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ABSTRACT

Molecular interactions are a common phenomenon in physical chemistry, often
resulting in unexpected biochemical properties adverse to human health, such as
drug-drug interactions. Machine learning has shown great potential for predicting
these interactions rapidly and accurately. However, the complexity of molecular
structures and the diversity of interactions often reduce prediction accuracy and
hinder generalizability. Identifying core invariant substructures (i.e., rationales)
has become essential to improving the model’s interpretability and generalization.
Despite significant progress, existing models frequently overlook the pairwise
molecular interactions, leading to insufficient capture of interaction dynamics.
To address these limitations, we propose I12Mole (Interaction-aware Invariant
Molecular learning), a novel framework for generalizable drug-drug interaction
prediction. I2Mole meticulously models atomic interactions by first establishing
indiscriminate connections between intermolecular atoms, which are then refined
using an improved graph information bottleneck theory tailored for merged graphs.
To further enhance model generalization, we construct an environment codebook
by environment subgraph of the merged graph. This approach not only could
provide noise source for optimizing mutual information but also preserve the
integrity of chemical semantic information. By comprehensively leveraging the
information inherent in the merged graph, our model accurately captures core
substructures and significantly enhances generalization capabilities. Extensive
experimental validation demonstrates I2Mole’s efficacy and generalizability. The
implementation code is available at jhttps://anonymous.4open/r/I2Mol-C616.

1 INTRODUCTION

The molecular interaction process can give rise to additional physical or chemical properties when
two or more molecules are combined (Varghese & Mushrifl, 2019; D’Souza et al., 20115 |Low et al.,
2022a). This phenomenon is common in the fields of physics, chemistry, and medicine efc., such
as changes in Gibbs free energy during dissolution (i.e., solute-solvent pair) (Chung et al., [2022a}
Fang et al.,2024; Xia et al.l 2023) and synergistic or adverse reactions between drugs (i.e., drug-drug
pairs) (Lee et al.| 2023b; [Klemperer, |1992). Due to the complexity of molecular structures and the
diversity of molecular interactions, conventional modeling approaches are limited and susceptible to
noise, undermining prediction accuracy. Meanwhile, they lack generalizability and reliability severely
limits their applicability. Based on this, mining the invariant core substructures of molecules (i.e.,
rationale) has become a widely accepted strategy to enhance both interpretability and generalization
like the CGIB (Lee et al.,2023a) and MoleOOD (Yang et al., [2022b).

Although current methods have attracted widespread attention in predicting the properties of molecu-
lar pairs, two inherent shortcomings remain underexplored. The first is Insufficiency in molecular
interaction modeling. Existing methods demonstrate proficiency in elucidating essential structural
characteristics for individual molecular models. However, when drug-drug interactions (DDI) occur,
pivotal substructures may exhibit considerable variation. For example, Propranolol and Verapamil
(Figure [I] (a)) are commonly prescribed drugs for the treatment of hypertension and cardiac ar-
rhythmias, yet they act through distinct pharmacological mechanisms that affect cardiovascular
function. The aromatic ring and hydroxyl groups in Propranolol are critical for receptor binding and


https://anonymous.4open.science/r/I2Mol-C616

Under review as a conference paper at ICLR 2026

(a) Drug pair  ______ (b)  Independent (c) Interactive

&
:‘rsa't;?é'.;: ’{’ ¥ ‘{)‘

\
‘ Rationale ‘

Cardiovascular Therapeutic Drugs Affecting Neurons (effective) Adverse effects (harmful)

Figure 1: An Example of molecular interactions. (a) Propranolol (PRO) and Verapamil (VER) are
widely prescribed cardiovascular therapeutic agents; (b) each drug is influenced by distinct core
substructures to achieve affect; (c) harmful effects on human health occur by co-administered.

[-adrenergic inhibition, while the phenyl rings and amino moieties in Verapamil mediate L-type
calcium channel inhibition, as illustrated in Figure E] (b). However, when co-administered, the inter-
action between Propranolol’s [3-blocking pharmacophore and Verapamil’s calcium-channel-blocking
substructures may excessively suppress cardiac conduction, leading to severe adverse effects such as
excessive bradycardia or atrioventricular block (Figure[I](c)). Therefore, comprehensive modeling
of intermolecular interactions is crucial and necessary for a profound understanding of molecular
interactions.

Some current models have noticed the aforementioned shortcomings (Behler, 2015;2016). However,
they still lack consideration of model generalization. Given the diverse and complex nature of
molecular species in real-world scenarios, the data used for training and testing may inevitably be
sampled from different distributions, thus presenting challenges related to OOD (Paul et al., [2021}
Petrova, 2013} Yang et al.|[2022b)). While introducing integrated noise injection techniques to simulate
diverse environmental distributions holds promise for enhancing model generalization and capturing
core rationales, several drawbacks exist. Specifically, 1) The simulation of noise data may fail to
accurately reflect authentic environmental vectors in chemical space. 2) Indiscriminate noise injection
can distort semantic information and hinder model convergence, while random environmental vectors
may inadequately represent the broad distribution of molecular interactions; and 3) when the injected
noise variance is too small, the noise effect may vanish, defeating its intended purpose.

In light of this, we introduce an Interaction-aware
Invariant Molecular learning framework, termed
12Mole, for generalizable DDI prediction. Spontaneous
molecular interaction phenomena, tend to occur in spe-
cific molecular structures (e.g., -OH, =0, N), giving rise
to stronger intermolecular interactions. We carefully
design dynamic weighted relational edges to model
the atom—atom interaction relationships. Conversely,
for atomic pairwise interactions that rarely occur, we
employ iterative truncation to restrict their message
passing processes, thereby reducing interference with
the overall learning of the merged graph while moder-
ately lowering graph complexity, as presented in Fig-
ure[2] Given the vastness and largely unexplored nature
of the chemical space, we further introduce the con-
cept of vector quantization (VQ) (van den Oord et al.,
2017} [Razavi et al. |[2019) for molecular interactions
to construct a merged graph environment codebook.
This codebook clusters the potential environments of
molecules in the training set into a predefined number
of categories, and the learned environmental distribution also serves as a controllable noise source
for mutual information optimization (Duncan, [1970; Yu et al., 2022b)). Therefore, our I2Mole which
incorporates explicit molecule interactions and an improved environment codebook, effectively
achieves generalizable property prediction on various DDI datasets.

Merged Molecular Graph

Figure 2: Diagram illustrating molecular
interaction modeling to capture rationales.
Molecular pairs will be constructed into a
merged graph by connecting atoms pairwise
(dashed lines). Please note that to avoid ex-
cessive complexity, some unimportant rela-
tion edges will be removed (unconnected)
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2 PRELIMINARIES

2.1 PROBLEM FORMULATION

A molecule can be depicted as a graph G whose nodes V denote the atoms and edges £ act as the
bonds Wen et al.| (2021). ¢/ is the global feature vector which is extracted from each molecule
(Appendix@. Given a set of drug molecular graph pairs D = {(g;, Gh,(G2,G3),...,(Gn, gg)}
and their associated target values Y = {Y1 Y2 ... Yn }, our objective is to train a model M that
can classify the target values for arbitrary drug pairs in an end-to-end manner, i.e., Y* = M(G?, G}).

2.2  GRAPH INFORMATION BOTTLENECK (GIB)

According to the GIB principle (Yu et al.} 2020} [2022bj Miao et al., 2022}, we could get:

Gig = argmin — I(Y; Geub) + BI(G; Gsun)- (D
qubGS

Intuitively, S represents the set of Ggy1,, and Grp is the core subgraph of G, which discards information
by minimizing the mutual information I(G; Gsup ), while preserving target-relevant information by
maximizing the mutual information I(Y; Gsup)-

2.3 INVARIANT LEARNING

Given the distribution shift between training and testing data, recent studies (Rojas-Carulla et al.,
2018a; |Arjovsky et al.l 2019 [Wu et al., [2022a) propose the existence of a potential environment
variable env to express this problem:

mfin ma}%E(Q,Y)Np(g,Y|env:genv)[R(f(g)7 Y) | genv]a (2)

env €

where E denotes the environment support, f(-) represents the predictive model, and R(-, -) is the risk
function. The label Y is independent of the environment Gy, conditioned on the subgraph Ggp:

Y L genv | gsubv (3)

where L denotes probabilistic independence. These principles collectively protect predictions from
external influences, ensuring that the rationale comprehensively captures all discriminative features.
This is for a single molecule, and we would extend it to molecular pairs.

3 METHODOLOGY

In this section, we detail our proposed method. In Section[3.1] we define the merged graph and the
intermolecular message passing mechanism. Section [3.2]explains the details of subgraph extraction by
GIB theory. In Section[3.3] we describe how to inject environmental embeddings into the rationales
to enhance model generalization. Section [3.4] presents the total loss function of I2Mole.

3.1 MERGED MOLECULAR REPRESENTATION

Molecule Merging. The merged graph G could be generated by establishing a weighted relational
edge between two molecules which connects each atom pairwise.

G ={R.Ev.u}. “
The set of relation edges are R :
R = {(74j, Vai, vb;) fc\:lXNb, (5)

where ai € {1,2,3,..., N}, bj € {1,2,3,..., N®}. N® and N are the total number of atoms in
drug molecular graph G, G. r;; represents the relation edge. And £ is the index of R.

