

I2MOLE: INTERACTION-AWARE INVARIANT MOLECULAR RELATIONAL LEARNING FOR GENERALIZABLE DRUG-DRUG INTERACTION PREDICTION

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Molecular interactions are a common phenomenon in physical chemistry, often
 014 resulting in unexpected biochemical properties adverse to human health, such as
 015 drug-drug interactions. Machine learning has shown great potential for predicting
 016 these interactions rapidly and accurately. However, the complexity of molecular
 017 structures and the diversity of interactions often reduce prediction accuracy and
 018 hinder generalizability. Identifying core invariant substructures (i.e., rationales)
 019 has become essential to improving the model’s interpretability and generalization.
 020 Despite significant progress, existing models frequently overlook the pairwise
 021 molecular interactions, leading to insufficient capture of interaction dynamics.
 022 To address these limitations, we propose I2Mole (Interaction-aware Invariant
 023 Molecular learning), a novel framework for generalizable **drug-drug interaction**
 024 prediction. I2Mole meticulously models atomic interactions by first establishing
 025 indiscriminate connections between intermolecular atoms, which are then refined
 026 using an improved graph information bottleneck theory tailored for merged graphs.
 027 To further enhance model generalization, we construct an environment codebook
 028 by environment subgraph of the merged graph. This approach not only could
 029 provide noise source for optimizing mutual information but also preserve the
 030 integrity of chemical semantic information. By comprehensively leveraging the
 031 information inherent in the merged graph, our model accurately captures core
 032 substructures and significantly enhances generalization capabilities. Extensive
 033 experimental validation demonstrates I2Mole’s efficacy and generalizability. The
 034 implementation code is available at <https://anonymous.4open/r/I2Mol-C616>.

1 INTRODUCTION

037 The molecular interaction process can give rise to additional physical or chemical properties when
 038 two or more molecules **are** combined (Varghese & Mushrif, 2019; D’Souza et al., 2011; Low et al.,
 039 2022a). This phenomenon is common in the fields of physics, chemistry, and medicine *etc.*, such
 040 as changes in Gibbs free energy during dissolution (*i.e.*, solute-solvent pair) (Chung et al., 2022a;
 041 Fang et al., 2024; Xia et al., 2023) and synergistic or adverse reactions between drugs (*i.e.*, drug-drug
 042 pairs) (Lee et al., 2023b; Klemperer, 1992). Due to the complexity of molecular structures and the
 043 diversity of molecular interactions, conventional modeling approaches are limited and susceptible to
 044 noise, undermining prediction accuracy. Meanwhile, they lack generalizability and reliability severely
 045 limits their applicability. Based on this, mining the invariant core substructures of molecules (*i.e.*,
 046 rationale) has become a widely accepted strategy to enhance both interpretability and generalization
 047 like the CGIB (Lee et al., 2023a) and MoleOOD (Yang et al., 2022b).

048 Although current methods have attracted widespread attention in predicting the properties of molecu-
 049 lar pairs, two inherent shortcomings remain underexplored. The first is **Insufficiency in molecular**
 050 **interaction modeling.** Existing methods demonstrate proficiency in elucidating essential structural
 051 characteristics for individual molecular models. However, when **drug-drug** interactions (DDI) occur,
 052 pivotal substructures may exhibit considerable variation. For example, Propranolol and Verapamil
 053 (Figure 1 (a)) are commonly prescribed drugs for the treatment of hypertension and cardiac ar-
 rythmias, yet they act through distinct pharmacological mechanisms that affect cardiovascular
 function. The aromatic ring and hydroxyl groups in Propranolol are critical for receptor binding and

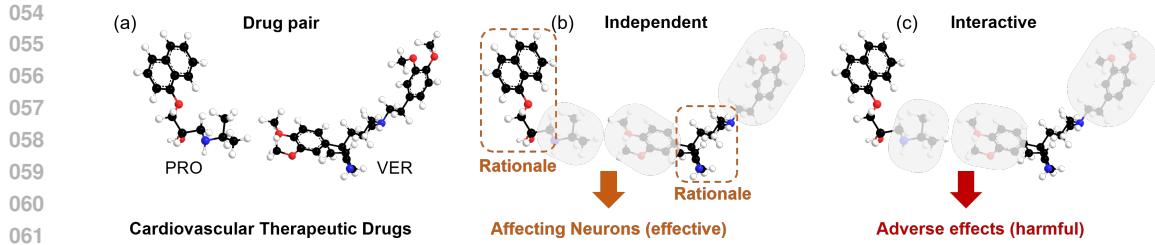


Figure 1: An Example of molecular interactions. (a) Propranolol (PRO) and Verapamil (VER) are widely prescribed cardiovascular therapeutic agents; (b) each drug is influenced by distinct core substructures to achieve effect; (c) harmful effects on human health occur by co-administered.

