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ABSTRACT

Molecular interactions are a common phenomenon in physical chemistry, often
resulting in unexpected biochemical properties adverse to human health, such as
drug-drug interactions. Machine learning has shown great potential for predicting
these interactions rapidly and accurately. However, the complexity of molecular
structures and the diversity of interactions often reduce prediction accuracy and
hinder generalizability. Identifying core invariant substructures (i.e., rationales)
has become essential to improving the model’s interpretability and generalization.
Despite significant progress, existing models frequently overlook the pairwise
molecular interactions, leading to insufficient capture of interaction dynamics.
To address these limitations, we propose I2Mole (Interaction-aware Invariant
Molecular learning), a novel framework for generalizable drug-drug interaction
prediction. I2Mole meticulously models atomic interactions by first establishing
indiscriminate connections between intermolecular atoms, which are then refined
using an improved graph information bottleneck theory tailored for merged graphs.
To further enhance model generalization, we construct an environment codebook
by environment subgraph of the merged graph. This approach not only could
provide noise source for optimizing mutual information but also preserve the
integrity of chemical semantic information. By comprehensively leveraging the
information inherent in the merged graph, our model accurately captures core
substructures and significantly enhances generalization capabilities. Extensive
experimental validation demonstrates I2Mole’s efficacy and generalizability. The
implementation code is available at https://anonymous.4open/r/I2Mol-C616.

1 INTRODUCTION

The molecular interaction process can give rise to additional physical or chemical properties when
two or more molecules are combined (Varghese & Mushrif, 2019; D’Souza et al., 2011; Low et al.,
2022a). This phenomenon is common in the fields of physics, chemistry, and medicine etc., such
as changes in Gibbs free energy during dissolution (i.e., solute-solvent pair) (Chung et al., 2022a;
Fang et al., 2024; Xia et al., 2023) and synergistic or adverse reactions between drugs (i.e., drug-drug
pairs) (Lee et al., 2023b; Klemperer, 1992). Due to the complexity of molecular structures and the
diversity of molecular interactions, conventional modeling approaches are limited and susceptible to
noise, undermining prediction accuracy. Meanwhile, they lack generalizability and reliability severely
limits their applicability. Based on this, mining the invariant core substructures of molecules (i.e.,
rationale) has become a widely accepted strategy to enhance both interpretability and generalization
like the CGIB (Lee et al., 2023a) and MoleOOD (Yang et al., 2022b).

Although current methods have attracted widespread attention in predicting the properties of molecu-
lar pairs, two inherent shortcomings remain underexplored. The first is Insufficiency in molecular
interaction modeling. Existing methods demonstrate proficiency in elucidating essential structural
characteristics for individual molecular models. However, when drug-drug interactions (DDI) occur,
pivotal substructures may exhibit considerable variation. For example, Propranolol and Verapamil
(Figure 1 (a)) are commonly prescribed drugs for the treatment of hypertension and cardiac ar-
rhythmias, yet they act through distinct pharmacological mechanisms that affect cardiovascular
function. The aromatic ring and hydroxyl groups in Propranolol are critical for receptor binding and
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Figure 1: An Example of molecular interactions. (a) Propranolol (PRO) and Verapamil (VER) are
widely prescribed cardiovascular therapeutic agents; (b) each drug is influenced by distinct core
substructures to achieve affect; (c) harmful effects on human health occur by co-administered.

β-adrenergic inhibition, while the phenyl rings and amino moieties in Verapamil mediate L-type
calcium channel inhibition, as illustrated in Figure 1 (b). However, when co-administered, the inter-
action between Propranolol’s β-blocking pharmacophore and Verapamil’s calcium-channel–blocking
substructures may excessively suppress cardiac conduction, leading to severe adverse effects such as
excessive bradycardia or atrioventricular block (Figure 1 (c)). Therefore, comprehensive modeling
of intermolecular interactions is crucial and necessary for a profound understanding of molecular
interactions.

Some current models have noticed the aforementioned shortcomings (Behler, 2015; 2016). However,
they still lack consideration of model generalization. Given the diverse and complex nature of
molecular species in real-world scenarios, the data used for training and testing may inevitably be
sampled from different distributions, thus presenting challenges related to OOD (Paul et al., 2021;
Petrova, 2013; Yang et al., 2022b). While introducing integrated noise injection techniques to simulate
diverse environmental distributions holds promise for enhancing model generalization and capturing
core rationales, several drawbacks exist. Specifically, 1) The simulation of noise data may fail to
accurately reflect authentic environmental vectors in chemical space. 2) Indiscriminate noise injection
can distort semantic information and hinder model convergence, while random environmental vectors
may inadequately represent the broad distribution of molecular interactions; and 3) when the injected
noise variance is too small, the noise effect may vanish, defeating its intended purpose.

Figure 2: Diagram illustrating molecular
interaction modeling to capture rationales.
Molecular pairs will be constructed into a
merged graph by connecting atoms pairwise
(dashed lines). Please note that to avoid ex-
cessive complexity, some unimportant rela-
tion edges will be removed (unconnected)

In light of this, we introduce an Interaction-aware
Invariant Molecular learning framework, termed
I2Mole, for generalizable DDI prediction. Spontaneous
molecular interaction phenomena, tend to occur in spe-
cific molecular structures (e.g., -OH, =O, N), giving rise
to stronger intermolecular interactions. We carefully
design dynamic weighted relational edges to model
the atom–atom interaction relationships. Conversely,
for atomic pairwise interactions that rarely occur, we
employ iterative truncation to restrict their message
passing processes, thereby reducing interference with
the overall learning of the merged graph while moder-
ately lowering graph complexity, as presented in Fig-
ure 2. Given the vastness and largely unexplored nature
of the chemical space, we further introduce the con-
cept of vector quantization (VQ) (van den Oord et al.,
2017; Razavi et al., 2019) for molecular interactions
to construct a merged graph environment codebook.
This codebook clusters the potential environments of
molecules in the training set into a predefined number

of categories, and the learned environmental distribution also serves as a controllable noise source
for mutual information optimization (Duncan, 1970; Yu et al., 2022b). Therefore, our I2Mole which
incorporates explicit molecule interactions and an improved environment codebook, effectively
achieves generalizable property prediction on various DDI datasets.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 PRELIMINARIES

2.1 PROBLEM FORMULATION

A molecule can be depicted as a graph G whose nodes V denote the atoms and edges E act as the
bonds Wen et al. (2021). U is the global feature vector which is extracted from each molecule
(Appendix D). Given a set of drug molecular graph pairs D =

{
(G1

a,G1
b ), (G2

a,G2
b ), . . . , (Gn

a ,Gn
b )
}

and their associated target values Y =
{
Y1,Y2, . . . ,Yn

}
, our objective is to train a model M that

can classify the target values for arbitrary drug pairs in an end-to-end manner, i.e., Yi = M(Gi
a,Gi

b).

2.2 GRAPH INFORMATION BOTTLENECK (GIB)

According to the GIB principle (Yu et al., 2020; 2022b; Miao et al., 2022), we could get:

GIB = argmin
Gsub∈S

− I(Y;Gsub) + βI(G;Gsub). (1)

Intuitively, S represents the set of Gsub, and GIB is the core subgraph of G, which discards information
by minimizing the mutual information I(G;Gsub), while preserving target-relevant information by
maximizing the mutual information I(Y;Gsub).

2.3 INVARIANT LEARNING

Given the distribution shift between training and testing data, recent studies (Rojas-Carulla et al.,
2018a; Arjovsky et al., 2019; Wu et al., 2022a) propose the existence of a potential environment
variable env to express this problem:

min
f

max
Genv∈E

E(G,Y )∼p(G,Y|env=Genv)[R(f(G),Y) | Genv], (2)

where E denotes the environment support, f(·) represents the predictive model, and R(·, ·) is the risk
function. The label Y is independent of the environment Genv, conditioned on the subgraph Gsub:

Y ⊥ Genv | Gsub, (3)

where ⊥ denotes probabilistic independence. These principles collectively protect predictions from
external influences, ensuring that the rationale comprehensively captures all discriminative features.
This is for a single molecule, and we would extend it to molecular pairs.

3 METHODOLOGY

In this section, we detail our proposed method. In Section 3.1, we define the merged graph and the
intermolecular message passing mechanism. Section 3.2 explains the details of subgraph extraction by
GIB theory. In Section 3.3, we describe how to inject environmental embeddings into the rationales
to enhance model generalization. Section 3.4 presents the total loss function of I2Mole.

3.1 MERGED MOLECULAR REPRESENTATION

Molecule Merging. The merged graph G̃ could be generated by establishing a weighted relational
edge between two molecules which connects each atom pairwise.

G̃ = {R, E ,V,U}. (4)

The set of relation edges are R :

R = {(rij , vai, vbj)}N
a×Nb

k=1 , (5)

where ai ∈ {1, 2, 3, . . . , Na}, bj ∈ {1, 2, 3, . . . , N b}. Na and N b are the total number of atoms in
drug molecular graph Ga, Gb. rij represents the relation edge. And k is the index of R.

Intra-molecular message passing. Generally, in this merged molecular graph G̃, the message passing
process is first executed intramolecule. In this process, eij is updated to e′ij by aggregating the initial

3
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Figure 3: Overview of our model. Initially, molecular pairs construct a merged graph to facilitate
the message passing process. Subsequently, subgraphs are extracted based on the GIB, and the
environmental components are recorded in a codebook. During the invariant learning process, the
rationale part concatenates different environment embeddings to achieve invariant representations.

bond features, and the two atomic features, vi and vj , and the global features u. In addition, the
feature vector vi and u are updated to v′i and u′

i respectively:

e′ij = eij + LeakyReLU[FC(vi + vj) + [FC(eij) + [FC(u)]], (6)

êij =
σ(e

′

ij)∑
j′∈Ni

σ(e
′
ij′) + ϵ

, v′i = vi + LeakyReLU[FC(vi +
∑
j∈Ni

êij ⊙ FC(vj)) + FC(u)], (7)

u′ = u+ LeakyReLU[FC(
1

Nv

Nv∑
i=1

v′i +
1

Ne

Ne∑
k=1

e′k + u)], (8)

where FC is a fully connected layer. ⊙ denotes the Hadamard product. σ(·) is sigmoid activation
function, and ϵ is a fixed constant (0.0001). Nv and Ne are the number of atoms and bonds.