Intra-molecular message passing. Generally, in this merged molecular graph G, the message passing
process is first executed intramolecule. In this process, e;; is updated to € ; by aggregating the initial
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Figure 3: Overview of our model. Initially, molecular pairs construct a merged graph to facilitate
the message passing process. Subsequently, subgraphs are extracted based on the GIB, and the
environmental components are recorded in a codebook. During the invariant learning process, the
rationale part concatenates different environment embeddings to achieve invariant representations.

bond features, and the two atomic features, v; and v;, and the global features u. In addition, the
feature vector v; and u are updated to v} and u} respectively:

ei; = ey + LeakyReLU[FC(v; + v;) + [FC(ey;) + [FC(u)]], (6)
éij = J(e”‘? , v} = v; + LeakyReLU[FC(v; + Y _ é;; ® FC(v;)) + FC(u)], (7)
Yiren, ole;) e =

NV N
1 1
' = u+ LeakyReLU[FC(—— Y v/ + — > ¢}
v’ = u + LeakyReLU]| C(N“ i:1vl+N6k:lek+u)], (8)

where FC is a fully connected layer. ® denotes the Hadamard product. o(-) is sigmoid activation
function, and ¢ is a fixed constant (0.0001). NV and N€¢ are the number of atoms and bonds.

Intermolecular message passing. We utilize GAT network(Velickovic et al.,[2017) for intermolecular
message passing to calculate the weight of the relation edge 7.

rij = LeakyReLU(FC(Wuv,,;, Wuy,)), )

where W is the learnable weight matrix. Based on the calculated attention coefficients (r;;) for the
relation edge, we perform global sorting and retain the top_x% (a hyperparameter):

’ Tij lfTij Z )(7
Tij =

1
0 otherwise. (10)

Here, X represents the threshold corresponding to the top_x% ranking of r;; values. The selected
attention coefficients are then normalized across the entire graph to facilitate the intermolecular
information-passing process. The atomic feature v,; for i is updated, also for vj;:
/
_ ij "o_ / ’
o = 5= v = (1= D e+ Y ity (1
VY JEN, JEN,

3.2 CORE SUBSTRUCTURE EXTRACTION BASED ON GIB

We optimize the objective Equation[I2]to detect the core structure in the merged graph:

Gip = arg min — I(Y; Gow) + B1(G; Gaun), (12)
Gsub €S

where S represents the set of Q’Vsub. Each term indicates the prediction and compression terms
respectively, which should be minimized during training, as outlined below.
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3.2.1 EXTRACT TARGET-ORIENTED INFORMATION

Minimizing —I(Y; 513), which is to calculate upper bound of —I(Y; QNIB). Given the merged graph

§ , its label information Y, and the learned IB-graph G 1B, We have:

~I(Y;GiB) < Ey g, [~ logps(Y|GiB)] := Lpre, (13)

where py(Y|Gig) is variational approximation of p(Y|Gis). pe(Y|Gis) is a predictor parametrized

by 0. Thus, we can minimize the upper bound of —I(Y; Gig) by minimizing the model prediction

loss Lpre (Y, §IB) with cross-entropy loss. Proofs are in Appendix (Sufficiency assumption (Yang
et al.l [2022b)).

3.2.2 OPTIMIZE MINIMIZED G

Minimizing [ (5 ; GVIB), which is to calculate upper bound of 1 (5 ; QVIB). Inspired by a recent approach

on graph information bottleneck (Yu et al.,|2022b), we also minimize I (QV ; QVIB) by injecting noise

into node representations. Then, we dampen the information in G by injecting noise into node
representations with a learned probability. Let € be the noise sampled from a parametric noise
distribution. We assign each node a probability of being replaced by e. Specifically, for the i-th node,
the k-th relation edge, we learn the probability p; and p; using a fully connected layer. Then, we
apply a Sigmoid function on the output of fully connected layer to ensure p;, p. € [0, 1]:

p; = Sigmoid(FC(h;)), pr = Sigmoid(FC(ry)). (14)

Next, if a k-th relation edge is connected to the i-th node, we adjust the probability p; by adding &+
to it, where N depends on whether the i-th node is in Ga or Gb:

_Jpi+ %"b if 7 € G, and k-th edge is connected to i-th node, (15)
b= pi + &F ifi € Gy and k-th edge is connected to i-th node.
We then replace the node representation h; by ¢ with probability p;:

where A\; ~ Bernoulli(p; ), h is the irrelevant substructure node which would be used to construct
Geny- The transmission probability p; controls the information sent from h; to z;. If p; = 1, then all
the information in h; is transferred to z; without loss. On the contrary, when p; = 0, then z; contains
no information from h; but only noise. We hope p; is learnable so that we can selectively preserve
the information in Gig. However, J; is a discrete random variable and we cannot directly calculate
the gradient of p;. Therefore, we employ the concrete relaxation (Jang et al., 2016)) for \;:

Di U
1 1
T s ) (17)

A = Sigmoid(% log
where ¢ is the temperature parameter and u ~ Uniform(0,1). Another critical aspect of noise
injection is the characterization of the injected noise. It is important that arbitrary noise can be
detrimental to the semantic integrity of the input graph, leading to predictions that deviate from the
actual graph properties. Conversely, appropriately selected noise can provide a variational upper
bound to the overall objective. Therefore, the minimizing the upper bound of I(Gig; G) as follows:

SO 1 1 1 SO
1 G)<Eg|—=logAs+ —Ax Bi| =L 18
(G1B;G) < Eg 5 log Ag + 2mg 0 + om0 mi(Gis, G), (18)
h A~ = mg 1—X\)2and B= = Z:n:él Aj(hj—pn) M detail . in A di
where Az =37, (1 — A;)* and Bz = ==—_———. More details are given in Appendix |C.
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3.3 ENVIRONMENT INFERENCE

Based on the above steps, we can identify the decisive core substructure Gig in Equation However,
relying solely on Gig may not ensure robust generalization across diverse distributions. To enhance
its robustness, we incorporate principles from invariance learning theory, integrating features from
various environments encountered across diverse distributions. The problem definition is as follows:

min gNmax E(E’Y)Nq(gm)[R(f(g),Y) | Genvl, (19)

ey EE
where E denotes the support of environments. The irrelevant substructures Geny can be viewed
as the environment, with each node embedding being h. ¢(Geny) is the distribution of data under

environment G,y combined with various rationales, f(-) is the prediction model and R(-, -) is the
risk function such as cross-entropy loss. Equation[I9]aims to minimize the maximum errors across

different environments, thus guaranteeing the capture of invariance across environments (Wu et al.|
2022c:b)).

Directly solving Equation[I9]is impractical due to limited training data across the various environ-
ments in E. Here, we introduce VQ jvan den Oord et al.[|(2017); |[Razavi et al.| (2019) to create a
trainable environment codebook W' = {envy, enva, ..., envys }, defining a latent embedding space
env € RM*F Here, M represents the number of discrete environments (i.e., env), and F' denotes
the dimension of each latent vector. A nearest neighbor lookup is used in the shared embedding space
E to find the closest latent vector env,,, indexed by m. Additionally, the set2set network (Vinyals
et al.| [2015) is utilized to pool Gig, Geny, G, resulting in the substructure representation vectors sig,
Senv and S¢g. This process acts as a specific non-linearity that maps the latent vectors Sy to one of
the M embedding vectors:

B 1 form = argmin ||Seny — envj, ,
q (m | Senv) = J (20)
0 otherwise.
To update the codebook and encourage the output of the encoder to stay close to the chosen codebook
embedding, where the sg[-] denotes the stop-gradient and 0 is set to 0.25 [Xia et al.[(2022):

Log = 158 [Bem] — envml|3 + 8 ||Zeny — sglenv] |3 - 21)

As L4 gradually converges, we obtain a stable codebook set W, which clusters the infinite possible
environment space E into a discretized set of M finite environments represented by 1. Subsequently,
we traverse all potential environment vectors (env) and assign rationales to different environments to
achieve stable predictions. This ensures that the prediction results of the rationales are independent,
thereby guaranteeing the independence (Invariance assumption|Yang et al.|(2022b)).

m}n Eenv,iEWE(gg,Y)Nq(envi) [R (f (gg) aY) | envi} . (22)

This formula can be obtained by minimizing the weighted sum of cross-entropy losses across different
environments. Assuming a total of C classes, let ¢; denote the probability that env belongs to enwv;,
and let ® represents the classification head that maps the molecular representation to the category
labels. the encoder f.,, and the classification head ® together form the prediction model. So, the
loss can be expressed in the following form, where Il denotes the concatenation operation:

M C
Liny = — Z oy Z Z Ygg log ® (fenv (gIB | |envi)) . (23)
=1

§g € Dhrain c=1
3.4 TRAINING OBJECTIVE

Finally, we train the model with the following objective:
Etolal = Einv + ‘Cpre + B‘CMI + ’Y‘qu (24)

Here, L. and Ly are guided by the GIB.L, is the cross-entropy loss for classification tasks. Ly
represents the KL divergence between the core substructures and the non-core subgraph, encour-
aging substructure compression. And L;,, aims to minimize the disturbance loss across various
environments. 3 and y are trade-off parameters that govern the weight of Ly and L.
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Table 1: Performance of different methods in transductive setting. (Bold numbers are the best results,
while the top-performing baseline is superscript cross. The standard deviations is in parentheses).