β -adrenergic inhibition, while the phenyl rings and amino moieties in Verapamil mediate L-type calcium channel inhibition, as illustrated in Figure 1 (b). However, when co-administered, the interaction between Propranolol’s β -blocking pharmacophore and Verapamil’s calcium-channel-blocking substructures may excessively suppress cardiac conduction, leading to severe adverse effects such as excessive bradycardia or atrioventricular block (Figure 1 (c)). Therefore, comprehensive modeling of intermolecular interactions is crucial and necessary for a profound understanding of molecular interactions.

Some current models have noticed the aforementioned shortcomings (Behler, 2015; 2016). However, they still **lack consideration of model generalization**. Given the diverse and complex nature of molecular species in real-world scenarios, the data used for training and testing may inevitably be sampled from different distributions, thus presenting challenges related to OOD (Paul et al., 2021; Petrova, 2013; Yang et al., 2022b). While introducing integrated noise injection techniques to simulate diverse environmental distributions holds promise for enhancing model generalization and capturing core rationales, several drawbacks exist. Specifically, 1) The simulation of noise data may fail to accurately reflect authentic environmental vectors in chemical space. 2) Indiscriminate noise injection can distort semantic information and hinder model convergence, while random environmental vectors may inadequately represent the broad distribution of molecular interactions; and 3) when the injected noise variance is too small, the noise effect may vanish, defeating its intended purpose.

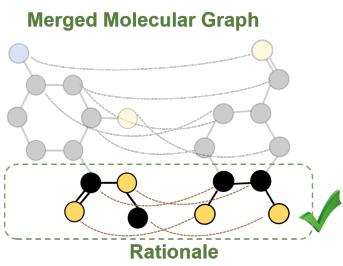


Figure 2: Diagram illustrating molecular interaction modeling to capture rationales. Molecular pairs will be constructed into a merged graph by connecting atoms pairwise (dashed lines). Please note that to avoid excessive complexity, some unimportant relation edges will be removed (unconnected)

In light of this, we introduce an **Interaction-aware Invariant Molecular** learning framework, termed I2Mole, for generalizable **DDI** prediction. Spontaneous molecular interaction phenomena, tend to occur in specific molecular structures (e.g., -OH, =O, N), giving rise to stronger intermolecular interactions. We carefully design dynamic weighted relational edges to model the atom–atom interaction relationships. Conversely, for atomic pairwise interactions that rarely occur, we employ iterative truncation to restrict their message passing processes, thereby reducing interference with the overall learning of the merged graph while moderately lowering graph complexity, as presented in Figure 2. Given the vastness and largely unexplored nature of the chemical space, we further introduce the concept of vector quantization (VQ) (van den Oord et al., 2017; Razavi et al., 2019) for molecular interactions to construct a merged graph environment codebook. This codebook clusters the potential environments of molecules in the training set into a predefined number

of categories, and the learned environmental distribution also serves as a controllable noise source for mutual information optimization (Duncan, 1970; Yu et al., 2022b). Therefore, our I2Mole which incorporates explicit molecule interactions and an improved environment codebook, effectively achieves generalizable property prediction on various DDI datasets.

