatorial structures in contrast with
continuous metric spaces. In particular, gradients are not defined for discrete output models. The
current state-of-the-art framework to deal with discrete output problems is to introduce a continuous
surrogate problem whose solution can be decoded as a solution on the original problem (Bartlett et al.,
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2006). For example, one could solve a classification task with a median regression surrogate problem,
which is the object of the next proposition, proven in Appendix C.
Proposition 3 (Consistency of median surrogate). The classification setting where Y is a finite space,
and ℓ : Y × Y → R is the zero-one loss ℓ(𝑦, 𝑧) = 1𝑦≠𝑧 can be solved as a regression task through the
simplex embedding of Y in RY with the orthonormal basis (𝑒𝑦)𝑦∈Y . More precisely, if 𝑔∗ : X → RY

is the minimizer of the median surrogate risk R𝑆 (𝑔) = E [∥𝑔(𝑋) − 𝑒𝑌 ∥], then 𝑓 ∗ : X → Y defined
as 𝑓 ∗ (𝑥) = arg max𝑦∈Y 𝑔∗𝑦 (𝑥) minimizes the original risk R( 𝑓 ) = E [ℓ( 𝑓 (𝑋), 𝑌 )].4

More generally, any discrete output problem can be solved by reusing the consistent least-squares
surrogate of Ciliberto et al. (2020). Algorithm 1 can be adapted to the least-squares problem based on
specifications at the beginning of Section 4. This allows using our method in an off-the-shelve fashion
for all discrete output problems. For example, a problem consisting in ranking preferences over𝑚 items
can be approached with the Kendall correlation loss ℓ(𝑦, 𝑧) = −𝜑(𝑦)⊤𝜑(𝑧) with 𝜑(𝑦) = (1𝑦 (𝑖)>𝑦 ( 𝑗) )
for 𝑖 < 𝑗 ≤ 𝑚, where 𝑦 and 𝑧 are permutations over [𝑚] that encode the rank of each element in
terms of user preferences. In this setting, the surrogate task introduced by Ciliberto et al. (2020)
consists in learning 𝑔(𝑥) = E[𝜑(𝑌 ) |𝑋 = 𝑥] as a least-squares problem. The half-space surrogate
queries translate directly into the questions

∑
𝑖< 𝑗≤𝑚 𝑤(𝑖, 𝑗)1𝑦 (𝑖)>𝑦 ( 𝑗) > 𝑐 for some (𝑤(𝑖, 𝑗)), 𝑐 in R.

In particular, if𝑈 is chosen to be uniform on the canonical basis (rather than on the sphere), those
questions translate into pairwise orderings (e.g., does user 𝑥 prefer movie 𝑖 or movie 𝑗?). In terms
of guarantee akin to Theorem 1, retaking the calibration inequality of Ciliberto et al. (2020), we
get convergence rates of the form 𝑚3/2𝑇−1/4. In terms of guarantee akin to Theorem 2, since we
need as least log2 (𝑚!) ≃ 𝑚 log(𝑚) binary queries to discriminate between 𝑚! permutations, we
can expect a lower bound in 𝑚1/2 log(𝑚)1/2𝑇−1/2. More generally, many ranking problems can be
approached with correlation losses and tackled through surrogate regression problems on the convex
hulls of some well-known polytopes such as the Birkhoff polytope or the permutohedron (e.g., Ailon,
2014). Although their descriptions is out-of-scope of this paper, linear cuts of those polytopes form
well-structured queries sets – e.g., the faces of all dimensions of the permutohedron correspond, in a
one-to-one fashion, to strict weak orderings (Ziegler, 1995).
In those discrete settings, Theorem 1 can be refined under low noise conditions. In particular,
under generalization of the Massart noise condition, our approach could even exhibit exponential
convergence rates as illustrated on Figure 2. For classification problems, this condition can be
expressed as the existence of a threshold 𝛿 > 0 such that for almost all 𝑥 ∈ X and 𝑧 ∈ Y , we have
P(𝑌 = 𝑓 (𝑥) |𝑋 = 𝑥) − P(𝑌 = 𝑧 |𝑋 = 𝑥) ∉ (0, 𝛿). Arguably, this assumption is met on well-curated
images dataset such as ImageNet or CIFAR10, where for each input 𝑋 the most probable class has
always more than e.g. 60% of chance to be the target 𝑌 . When this assumption holds together with
Assumption 1 (when the surrogate target 𝑔∗ belongs to the RKHS and the kernel is bounded), then the
right hand-side of equation (6) can be replaced by exp(−𝑐𝑇) for some constant 𝑐. The proof would
be a simple adaptation of Pillaud-Vivien et al. (2018a); Cabannes et al. (2021b) to our case.