| ZhangDDI | ChchMiner | DeepDDI

| ACC(1) AUROC (1) F1(t) | ACC(f) AUROC (1) F1(1) | ACC(1) AUROC (1) F1 (1)
DeepDDI 8335040 9113055 80240047 | 903404  95710sn 9183028 | 92390as 951004 9132000
SSI-DDI 869700 937600 8299050 | 93260a  OT810an 931l | 94270  9TA2em) 9541
MDF-SA-DDI | 86.89(015 9403(002)  83.67(014) | 9463021y 98100017  94.17(016) | 94.120021)  88.84(026)  96.13(0.17)
DSN-DDI 87.650.13)  94.63(018)  8430(0.00) | 94.25011) 9831010y  95.34(0.08) | 95.7401s)  98.06(0.16)  96.71(0.11)
CGIB 8732071y  9443(060) 8453(0.45) | 9437(0309) 9838(ganT  95.44(024) | 95.76(0.72) 98.08(0.60)T  96.53(0.53)
CMRL 87.78(0.37) 94.080.23) 84.78(0.25) 94.430.25) 98.37(0.12) 95.62(0.17) 95.49(0.34) 98.03(0.31) 96,82(0_29)1'
IE-HGNN 86.93(0.18) 94.32(9.23) 84.93(0.12) 94.480.28) 98.36(0.19) 95.57(0.18) 95.57(0.22) 97.98(0.23) 96.580.20)
IGIB-ISE 88080207 94711151 85. 29(0 it | 94920217 982401s 95840167 | 9585(0.10)7 98020200  96.71(015)
Ours ‘ 88.640.24) 95.12(0.12) 85.87 0.20) ‘ 95.34(0.19) 98.840.10) 96.21.25) ‘ 96.51(0.14) 99.04.22) 97.53(0.15)

Table 2: Performance of different methods in inductive settings. (Bold numbers are the best results,
while the top-performing baseline is superscript cross. The standard deviations is in parentheses).

Typel

| ZhangDDI ChchMiner DeepDDI

| ACC() AUROC (1) F1(t) | ACC() AUROC (1) F1(1) | ACC() AUROC (1) F1(1)
DeepDDI 60.84(131)  59.5l(i1s)  438la1og) | 66.19(10s) 6851153y 67.67(120) | 6439071  69.52153  68.31(145)
SSI-DDI 62380153  69.56(101)  4759(1a7) | 7694130 79640153y  T7.6l(2s) | 6977086 7593014 7223077
MDF-SA-DDI | 64.51(139) 7099107y 51530115 | 75.3%0s0)  804706s)  7983¢1.05) | 71.13(077)  80.54(000)  71.61(0ss)
DSN-DDI 67.68(0.57)  T249.02)  53.640077) | 1894012y 8593065y  838l(oss | 7335062  83.1lore)  75.68(0.70)
CGIB 68.34(0.66)  72.80(0.43)  57290s8)T | 79.75(0.73)  8641(03)  85.13(0.43) | 7386007  80.80(0.53 784707
CMRL 68.38(1.12) 7459105  S564lggr) | 80.54(066)  87.64051) 8655057 T | 7412055 8496087 77.81(0.74)
IE-HGNN 68.24(0.99)  74.020053) 5673088y | 8021077y  87.92(069) 862151y | 735liee 850707  77.42(0.66)
IGIB-ISE 68.490.57)T  74.61 (U_mf 57.10(0.7) 80,83“,_71)1' 88.2200.60)T  86.5200.70) | 74.320061)7 85.41(0.66)T  78:65(0.58) 1
Ours | 6912023 7514042 5789 | 8L59.10) 885131y 874307y | 7527061) 8562074  78.96(037)

Type2

‘ ZhangDDI ChchMiner DeepDDI

| ACC(1) AUROC (1) F1(t) | ACC() AUROC (1) F1(1) | ACC(1) AUROC (1) F1 (1)
DeepDDI 58.62203 56340197y 25090431y | 63.78(1a) 6671267y T1.37(33s) | 61.68(41s)  65.17(372)  66.74(116)
SSI-DDI 57240235  5934(326) 37063351y | 65.61(a51) 6839101y 7495017 | 6553353  69.37(116)  62.18(3.01)
MDF-SA-DDI | 57.63(1.59) 5597167y 33.94@27s) | 6524197y  68.54001)  77.32(189) | 66.34(155 7081201y 7095171
DSN-DDI 58.37(131)  58.88(1.12) 39490232y | 68.36(154) 6934134  T7.520121) | 68.17(128) 7271137 71.96(1.64)
CGIB 58.39200) 57240197y  28.83(usz) | 68.78(1s1)  69.82(130)  7846(203 | 68260130  68.78(167) 75751751
CMRL 60.78(137)T  60.0202.03)F  38.73@oat | 6709151  69.620167  75.76(128) | 68.29178)  73.38(1.96)  73.91(2.14)
IE-HGNN 6047131y  61.18(101)  38.92(1s7) | 68.71(106) 6947007y  78.920124) | 68130002  73.56(1.02)  74.92(1.17)
IGIB-ISE 59.96(1.20) 59.71(1.12)  38.62(155) | 68.92(. 96)1 69.94(0.80)T  79.32(1.05)T | 68410.88)T  74.1000.02)T  75.60(1.01)
Ours | 61.35101)  62.02(1.09) 3995156 | 6923017y 7002005y 7967035 | 6992011 7427062 7583043

4 EXPERIMENT AND ANALYSE

4.1 DATASETS AND SETUPS

Datasets. To evaluate the performance of our model, we conduct experiments based on three
commonly used datasets in DDI event prediction task, including ZhangDDI (Zhang et al., [2017)),
DeepDDI (Ryu et all 2018) and ChChMiner (Zitnik et al)). Details are present in Appendix [E.I]
Baselines. In our extensive assessment, our model is compared with eight advanced DDI event
prediction methods, all leveraging molecular graphs as input features. The compared methods include
DeepDDI (Ryu et al.} 2018)), SSI-DDI (Nyamabo et al., 2021)), CGIB (Lee et al.,[2023a), CMRL (Lee
et al.}2023c), MDF-SA-DDI (Lin et al.;[2022), DSN-DDI (Li et al., [2023)), IE-HGNN (Ye & Qianl
2024 and IGIB-ISE (Zhang et al.,|2025b). A more detailed description is in Appendix @

Metric. Three metrics are employed to evaluate the model performance: accuracy (ACC), area under
the receiver operating characteristic (AUROC), harmonic mean of precision and recall (F1). All
experiments are repeated eight times with the same dataset split, and average result is presented.

4.2 MODEL PERFORMANCE

Similar to previous studies (Deac et al., 2019; Nyamabo et al., 2021), we first performed the
transductive setting that is the common method evaluation scheme, where the entire dataset is
randomly split and aims to predict the undiscovered DDI events among known drugs. We split the
dataset into training (60%), validation (20%), and test (20%) parts. Key observations can be got:



Under review as a conference paper at ICLR 2026

co o CnChMiner Table 3: Performance on domain generalization experiments.Bold num-
ol ® zm’ & bers are the best results, and the standard deviations is in parentheses.)
o
g »
g o ¢ A J 9 ChchMi
o # | chMiner | DeepDDI
20 | ACC() AUROC(f)  F1(1) | ACC() AUROC(1)  F1(1)
40 ‘S DeepDDI 48270000 6121052  602502m | 503401s 652102 6183005
60 SSI-DDI 5125001 60470051 62340052y | 53260045 6724043 63110041
60 -40 20 0 20 40 60 80 MDF-SA-DDI | 33.54(.12) 65.34(0.32) 63.55(0.54) 54.63(0.34) 68.50(0.25) 64.170.21)
TSNE1 DSN-DDI 52.24(0.24) 62.45(0.28) 64.20(0.09) 54.86(0.21) 68.25(0.24) 65.34(0.24)
CGIB 5521001y 6754046 6453045 | 553700  6848(045)  65.44(050)
CMRL 55.76(0.21) 68.14(9.23) 64.82(0.15) 56.43(0.55) 68.45(0.21) 65.62(0.45) T
. . IE-HGNN 5648(019) 6832027 6501023 | 5635015  68.63025  65480.8)
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are respectively selected.)

Obs.1: 12Mole exhibits the excited predictive performance in transductive setting. The results of our
model and eight baseline models are presented in Table[T] We observe that our model demonstrates
the optimal predictive performance across three different scales of datasets. Regarding the ACC
evaluation metric, it outperforms other models on the ZhangDDI and DeepDDI datasets, while its
performance on the ChChMiner dataset is comparable to IGIB-ISE.

Obs.2: 12Mole shows more pronounced performance improvements on the large-scale DeepDDI
dataset. The model’s performance across different datasets may be influenced by variations in dataset
characteristics, where larger datasets imply a greater diversity of drugs and more complex DDI
relationships. Compared to the second-best model, I2Mole has improved by 0.98% on the large-scale
DeepDDI dataset, while only by 0.45% on the medium and small-scale datasets in AUROC index.