Intermolecular message passing. We utilize GAT network(Veličković et al., 2017) for intermolecular
message passing to calculate the weight of the relation edge rij .

rij = LeakyReLU(FC(Wv′ai,Wv′bj)), (9)

where W is the learnable weight matrix. Based on the calculated attention coefficients (rij) for the
relation edge, we perform global sorting and retain the top_x% (a hyperparameter):

r′ij =

{
rij if rij ≥ X,

0 otherwise.
(10)

Here, X represents the threshold corresponding to the top_x% ranking of rij values. The selected
attention coefficients are then normalized across the entire graph to facilitate the intermolecular
information-passing process. The atomic feature v′ai for i is updated, also for v′bj :

αij =
r′ij∑
i,j r

′
ij

, v′′ai = (1−
∑
j∈Nb

αij)v
′
ai +

∑
j∈Nb

αijv
′
bj , (11)

3.2 CORE SUBSTRUCTURE EXTRACTION BASED ON GIB

We optimize the objective Equation 12 to detect the core structure in the merged graph:

G̃IB = argmin
G̃sub∈S̃

− I(Y; G̃sub) + βI(G; G̃sub), (12)

where S̃ represents the set of G̃sub. Each term indicates the prediction and compression terms
respectively, which should be minimized during training, as outlined below.

4
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3.2.1 EXTRACT TARGET-ORIENTED INFORMATION

Minimizing −I(Y; G̃IB), which is to calculate upper bound of −I(Y; G̃IB). Given the merged graph

G̃, its label information Y, and the learned IB-graph G̃IB , we have:

−I(Y; G̃IB) ≤ EY;G̃IB
[− log pθ(Y|G̃IB)] := Lpre, (13)

where pθ(Y|G̃IB) is variational approximation of p(Y|G̃IB). pθ(Y|G̃IB) is a predictor parametrized
by θ. Thus, we can minimize the upper bound of −I(Y; G̃IB) by minimizing the model prediction
loss Lpre(Y, G̃IB) with cross-entropy loss. Proofs are in Appendix C.1 (Sufficiency assumption (Yang
et al., 2022b)).

3.2.2 OPTIMIZE MINIMIZED G̃

Minimizing I(G̃; G̃IB), which is to calculate upper bound of I(G̃; G̃IB). Inspired by a recent approach

on graph information bottleneck (Yu et al., 2022b), we also minimize I(G̃; G̃IB) by injecting noise
into node representations. Then, we dampen the information in G̃ by injecting noise into node
representations with a learned probability. Let ϵ be the noise sampled from a parametric noise
distribution. We assign each node a probability of being replaced by ϵ. Specifically, for the i-th node,
the k-th relation edge, we learn the probability pi and pk using a fully connected layer. Then, we
apply a Sigmoid function on the output of fully connected layer to ensure pi, pk ∈ [0, 1]:

pi = Sigmoid(FC(hi)), pk = Sigmoid(FC(rk)). (14)

Next, if a k-th relation edge is connected to the i-th node, we adjust the probability pi by adding pk

N
to it, where N depends on whether the i-th node is in Ga or Gb:

pi =

{
pi +

pk

Nb
if i ∈ Ga and k-th edge is connected to i-th node,

pi +
pk

Na
if i ∈ Gb and k-th edge is connected to i-th node.

(15)

We then replace the node representation hi by ϵ with probability pi:

zi = λihi + (1− λi)ϵ, hr
i = (1− λi)hi, (16)

where λi ∼ Bernoulli(pi), hr
i is the irrelevant substructure node which would be used to construct

G̃env. The transmission probability pi controls the information sent from hi to zi. If pi = 1, then all
the information in hi is transferred to zi without loss. On the contrary, when pi = 0, then zi contains
no information from hi but only noise. We hope pi is learnable so that we can selectively preserve
the information in G̃IB. However, λi is a discrete random variable and we cannot directly calculate
the gradient of pi. Therefore, we employ the concrete relaxation (Jang et al., 2016) for λi:

λi = Sigmoid(
1

t
log

pi
1− pi

+ log
u

1− u
), (17)

where t is the temperature parameter and u ∼ Uniform(0, 1). Another critical aspect of noise
injection is the characterization of the injected noise. It is important that arbitrary noise can be
detrimental to the semantic integrity of the input graph, leading to predictions that deviate from the
actual graph properties. Conversely, appropriately selected noise can provide a variational upper
bound to the overall objective. Therefore, the minimizing the upper bound of I(G̃IB; G̃) as follows:

I(G̃IB; G̃) ≤ EG

[
−1

2
logAG̃ +

1

2mG̃
AG̃ +

1

2mG̃
B2

G̃

]
:= LMI(G̃IB, G̃), (18)

where AG̃ =
∑mG̃

j=1(1− λj)
2 and BG̃ =

∑mG̃
j=1 λj(hj−µh)

σh
. More details are given in Appendix C.2.
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3.3 ENVIRONMENT INFERENCE

Based on the above steps, we can identify the decisive core substructure G̃IB in Equation 12. However,
relying solely on G̃IB may not ensure robust generalization across diverse distributions. To enhance
its robustness, we incorporate principles from invariance learning theory, integrating features from
various environments encountered across diverse distributions. The problem definition is as follows:

min
f

max
G̃env∈E

E(G̃,Y)∼q(G̃env)
[R(f(G̃),Y) | G̃env], (19)

where E denotes the support of environments. The irrelevant substructures G̃env can be viewed
as the environment, with each node embedding being hr

i . q(G̃env) is the distribution of data under
environment G̃env combined with various rationales, f(·) is the prediction model and R(·, ·) is the
risk function such as cross-entropy loss. Equation 19 aims to minimize the maximum errors across
different environments, thus guaranteeing the capture of invariance across environments (Wu et al.,
2022c;b).

Directly solving Equation 19 is impractical due to limited training data across the various environ-
ments in E. Here, we introduce VQ van den Oord et al. (2017); Razavi et al. (2019) to create a
trainable environment codebook W = {env1, env2, . . . , envM}, defining a latent embedding space
env ∈ RM×F . Here, M represents the number of discrete environments (i.e., env), and F denotes
the dimension of each latent vector. A nearest neighbor lookup is used in the shared embedding space
E to find the closest latent vector envm, indexed by m. Additionally, the set2set network (Vinyals
et al., 2015) is utilized to pool G̃IB, G̃env, G̃, resulting in the substructure representation vectors s̃IB,
s̃env and s̃G . This process acts as a specific non-linearity that maps the latent vectors s̃env to one of
the M embedding vectors:

q (m | s̃env) =

{
1 for m = argmin

j
∥s̃env − envj∥2 ,

0 otherwise.
(20)

To update the codebook and encourage the output of the encoder to stay close to the chosen codebook
embedding, where the sg[·] denotes the stop-gradient and δ is set to 0.25 Xia et al. (2022):

Lvq = ∥sg [s̃env]− envm∥22 + δ ∥s̃env − sg[envm]∥22 . (21)

As Lvq gradually converges, we obtain a stable codebook set W , which clusters the infinite possible
environment space E into a discretized set of M finite environments represented by W . Subsequently,
we traverse all potential environment vectors (env) and assign rationales to different environments to
achieve stable predictions. This ensures that the prediction results of the rationales are independent,
thereby guaranteeing the independence (Invariance assumption Yang et al. (2022b)).

min
f

Eenvi∈WE(s̃G ,Y)∼q(envi) [R (f (s̃G) ,Y) | envi] . (22)

This formula can be obtained by minimizing the weighted sum of cross-entropy losses across different
environments. Assuming a total of C classes, let ϕi denote the probability that env belongs to envi,
and let Φ represents the classification head that maps the molecular representation to the category
labels. the encoder fenv and the classification head Φ together form the prediction model. So, the
loss can be expressed in the following form, where || denotes the concatenation operation:

Linv = −
M∑

i=1

ϕi

∑
s̃G∈Dtrain

C∑
c=1

Ys̃G log Φ (fenv(s̃IB||envi)) . (23)

3.4 TRAINING OBJECTIVE

Finally, we train the model with the following objective:

Ltotal = Linv + Lpre + βLMI + γLvq (24)

Here, Lpre and LMI are guided by the GIB.Lpre is the cross-entropy loss for classification tasks. LMI
represents the KL divergence between the core substructures and the non-core subgraph, encour-
aging substructure compression. And Linv aims to minimize the disturbance loss across various
environments. β and γ are trade-off parameters that govern the weight of LMI and Lvq.
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Table 1: Performance of different methods in transductive setting. (Bold numbers are the best results,
while the top-performing baseline is superscript cross. The standard deviations is in parentheses).

ZhangDDI ChchMiner DeepDDI
ACC (↑) AUROC (↑) F1 (↑) ACC (↑) AUROC (↑) F1 (↑) ACC (↑) AUROC (↑) F1 (↑)

DeepDDI 83.35(0.49) 91.13(0.58) 80.24(0.47) 90.34(0.44) 95.71(0.37) 91.83(0.28) 92.39(0.38) 95.10(0.42) 91.32(0.39)

SSI-DDI 86.97(0.62) 93.76(0.34) 82.99(0.30) 93.26(0.24) 97.81(0.22) 93.11(0.19) 94.27(0.25) 97.42(0.31) 95.41(0.19)

MDF-SA-DDI 86.89(0.15) 94.03(0.22) 83.67(0.14) 94.63(0.21) 98.10(0.17) 94.17(0.16) 94.12(0.21) 88.84(0.26) 96.13(0.17)

DSN-DDI 87.65(0.13) 94.63(0.18) 84.30(0.09) 94.25(0.11) 98.31(0.10) 95.34(0.08) 95.74(0.18) 98.06(0.16) 96.71(0.11)

CGIB 87.32(0.71) 94.43(0.60) 84.53(0.45) 94.37(0.39) 98.38(0.31)† 95.44(0.24) 95.76(0.72) 98.08(0.64)† 96.53(0.53)
CMRL 87.78(0.37) 94.08(0.23) 84.78(0.25) 94.43(0.25) 98.37(0.12) 95.62(0.17) 95.49(0.34) 98.03(0.31) 96.82(0.29)†
IE-HGNN 86.93(0.18) 94.32(0.23) 84.93(0.12) 94.48(0.28) 98.36(0.19) 95.57(0.18) 95.57(0.22) 97.98(0.23) 96.58(0.20)

IGIB-ISE 88.08(0.26)† 94.71(0.18)† 85.39(0.17)† 94.92(0.21)† 98.24(0.14) 95.84(0.16)† 95.85(0.19)† 98.02(0.20) 96.71(0.15)

Ours 88.64(0.24) 95.12(0.12) 85.87(0.20) 95.34(0.19) 98.84(0.10) 96.21(0.25) 96.51(0.14) 99.04(0.22) 97.53(0.15)

Table 2: Performance of different methods in inductive settings. (Bold numbers are the best results,
while the top-performing baseline is superscript cross. The standard deviations is in parentheses).