7.2 Supervised learning baseline with resampling

In this section, we discuss simple supervised learning baselines that compete with Algorithm 1 when
resampling is allowed.
When resampling is allowed a simple baseline for the active labeling problem is provided by supervised
learning. In regression problems with the query of any half-space, a method that consists in annotating
each (𝑌𝑖)𝑖≤𝑛(𝑇,𝜀) up to precision 𝜀, before using any supervised learning method to learn 𝑓 from
(𝑋𝑖 , 𝑌𝑖)𝑖≤𝑛(𝑇,𝜀) could acquire 𝑛(𝑇, 𝜀) ≃ 𝑇/𝑚 log2 (𝜀−1) data points with a dichotomic search along all
directions, assuming 𝑌𝑖 bounded or sub-Gaussian. In terms of minimax rates, such a procedure cannot
perform better than in 𝑛(𝑇, 𝜀)−1/2 + 𝜀, the first term being due to the statistical limit in Theorem 2,
the second due to the incertitude 𝜀 on each 𝑌𝑖 that transfers to the same level of incertitude on 𝑓 .
Optimizing with respect to 𝜀 yields a bound in 𝑂 (𝑇−1/2 log(𝑇)1/2). Therefore, this not-so-naive
baseline is only suboptimal by a factor log(𝑇)1/2. In the meanwhile, Algorithm 1 can be rewritten
with resampling, as well as Theorem 1, which we prove in Appendix A.2. Hence, our technique will
still achieve minimax optimality for the problem “with resampling”. In other terms, by deciding

4As a side note, while we are not aware of any generic theory encompassing the absolute-deviation surrogate
of Proposition 3, we showcase its superiority over least-squares on at least two types of problems on Figures 3
and 4 in Appendix C.
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to acquire more imprecise information, our algorithm reduces annotation cost for a given level of
generalization error (or equivalently reduces generalization error for a given annotation budget) by a
factor log(𝑇)1/2 when compared to this baseline.
The picture is slightly different for discrete-output problems. If one can ask any question 𝑠 ∈ 2Y then
with a dichotomic search, one can retrieve any label with log2 (𝑚) questions. Hence, to theoretically
beat the fully supervised baseline with the SGD method described in Section 3, one would have to
derive a gradient strategy (2) with a small enough second moment (e.g., for convex losses that are
non-smooth nor strongly convex, the increase in the second moment compared to the usual stochastic
gradients should be no greater than log2 (𝑚)1/2). How to best refine our technique to better take into
account the discrete structure of the output space is an open question. Introducing bias that does not
modify convergence properties while reducing variance eventually thanks to importance sampling is
a potential way to approach this problem. A simpler idea would be to remember information of the
type 𝑌𝑖 ∈ 𝑠 to restrict the questions asked in order to locate 𝑓𝜃𝑡 (𝑋𝑖) − 𝑌𝑖 when performing stochastic
gradient descent with resampling. Combinatorial bandits might also provide helpful insights on the
matter. Ultimately, we would like to build an understanding of the whole distribution (𝑌 | 𝑋) and not
only of 𝑓 ∗ (𝑋) as we explore labels in order to refine this exploration.