108

2 PRELIMINARIES

109

2.1 PROBLEM FORMULATION

110 A molecule can be depicted as a graph \mathcal{G} whose nodes \mathcal{V} denote the atoms and edges \mathcal{E} act as the
 111 bonds Wen et al. (2021). \mathcal{U} is the global feature vector which is extracted from each molecule
 112 (Appendix D). Given a set of drug molecular graph pairs $\mathcal{D} = \{(\mathcal{G}_a^1, \mathcal{G}_b^1), (\mathcal{G}_a^2, \mathcal{G}_b^2), \dots, (\mathcal{G}_a^n, \mathcal{G}_b^n)\}$
 113 and their associated target values $\mathbb{Y} = \{\mathbf{Y}^1, \mathbf{Y}^2, \dots, \mathbf{Y}^n\}$, our objective is to train a model \mathcal{M} that
 114 can classify the target values for arbitrary drug pairs in an end-to-end manner, *i.e.*, $\mathbf{Y}^i = \mathcal{M}(\mathcal{G}_a^i, \mathcal{G}_b^i)$.
 115

116

2.2 GRAPH INFORMATION BOTTLENECK (GIB)

117 According to the GIB principle (Yu et al., 2020; 2022b; Miao et al., 2022), we could get:

$$118 \quad \mathcal{G}_{\text{IB}} = \arg \min_{\mathcal{G}_{\text{sub}} \in \mathcal{S}} -I(\mathbf{Y}; \mathcal{G}_{\text{sub}}) + \beta I(\mathcal{G}; \mathcal{G}_{\text{sub}}). \quad (1)$$

119 Intuitively, \mathcal{S} represents the set of \mathcal{G}_{sub} , and \mathcal{G}_{IB} is the core subgraph of \mathcal{G} , which discards information
 120 by minimizing the mutual information $I(\mathcal{G}; \mathcal{G}_{\text{sub}})$, while preserving target-relevant information by
 121 maximizing the mutual information $I(\mathbf{Y}; \mathcal{G}_{\text{sub}})$.
 122

123

2.3 INVARIANT LEARNING

124 Given the distribution shift between training and testing data, recent studies (Rojas-Carulla et al.,
 125 2018a; Arjovsky et al., 2019; Wu et al., 2022a) propose the existence of a potential environment
 126 variable **env** to express this problem:

$$127 \quad \min_f \max_{\mathcal{G}_{\text{env}} \in \mathbf{E}} \mathbb{E}_{(\mathcal{G}, \mathbf{Y}) \sim p(\mathcal{G}, \mathbf{Y} | \text{env} = \mathcal{G}_{\text{env}})} [R(f(\mathcal{G}), \mathbf{Y}) | \mathcal{G}_{\text{env}}], \quad (2)$$

128 where \mathbf{E} denotes the environment support, $f(\cdot)$ represents the predictive model, and $R(\cdot, \cdot)$ is the risk
 129 function. The label \mathbf{Y} is independent of the environment \mathcal{G}_{env} , conditioned on the subgraph \mathcal{G}_{sub} :
 130

$$131 \quad \mathbf{Y} \perp \mathcal{G}_{\text{env}} | \mathcal{G}_{\text{sub}}, \quad (3)$$

132 where \perp denotes probabilistic independence. These principles collectively protect predictions from
 133 external influences, ensuring that the rationale comprehensively captures all discriminative features.
 134 This is for a single molecule, and we would extend it to molecular pairs.
 135

136

3 METHODOLOGY

137 In this section, we detail our proposed method. In Section 3.1, we define the merged graph and the
 138 intermolecular message passing mechanism. Section 3.2 explains the details of subgraph extraction by
 139 GIB theory. In Section 3.3, we describe how to inject environmental embeddings into the rationales
 140 to enhance model generalization. Section 3.4 presents the total loss function of I2Mole.
 141

142

3.1 MERGED MOLECULAR REPRESENTATION

143 **Molecule Merging.** The merged graph $\tilde{\mathcal{G}}$ could be generated by establishing a weighted relational
 144 edge between two molecules which connects each atom pairwise.
 145

$$146 \quad \tilde{\mathcal{G}} = \{\mathcal{R}, \mathcal{E}, \mathcal{V}, \mathcal{U}\}. \quad (4)$$

147 The set of relation edges are \mathcal{R} :

$$148 \quad \mathcal{R} = \{(r_{ij}, v_{ai}, v_{bj})\}_{k=1}^{N^a \times N^b}, \quad (5)$$

149 where $ai \in \{1, 2, 3, \dots, N^a\}$, $bj \in \{1, 2, 3, \dots, N^b\}$. N^a and N^b are the total number of atoms in
 150 drug molecular graph \mathcal{G}_a , \mathcal{G}_b . r_{ij} represents the relation edge. And k is the index of \mathcal{R} .
 151