4.3 GENERALIZATION TEST

In this section, we evaluated [2Mole’s generalizability by inductive settings and domain shifting tests.
Type 1 aims to predict potential interaction properties between known and unseen drugs, while Type
2 aims to predict potential interaction properties between unseen and unseen drugs as in Table 2]

Obs.3: 12Mole demonstrates excellent generalization ability on inductive settings. We assessed the
generalization capability on [2Mole to unseen drugs, which holds significant practical and real-world
implications. This process was implemented by partitioning drugs, and the testing results, compared
with baseline models, are documented in Table 2] Evidently, when predicting with new drugs, the
performance of all models experiences varying degrees of decline. However, I2Mole exhibiting
excellent predictive performance has the minimized sensitivity to unseen drug pairs.

Obs.4: 12Mole shows robust performance on domain generalization experiments. To investigate the
impact of domain shifting on generalization, we transfer a model trained on a smaller dataset to a
larger one. Specifically, I2Mole, trained on the ZhangDDI dataset, is tested on two other datasets.
Notably, ZhangDDI and DeepDDI exhibit entirely distinct distributions of molecular species, as
depicted in Figure [d I2Mole outperforms other baseline models consistently across all conditions,
underscoring its superior generalization capability, as recorded in Table 3]

Obs.5: 12Mole demonstrates superior performance in scaffold and size splitting experiments. As
presented in Table 20] (Appendix [[J), our proposed model consistently surpasses state-of-the-art
methods, achieving the highest accuracy in both scaffold and size splits. These results underscore
the advantages of our approach, enabling the model to effectively extract rationales with impressive
generalization capabilities, and perform robustly across different test scenarios.

4.4 EXPLORING THE IMPACT AND EFFECTS OF ENVIRONMENT CODEBOOK

In this section, we provide an intuitive understanding through t-SNE analysis of environment vectors
and molecular embeddings from ChchMiner dataset, as presented in Figure [5]

Obs.6: Different environment embeddings in the environment codebook have clear boundaries
in the visualization results. The 10 distinct environment embeddings exhibit clear distinctions
(Figure 5] (a)), ensuring that the model adequately learns different types of environmental variables
and thereby enhances its generalization. Moreover, different molecular substructure embeddings are
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Figure 5: Environmental codebook vectors analysis. (a) TSNE dimensionality reduction plot of
drug molecular pairs and the 10-class environment codebook vectors. Different colors represent the
chosen codebook vectors, with red dots within clusters indicating the codebook vectors location. (b)
Elemental composition of molecular pairs in clusters 5, 6, and 7 (colored) compared to the elemental
composition represented by the codebook vectors (blank), along with an example pair of molecules.

Table 4: Ablation experiment. Inter- Table 5: Sensitivity analysis for 3 and v (ACC indicator).
molecular interaction denotes as A.

‘ ZhangDDI
| ZhangDDI ‘ 0 1E-5 1E-4 1E-3 0.1
‘ ACC AUROC F1 B | 85.71 85.84 88.64 86.83 56.46
wioVQ | 7452.11) 83.61(0.13) 74.01(0.24 | 8571 0.02) -07(0.08) D024 M Gl 0%

)

wio A | 84510 87210 802103 | 2Es5 1E-4 2E-4 5E-4 1E-3
)
)

woGIB | 8472005y 872101y 81.07(043
Ours 88.64(p 2 95.125‘,“> 35.375”_2(,2 7 | 8831008 88.64(0.12) 8821(0.02) 88.64¢020) 88.3200.01)

tightly centered around their corresponding environment embedding. This suggests that updating
the codebook vector is essentially equivalent to performing clustering on the molecular embeddings,
with the environment embeddings serving as the clustering centers as shown in Figure 5] (a).

Obs.7: Different environment codes tend to encode the local environments of various molecular pairs.
Figure[5](b) shows the distribution of atom types for each environmental embedding, which is close
to real-world data. Notably, significant differences exist between environment codes; for example,
carbon is predominant in Category 7, while nitrogen and oxygen play important roles in Categories
5 and 6. These environmental embeddings represent the non-core substructures of molecular pairs.
For each codebook category, we provide examples of molecular pairs in Figure[5] (b), illustrating the
types of real-world substructures represented. More analysis are in Appendix [M]and [N}

5 ABLATION STUDY AND SENSITIVITY ANALYSIS

Ablation study. To further investigate the role of each component, we conducted a series of ablation
studies. As shown in Table ff] removing the GIB module reduced the model’s ability to capture core
substructures, limiting its performance. Similarly, the removal of intermolecular interaction disrupted
accurate chemical modeling, degrading the model’s capabilities. Notably, eliminating VQ module led
to substantial performance drops, highlighting the importance of codebook and vector quantization
operation (more details in Appendix [H]and complexity are in Appendix [[land [J).

Sensitivity analysis. We investigate the sensitivity of 3 and 7, which govern the trade-off between
prediction and compression, and the codebook updating process, respectively. These parameters
correspond to the weights of Ly and L4 in Equation Overall, the model demonstrates robustness
to variations in /3 and -y, but performance degrades significantly when [ is sharply increased. More
detailed sensitivity analysis results,are presented in Appendix [G|

6 CONCLUSION AND FUTURE OUTLOOK

In this work, we introduce 12Mole, a novel framework for precise DDI prediction that aims to address
the imbalance between training and testing data distributions commonly observed in real-world
scenarios. I12Mole constructs a merged graph to capture complex molecular interactions and, through
an enhanced information bottleneck theory to extract invariant subgraphs. Meanwhile, we design
an environment codebook based on the molecular environments, which encodes environmental
information and integrates it into data from diverse distributions, further improving the model’s
generalization capability. I2Mole enables the rapid identification of potential DDIs and reducing risks
associated with drug misuse. The limitations of I2Mole are discussed in Appendix [K]
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7  REPRODUCIBILITY

We provide the complete implementation in the repository along with guidance on how to re-
produce our results. Our code is available at https://anonymous.4open.science/r/
I2Mol-Cel6.

8 ETHICS STATEMENT

Our study does not involve human participants, personal data, or sensitive information. The datasets
and resources used are either publicly available or released under appropriate licenses. We confirm
that our research does not raise any ethical concerns related to privacy, safety, fairness, or potential
misuse. The contributions of this work are intended solely for advancing scientific research and are
not designed or evaluated for harmful applications.
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A REGARDING THE USE OF LLMS

In this work, LLMs are used solely for polishing and refining the writing. All substantive content,
ideas, and analyses are authored and created by the authors. The LLMs are only employed to improve
clarity, grammar, and overall readability, and did not contribute to the generation of scientific content
or results.

B RELATED WORK

B.1 DRUG-DRUG INTERACTION (DDI) PREDICTION

In recent years, computational approaches, particularly employing machine learning and deep learning
methods, have emerged as indispensable tools for swiftly and economically predicting potential
DDIs (Ryall & Tan|, [2015} Jaaks et al.|[2022)). Initially, DDI prediction models predominantly focused
on drug attribute information, assuming that similar drugs would exhibit common interactions (Ryu
et al., 2018} Deng et al.,[2020). For instance, |Gottlieb et al.|(2012) utilized seven types of drug features
to construct similarity vectors, forming a DDI prediction model based on logistic regression. |Ferdousi
et al.| (2017) designed a deep neural network using drug molecular similarity vectors as descriptors
for predicting potential DDIs. Recently, there has been a shift towards graph-based DDI prediction
methodologies. Zhong et al.|(2019) employed Graph Convolutional Neural Networks (GCNNs) for
message aggregation and an attention-based pooling method for DDI prediction. Given that the
interaction between two drugs is influenced by their specific substructures and functions, recent
efforts have focused on substructure extraction and interaction [Harrold & Zavod|(2014); Fu et al.
(2020). For instance, |Yu et al.| (2022a)) utilized functional group information of drug molecules as their
substructures, while Nyamabo et al.| (2021)) introduced the Substructure-Substructure Interaction for
Drug-Drug Interaction (SSI-DDI) method, employing graph attention network (GAT) layers to extract
substructure representations and co-attention layers to model interactions among substructures.

Despite the proficiency of existing methodologies in elucidating essential structural characteristics
of individual molecular models, considerable variation in crucial substructures may occur during
molecular interactions (Tang et al., 2023} |Lee et al., 2023c)). Notably, while some pioneering work
like DSIL-DDI (Tang et al.| |2023) and CMRL (Lee et al., [2023c) has provided foundational insights,
a noticeable gap remains in comprehensively modeling intermolecular interactions. CMRL (Lee et al.}
2023c) innovatively incorporates conditional graph information bottleneck theory to obtain rationales,
simultaneously considering a second drug as a conditional factor during drug subgraph generation (Lee
et al., |2023b). However, prevailing methodologies encounter limitations in adequately capturing
molecular interactions, particularly at the atomic level. Moreover, integrating a comprehensive
profile of interacting molecules into subgraph generation poses significant challenges, including
overwhelming complexity and the risk of incorporating redundant information (Jia et al., 2009).