Type1
ZhangDDI ChchMiner DeepDDI

ACC (↑) AUROC (↑) F1 (↑) ACC (↑) AUROC (↑) F1 (↑) ACC (↑) AUROC (↑) F1 (↑)
DeepDDI 60.84(1.34) 59.51(1.18) 43.81(1.26) 66.19(1.08) 68.51(1.53) 67.67(1.29) 64.39(1.71) 69.52(1.53) 68.31(1.45)

SSI-DDI 62.38(1.53) 69.56(1.21) 47.59(1.17) 76.94(1.32) 79.64(1.53) 77.61(1.24) 69.77(0.86) 75.93(1.14) 72.23(0.77)

MDF-SA-DDI 64.51(1.39) 70.99(1.27) 51.53(1.15) 75.39(0.80) 80.47(0.68) 79.83(1.05) 71.13(0.77) 80.54(0.94) 71.61(0.88)

DSN-DDI 67.68(0.87) 72.49(1.02) 53.64(0.77) 78.94(0.72) 85.93(0.65) 83.81(0.83) 73.35(0.62) 83.11(0.76) 75.68(0.70)

CGIB 68.34(0.66) 72.80(0.43) 57.29(0.58)† 79.75(0.73) 86.41(0.93) 85.13(0.43) 73.86(0.97) 80.80(0.53) 78.47(0.47)

CMRL 68.38(1.12) 74.59(1.05) 56.41(0.97) 80.54(0.66) 87.64(0.54) 86.55(0.57)† 74.12(0.55) 84.96(0.87) 77.81(0.74)

IE-HGNN 68.24(0.92) 74.02(0.83) 56.73(0.88) 80.21(0.77) 87.92(0.69) 86.21(0.81) 73.51(0.64) 85.07(0.71) 77.42(0.66)

IGIB-ISE 68.49(0.87)† 74.61(0.78)† 57.10(0.74) 80.83(0.71)† 88.22(0.64)† 86.52(0.70) 74.32(0.61)† 85.41(0.66)† 78.65(0.58)†

Ours 69.12(0.23) 75.14(0.42) 57.89(1.55) 81.59(1.10) 88.51(0.31) 87.43(0.74) 75.27(0.64) 85.62(0.74) 78.96(0.37)

Type2
ZhangDDI ChchMiner DeepDDI

ACC (↑) AUROC (↑) F1 (↑) ACC (↑) AUROC (↑) F1 (↑) ACC (↑) AUROC (↑) F1 (↑)
DeepDDI 58.62(2.03) 56.34(1.97) 25.19(4.34) 63.78(2.14) 66.71(2.67) 71.37(3.38) 61.68(4.18) 65.17(3.72) 66.74(4.16)

SSI-DDI 57.24(2.38) 59.34(3.26) 37.16(3.84) 65.61(2.51) 68.39(1.94) 74.95(2.17) 65.53(3.53) 69.37(4.16) 62.18(3.94)

MDF-SA-DDI 57.63(1.89) 55.97(1.67) 33.94(2.78) 65.24(1.97) 68.54(2.04) 77.32(1.89) 66.34(1.55) 70.81(2.01) 70.95(1.71)

DSN-DDI 58.37(1.31) 58.88(1.12) 39.49(2.32) 68.36(1.54) 69.34(1.34) 77.52(1.21) 68.17(1.28) 72.71(1.37) 71.96(1.64)

CGIB 58.39(2.04) 57.24(1.97) 28.83(4.53) 68.78(1.84) 69.82(1.39) 78.46(2.03) 68.26(1.39) 68.78(1.67) 75.75(1.75)†
CMRL 60.78(1.37)† 60.02(2.03)† 38.73(3.04)† 67.09(1.54) 69.62(1.67) 75.76(1.28) 68.29(1.78) 73.38(1.96) 73.91(2.14)

IE-HGNN 60.47(1.34) 61.18(1.21) 38.92(1.87) 68.71(1.06) 69.47(0.97) 78.92(1.24) 68.13(0.92) 73.56(1.02) 74.92(1.17)

IGIB-ISE 59.96(1.20) 59.71(1.12) 38.62(1.58) 68.92(0.96)† 69.94(0.89)† 79.32(1.05)† 68.41(0.88)† 74.10(0.92)† 75.60(1.01)
Ours 61.35(1.01) 62.02(1.09) 39.95(1.56) 69.23(0.17) 70.02(0.85) 79.67(0.35) 69.92(0.11) 74.27(0.62) 75.83(0.43)

4 EXPERIMENT AND ANALYSE

4.1 DATASETS AND SETUPS

Datasets. To evaluate the performance of our model, we conduct experiments based on three
commonly used datasets in DDI event prediction task, including ZhangDDI (Zhang et al., 2017),
DeepDDI (Ryu et al., 2018) and ChChMiner (Zitnik et al.). Details are present in Appendix E.1.
Baselines. In our extensive assessment, our model is compared with eight advanced DDI event
prediction methods, all leveraging molecular graphs as input features. The compared methods include
DeepDDI (Ryu et al., 2018), SSI-DDI (Nyamabo et al., 2021), CGIB (Lee et al., 2023a), CMRL (Lee
et al., 2023c), MDF-SA-DDI (Lin et al., 2022), DSN-DDI (Li et al., 2023), IE-HGNN (Ye & Qian,
2024) and IGIB-ISE (Zhang et al., 2025b). A more detailed description is in Appendix E.2.

Metric. Three metrics are employed to evaluate the model performance: accuracy (ACC), area under
the receiver operating characteristic (AUROC), harmonic mean of precision and recall (F1). All
experiments are repeated eight times with the same dataset split, and average result is presented.

4.2 MODEL PERFORMANCE

Similar to previous studies (Deac et al., 2019; Nyamabo et al., 2021), we first performed the
transductive setting that is the common method evaluation scheme, where the entire dataset is
randomly split and aims to predict the undiscovered DDI events among known drugs. We split the
dataset into training (60%), validation (20%), and test (20%) parts. Key observations can be got:
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Figure 4: TSNE map for three
DDI datasets (3000 drug pairs
are respectively selected.)

Table 3: Performance on domain generalization experiments.Bold num-
bers are the best results, and the standard deviations is in parentheses.)

ChchMiner DeepDDI

ACC (↑) AUROC (↑) F1 (↑) ACC (↑) AUROC (↑) F1 (↑)
DeepDDI 48.27(0.24) 61.21(0.32) 60.25(0.27) 50.34(0.14) 65.21(0.27) 61.83(0.25)

SSI-DDI 51.25(0.21) 60.47(0.31) 62.34(0.52) 53.26(0.45) 67.24(0.42) 63.11(0.34)

MDF-SA-DDI 33.54(0.12) 65.34(0.32) 63.55(0.54) 54.63(0.34) 68.50(0.25) 64.17(0.21)

DSN-DDI 52.24(0.24) 62.45(0.28) 64.20(0.09) 54.86(0.21) 68.25(0.24) 65.34(0.24)

CGIB 55.21(0.21) 67.54(0.46) 64.53(0.44) 55.37(0.29) 68.48(0.45) 65.44(0.32)

CMRL 55.76(0.21) 68.14(0.23) 64.82(0.15) 56.43(0.55) 68.45(0.21) 65.62(0.45)†
IE-HGNN 56.48(0.19) 68.32(0.27) 65.01(0.22) 56.35(0.18) 68.63(0.26) 65.48(0.28)

IGIB-ISE 57.06(0.17)† 68.63(0.24)† 65.11(0.19)† 57.21(0.21)† 68.67(0.23)† 65.57(0.25)

Ours 59.25(0.15) 69.22(0.31) 65.25(0.26) 58.12(0.09) 68.72(0.42) 65.76(0.23)

Obs.1: I2Mole exhibits the excited predictive performance in transductive setting. The results of our
model and eight baseline models are presented in Table 1. We observe that our model demonstrates
the optimal predictive performance across three different scales of datasets. Regarding the ACC
evaluation metric, it outperforms other models on the ZhangDDI and DeepDDI datasets, while its
performance on the ChChMiner dataset is comparable to IGIB-ISE.

Obs.2: I2Mole shows more pronounced performance improvements on the large-scale DeepDDI
dataset. The model’s performance across different datasets may be influenced by variations in dataset
characteristics, where larger datasets imply a greater diversity of drugs and more complex DDI
relationships. Compared to the second-best model, I2Mole has improved by 0.98% on the large-scale
DeepDDI dataset, while only by 0.45% on the medium and small-scale datasets in AUROC index.

4.3 GENERALIZATION TEST

In this section, we evaluated I2Mole’s generalizability by inductive settings and domain shifting tests.
Type 1 aims to predict potential interaction properties between known and unseen drugs, while Type
2 aims to predict potential interaction properties between unseen and unseen drugs as in Table 2.

Obs.3: I2Mole demonstrates excellent generalization ability on inductive settings. We assessed the
generalization capability on I2Mole to unseen drugs, which holds significant practical and real-world
implications. This process was implemented by partitioning drugs, and the testing results, compared
with baseline models, are documented in Table 2. Evidently, when predicting with new drugs, the
performance of all models experiences varying degrees of decline. However, I2Mole exhibiting
excellent predictive performance has the minimized sensitivity to unseen drug pairs.