152 **Intra-molecular message passing.** Generally, in this merged molecular graph $\tilde{\mathcal{G}}$, the message passing
 153 process is first executed intramolecule. In this process, e_{ij} is updated to e'_{ij} by aggregating the initial
 154

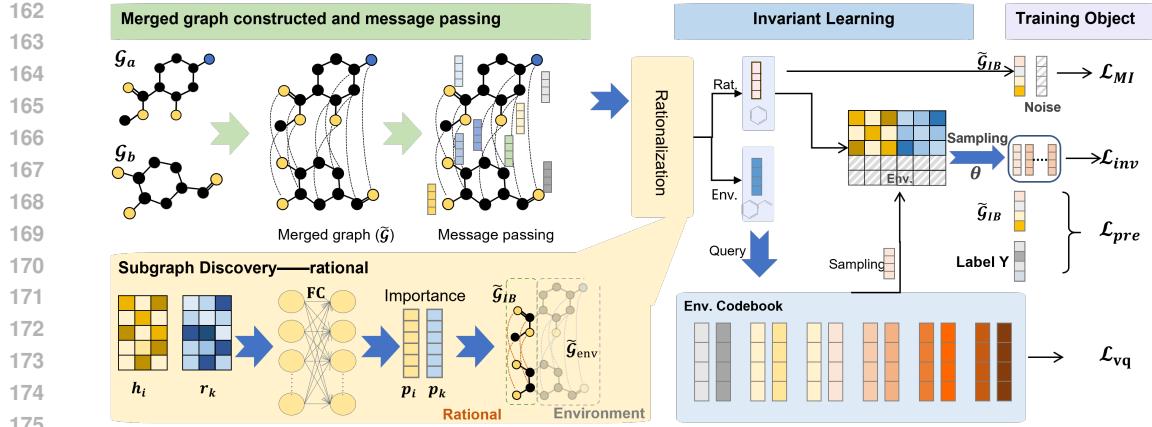


Figure 3: Overview of our model. Initially, molecular pairs construct a merged graph to facilitate the message passing process. Subsequently, subgraphs are extracted based on the GIB, and the environmental components are recorded in a codebook. During the invariant learning process, the rationale part concatenates different environment embeddings to achieve invariant representations.

bond features, and the two atomic features, v_i and v_j , and the global features u . In addition, the feature vector v_i and u are updated to v'_i and u'_i respectively:

$$e'_{ij} = e_{ij} + \text{LeakyReLU}[\text{FC}(v_i + v_j) + [\text{FC}(e_{ij}) + [\text{FC}(u)]], \quad (6)$$

$$\hat{e}_{ij} = \frac{\sigma(e'_{ij})}{\sum_{j' \in N_i} \sigma(e'_{ij'}) + \epsilon}, \quad v'_i = v_i + \text{LeakyReLU}[\text{FC}(v_i + \sum_{j \in N_i} \hat{e}_{ij} \odot \text{FC}(v_j)) + \text{FC}(u)], \quad (7)$$

$$u' = u + \text{LeakyReLU}[\text{FC}(\frac{1}{N^v} \sum_{i=1}^{N^v} v'_i + \frac{1}{N^e} \sum_{k=1}^{N^e} e'_k + u)], \quad (8)$$

where FC is a fully connected layer. \odot denotes the Hadamard product. $\sigma(\cdot)$ is sigmoid activation function, and ϵ is a fixed constant (0.0001). N^v and N^e are the number of atoms and bonds.

Intermolecular message passing. We utilize GAT network(Veličković et al., 2017) for intermolecular message passing to calculate the weight of the relation edge r_{ij} .

$$r_{ij} = \text{LeakyReLU}(\text{FC}(\mathbf{W}v'_{ai}, \mathbf{W}v'_{bj})), \quad (9)$$

where W is the learnable weight matrix. Based on the calculated attention coefficients (r_{ij}) for the relation edge, we perform global sorting and retain the top_x% (a hyperparameter):

$$r'_{ij} = \begin{cases} r_{ij} & \text{if } r_{ij} \geq X, \\ 0 & \text{otherwise.} \end{cases} \quad (10)$$