B.2 OOD GENERALIZATION

The susceptibility of deep neural networks to significant performance degradation under distribution
shifts has spurred extensive research on out-of-distribution (OOD) generalization. In response, the
invariant rationalization theory has been introduced, aiming to achieve an invariant representation
across diverse environments (Chang et al.,|2020; Rojas-Carulla et al., |2018b). This theory involves
a rationalization module that discerns a crucial subset within the input graph, referred to as ratio-
nale, essential for prediction (Ying et al.,|2019; Luo et al.| 2020). Subsequently, through invariant
learning, these rationales are exposed to diverse environments, thereby fortifying the learned repre-
sentation against environmental fluctuations and effectively bolstering the model’s OOD capacity.
1) sufficiency: shows sufficient predictive power for the target, 2) invariance: contributes to
equal (optimal) performance for the downstream tasks across all environments. Certain methods in
computer vision|Lv et al.|(2022)); Zhang et al.| (2020); [Wang et al.| (2020) achieve OOD generalization
by learning domain-invariant representations. Additionally, methods such as|Shen et al.|(2018)); He
et al.[(2021)); Shen et al.[(2020) aim to achieve OOD generalization by decorrelating correlated and
irrelevant features, considering the statistical correlation between these features as a major factor for
distribution shifts. In terms of molecular applications, DIR (Wu et al.,|2022d) introduces an inventive
method to unveil invariant rationales by intervening in the training distribution, generating multiple
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interventional distributions, and identifying causal rationales consistent across varied distributions.
Similarly, MoleOOD (Yang et al., 2022a) suggests that leveraging causal data-generating invariance
from substructures across environments, linked to specific properties, holds promise for enhanc-
ing OOD generalization. However, learning a domain-invariant representation for intermolecular
interaction remains an open problem, and current discussions on OOD issues are limited.

C PROOFS

C.1 PROOFOF Ly

Proof. Regarding I(Y; 5), we consider Py (Y | 5) as the variational estimation of P (Y | 5)

Therefore, we can proceed with the following derivation:

- P (Y | g~)

I(Y;G) = E(y@) log W
Py (v [G) (25)

“Fere) 8 | Ty |t

sgua iz (1 (v19)172 (1))
Considering the non-negativity property of the Kullback-Leibler divergence, we can conclude that:

. Py (v19)
[Y:G) 2 By g)log | —p7— (26)

= E(y,g)los |:P9 (Y | J)} +H(Y).

As H(Y') remains constant across all data, it can be omitted, resulting in the final formulation of this
term:

Lore =By g log [P(, (Y | 5)] . 27)

C.2 PROOF OF Ly

Proof. We first use a readout function to obtain the graph representation z = of the perturbed graph

Gi. And we assume these is no information loss in this process. Therefore we have 1 (Zém; G) ~
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I (éIB; é) Now we bound [ (zém; é) using variational approximation:

zs |G ~
ZGIB. // zG ,G log ( G ) dzg dG

=By K12 (26, 16) I Zom))}
) [0 ) o ()
By [0 (0 (v 16) 10 (50))

where ¢ (zém) is the variational approximation to p (Zém>. And the inequality is due to the fact

1Og ( ) (28)
// "G (Zg)

i

lq

that Kullback-Leibler divergence is non-negative. We assume that ¢ (Zém) is a noninformative

distribution following VIB |Alemi et al.[(2016)). That is, we obtain ¢ (zém) by aggregating the node

representations in a fully perturbed graph. The noise €5 ~ N (uh, 0%) is sampled from the Gaussian
distribution. 15, 0 are mean and variance of h; in G.

When we choose sum pooling as the readout function, we have:

q (Zém> =N (mé,uh,méai) . (29)

This is because the summation of Gaussian distributions is also a Gaussian distribution. Then, for
D (zém | G), we have:

»(:6,1€)
me me 30)
:N méﬂh'f'Z)\jh Zﬂh)\j,z 1—-X
j=1
Plug Equation[29]and Equation [30]into Equation 28] and we have:
I (zém;6~¥>
</ @ (-trogas+ ——a.+ L p2)ac
=P 2 UG T g G T g TG

Lo } 31y
+/§p(G) logmg dG

— el 1 1 2 ~

_/p(G)< 3log s+, —Ag+ ZméB@) 4G +C,

here Ag = Y75 (1— Aj)? and B = Zimitu=m) ¢, d can be ignored in th
where Az =37,9 (1 - );)" and Bz = == ——— - C'is a constant and can be ignored in the

optimization process.

O
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D THE DETAILED FEATURES FOR ATOMS, BONDS AND MOLECULAR
GLOBAL

A comprehensive overview of the selected atom, bond, and global input features is presented in Table
[6l The initial step involves the conversion of the SMILES string of both solute and solvent into a
graph structure using the RDKit package. This package is employed not only for graph creation
but also for the computation of atom and bond features for each graph. The selection of features
was restricted to those computable in RDKit to mitigate the computational expenses associated with
performing quantum mechanics calculations for the entire dataset. In order to standardize the lengths
of the bond, atom, and global feature vectors, a linear transformation is applied to each vector before
the commencement of the message-passing steps.

Table 6: Atoms (nodes), bonds (edges), and global features for molecular representation

Atomic features (1) | Bond features (£) | Global features (A)
Atomic species Bond type Total No. of atoms
No. of bonds Conjugated status Total No. of bonds
No. of bonded H atoms Ring size Molecular weight
Ring status Stereo-chemistry -

Valence - -

Aromatic status - -

Hybridization type - -

Acceptor status - -
Donor status - -
Partial charge - -

E EXPERIMENTAL SETTINGS

In this section, we will provide a comprehensive overview of our experimental setup. Section [E.T|will
provide detailed information about all the datasets utilized in the experiments. Subsequently, Section
will offer a basic introduction to the baseline methods incorporated in our study. Following that,
Section will delineate the diverse hyperparameters employed in the network architecture of our
model. Additionally, it will elucidate the search space for hyperparameters and present the optimal

hyperparameters.

E.1 DATASETS
* ZhangDDI Zhang et al.[(2017) is a small-scale dataset, including 548 drugs with 48,548 pairwise
interaction data points, encompassing various types of similarity information for these drug pairs.

¢ ChChMiner Zitnik et al. a medium-scale dataset, comprises 1,514 drugs and 48,514 labeled
DDIs, sourced from drug labels and scientific publications.

* DeepDDI Ryu et al.|(2018)) is a larger-scale dataset with 1,704 drugs and 192,284 labeled DDIs,
along with comprehensive side-effect information.

These datasets provide detailed drug information, including SMILES string representations, forming
a robust foundation for evaluating the proposed model.

E.2 BASELINES

In this chapter, we will provide a brief introduction to the baseline models mentioned in the experi-
mental section. In our extensive assessment, our model is compared with eight advanced DDI event
prediction methods, all leveraging molecular graphs as input features.

DeepDDI. Ryu et al.[(2018)It is based on the structural similarity profile between input drugs and
others.
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SSI-DDI. Nyamabo et al.|(2021) it use a 4-layer GAT network to extract substructures at different
levels, and finally complete the final prediction based on the co-attention mechanism.

CGIB. Lee et al.| (2023b)) Based on the graph conditional information bottleneck theory, conditional
subgraphs are extracted to complete the interaction between molecules.

CMRL.|Lee et al.| (2023c) it detects the core substructure that is causally related to chemical reactions.
we introduce a novel conditional intervention framework whose intervention is conditioned on the
paired molecule. With the conditional intervention framework.

MDF-SA-DDL. Lin et al|(2022), achieving DDI prediction by incorporating multi-source drug fusion,
multi-source feature fusion and transformer self-attention mechanism.

DSN-DDIL. [Li et al.| (2023) it employs local and global representation learning modules iteratively
and learns drug substructures from the single drug (‘intra-view’) and the drug pair (‘inter-view’)
simultaneously.

IE-HGNN. |Ye & Qian|(2024) It introduces an internal-external bi-view hypergraph neural network,
where cross-interaction message passing is applied to capture molecular relational patterns and reduce
edge redundancy in paired molecular graphs.

IGIB-ISE. Zhang et al.|(2025b) It integrates an iterative substructure extraction framework with
the Interactive Graph Information Bottleneck, progressively refining interactive core substructures
between drug pairs to improve accuracy and interpretability in molecular relational learning.
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Figure 6: Test results of varying numbers of environmental vectors in the environment codebook in a
transductive setting.

E.3 PARAMETER SETTING

Model architecture. For intramolecular message passing, we employ a 3-layer Gated Graph
Convolutional Network (GatedConv). For intermolecular message passing, we utilize a 3-layer Graph
Attention Network (GAT). As for the pooling layer, we opt for the set2set network. The detailed
hyperparameters are present in Table

Model Training. The model is trained using the Adam optimizer [Kingma & Bal(2014) with an
initial learning rate of 1 x 10~%, which is increased to 0.5, employing a batch size of 32. Binary
cross-entropy loss (BCE) is utilized as the training loss function. Training is terminated if the
validation error does not decrease for 150 epochs or if the maximum training limit of 300 epochs
is reached. 12Mole is implemented in the PyTorch framework and executed on Tesla A100 40GB
hardware.

F RESULTS SIGNIFICANCE ANALYSIS

In the transductive setting, which is a conventional testing method where the dataset is randomly
divided into training, validation, and test sets, we repeated the experiment 8 times and calculated the
mean, variance, and p-value of the ACC, as shown in the Table@ compared to the second-best model,
I12Mole improved by 0.98% on the large-scale DeepDDI dataset, with an average improvement of
approximately 0.05. The p-values are less than 0.05, proving that the improvements of our model are
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Table 7: Hyperparameter specifications.