Obs.4: I2Mole shows robust performance on domain generalization experiments. To investigate the
impact of domain shifting on generalization, we transfer a model trained on a smaller dataset to a
larger one. Specifically, I2Mole, trained on the ZhangDDI dataset, is tested on two other datasets.
Notably, ZhangDDI and DeepDDI exhibit entirely distinct distributions of molecular species, as
depicted in Figure 4. I2Mole outperforms other baseline models consistently across all conditions,
underscoring its superior generalization capability, as recorded in Table 3.

Obs.5: I2Mole demonstrates superior performance in scaffold and size splitting experiments. As
presented in Table 20 (Appendix L), our proposed model consistently surpasses state-of-the-art
methods, achieving the highest accuracy in both scaffold and size splits. These results underscore
the advantages of our approach, enabling the model to effectively extract rationales with impressive
generalization capabilities, and perform robustly across different test scenarios.

4.4 EXPLORING THE IMPACT AND EFFECTS OF ENVIRONMENT CODEBOOK

In this section, we provide an intuitive understanding through t-SNE analysis of environment vectors
and molecular embeddings from ChchMiner dataset, as presented in Figure 5.

Obs.6: Different environment embeddings in the environment codebook have clear boundaries
in the visualization results. The 10 distinct environment embeddings exhibit clear distinctions
(Figure 5 (a)), ensuring that the model adequately learns different types of environmental variables
and thereby enhances its generalization. Moreover, different molecular substructure embeddings are

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Category 7(a) (b) Category 5 Category 6

Figure 5: Environmental codebook vectors analysis. (a) TSNE dimensionality reduction plot of
drug molecular pairs and the 10-class environment codebook vectors. Different colors represent the
chosen codebook vectors, with red dots within clusters indicating the codebook vectors location. (b)
Elemental composition of molecular pairs in clusters 5, 6, and 7 (colored) compared to the elemental
composition represented by the codebook vectors (blank), along with an example pair of molecules.

Table 4: Ablation experiment. Inter-
molecular interaction denotes as ∆.

ZhangDDI
ACC AUROC F1

w/o VQ 74.52(0.11) 83.61(0.13) 74.01(0.24)

w/o ∆ 84.51(0.22) 87.21(0.27) 80.21(0.33)

w/o GIB 84.72(0.08) 87.21(0.24) 81.07(0.43)

Ours 88.64(0.24) 95.12(0.12) 85.87(0.20)

Table 5: Sensitivity analysis for β and γ (ACC indicator).

ZhangDDI
0 1E-5 1E-4 1E-3 0.1

β 85.71(0.02) 85.84(0.08) 88.64(0.24) 86.83(0.03) 56.46(0.03)

2E-5 1E-4 2E-4 5E-4 1E-3
γ 88.31(0.08) 88.64(0.12) 88.21(0.02) 88.64(0.24) 88.32(0.01)

tightly centered around their corresponding environment embedding. This suggests that updating
the codebook vector is essentially equivalent to performing clustering on the molecular embeddings,
with the environment embeddings serving as the clustering centers as shown in Figure 5 (a).

Obs.7: Different environment codes tend to encode the local environments of various molecular pairs.
Figure 5 (b) shows the distribution of atom types for each environmental embedding, which is close
to real-world data. Notably, significant differences exist between environment codes; for example,
carbon is predominant in Category 7, while nitrogen and oxygen play important roles in Categories
5 and 6. These environmental embeddings represent the non-core substructures of molecular pairs.
For each codebook category, we provide examples of molecular pairs in Figure 5 (b), illustrating the
types of real-world substructures represented. More analysis are in Appendix M and N.

5 ABLATION STUDY AND SENSITIVITY ANALYSIS

Ablation study. To further investigate the role of each component, we conducted a series of ablation
studies. As shown in Table 4, removing the GIB module reduced the model’s ability to capture core
substructures, limiting its performance. Similarly, the removal of intermolecular interaction disrupted
accurate chemical modeling, degrading the model’s capabilities. Notably, eliminating VQ module led
to substantial performance drops, highlighting the importance of codebook and vector quantization
operation (more details in Appendix H and complexity are in Appendix I and J).

Sensitivity analysis. We investigate the sensitivity of β and γ, which govern the trade-off between
prediction and compression, and the codebook updating process, respectively. These parameters
correspond to the weights of LMI and Lvq in Equation 24. Overall, the model demonstrates robustness
to variations in β and γ, but performance degrades significantly when β is sharply increased. More
detailed sensitivity analysis results,are presented in Appendix G.

6 CONCLUSION AND FUTURE OUTLOOK

In this work, we introduce I2Mole, a novel framework for precise DDI prediction that aims to address
the imbalance between training and testing data distributions commonly observed in real-world
scenarios. I2Mole constructs a merged graph to capture complex molecular interactions and, through
an enhanced information bottleneck theory to extract invariant subgraphs. Meanwhile, we design
an environment codebook based on the molecular environments, which encodes environmental
information and integrates it into data from diverse distributions, further improving the model’s
generalization capability. I2Mole enables the rapid identification of potential DDIs and reducing risks
associated with drug misuse. The limitations of I2Mole are discussed in Appendix K.
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7 REPRODUCIBILITY

We provide the complete implementation in the repository along with guidance on how to re-
produce our results. Our code is available at https://anonymous.4open.science/r/
I2Mol-C616.

8 ETHICS STATEMENT

Our study does not involve human participants, personal data, or sensitive information. The datasets
and resources used are either publicly available or released under appropriate licenses. We confirm
that our research does not raise any ethical concerns related to privacy, safety, fairness, or potential
misuse. The contributions of this work are intended solely for advancing scientific research and are
not designed or evaluated for harmful applications.
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Marinka Zitnik, Rok Sosič, Sagar Maheshwari, and Jure Leskovec. Biosnap datasets: Stanford
biomedical network dataset collection. 2018. URL http://snap. stanford. edu/biodata.

14

https://www.sciencedirect.com/science/article/pii/S0950705124008116
https://www.sciencedirect.com/science/article/pii/S0950705124008116
https://proceedings.neurips.cc/paper/2019/hash/d80b7040b773199015de6d3b4293c8ff-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/d80b7040b773199015de6d3b4293c8ff-Abstract.html
https://doi.org/10.1109/CVPR52688.2022.01879
https://doi.org/10.1109/CVPR52688.2022.01879
https://doi.org/10.24963/ijcai.2025/882


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

CONTENTS

1 Introduction 1

2 Preliminaries 3

2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Graph Information Bottleneck (GIB) . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Invariant Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Methodology 3

3.1 Merged Molecular Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.2 Core Substructure Extraction Based on GIB . . . . . . . . . . . . . . . . . . . . . 4

3.2.1 Extract target-oriented information . . . . . . . . . . . . . . . . . . . . . . 5

3.2.2 Optimize minimized G̃ . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.3 Environment Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.4 Training Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Experiment and Analyse 7

4.1 Datasets and setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.2 Model Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.3 Generalization Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.4 Exploring the impact and effects of Environment Codebook . . . . . . . . . . . . . 8

5 Ablation study and Sensitivity analysis 9

6 Conclusion and Future outlook 9

7 Reproducibility 10

8 Ethics Statement 10

Appendix 17

A Regarding the Use of LLMs 17

B Related Work 17

B.1 Drug-Drug Interaction (DDI) prediction . . . . . . . . . . . . . . . . . . . . . . . 17

B.2 OOD generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

C Proofs 18

C.1 Proof of Lpre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

C.2 Proof of LMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D The Detailed Features For Atoms, Bonds and Molecular Global 20

E Experimental Settings 20

E.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

E.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

E.3 Parameter Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

F Results significance analysis 21

G Sensitivity analysis 22

H VQ module analysis 23

I Data scalability analysis 23

J Computational complexity 24

K Limitation analysis 24

L The scaffold and size splitting experiments result. 26

M Visualization analysis 26

N Maximum Common Substructure (MCS) Analysis of VQ Environments 28

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A REGARDING THE USE OF LLMS

In this work, LLMs are used solely for polishing and refining the writing. All substantive content,
ideas, and analyses are authored and created by the authors. The LLMs are only employed to improve
clarity, grammar, and overall readability, and did not contribute to the generation of scientific content
or results.

B RELATED WORK

B.1 DRUG-DRUG INTERACTION (DDI) PREDICTION

In recent years, computational approaches, particularly employing machine learning and deep learning
methods, have emerged as indispensable tools for swiftly and economically predicting potential
DDIs (Ryall & Tan, 2015; Jaaks et al., 2022). Initially, DDI prediction models predominantly focused
on drug attribute information, assuming that similar drugs would exhibit common interactions (Ryu
et al., 2018; Deng et al., 2020). For instance, Gottlieb et al. (2012) utilized seven types of drug features
to construct similarity vectors, forming a DDI prediction model based on logistic regression. Ferdousi
et al. (2017) designed a deep neural network using drug molecular similarity vectors as descriptors
for predicting potential DDIs. Recently, there has been a shift towards graph-based DDI prediction
methodologies. Zhong et al. (2019) employed Graph Convolutional Neural Networks (GCNNs) for
message aggregation and an attention-based pooling method for DDI prediction. Given that the
interaction between two drugs is influenced by their specific substructures and functions, recent
efforts have focused on substructure extraction and interaction Harrold & Zavod (2014); Fu et al.
(2020). For instance, Yu et al. (2022a) utilized functional group information of drug molecules as their
substructures, while Nyamabo et al. (2021) introduced the Substructure-Substructure Interaction for
Drug-Drug Interaction (SSI-DDI) method, employing graph attention network (GAT) layers to extract
substructure representations and co-attention layers to model interactions among substructures.