7.3 Min-max approaches

In this section, we discuss potential extensions of our SGD procedure, based on min-max variational
objectives.
Min-max approaches have been popularized for searching games and active learning, where one
searches for the question that minimizes the size of the space where a potential guess could lie under
the worst possible answer to that question. A particularly well illustrative example is the solution of
the Mastermind game proposed by Knuth (1977). While our work leverages plain SGD, one could
build on the vector field point-of-view of gradient descent (see, e.g., Bubeck, 2015) to tackle min-max
convex concave problems with similar guarantees. In particular, we could design weakly supervised
losses 𝐿 ( 𝑓 (𝑥), 𝑠; 1𝑦∈𝑠) and min-max games where a prediction player aims at minimizing such a loss
with respect to the prediction 𝑓 , while the query player aims at maximizing it with respect to the
question 𝑠, that is querying information that best elicit mistakes made by the prediction player. For
example, the dual norm characterization of the norm leads to the following min-max approach to the
median regression

arg min
𝑓 :X→Y

R( 𝑓 ) = arg min
𝑓 :X→Y

max
𝑈∈(S𝑚−1)X×Y

E(𝑋,𝑌 )∼𝜌 [⟨𝑈 (𝑥, 𝑦), 𝑓 (𝑥) − 𝑦⟩] .

Such min-max formulations would be of interest if they lead to improvement of computational and
statistical efficiencies, similarly to the work of Babichev et al. (2019). For classification problems, the
following proposition introduces such a game and suggests its suitability. Its proof can be found in
Appendix D.
Proposition 4. Consider the classification problem of learning 𝑓 ∗ : X → Y where Y is of finite
cardinality, with the 0-1 loss ℓ(𝑧, 𝑦) = 1𝑧≠𝑦 , minimizing the risk (1) under a distribution 𝜌 on X × Y .
Introduce the surrogate score functions 𝑔 : X → ΔY ; 𝑥 → 𝑣 where 𝑣 = (𝑣𝑦)𝑦∈Y is a family of
non-negative weights that sum to one, as well as the surrogate loss function 𝐿 : ΔY × S × {−1, 1} →
R; (𝑣, 𝑆, 𝜀) = 𝜀(1 − 2

∑
𝑦∈𝑆 𝑣𝑦), and the min-max game

min
𝑔:X→ΔY

max
𝜇:X→ΔS

E(𝑋,𝑌 )∼𝜌 E𝑆∼𝜇 (𝑥) [𝐿 (𝑔(𝑥), 𝑆; 1𝑌 ∈𝑆 − 1𝑌∉𝑆)] . (8)

When S contains the singletons and with the low-noise condition that P (𝑌 ≠ 𝑓 ∗ (𝑥) | 𝑋 = 𝑥) < 1/2
almost everywhere, then 𝑓 ∗ can be learned through the relation 𝑓 ∗ (𝑥) = arg min𝑦∈Y 𝑔∗ (𝑥)𝑦 for the
unique minimizer 𝑔∗ of (8). Moreover, the minimization of the empirical version of this objective
with the stochastic gradient updates for saddle point problems provides a natural “active labeling”
scheme to find this 𝑔∗.

On the one hand, this min-max formulation could help to easily incorporate restrictions on the sets
to query. On the other hand, it is not completely clear how to best update (or derive an unbiased
stochastic gradient strategy for) the adversarial query strategy 𝜇 based on partial information.
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8 Conclusion

We have introduced the “active labeling” problem, which corresponds to “active partially supervised
learning”. We provided a solution to this problem based on stochastic gradient descent. Although our
method can be used for any discrete output problem, we detailed how it works for median regression,
where we show that it optimizes the generalization error for a given annotation budget. In a near
future, we would like to focus on better exploiting the discrete structure of classification problems,
eventually with resampling strategies.
Understanding more precisely the key issues in applications concerned with privacy, and studying
how weak gradients might provide a good trade-off between learning efficiently and revealing too
much information also provide interesting follow-ups. Finally, regarding dataset annotation, exploring
different paradigms of weakly supervised learning would lead to different active weakly supervised
learning frameworks. While this work is based on partial labeling, similar formalization could be
made based on other weak supervision models, such as aggregation (e.g., Ratner et al., 2020), or
group statistics (Dietterich et al., 1997). In particular, annotating a huge dataset is often done by
bagging inputs according to predicted labels and correcting errors that can be spotted on those bags
of inputs (Deng et al., 2009). We left for future work the study of variants of the “active labeling”
problem that model those settings.
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