Network layer hyperparameters

GatedConv I GAT I FC
Num-layers 3,4,5 Num-layers 3,4,5 Num-layers 3,4,5
Hidden-size 200, 400, 600, 800 || Hidden-size 200, 400, 600, 800 Dropout 0.5
Layers 3,4,5 Layers 3.4,5 Hidden-size 300, 400, 500, 600
Activation LeakyReLU Activation LeakyReLU
Training hyperpar ters
Batch-size | 32 | Learning rate | 0.0001, 0.0005, 0.01, 0.005 || B | 0,1e7% 1e7,1e73 1!
Environment codebook hyperparameters
Num of environment | 5, 8, 10, 15, 20, 30 || v | 2675, 1e7,2e7% 5, 1e72 ||

statistically significant. Therefore, although this is a limited improvement, the results are substantial
and significant.

In the inductive setting, which is a commonly used generalization testing method, a molecule (type
1) or a molecule pair (type 2) is removed in the test set to verify the model’s generalization ability.
Notably, in the generalization tests, [I2Mole achieved an average improvement of 1.05% in type 1
scenarios and 1.20% in type 2 scenarios. This demonstrates I2Mole’s ability to generalize to unseen
molecules.

In domain generalization experiments,

which is a challenging testing method, Table 8: Significant difference analysis.
we trained and tested on datasets from

different domains to verify 12Mole’s |

.. e Model Perf
generalization ability. Clearly, 2Mole oce Teriormance

achieved the best generalization re- | ZhangDDI ~ ChchMiner ~ DeepDDI
s1;1t2s,7\1>v1i7th(zn aYeilagPS in}pr{)gemelllt Second-best model | 88.08(026) 94.920021) 958500 10)
of 2.71% (Acc index), significantly

outperforming the improvements in Our model | 8864020 9534019) 9651010
transductive and inductive settings. P-value | 3.52E-04 2.13E-03 8.74E-05

G SENSITIVITY ANALYSIS

We conduct an in-depth investigation

into the effect of varying the number of environment embeddings on our model’s performance, as
depicted in Figure[6] The results demonstrate that altering the number of environment embeddings
has a negligible impact on test performance across three different-sized test datasets, underscoring
the robustness of our model. The optimal performance is achieved when the number of codebook
vectors is set to 10, which we have adopted for our final model configuration.

Furthermore, we investigated the impact

of varying the proportion of retained rela- Table 9: Sensitivity analysis for retained relational
tional edges during inter-molecular mes-  edges ratio.
sage passing on the model’s performance,

as illustrated in Table[9l The results indi- |
cate that gradually increasing the propor-
tion of retained relational edges enhances | AcC AUROC F1
the model’st performance. Hoyvever, be-  Top s=5% 88.5200.08) 95.020.02)  85.75(0.06)
yond a certain threshold, further increments Top_s =10% | 88.60(0.10) 95.10(0.03) 85.80(0.20)
lead to a noticeable decline in performance.  Top_s =20% | 88.64(0.24y 95.12(0.12)  85.87(0.20)
Consequently, we selected 20% as the op-  Top_s=30% | 88.54(0.12) 95.09(0.12) 85.53(0.13)
timal parameter for the proportion of re-  Top_s=50% | 88.34.14) 94.87(0.10) 85.22¢0.11)
tained relational edges.

ZhangDDI

A crucial parameter in this context is the number of environmental samples, denoted as . Increasing
the number of sampled environments expands the range of simulated molecular interactions under
various conditions, though it also introduces additional training overhead. To identify the optimal
value of 0, we systematically evaluated the impact of different sampling quantities, ranging from 2 to
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6, within the framework of an environment codebook size of k = 10, as shown in Table Based on
the results, we have determined the optimal value of 6 to be 4.

Table 10: Sensitivity analysis for the sampling numbers of environmental embedding.

\ ZhangDDI \ ChchMiner \ DeepDDI

| ACC(t) AUROC (1) F1(f) | ACC(1) AUROC (1) F1(f) | ACC(1) AUROC (1) F1(})
0=2188120p11) 9479%0.14) 85.03(0.06) | 94.67(0.14) 98.61(021) 9583011y | 9648011y 9711010y  97-27(0.06)
0=3 8817015 9474010) 85.07(020) | 94430010y 98.68(0.0m 9571(00s) | 96.230010) 9793018y  97.37(0.10)
0=4|88.64021) 9512012 8587020y | 95340010y 98.84(010) 9621025y | 96.51(01a)  99.04(022)  97.53(0.16)
0=5 8829013 9487013 854112 | 94380019) 98.82(015) 9561010y | 96.18(0.12)  98.89(0.12)  97-28(0.08)
0=6| 882414 9485015 85.090.10) | 9457016) 9876(0.10) 95.78(0.0s) | 9634012 97000013 9737011

H VQ MODULE ANALYSIS

To further illustrate the role of the VQ module, we introduced extra two variants for comparison: (1)
RD Noise Variant: In this version, noise in the environment codebook is entirely random, mimicking
the effects of random noise injection. (2) Instance-Dependent (ID) Noise Variant: Here, we sampled
new environments from the environment codebook and added them as small perturbations to the
instance-dependent environment. The Gaussian distribution of this noise is determined by the mean
and variance of subgraph node vectors, emphasizing instance-dependent noisy perturbations.

Table 11: Performance comparison across different DDI datasets.

ZhangDDI ChchMiner DeepDDI
Method  Acc(f) AUROC () Acc(f) AUROC(1)  Ace(}) AUROC (1)
RD noise 87.21 (0.11) 9376(013) 9347(008) 9752(007) 9239(038) 97.01 (0.39)
ID noise 8802(006) 9447(008) 9427(012) 9854(006) 9456(010) 9742(031)
Ours 8864(024) 9512(012) 9534(019) 9884(010) 9651(014) 9904(022)

Our experimental results demonstrate the superiority of the VQ module and the proposed optimization
strategy, particularly in improving the model’s robustness and ability to generalize across diverse
chemical environments.

I DATA SCALABILITY ANALYSIS

We have included the time and space complexity results for our model and various baseline models,
along with a comparison of model parameters in Table[I2)and Table[I4]. This table clearly showcases
the results of various model parameters, time and computational complexity. Compared to other
baseline models, I2Mole exhibits a significantly larger number of total parameters, leading to
substantially higher time consumption and computational complexity than the other baselines.

As the amount of training data increases and the test data decreases, the model’s performance exhibits
a notable improvement. It is particularly worth mentioning that the model shows significant gains
during the initial stages, but further increasing the training data yields only marginal improvements.
Further, we evaluated the model performance under different training data sizes and model parameter
conditions in Table[T3] We control the model parameters by adjusting the number of message-passing
layers, dimensions of embeddings and feedforward NN.

I12Mole alos could naturally generalize to other molecular relational learning tasks due to its pairwise
merged-graph design and interaction-focused information bottleneck theory. Therefore, we conducted
an additional experiment to substantiate the model’s applicability beyond classification-only DDI
tasks. Specifically, we adapted I2Mole for regression by (1) replacing the final classification head
with a linear regression layer, (2) removing activation, normalization, and dropout, and (3) switching
the loss function from BCEWithLogitsLoss to MSELoss. Without further hyperparameter tuning, we
evaluated the model on five standard solute—solvent datasets involving Gibbs free energy of solvation
and hydration free energy (experimental and calculated) (Du et al.} 2024} [2025a)). Despite minimal
adaptation, I2Mole achieves competitive performance, comparable to strong baselines as present in
Table
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J COMPUTATIONAL COMPLEXITY

Alongside increasing the model’s complexity, there is a clear rise in computational time, accompanied
by performance improvements. This could be attributed to the more intricate models being able to
capture deeper inter-molecular relationships, thereby enhancing performance. However, when the
model’s parameters are further increased, its performance starts to degrade. This decline is likely due
to overfitting, as the model becomes overly complex, leading to difficulties in convergence during
training.

Table 12: Computational complexity analysis on I2Mole on ZhangDDI dataset.

Model Parameter (M) 234 26.8 29.5 31.7 354 384  40.3 44.5 49
Time Consumption (h) | 7.4 8.3 9.5 104 12.17 1323 15.6 184 223
Performance (ACC) 83.61 8594 8743 88.27 88.64 88.64 8835 8791 86.87

Table 13: Data scalability analysis on [2Mole on ZhangDDI dataset.

Training Data Ratio (%) 10 20 30 40 50 60 70 80 90
Test Data Ratio (%) 45 40 35 30 25 20 15 10 5
Performance (ACC) 5327 6527 7234 80.34 88.27 88.64 89.01 91.34 92.25

The higher computational cost of I2Mole mainly arises from edge-level aggregation and message
passing, as the constructed merged graph contains more relational edges, which are inherent to graph
neural networks. We report two effective strategies that reduce cost while preserving most accuracy.

* Improving the message-passing mechanism by using lightweight modules in certain layers. As
shown in the Table[I6] replacing the current MPNN layer with a standard GIN backbone reduces
the complexity to approximately one-fifth of the original, with only ~4% drop in performance.
Therefore, we can consider replacing certain layers with GIN to reduce model complexity while
ensuring performance.

* By constructing a Molecular Merged Hypergraph Neural Network [Du et al.| (2025b) , specific
substructures of molecules, such as functional groups, are defined as hypernodes, reducing the
number of nodes in the merged graph and thus lowering the model complexity. We have made
preliminary attempts with the Hypergraph Neural Network (further optimizations is not within
the scope of this work.), where the computational time can be reduced to approximately half of
the original, and for larger molecules, the reduction in time consumption is even more significant,
without sacrificing much predictive accuracy.