Despite the proficiency of existing methodologies in elucidating essential structural characteristics
of individual molecular models, considerable variation in crucial substructures may occur during
molecular interactions (Tang et al., 2023; Lee et al., 2023c). Notably, while some pioneering work
like DSIL-DDI (Tang et al., 2023) and CMRL (Lee et al., 2023c) has provided foundational insights,
a noticeable gap remains in comprehensively modeling intermolecular interactions. CMRL (Lee et al.,
2023c) innovatively incorporates conditional graph information bottleneck theory to obtain rationales,
simultaneously considering a second drug as a conditional factor during drug subgraph generation (Lee
et al., 2023b). However, prevailing methodologies encounter limitations in adequately capturing
molecular interactions, particularly at the atomic level. Moreover, integrating a comprehensive
profile of interacting molecules into subgraph generation poses significant challenges, including
overwhelming complexity and the risk of incorporating redundant information (Jia et al., 2009).

B.2 OOD GENERALIZATION

The susceptibility of deep neural networks to significant performance degradation under distribution
shifts has spurred extensive research on out-of-distribution (OOD) generalization. In response, the
invariant rationalization theory has been introduced, aiming to achieve an invariant representation
across diverse environments (Chang et al., 2020; Rojas-Carulla et al., 2018b). This theory involves
a rationalization module that discerns a crucial subset within the input graph, referred to as ratio-
nale, essential for prediction (Ying et al., 2019; Luo et al., 2020). Subsequently, through invariant
learning, these rationales are exposed to diverse environments, thereby fortifying the learned repre-
sentation against environmental fluctuations and effectively bolstering the model’s OOD capacity.
1) sufficiency: shows sufficient predictive power for the target, 2) invariance: contributes to
equal (optimal) performance for the downstream tasks across all environments. Certain methods in
computer vision Lv et al. (2022); Zhang et al. (2020); Wang et al. (2020) achieve OOD generalization
by learning domain-invariant representations. Additionally, methods such as Shen et al. (2018); He
et al. (2021); Shen et al. (2020) aim to achieve OOD generalization by decorrelating correlated and
irrelevant features, considering the statistical correlation between these features as a major factor for
distribution shifts. In terms of molecular applications, DIR (Wu et al., 2022d) introduces an inventive
method to unveil invariant rationales by intervening in the training distribution, generating multiple
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interventional distributions, and identifying causal rationales consistent across varied distributions.
Similarly, MoleOOD (Yang et al., 2022a) suggests that leveraging causal data-generating invariance
from substructures across environments, linked to specific properties, holds promise for enhanc-
ing OOD generalization. However, learning a domain-invariant representation for intermolecular
interaction remains an open problem, and current discussions on OOD issues are limited.

C PROOFS

C.1 PROOF OF Lpre

Proof. Regarding I(Y ; G̃), we consider Pθ

(
Y | G̃

)
as the variational estimation of P

(
Y | G̃

)
.

Therefore, we can proceed with the following derivation:

I(Y ; G̃) = E(Y,G̃) log

P
(
Y | G̃

)
P (Y )


= E(Y,G̃) log

Pθ

(
Y | G̃

)
P (Y )

+

EG̃ log
[
KL

(
P
(
Y | G̃

)
∥Pθ

(
Y | G̃

))]
.

(25)

Considering the non-negativity property of the Kullback-Leibler divergence, we can conclude that:

I(Y ; G̃) ≥ E(Y,G̃) log

Pθ

(
Y | G̃

)
P (Y )


= E(Y,G̃) log

[
Pθ

(
Y | G̃

)]
+H(Y ).

(26)

As H(Y ) remains constant across all data, it can be omitted, resulting in the final formulation of this
term:

Lpre := E(Y,G̃) log
[
Pθ

(
Y | G̃

)]
. (27)

C.2 PROOF OF LMI

Proof. We first use a readout function to obtain the graph representation zG̃IB
of the perturbed graph

G̃IB. And we assume these is no information loss in this process. Therefore we have I
(
zG̃IB

; G̃
)
≈
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I
(
G̃IB; G̃

)
. Now we bound I

(
zG̃IB

; G̃
)

using variational approximation:

I
(
zG̃IB

; G̃
)
=

∫∫
p
(
zG̃IB

, G̃
)
log

p
(
zG̃IB

| G̃
)

p
(
zG̃IB

) dzG̃IB
dG̃

=

∫∫
p
(
zG̃IB

, G̃
)
log

p
(
zG̃IB

| G̃
)

q
(
zG̃IB

) dzG̃IB
dG̃

+

∫∫
p
(
zG̃IB

, G̃
)
log

q
(
zG̃IB

)
p
(
zG̃IB

) dzG̃IB
dG̃

= Ep(G̃)

[
KL

(
p
(
zG̃IB

| G̃
)
|| q

(
zG̃IB

))]
− E

p
(
zG̃IB

|G̃
) [KL

(
p
(
zG̃IB

)
|| q

(
zG̃IB

))]
≤ Ep(G̃)

[
KL

(
p
(
zG̃IB

| G̃
)
|| q

(
zG̃IB

))]
,

(28)

where q
(
zG̃IB

)
is the variational approximation to p

(
zG̃IB

)
. And the inequality is due to the fact

that Kullback-Leibler divergence is non-negative. We assume that q
(
zG̃IB

)
is a noninformative

distribution following VIB Alemi et al. (2016). That is, we obtain q
(
zG̃IB

)
by aggregating the node

representations in a fully perturbed graph. The noise ϵG̃ ∼ N
(
µh, σ

2
h

)
is sampled from the Gaussian

distribution. µh, σ
2
h are mean and variance of hj in G̃.

When we choose sum pooling as the readout function, we have:

q
(
zG̃IB

)
= N

(
mG̃µh,mG̃σ

2
h

)
. (29)

This is because the summation of Gaussian distributions is also a Gaussian distribution. Then, for
p
(
zG̃IB

| G̃
)

, we have:

p
(
zG̃IB

| G̃
)

= N

mG̃µh +

mG̃∑
j=1

λjhj −
mG̃∑
j=1

µhλj ,

mG̃∑
j=1

(1− λj)
2
σ2
h

 .
(30)

Plug Equation 29 and Equation 30 into Equation 28 and we have:

I
(
zG̃IB

; G̃
)

≤
∫

p(G̃)

(
−1

2
logAG̃ +

1

2mG̃

AG̃ +
1

2mG̃

B2
G̃

)
dG̃

+

∫
1

2
p(G̃) logmG̃ dG̃

=

∫
p(G̃)

(
−1

2
logAG̃ +

1

2mG̃

AG̃ +
1

2mG̃

B2
G̃

)
dG̃+ C,

(31)

where AG̃ =
∑mG̃

j=1 (1− λj)
2 and BG̃ =

∑m
G̃

j=1 λj(hj−µh)

σh
· C is a constant and can be ignored in the

optimization process.
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D THE DETAILED FEATURES FOR ATOMS, BONDS AND MOLECULAR
GLOBAL

A comprehensive overview of the selected atom, bond, and global input features is presented in Table
6. The initial step involves the conversion of the SMILES string of both solute and solvent into a
graph structure using the RDKit package. This package is employed not only for graph creation
but also for the computation of atom and bond features for each graph. The selection of features
was restricted to those computable in RDKit to mitigate the computational expenses associated with
performing quantum mechanics calculations for the entire dataset. In order to standardize the lengths
of the bond, atom, and global feature vectors, a linear transformation is applied to each vector before
the commencement of the message-passing steps.

Table 6: Atoms (nodes), bonds (edges), and global features for molecular representation

Atomic features (V) Bond features (E) Global features (U)

Atomic species Bond type Total No. of atoms
No. of bonds Conjugated status Total No. of bonds
No. of bonded H atoms Ring size Molecular weight
Ring status Stereo-chemistry –
Valence – –
Aromatic status – –
Hybridization type – –
Acceptor status – –
Donor status – –
Partial charge – –

E EXPERIMENTAL SETTINGS

In this section, we will provide a comprehensive overview of our experimental setup. Section E.1 will
provide detailed information about all the datasets utilized in the experiments. Subsequently, Section
E.2 will offer a basic introduction to the baseline methods incorporated in our study. Following that,
Section E.3 will delineate the diverse hyperparameters employed in the network architecture of our
model. Additionally, it will elucidate the search space for hyperparameters and present the optimal
hyperparameters.

E.1 DATASETS

• ZhangDDI Zhang et al. (2017) is a small-scale dataset, including 548 drugs with 48,548 pairwise
interaction data points, encompassing various types of similarity information for these drug pairs.

• ChChMiner Zitnik et al. a medium-scale dataset, comprises 1,514 drugs and 48,514 labeled
DDIs, sourced from drug labels and scientific publications.

• DeepDDI Ryu et al. (2018) is a larger-scale dataset with 1,704 drugs and 192,284 labeled DDIs,
along with comprehensive side-effect information.

These datasets provide detailed drug information, including SMILES string representations, forming
a robust foundation for evaluating the proposed model.

E.2 BASELINES

In this chapter, we will provide a brief introduction to the baseline models mentioned in the experi-
mental section. In our extensive assessment, our model is compared with eight advanced DDI event
prediction methods, all leveraging molecular graphs as input features.

DeepDDI. Ryu et al. (2018)It is based on the structural similarity profile between input drugs and
others.
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SSI-DDI. Nyamabo et al. (2021) it use a 4-layer GAT network to extract substructures at different
levels, and finally complete the final prediction based on the co-attention mechanism.

CGIB. Lee et al. (2023b) Based on the graph conditional information bottleneck theory, conditional
subgraphs are extracted to complete the interaction between molecules.

CMRL. Lee et al. (2023c) it detects the core substructure that is causally related to chemical reactions.
we introduce a novel conditional intervention framework whose intervention is conditioned on the
paired molecule. With the conditional intervention framework.

MDF-SA-DDI. Lin et al. (2022), achieving DDI prediction by incorporating multi-source drug fusion,
multi-source feature fusion and transformer self-attention mechanism.

DSN-DDI. Li et al. (2023) it employs local and global representation learning modules iteratively
and learns drug substructures from the single drug (‘intra-view’) and the drug pair (‘inter-view’)
simultaneously.

IE-HGNN. Ye & Qian (2024) It introduces an internal–external bi-view hypergraph neural network,
where cross-interaction message passing is applied to capture molecular relational patterns and reduce
edge redundancy in paired molecular graphs.