Here, X represents the threshold corresponding to the top_x% ranking of r_{ij} values. The selected attention coefficients are then normalized across the entire graph to facilitate the intermolecular information-passing process. The atomic feature v'_{ai} for i is updated, also for v'_{bj} :

$$\alpha_{ij} = \frac{r'_{ij}}{\sum_{i,j} r'_{ij}}, \quad v''_{ai} = (1 - \sum_{j \in N_b} \alpha_{ij})v'_{ai} + \sum_{j \in N_b} \alpha_{ij}v'_{bj}, \quad (11)$$

3.2 CORE SUBSTRUCTURE EXTRACTION BASED ON GIB

We optimize the objective Equation 12 to detect the core structure in the merged graph:

$$\tilde{\mathcal{G}}_{\text{IB}} = \arg \min_{\tilde{\mathcal{G}}_{\text{sub}} \in \tilde{\mathcal{S}}} -I(\mathbf{Y}; \tilde{\mathcal{G}}_{\text{sub}}) + \beta I(\mathcal{G}; \tilde{\mathcal{G}}_{\text{sub}}), \quad (12)$$

where $\tilde{\mathcal{S}}$ represents the set of $\tilde{\mathcal{G}}_{\text{sub}}$. Each term indicates the prediction and compression terms respectively, which should be minimized during training, as outlined below.

216 3.2.1 EXTRACT TARGET-ORIENTED INFORMATION
217218 Minimizing $-I(\mathbf{Y}; \tilde{\mathcal{G}}_{IB})$, which is to calculate upper bound of $-I(\mathbf{Y}; \tilde{\mathcal{G}}_{IB})$. Given the merged graph
219 $\tilde{\mathcal{G}}$, its label information \mathbf{Y} , and the learned IB-graph $\tilde{\mathcal{G}}_{IB}$, we have:
220

221
$$-I(\mathbf{Y}; \tilde{\mathcal{G}}_{IB}) \leq \mathbb{E}_{\mathbf{Y}; \tilde{\mathcal{G}}_{IB}} [-\log p_{\theta}(\mathbf{Y} | \tilde{\mathcal{G}}_{IB})] := \mathcal{L}_{pre}, \quad (13)$$

222

223 where $p_{\theta}(\mathbf{Y} | \tilde{\mathcal{G}}_{IB})$ is variational approximation of $p(\mathbf{Y} | \tilde{\mathcal{G}}_{IB})$. $p_{\theta}(\mathbf{Y} | \tilde{\mathcal{G}}_{IB})$ is a predictor parametrized
224 by θ . Thus, we can minimize the upper bound of $-I(\mathbf{Y}; \tilde{\mathcal{G}}_{IB})$ by minimizing the model prediction
225 loss $\mathcal{L}_{pre}(\mathbf{Y}, \tilde{\mathcal{G}}_{IB})$ with cross-entropy loss. Proofs are in Appendix C.1 (Sufficiency assumption (Yang
226 et al., 2022b)).
227228 3.2.2 OPTIMIZE MINIMIZED $\tilde{\mathcal{G}}$
229230 Minimizing $I(\tilde{\mathcal{G}}; \tilde{\mathcal{G}}_{IB})$, which is to calculate upper bound of $I(\tilde{\mathcal{G}}; \tilde{\mathcal{G}}_{IB})$. Inspired by a recent approach
231 on graph information bottleneck (Yu et al., 2022b), we also minimize $I(\tilde{\mathcal{G}}; \tilde{\mathcal{G}}_{IB})$ by injecting noise
232 into node representations. Then, we dampen the information in $\tilde{\mathcal{G}}$ by injecting noise into node
233 representations with a learned probability. Let ϵ be the noise sampled from a parametric noise
234 distribution. We assign each node a probability of being replaced by ϵ . Specifically, for the i -th node,
235 the k -th relation edge, we learn the probability p_i and p_k using a fully connected layer. Then, we
236 apply a Sigmoid function on the output of fully connected layer to ensure $p_i, p_k \in [0, 1]$:
237

238
$$p_i = \text{Sigmoid}(\text{FC}(h_i)), \quad p_k = \text{Sigmoid}(\text{FC}(r_k)). \quad (14)$$

239

240 Next, if a k -th relation edge is connected to the i -th node, we adjust the probability p_i by adding $\frac{p_k}{N}$
241 to it, where N depends on whether the i -th node is in \mathcal{G}_a or \mathcal{G}_b :
242