* For further exploration, we consider replacing the current MPNN layers (Table[T8] using 3 layers)
with GIN layers to better balance model complexity and performance. Our findings show that sub-
stituting two of the three layers with GIN significantly reduces model complexity (approximately
25%) while resulting in only a marginal performance drop of ~0.36%. Despite this slight decrease,
the model still achieves SOTA compared to the baseline. In addition, integrating the model with
a hypergraph neural network framework—by predefining functional groups or motifs as hypern-
odes—can further reduce model complexity as present in Table[T8] However, we observe that this
strategy leads to a more noticeable decline in performance, about ~3.15%. Therefore, employing
lightweight GNN backbones and hypergraph frameworks to improve message aggregation and
reduce the number of atomic nodes presents a highly promising method, but further optimization
and parameter tuning are needed.

K LIMITATION ANALYSIS

I2Mole, based on the drug pair merged graph, achieves the extraction of rationale subgraphs in
molecular interactions and combines the trained environment codebook, significantly enhancing
generalization capabilities in domain generalization experiments. However, considering the rapid
advancements in the pharmaceutical field and real-world prescription scenarios, we foresee improve-
ments to the current framework in three key aspects:
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Table 14: Comparison of ZhangDDI, ChchMiner, and DeepDDI across different models.

Model Metric ZhangDDI ChchMiner DeepDDI
CGIB (Lee et al.} [2023b) ACC 87.32 94.37 95.76
Time (h) 1.5 0.59 3.73
Memory (G) 5.1 3.9 7.4
Parameters (M) 11 11 11
CRML l, 2023c)) ACC 87.78 94.43 95.49
Time (h) 1.3 0.47 3.24
Memory (G) 4 3.4 6.1
Parameters (M) 10 10 10
SSI-DDI (]Nyamabo et al.], |2021]) ACC 86.97 93.26 94.27
Time (h) 1.77 0.65 4.08
Memory (G) 3.1 2.7 4.4
Parameters (M) 13 13 13
DSN-DDI (Li et al.| [2023) ACC 87.65 94.25 95.74
Time (h) 1.2 0.43 3.08
Memory (G) 2.9 3.6 4.1
Parameters (M) 0.19 0.19 0.19
IGIB-ISE (]Zhang et al.L |2025b[) ACC 88.08 94.92 95.85
Time (h) 8.7 2.9 22.8
Memory (G) 36.2 27.3 394
Parameters (M) 10.5 10.5 10.5
MMGNN l, 2024) ACC 85.40 94.18 95.12
Time (h) 16.8 6.1 41.2
Memory (G) 38.1 30.4 39.7
Parameters (M) 389.10 389.10 389.10
Explainable GNN (Low et al}[2022b) ACC 84.24 93.62 94.71
Time (h) 11.3 4.4 29.1
Memory (G) 20.1 15.3 18.6
Parameters (M) 39.10 39.10 39.10
MMHNN l, 2025al) ACC 86.17 94.55 95.43
Time (h) 9.6 3.8 25.6
Memory (G) 15.4 12.1 14.9
Parameters (M) 32.26 32.26 32.26
CasuallB (]Zhang et al.], |2025a]) ACC 88.14 94.94 95.86
Time (h) 154 5.4 33.8
Memory (G) 22.7 17.0 20.3
Parameters (M) 38.17 38.17 38.17
12Mole (Ours) ACC 88.64 95.34 96.51
Time (h) 13.23 4.9 33.07
Memory (G) 17 13.3 11.7
Parameters (M) 354 354 354

We aim to acquire more comprehensive data on drug interaction processes and analyses between
molecules, addressing the limitations of current research. In practice, patients often have multiple
comorbidities requiring the concurrent use of various drug categories. Thus, the interaction system
of multiple drugs remains a critical research area.

Constructing relationship edges in pairs, as previously done, is an effective strategy for predicting
properties between molecular pairs. However, this approach significantly increases the graph’s
complexity, especially for large, intricate molecules, due to the substantial rise in degrees of
freedom, leading to higher computational resource and time consumption.
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Table 15: Test performance of different methods across eight independent runs. Mean values are
reported, with standard deviations shown in parentheses. (The best result in each column is underlined,
while the top-performing baseline is marked with a superscript dagger.)

| MAE (/) | RMSE (})

| FreeSolv CompSol Abraham  CompSolv-Exp MNSol | FreeSolv CompSol Abraham  CompSolv-Exp MNSol
D-MPNN (].684[”‘”5_;) 0.179(0.013) 0.4540.036) 0.4429.022) (].45‘)w 032) 1.164(0.055) 0.343(9 017y 0.624(0.024) 0.672(9.051) 0.667 0.017)
Explainable GNN | 0.724(0.031)  0.184(9.012)  0.486(0.042) 0.321(0.013) 0.396(0.011) | 1.276(0.045)  0.367(0.012)  0.776(0.035) 0.404(0.054) 0.673(0.024)
SolvBERT 0.588(0.031) 0.167(0.014)  0.467(0.034) 0.382(0.023) 0.354(0.021) | 1.021(0.043) 0.328(0.020)  0.652(0.022) 0.472(0.041) 0.623(0.104)
GAT 0.675(0.033)  0.187(0.011) 0457 (0.043y  0.970(0.031) 0.5140.043) | 1.185(0.075) 0.390(0.012) 0.726(0.010) ~ 0.810(0.101)  0.812(p124)
GROVER 0.623(p.054)  0.155(0.022)  0.307(0.035) 0.382(0.023) 0.354(0.024) | 1.01500.022) 0.3320.016)  0.475(0.044) 0.4910.053) 0.6720.027)
SMD 0.574(0.036)  0.162(0.014y  0.374(0.024)  0.633(0.044) L1130.015)  0.317(0.011)  0.516(0.065) 1.023(0.152)  0.682(9.032)
Uni-Mol 0.565(0.038)  0-164(9.027)  0.322(g.071) 0.2149.022) 0.374(0.021) 1.002(0.064)  0.303(0.020)  0.602(0.035) 0.373(0.043) 0.6570.019)
Gem 0.584(9.041)  0-174(0.011)  0-201(0.065) 0.253(0.023) 1.131(0.059)  0.290(0.019)  0.641(0.031) 0.551(0.023) 0.675(0.027)
CIGIN “'564\” 057) 0'1(’4\“‘”“’? 0.254(9.010) 0.2410.023) 0.910¢0.015)  0.318, 020) 0.404 007) 0.41 L(0.032) 0.6449.012)
CGIB 0.531(0.031) 0.156(0.014)  0.195(0.005) 0.203(0.033) 0.892(9.022)  0.278(0.018)  0.391(0.006) 0.351(0.031) 0.613(0.023)
12Mole 0.535(0.027)  0.158(0.011)  0.189(0.010) 0.175(0.014) 0.900(0.023)  0.268(0.013)  0.389(0.007) 0.3060.030) 0.6090.023)

Table 16: Replacing the current MPNN layer with standard backbones.

GNN backbone ACC (%) Traintime (s) Testtime (s) Parameters (M)

GraphSAGE 80.26 514.80 50.88 21.3
GIN 91.35 188.10 19.27 21.4
GAT 87.42 376.40 36.12 22.4
Baseline 95.34 1020.62 90.61 354

* An equally important aspect is that drugs often function only under specific conditions such as
temperature and pH levels. Therefore, we anticipate future work to comprehensively consider the
impact of external environments on the functionality of drug molecule pairs, thereby refining the
model’s capabilities.

L  THE SCAFFOLD AND SIZE SPLITTING EXPERIMENTS RESULT.

The scaffold and size splitting experiments result are presented in Table 20]

In the scaffold split, we follow the standard practice used in molecular OOD evaluation
et al] (2022Db)); [Yang et al| (2022b). We first match all molecules against a fixed set of SMARTS-
defined scaffolds, consisting of nine predefined core substructure patterns in Table[T9} All molecules
containing any of these scaffolds are assigned to the test set. The remaining molecules are then
randomly divided into training and validation sets using a 9:1 ratio. This ensures that structurally
distinct scaffolds appear exclusively in the test domain.

In the size split, following the procedure in[Ji et al] (2023, we group molecules according to their
atomic size (number of atoms). Molecules are sorted in descending order of atomic size, and the
ordered sequence is partitioned as follows: the largest 60% are assigned to the training set, the middle
20% to the validation set, and the smallest 20% to the test set.

M  VISUALIZATION ANALYSIS

Acetaminophen, a widely used medication for pain relief (analgesic) and fever reduction (antipyretic),
is frequently found in over-the-counter formulations. However, unexpected drug-drug interactions
(DDIs) between acetaminophen and compounds such as Fenoterol, Fosphenytoin, and Ethanol can
pose significant threats to patient safety, as depicted in Figure[7)(a). Specifically, the aromatic ring of
acetaminophen, along with its surrounding functional groups, is capable of interacting with target
molecules, particularly at the central carbon atom bonded to the carboxyl group. This key interaction
has been effectively captured by the I2Mole model. Additionally, the core subgraphs extracted by
I2Mole exhibit good connectivity and consistent distribution across regions, although the associated
weights may vary.

As demonstrated in Figure[7](b), In the case of aspirin, a widely used anti-inflammatory drug that
also serves as an analgesic, antipyretic, and, at low doses, an antiplatelet agent, its interaction with
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Table 17: Comparison of ChchMiner across Hypergraph Neural Network (HGNN) and 12mole. AM:
average number of atoms per molecule.