IGIB-ISE. Zhang et al. (2025b) It integrates an iterative substructure extraction framework with
the Interactive Graph Information Bottleneck, progressively refining interactive core substructures
between drug pairs to improve accuracy and interpretability in molecular relational learning.

Figure 6: Test results of varying numbers of environmental vectors in the environment codebook in a
transductive setting.

E.3 PARAMETER SETTING

Model architecture. For intramolecular message passing, we employ a 3-layer Gated Graph
Convolutional Network (GatedConv). For intermolecular message passing, we utilize a 3-layer Graph
Attention Network (GAT). As for the pooling layer, we opt for the set2set network. The detailed
hyperparameters are present in Table 7.

Model Training. The model is trained using the Adam optimizer Kingma & Ba (2014) with an
initial learning rate of 1 × 10−4, which is increased to 0.5, employing a batch size of 32. Binary
cross-entropy loss (BCE) is utilized as the training loss function. Training is terminated if the
validation error does not decrease for 150 epochs or if the maximum training limit of 300 epochs
is reached. I2Mole is implemented in the PyTorch framework and executed on Tesla A100 40GB
hardware.

F RESULTS SIGNIFICANCE ANALYSIS

In the transductive setting, which is a conventional testing method where the dataset is randomly
divided into training, validation, and test sets, we repeated the experiment 8 times and calculated the
mean, variance, and p-value of the ACC, as shown in the Table 8, compared to the second-best model,
I2Mole improved by 0.98% on the large-scale DeepDDI dataset, with an average improvement of
approximately 0.05. The p-values are less than 0.05, proving that the improvements of our model are
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Table 7: Hyperparameter specifications.

Network layer hyperparameters
GatedConv GAT FC

Num-layers 3, 4, 5 Num-layers 3, 4, 5 Num-layers 3, 4, 5
Hidden-size 200, 400, 600, 800 Hidden-size 200, 400, 600, 800 Dropout 0.5

Layers 3, 4, 5 Layers 3, 4, 5 Hidden-size 300, 400, 500, 600
Activation LeakyReLU Activation LeakyReLU

Training hyperparameters

Batch-size 32 Learning rate 0.0001, 0.0005, 0.01, 0.005 β 0, 1e−5,1e−4, 1e−3, 1e−1

Environment codebook hyperparameters

Num of environment 5, 8, 10, 15, 20, 30 γ 2e−5, 1e−4, 2e−4, 5e−4, 1e−3

statistically significant. Therefore, although this is a limited improvement, the results are substantial
and significant.

In the inductive setting, which is a commonly used generalization testing method, a molecule (type
1) or a molecule pair (type 2) is removed in the test set to verify the model’s generalization ability.
Notably, in the generalization tests, I2Mole achieved an average improvement of 1.05% in type 1
scenarios and 1.20% in type 2 scenarios. This demonstrates I2Mole’s ability to generalize to unseen
molecules.

Table 8: Significant difference analysis.

Model Performance

ZhangDDI ChchMiner DeepDDI

Second-best model 88.08(0.26) 94.92(0.21) 95.85(0.19)

Our model 88.64(0.24) 95.34(0.19) 96.51(0.14)

P-value 3.52E-04 2.13E-03 8.74E-05

In domain generalization experiments,
which is a challenging testing method,
we trained and tested on datasets from
different domains to verify I2Mole’s
generalization ability. Clearly, I2Mole
achieved the best generalization re-
sults, with an average improvement
of 2.71% (Acc index), significantly
outperforming the improvements in
transductive and inductive settings.

G SENSITIVITY ANALYSIS

We conduct an in-depth investigation
into the effect of varying the number of environment embeddings on our model’s performance, as
depicted in Figure 6. The results demonstrate that altering the number of environment embeddings
has a negligible impact on test performance across three different-sized test datasets, underscoring
the robustness of our model. The optimal performance is achieved when the number of codebook
vectors is set to 10, which we have adopted for our final model configuration.

Table 9: Sensitivity analysis for retained relational
edges ratio.

ZhangDDI

ACC AUROC F1

Top_s = 5% 88.52(0.08) 95.02(0.02) 85.75(0.06)

Top_s = 10% 88.60(0.10) 95.10(0.03) 85.80(0.20)

Top_s = 20% 88.64(0.24) 95.12(0.12) 85.87(0.20)

Top_s = 30% 88.54(0.12) 95.09(0.12) 85.53(0.13)

Top_s = 50% 88.34(0.14) 94.87(0.10) 85.22(0.11)

Furthermore, we investigated the impact
of varying the proportion of retained rela-
tional edges during inter-molecular mes-
sage passing on the model’s performance,
as illustrated in Table 9. The results indi-
cate that gradually increasing the propor-
tion of retained relational edges enhances
the model’s performance. However, be-
yond a certain threshold, further increments
lead to a noticeable decline in performance.
Consequently, we selected 20% as the op-
timal parameter for the proportion of re-
tained relational edges.

A crucial parameter in this context is the number of environmental samples, denoted as θ. Increasing
the number of sampled environments expands the range of simulated molecular interactions under
various conditions, though it also introduces additional training overhead. To identify the optimal
value of θ, we systematically evaluated the impact of different sampling quantities, ranging from 2 to

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

6, within the framework of an environment codebook size of k = 10, as shown in Table 10. Based on
the results, we have determined the optimal value of θ to be 4.

Table 10: Sensitivity analysis for the sampling numbers of environmental embedding.

ZhangDDI ChchMiner DeepDDI
ACC (↑) AUROC (↑) F1 (↑) ACC (↑) AUROC (↑) F1 (↑) ACC (↑) AUROC (↑) F1 (↑)

θ = 2 88.12(0.11) 94.79(0.14) 85.03(0.06) 94.67(0.14) 98.61(0.21) 95.83(0.11) 96.48(0.11) 97.11(0.10) 97.27(0.06)

θ = 3 88.17(0.15) 94.74(0.10) 85.07(0.20) 94.43(0.14) 98.68(0.07) 95.71(0.08) 96.23(0.10) 97.93(0.18) 97.37(0.10)

θ = 4 88.64(0.24) 95.12(0.12) 85.87(0.20) 95.34(0.19) 98.84(0.10) 96.21(0.25) 96.51(0.14) 99.04(0.22) 97.53(0.16)

θ = 5 88.29(0.13) 94.87(0.13) 85.41(0.12) 94.38(0.19) 98.82(0.18) 95.61(0.10) 96.18(0.12) 98.89(0.12) 97.28(0.08)

θ = 6 88.24(0.14) 94.85(0.15) 85.09(0.10) 94.57(0.16) 98.76(0.10) 95.78(0.08) 96.34(0.12) 97.00(0.13) 97.37(0.11)

H VQ MODULE ANALYSIS

To further illustrate the role of the VQ module, we introduced extra two variants for comparison: (1)
RD Noise Variant: In this version, noise in the environment codebook is entirely random, mimicking
the effects of random noise injection. (2) Instance-Dependent (ID) Noise Variant: Here, we sampled
new environments from the environment codebook and added them as small perturbations to the
instance-dependent environment. The Gaussian distribution of this noise is determined by the mean
and variance of subgraph node vectors, emphasizing instance-dependent noisy perturbations.

Table 11: Performance comparison across different DDI datasets.

ZhangDDI ChchMiner DeepDDI
Method Acc (↑) AUROC (↑) Acc (↑) AUROC (↑) Acc (↑) AUROC (↑)
RD noise 87.21(0.11) 93.76(0.13) 93.47(0.08) 97.52(0.07) 92.39(0.38) 97.01(0.39)

ID noise 88.02(0.06) 94.47(0.08) 94.27(0.12) 98.54(0.06) 94.56(0.10) 97.42(0.31)

Ours 88.64(0.24) 95.12(0.12) 95.34(0.19) 98.84(0.10) 96.51(0.14) 99.04(0.22)

Our experimental results demonstrate the superiority of the VQ module and the proposed optimization
strategy, particularly in improving the model’s robustness and ability to generalize across diverse
chemical environments.

I DATA SCALABILITY ANALYSIS

We have included the time and space complexity results for our model and various baseline models,
along with a comparison of model parameters in Table 12 and Table 14 . This table clearly showcases
the results of various model parameters, time and computational complexity. Compared to other
baseline models, I2Mole exhibits a significantly larger number of total parameters, leading to
substantially higher time consumption and computational complexity than the other baselines.

As the amount of training data increases and the test data decreases, the model’s performance exhibits
a notable improvement. It is particularly worth mentioning that the model shows significant gains
during the initial stages, but further increasing the training data yields only marginal improvements.
Further, we evaluated the model performance under different training data sizes and model parameter
conditions in Table 13. We control the model parameters by adjusting the number of message-passing
layers, dimensions of embeddings and feedforward NN.

I2Mole alos could naturally generalize to other molecular relational learning tasks due to its pairwise
merged-graph design and interaction-focused information bottleneck theory. Therefore, we conducted
an additional experiment to substantiate the model’s applicability beyond classification-only DDI
tasks. Specifically, we adapted I2Mole for regression by (1) replacing the final classification head
with a linear regression layer, (2) removing activation, normalization, and dropout, and (3) switching
the loss function from BCEWithLogitsLoss to MSELoss. Without further hyperparameter tuning, we
evaluated the model on five standard solute–solvent datasets involving Gibbs free energy of solvation
and hydration free energy (experimental and calculated) (Du et al., 2024; 2025a). Despite minimal
adaptation, I2Mole achieves competitive performance, comparable to strong baselines as present in
Table 15
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J COMPUTATIONAL COMPLEXITY

Alongside increasing the model’s complexity, there is a clear rise in computational time, accompanied
by performance improvements. This could be attributed to the more intricate models being able to
capture deeper inter-molecular relationships, thereby enhancing performance. However, when the
model’s parameters are further increased, its performance starts to degrade. This decline is likely due
to overfitting, as the model becomes overly complex, leading to difficulties in convergence during
training.

Table 12: Computational complexity analysis on I2Mole on ZhangDDI dataset.

Model Parameter (M) 23.4 26.8 29.5 31.7 35.4 38.4 40.3 44.5 49
Time Consumption (h) 7.4 8.3 9.5 10.4 12.17 13.23 15.6 18.4 22.3
Performance (ACC) 83.61 85.94 87.43 88.27 88.64 88.64 88.35 87.91 86.87

Table 13: Data scalability analysis on I2Mole on ZhangDDI dataset.