Model  Params (M) AM=340 AM=549 AM=638 AM=722 AM=1934 ACC(%)

12Mole 35.40 780.74 871.57 962.28 1012.22 1274.38 95.34
HGNN 13.225 350.27 437.63 456.94 478.81 499.75 92.37

Table 18: Comparison of ChchMiner across different models.

GIN layer ACC (%) Decrease Traintime (s) Testtime (s) Params (M)
1 layer 95.07 0.27 757.79 70.38 31.40
2 layer 94.98 0.36 450.10 4791 26.50
3 layer 91.35 3.99 188.10 19.27 21.40
2layer+HGNN 92.19 3.15 278.81 43.74 9.874
Baseline 95.34 - 1020.62 90.61 35.40

Table 19: SMARTS-defined scaffold patterns used in the scaffold split.

clceeeclC(=0)[O&H1] C#[C&H1] C[C&H2]C1
C1=CCCCl1 cleec2e(-,:cl)cccleccecl2 CI1COCCNI1
NS(=0)(=0)C clecccccl[N&+](=0)[0&-]  O[N+]([O-])=0

molecules like Ibrutinib, Eluxadoline, and Glipizide is notably influenced by specific structural
features. The aromatic branch of aspirin (excluding the carboxyl group region) is more prone to
forming interactions with the nitrogen-containing heterocycles of other molecules. This suggests that,
during DDI events, the merged graph substructures of these molecules have an enhanced propensity
for direct interaction, leading to increased DDI potential. These observations provide important
insights into the structural determinants of DDIs, further emphasizing the predictive capability of the
I2Mole model in capturing complex inter-molecular relationships.

To further validate the interpretability of our model, we designed an evaluation strategy inspired
by [Zhong et al] (2024) to benchmark the alignment between model-identified substructures and
experimentally supported chemical knowledge. Specifically, we curated a dataset of 73 chemicals
(perpetrators) known to inhibit metabolic enzymes through well-defined functional groups, thereby
inducing metabolism-mediated DDIs. These chemicals were paired with other drugs to generate
13,786 DDI instances. We evaluate the model at three complementary levels. DDI-level matching
examines the classification performance across all 343,036 MMDDI pairs in the dataset, comprising
171,518 true interactions—where drug A inhibits or induces the metabolism of drug B—and an equal
number of reverse-order negative samples generated by flipping the semantic roles of the two drugs.
The model must determine whether the predicted mechanism and direction for each pair are correct,
i.e., whether drug A truly affects drug B. Perpetrator-level matching further tests whether the model
can correctly identify which drug in the pair acts as the perpetrator and which serves as the victim.
Finally, Frequent Functional Groups Matching assesses substructure-level interpretability using a
manually curated set of 73 chemicals known from the literature to cause metabolism-mediated DDIs
through specific functional groups or reactive substructures.

Using 12Mole, we conducted interpretability analysis by comparing the substructures highlighted by
our model with enzyme-inhibition functional groups reported in the literature. The results demonstrate
that our model achieves a DDI-level matching rate of 60.63%, a perpetrator-level matching rate of
90.35%, and a frequent functional group matching rate of 78.42%, indicating that I2Mole captures
key pharmacological substructures consistent with experimentally validated mechanisms.
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Table 20: The scaffold and size splitting experiments result.

Model ZhangDDI Chchminer DeepDDI
Scaffold (1) Size (1) Scaffold (1) Size (1) Scaffold (1) Size (1)
SSI-DDI T234(3.73) 1015547y | 7234(1.22) 716891 82) | 7827(2.12)  8475(s.32)
MDF-SA-DDI | 7934137y  7946(0.4s) | 8547(0.75) 8423(0.63) | 8738(0.32)  86.58(0.37
DSN-DDI 82.16(1 01y  80.38(1.23) | 8747(2.14) 87.92(132) | 8899533y  86.53(1.65)
CGIB 83.32(1.06) 80.79(0.83) | 8947(1.10) 8843(1.39) | 89.56(5.00)  89.44(2 02)
CMRL 82.25(0.85) 81.32(0.77) | 89.78(1.24)  8849(1 01y | 90.76(3.31)  90.77(1.22)
IE-HGNN 83.050.88) 81.67(0.60) | 89.96(1.12)  89.02(137y | 91.02(1.84) 91.05(1.14)
IGIB-ISE 83.22(0.70)  82.0l(o.73) | 90.11(1.05 8937101y | 9125177y  91.32(1.09)
Ours 83.45(()‘92) 82.55(]“12) 90.32(1A71) 89'95(1&)6) 91'76(2A63) 91.89(1A42)
Acetaminophen Aspirin
s LS P 9
) :“5 o Aol & B w0,
A on
Fenoterol Fosphenytoin Ethanol Ibrutinib Eluxadoline Glipizide

Figure 7: Visualization of the important substructure pairs in six drug pairs. (a) Acetaminophen with
Fenoterol, Fosphenytoin, and Ethanol drug ligands. And (b) Aspirin with Ibrutinib, Eluxadoline, and
Glipizide drug ligands. The darker the color means the greater the weight.

N MAXIMUM COMMON SUBSTRUCTURE (MCS) ANALYSIS OF VQ
ENVIRONMENTS

We further assess whether the learned VQ codebook captures meaningful structural patterns by
performing an MCS exemplar analysis. In particular, we examine environment categories 5, 6, and 7,
which contain 4,556, 20,278, and 7,666 molecular pairs, respectively.

To evaluate the structural coherence of each VQ environment, we computed both inter-category
and intra-category MCS similarities. Since MCS is computed at the molecular level and the overall
number of molecules is large in our setting, the exact computation is computationally expensive.
Therefore, we adopted a sampling-based evaluation strategy:

* Inter-category analysis: For each pair of categories, we randomly sampled 200 SMILES from
each category. This yields 40,000 (200x200) cross-category molecular pairs. From these, we
randomly selected 1,000 pairs and computed their MCS similarity. The resulting distribution
reflects the structural overlap between the two categories.

* Intra-category analysis: For each of the three categories, we randomly sampled 200 SMILES
from all molecules assigned to that category. From these 200 molecules, we randomly selected 500
molecular pairs and computed their MCS similarity. These 500 values characterize the structural
consistency within the category.

Table 21: Interpretability evaluation results.

Evaluation Aspect Hit-Rate (%)
DDI-level Matching 60.63
Perpetrator-level Matching 90.35
Frequent Functional Groups Matching 78.42
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The MCS similarity between two molecules GG; and G is defined as:

IMCS|

S = — . 32
MCS = oin (1Gal, Ga) (52

For each category, we report the mean and variance of the intra-category and inter-category MCS
similarities, and for each pair of categories. The results are in Table 22}

Table 22: Inter-category and intra-category MCS similarity (mean + variance).

Inter-Category Category 5vs 6 Category 5 vs 7 Category 6 vs 7
MCS similarity 0.2523(0.1224)  0.2366(0.11014)  0-2491(0.1144)
Intra-Category Category 5 Category 6 Category 7
MCS similarity 0.3458¢.1259) 0.3921(0.1172) 0.34239.1109)

Our MCS-based analysis shows that the inter-category and intra-category structural similarities
differ substantially. This indicates that the VQ-based clustering is not merely a direct grouping of
molecules by shared substructures. Instead, the VQ codebook is learned in a latent embedding space,
initialized from distinct environment vectors enwv, and each environment substructure vector S.,,,
is mapped through a non-linear projection layer into the discrete code space as Equation[20] As a
result, although the learned codewords reflect meaningful structural patterns, they are not expected to
correspond one-to-one to MCS-defined structural clusters. As L,,, converges, the model obtains a
stable codebook W, which clusters the infinite possible environment space E into a discretized set of
M finite environments represented by W.

Furthermore, we extracted a representative MCS structure for each category. Specifically, for each
category we randomly sampled 300 candidate molecules and computed the full 300x300 Tanimoto
fingerprint similarity matrix. We then identified the “central” molecule, i.e., the one with the highest
average Tanimoto similarity within the category and selected its top-40 nearest neighbors. Using
RDKit, we computed the MCES shared by these 40 molecules. The resulting representative MCS
patterns exhibit clear qualitative differences across categories: Category 5 tends to capture exocyclic
C-C motifs, Category 6 is enriched in aromatic ring structures, and Category 7 is dominated by
non-ring nitrogen atoms. These differences further confirm that the learned VQ codebook organizes
molecular environments into semantically coherent and structurally distinct groups.

Table 23: Representative MCS exemplars extracted for each VQ environment category.

Category MCS exemplar (SMARTS) Illusion
5 [#6&R]-&! Q@ [#6&!R] Exocyclic C-C
6 6-member aromatic ring Aromatic rings
7 [#7&!R] Non-ring nitrogen atom

Overall, the VQ clustering results and the MCS analysis are not expected to align perfectly. Although
the intra-category MCS values within each VQ cluster are relatively small, indicating that molecules
in the same VQ category do not necessarily share large explicit common substructures, it is interesting
to observe that each category nevertheless exhibits a distinct representative MCS pattern, and these
patterns differ clearly across categories. This behavior is consistent with the fundamental difference
between the two approaches: VQ clusters substructures based on learned semantic similarity in
the latent embedding space, whereas MCS groups molecules purely according to graph-theoretic
structural overlap. As a result, VQ could capture higher-level or functional similarities that may not
correspond to large MCS fragments.
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