Training Data Ratio (%) 10 20 30 40 50 60 70 80 90
Test Data Ratio (%) 45 40 35 30 25 20 15 10 5
Performance (ACC) 53.27 65.27 72.34 80.34 88.27 88.64 89.01 91.34 92.25

The higher computational cost of I2Mole mainly arises from edge-level aggregation and message
passing, as the constructed merged graph contains more relational edges, which are inherent to graph
neural networks. We report two effective strategies that reduce cost while preserving most accuracy.

• Improving the message-passing mechanism by using lightweight modules in certain layers. As
shown in the Table 16, replacing the current MPNN layer with a standard GIN backbone reduces
the complexity to approximately one-fifth of the original, with only ∼4% drop in performance.
Therefore, we can consider replacing certain layers with GIN to reduce model complexity while
ensuring performance.

• By constructing a Molecular Merged Hypergraph Neural Network Du et al. (2025b) , specific
substructures of molecules, such as functional groups, are defined as hypernodes, reducing the
number of nodes in the merged graph and thus lowering the model complexity. We have made
preliminary attempts with the Hypergraph Neural Network (further optimizations is not within
the scope of this work.), where the computational time can be reduced to approximately half of
the original, and for larger molecules, the reduction in time consumption is even more significant,
without sacrificing much predictive accuracy.

• For further exploration, we consider replacing the current MPNN layers (Table 18, using 3 layers)
with GIN layers to better balance model complexity and performance. Our findings show that sub-
stituting two of the three layers with GIN significantly reduces model complexity (approximately
25%) while resulting in only a marginal performance drop of ∼0.36%. Despite this slight decrease,
the model still achieves SOTA compared to the baseline. In addition, integrating the model with
a hypergraph neural network framework—by predefining functional groups or motifs as hypern-
odes—can further reduce model complexity as present in Table 18. However, we observe that this
strategy leads to a more noticeable decline in performance, about ∼3.15%. Therefore, employing
lightweight GNN backbones and hypergraph frameworks to improve message aggregation and
reduce the number of atomic nodes presents a highly promising method, but further optimization
and parameter tuning are needed.

K LIMITATION ANALYSIS

I2Mole, based on the drug pair merged graph, achieves the extraction of rationale subgraphs in
molecular interactions and combines the trained environment codebook, significantly enhancing
generalization capabilities in domain generalization experiments. However, considering the rapid
advancements in the pharmaceutical field and real-world prescription scenarios, we foresee improve-
ments to the current framework in three key aspects:
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Table 14: Comparison of ZhangDDI, ChchMiner, and DeepDDI across different models.

Model Metric ZhangDDI ChchMiner DeepDDI
CGIB (Lee et al., 2023b) ACC 87.32 94.37 95.76

Time (h) 1.5 0.59 3.73
Memory (G) 5.1 3.9 7.4
Parameters (M) 11 11 11

CRML (Lee et al., 2023c) ACC 87.78 94.43 95.49
Time (h) 1.3 0.47 3.24
Memory (G) 4 3.4 6.1
Parameters (M) 10 10 10

SSI-DDI (Nyamabo et al., 2021) ACC 86.97 93.26 94.27
Time (h) 1.77 0.65 4.08
Memory (G) 3.1 2.7 4.4
Parameters (M) 13 13 13

DSN-DDI (Li et al., 2023) ACC 87.65 94.25 95.74
Time (h) 1.2 0.43 3.08
Memory (G) 2.9 3.6 4.1
Parameters (M) 0.19 0.19 0.19

IGIB-ISE (Zhang et al., 2025b) ACC 88.08 94.92 95.85
Time (h) 8.7 2.9 22.8
Memory (G) 36.2 27.3 39.4
Parameters (M) 10.5 10.5 10.5

MMGNN (Du et al., 2024) ACC 85.40 94.18 95.12
Time (h) 16.8 6.1 41.2
Memory (G) 38.1 30.4 39.7
Parameters (M) 389.10 389.10 389.10

Explainable GNN (Low et al., 2022b) ACC 84.24 93.62 94.71
Time (h) 11.3 4.4 29.1
Memory (G) 20.1 15.3 18.6
Parameters (M) 39.10 39.10 39.10

MMHNN (Du et al., 2025a) ACC 86.17 94.55 95.43
Time (h) 9.6 3.8 25.6
Memory (G) 15.4 12.1 14.9
Parameters (M) 32.26 32.26 32.26

CasualIB (Zhang et al., 2025a) ACC 88.14 94.94 95.86
Time (h) 15.4 5.4 33.8
Memory (G) 22.7 17.0 20.3
Parameters (M) 38.17 38.17 38.17

I2Mole (Ours) ACC 88.64 95.34 96.51
Time (h) 13.23 4.9 33.07
Memory (G) 17 13.3 11.7
Parameters (M) 35.4 35.4 35.4

• We aim to acquire more comprehensive data on drug interaction processes and analyses between
molecules, addressing the limitations of current research. In practice, patients often have multiple
comorbidities requiring the concurrent use of various drug categories. Thus, the interaction system
of multiple drugs remains a critical research area.

• Constructing relationship edges in pairs, as previously done, is an effective strategy for predicting
properties between molecular pairs. However, this approach significantly increases the graph’s
complexity, especially for large, intricate molecules, due to the substantial rise in degrees of
freedom, leading to higher computational resource and time consumption.
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Table 15: Test performance of different methods across eight independent runs. Mean values are
reported, with standard deviations shown in parentheses. (The best result in each column is underlined,
while the top-performing baseline is marked with a superscript dagger.)

MAE (↓) RMSE (↓)
FreeSolv CompSol Abraham CompSolv-Exp MNSol FreeSolv CompSol Abraham CompSolv-Exp MNSol

D-MPNN 0.684(0.052) 0.179(0.013) 0.454(0.036) 0.442(0.022) 0.459(0.032) 1.164(0.055) 0.343(0.017) 0.624(0.024) 0.672(0.051) 0.667(0.017)

Explainable GNN 0.724(0.031) 0.184(0.012) 0.486(0.042) 0.321(0.013) 0.396(0.011) 1.276(0.045) 0.367(0.012) 0.776(0.035) 0.404(0.054) 0.673(0.024)

SolvBERT 0.588(0.034) 0.167(0.014) 0.467(0.034) 0.382(0.023) 0.354(0.021) 1.021(0.043) 0.328(0.020) 0.652(0.022) 0.472(0.041) 0.623(0.104)

GAT 0.675(0.033) 0.187(0.011) 0.457(0.043) 0.970(0.031) 0.514(0.043) 1.185(0.075) 0.390(0.012) 0.726(0.040) 0.810(0.101) 0.812(0.124)

GROVER 0.623(0.054) 0.155(0.022) 0.307(0.035) 0.382(0.023) 0.354(0.024) 1.015(0.022) 0.332(0.016) 0.475(0.044) 0.491(0.053) 0.672(0.027)

SMD 0.574(0.036) 0.162(0.014) 0.374(0.024) 0.633(0.044) 0.427(0.034) 1.113(0.015) 0.317(0.011) 0.516(0.065) 1.023(0.152) 0.682(0.032)

Uni-Mol 0.565(0.038) 0.164(0.027) 0.322(0.071) 0.214(0.022) 0.374(0.021) 1.002(0.064) 0.303(0.020) 0.602(0.035) 0.373(0.043) 0.657(0.019)

Gem 0.584(0.041) 0.174(0.011) 0.201(0.065) 0.253(0.023) 0.367(0.025) 1.131(0.059) 0.290(0.019) 0.641(0.031) 0.551(0.023) 0.675(0.027)

CIGIN 0.564(0.057) 0.164(0.016) 0.254(0.010) 0.241(0.023) 0.347(0.023) 0.910(0.015) 0.318(0.020) 0.404(0.007) 0.411(0.032) 0.644(0.012)

CGIB 0.531(0.034) 0.156(0.014) 0.195(0.005) 0.203(0.033) 0.321(0.017) 0.892(0.022) 0.278(0.018) 0.391(0.006) 0.351(0.031) 0.613(0.023)

I2Mole 0.535(0.027) 0.158(0.011) 0.189(0.010) 0.175(0.014) 0.282(0.0011) 0.900(0.023) 0.268(0.013) 0.389(0.007) 0.306(0.030) 0.609(0.023)

Table 16: Replacing the current MPNN layer with standard backbones.

GNN backbone ACC (%) Train time (s) Test time (s) Parameters (M)

GraphSAGE 80.26 514.80 50.88 21.3
GIN 91.35 188.10 19.27 21.4
GAT 87.42 376.40 36.12 22.4

Baseline 95.34 1020.62 90.61 35.4

• An equally important aspect is that drugs often function only under specific conditions such as
temperature and pH levels. Therefore, we anticipate future work to comprehensively consider the
impact of external environments on the functionality of drug molecule pairs, thereby refining the
model’s capabilities.

L THE SCAFFOLD AND SIZE SPLITTING EXPERIMENTS RESULT.

The scaffold and size splitting experiments result are presented in Table 20.

In the scaffold split, we follow the standard practice used in molecular OOD evaluation Chung
et al. (2022b); Yang et al. (2022b). We first match all molecules against a fixed set of SMARTS-
defined scaffolds, consisting of nine predefined core substructure patterns in Table 19. All molecules
containing any of these scaffolds are assigned to the test set. The remaining molecules are then
randomly divided into training and validation sets using a 9:1 ratio. This ensures that structurally
distinct scaffolds appear exclusively in the test domain.

In the size split, following the procedure in Ji et al. (2023), we group molecules according to their
atomic size (number of atoms). Molecules are sorted in descending order of atomic size, and the
ordered sequence is partitioned as follows: the largest 60% are assigned to the training set, the middle
20% to the validation set, and the smallest 20% to the test set.

M VISUALIZATION ANALYSIS

Acetaminophen, a widely used medication for pain relief (analgesic) and fever reduction (antipyretic),
is frequently found in over-the-counter formulations. However, unexpected drug-drug interactions
(DDIs) between acetaminophen and compounds such as Fenoterol, Fosphenytoin, and Ethanol can
pose significant threats to patient safety, as depicted in Figure 7 (a). Specifically, the aromatic ring of
acetaminophen, along with its surrounding functional groups, is capable of interacting with target
molecules, particularly at the central carbon atom bonded to the carboxyl group. This key interaction
has been effectively captured by the I2Mole model. Additionally, the core subgraphs extracted by
I2Mole exhibit good connectivity and consistent distribution across regions, although the associated
weights may vary.

As demonstrated in Figure 7 (b), In the case of aspirin, a widely used anti-inflammatory drug that
also serves as an analgesic, antipyretic, and, at low doses, an antiplatelet agent, its interaction with
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Table 17: Comparison of ChchMiner across Hypergraph Neural Network (HGNN) and I2mole. AM:
average number of atoms per molecule.

Model Params (M) AM=340 AM=549 AM=638 AM=722 AM=1934 ACC(%)

I2Mole 35.40 780.74 871.57 962.28 1012.22 1274.38 95.34
HGNN 13.225 350.27 437.63 456.94 478.81 499.75 92.37

Table 18: Comparison of ChchMiner across different models.

GIN layer ACC (%) Decrease Train time (s) Test time (s) Params (M)

1 layer 95.07 0.27 757.79 70.38 31.40
2 layer 94.98 0.36 450.10 47.91 26.50
3 layer 91.35 3.99 188.10 19.27 21.40
2layer+HGNN 92.19 3.15 278.81 43.74 9.874
Baseline 95.34 – 1020.62 90.61 35.40

Table 19: SMARTS-defined scaffold patterns used in the scaffold split.

c1ccccc1C(=O)[O&H1] C#[C&H1] C[C&H2]Cl
C1=CCCC1 c1ccc2c(-,:c1)ccc1ccccc12 C1COCCN1

NS(=O)(=O)C c1ccccc1[N&+](=O)[O&-] O[N+]([O-])=O

molecules like Ibrutinib, Eluxadoline, and Glipizide is notably influenced by specific structural
features. The aromatic branch of aspirin (excluding the carboxyl group region) is more prone to
forming interactions with the nitrogen-containing heterocycles of other molecules. This suggests that,
during DDI events, the merged graph substructures of these molecules have an enhanced propensity
for direct interaction, leading to increased DDI potential. These observations provide important
insights into the structural determinants of DDIs, further emphasizing the predictive capability of the
I2Mole model in capturing complex inter-molecular relationships.

To further validate the interpretability of our model, we designed an evaluation strategy inspired
by Zhong et al. (2024) to benchmark the alignment between model-identified substructures and
experimentally supported chemical knowledge. Specifically, we curated a dataset of 73 chemicals
(perpetrators) known to inhibit metabolic enzymes through well-defined functional groups, thereby
inducing metabolism-mediated DDIs. These chemicals were paired with other drugs to generate
13,786 DDI instances. We evaluate the model at three complementary levels. DDI-level matching
examines the classification performance across all 343,036 MMDDI pairs in the dataset, comprising
171,518 true interactions—where drug A inhibits or induces the metabolism of drug B—and an equal
number of reverse-order negative samples generated by flipping the semantic roles of the two drugs.
The model must determine whether the predicted mechanism and direction for each pair are correct,
i.e., whether drug A truly affects drug B. Perpetrator-level matching further tests whether the model
can correctly identify which drug in the pair acts as the perpetrator and which serves as the victim.
Finally, Frequent Functional Groups Matching assesses substructure-level interpretability using a
manually curated set of 73 chemicals known from the literature to cause metabolism-mediated DDIs
through specific functional groups or reactive substructures.

Using I2Mole, we conducted interpretability analysis by comparing the substructures highlighted by
our model with enzyme-inhibition functional groups reported in the literature. The results demonstrate
that our model achieves a DDI-level matching rate of 60.63%, a perpetrator-level matching rate of
90.35%, and a frequent functional group matching rate of 78.42%, indicating that I2Mole captures
key pharmacological substructures consistent with experimentally validated mechanisms.
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Table 20: The scaffold and size splitting experiments result.

Model ZhangDDI Chchminer DeepDDI
Scaffold (↑) Size (↑) Scaffold (↑) Size (↑) Scaffold (↑) Size (↑)

SSI-DDI 72.34(3.73) 70.15(2.47) 72.34(1.22) 76.89(1.82) 78.27(2.12) 84.75(4.32)
MDF-SA-DDI 79.34(1.37) 79.46(0.48) 85.47(0.75) 84.23(0.63) 87.38(0.32) 86.58(0.37)
DSN-DDI 82.16(1.21) 80.38(1.23) 87.47(2.14) 87.92(1.32) 88.99(2.33) 86.53(1.65)
CGIB 83.32(1.26) 80.79(0.83) 89.47(1.10) 88.43(1.39) 89.56(2.22) 89.44(2.02)
CMRL 82.25(0.85) 81.32(0.77) 89.78(1.24) 88.49(1.91) 90.76(2.31) 90.77(1.22)
IE-HGNN 83.05(0.88) 81.67(0.69) 89.96(1.12) 89.02(1.37) 91.02(1.84) 91.05(1.14)
IGIB-ISE 83.22(0.79) 82.01(0.73) 90.11(1.05) 89.37(1.21) 91.25(1.77) 91.32(1.09)
Ours 83.45(0.92) 82.55(1.12) 90.32(1.71) 89.95(1.06) 91.76(2.63) 91.89(1.42)

Figure 7: Visualization of the important substructure pairs in six drug pairs. (a) Acetaminophen with
Fenoterol, Fosphenytoin, and Ethanol drug ligands. And (b) Aspirin with Ibrutinib, Eluxadoline, and
Glipizide drug ligands. The darker the color means the greater the weight.

N MAXIMUM COMMON SUBSTRUCTURE (MCS) ANALYSIS OF VQ
ENVIRONMENTS

We further assess whether the learned VQ codebook captures meaningful structural patterns by
performing an MCS exemplar analysis. In particular, we examine environment categories 5, 6, and 7,
which contain 4,556, 20,278, and 7,666 molecular pairs, respectively.

To evaluate the structural coherence of each VQ environment, we computed both inter-category
and intra-category MCS similarities. Since MCS is computed at the molecular level and the overall
number of molecules is large in our setting, the exact computation is computationally expensive.
Therefore, we adopted a sampling-based evaluation strategy:

• Inter-category analysis: For each pair of categories, we randomly sampled 200 SMILES from
each category. This yields 40,000 (200×200) cross-category molecular pairs. From these, we
randomly selected 1,000 pairs and computed their MCS similarity. The resulting distribution
reflects the structural overlap between the two categories.

• Intra-category analysis: For each of the three categories, we randomly sampled 200 SMILES
from all molecules assigned to that category. From these 200 molecules, we randomly selected 500
molecular pairs and computed their MCS similarity. These 500 values characterize the structural
consistency within the category.

Table 21: Interpretability evaluation results.

Evaluation Aspect Hit-Rate (%)
DDI-level Matching 60.63
Perpetrator-level Matching 90.35
Frequent Functional Groups Matching 78.42
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The MCS similarity between two molecules G1 and G2 is defined as:

SMCS =
|MCS|

min (|G1|, |G2|)
. (32)

For each category, we report the mean and variance of the intra-category and inter-category MCS
similarities, and for each pair of categories. The results are in Table 22.

Table 22: Inter-category and intra-category MCS similarity (mean ± variance).

Inter-Category Category 5 vs 6 Category 5 vs 7 Category 6 vs 7

MCS similarity 0.2523(0.1224) 0.2366(0.11014) 0.2491(0.1144)

Intra-Category Category 5 Category 6 Category 7

MCS similarity 0.3458(0.1259) 0.3921(0.1172) 0.3423(0.1109)

Our MCS-based analysis shows that the inter-category and intra-category structural similarities
differ substantially. This indicates that the VQ-based clustering is not merely a direct grouping of
molecules by shared substructures. Instead, the VQ codebook is learned in a latent embedding space,
initialized from distinct environment vectors env, and each environment substructure vector s̃env
is mapped through a non-linear projection layer into the discrete code space as Equation 20. As a
result, although the learned codewords reflect meaningful structural patterns, they are not expected to
correspond one-to-one to MCS-defined structural clusters. As Lvq converges, the model obtains a
stable codebook W , which clusters the infinite possible environment space E into a discretized set of
M finite environments represented by W .

Furthermore, we extracted a representative MCS structure for each category. Specifically, for each
category we randomly sampled 300 candidate molecules and computed the full 300×300 Tanimoto
fingerprint similarity matrix. We then identified the “central” molecule, i.e., the one with the highest
average Tanimoto similarity within the category and selected its top-40 nearest neighbors. Using
RDKit, we computed the MCES shared by these 40 molecules. The resulting representative MCS
patterns exhibit clear qualitative differences across categories: Category 5 tends to capture exocyclic
C–C motifs, Category 6 is enriched in aromatic ring structures, and Category 7 is dominated by
non-ring nitrogen atoms. These differences further confirm that the learned VQ codebook organizes
molecular environments into semantically coherent and structurally distinct groups.

Table 23: Representative MCS exemplars extracted for each VQ environment category.

Category MCS exemplar (SMARTS) Illusion
5 [#6&R]-&!@[#6&!R] Exocyclic C–C
6 6-member aromatic ring Aromatic rings
7 [#7&!R] Non-ring nitrogen atom

Overall, the VQ clustering results and the MCS analysis are not expected to align perfectly. Although
the intra-category MCS values within each VQ cluster are relatively small, indicating that molecules
in the same VQ category do not necessarily share large explicit common substructures, it is interesting
to observe that each category nevertheless exhibits a distinct representative MCS pattern, and these
patterns differ clearly across categories. This behavior is consistent with the fundamental difference
between the two approaches: VQ clusters substructures based on learned semantic similarity in
the latent embedding space, whereas MCS groups molecules purely according to graph-theoretic
structural overlap. As a result, VQ could capture higher-level or functional similarities that may not
correspond to large MCS fragments.
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