243
$$p_i = \begin{cases} p_i + \frac{p_k}{N_b} & \text{if } i \in \mathcal{G}_a \text{ and } k\text{-th edge is connected to } i\text{-th node,} \\ p_i + \frac{p_k}{N_a} & \text{if } i \in \mathcal{G}_b \text{ and } k\text{-th edge is connected to } i\text{-th node.} \end{cases} \quad (15)$$

244

245 We then replace the node representation h_i by ϵ with probability p_i :
246

247
$$z_i = \lambda_i h_i + (1 - \lambda_i)\epsilon, \quad \mathbf{h}_i^r = (1 - \lambda_i)\mathbf{h}_i, \quad (16)$$

248

249 where $\lambda_i \sim \text{Bernoulli}(p_i)$, \mathbf{h}_i^r is the irrelevant substructure node which would be used to construct
250 $\tilde{\mathcal{G}}_{env}$. The transmission probability p_i controls the information sent from h_i to z_i . If $p_i = 1$, then all
251 the information in h_i is transferred to z_i without loss. On the contrary, when $p_i = 0$, then z_i contains
252 no information from h_i but only noise. We hope p_i is learnable so that we can selectively preserve
253 the information in $\tilde{\mathcal{G}}_{IB}$. However, λ_i is a discrete random variable and we cannot directly calculate
254 the gradient of p_i . Therefore, we employ the concrete relaxation (Jang et al., 2016) for λ_i :
255

256
$$\lambda_i = \text{Sigmoid}\left(\frac{1}{t} \log \frac{p_i}{1 - p_i} + \log \frac{u}{1 - u}\right), \quad (17)$$

257

258 where t is the temperature parameter and $u \sim \text{Uniform}(0, 1)$. Another critical aspect of noise
259 injection is the characterization of the injected noise. It is important that arbitrary noise can be
260 detrimental to the semantic integrity of the input graph, leading to predictions that deviate from the
261 actual graph properties. Conversely, appropriately selected noise can provide a variational upper
262 bound to the overall objective. Therefore, the minimizing the upper bound of $I(\tilde{\mathcal{G}}_{IB}; \tilde{\mathcal{G}})$ as follows:
263

264
$$I(\tilde{\mathcal{G}}_{IB}; \tilde{\mathcal{G}}) \leq \mathbb{E}_{\mathcal{G}} \left[-\frac{1}{2} \log A_{\tilde{\mathcal{G}}} + \frac{1}{2m_{\tilde{\mathcal{G}}}} A_{\tilde{\mathcal{G}}} + \frac{1}{2m_{\tilde{\mathcal{G}}}} B_{\tilde{\mathcal{G}}}^2 \right] := \mathcal{L}_{MI}(\tilde{\mathcal{G}}_{IB}, \tilde{\mathcal{G}}), \quad (18)$$

265

266 where $A_{\tilde{\mathcal{G}}} = \sum_{j=1}^{m_{\tilde{\mathcal{G}}}} (1 - \lambda_j)^2$ and $B_{\tilde{\mathcal{G}}} = \frac{\sum_{j=1}^{m_{\tilde{\mathcal{G}}}} \lambda_j (h_j - \mu_h)}{\sigma_h}$. More details are given in Appendix C.2.
267

270 3.3 ENVIRONMENT INFERENCE
271

272 Based on the above steps, we can identify the decisive core substructure $\tilde{\mathcal{G}}_{IB}$ in Equation 12. However,
273 relying solely on $\tilde{\mathcal{G}}_{IB}$ may not ensure robust generalization across diverse distributions. To enhance
274 its robustness, we incorporate principles from invariance learning theory, integrating features from
275 various environments encountered across diverse distributions. The problem definition is as follows:

$$276 \min_f \max_{\tilde{\mathcal{G}}_{env} \in \mathbf{E}} \mathbb{E}_{(\tilde{\mathcal{G}}, \mathbf{Y}) \sim q(\tilde{\mathcal{G}}_{env})} [R(f(\tilde{\mathcal{G}}), \mathbf{Y}) \mid \tilde{\mathcal{G}}_{env}], \quad (19)$$

277 where \mathbf{E} denotes the support of environments. The irrelevant substructures $\tilde{\mathcal{G}}_{env}$ can be viewed
278 as the environment, with each node embedding being \mathbf{h}_i^r . $q(\tilde{\mathcal{G}}_{env})$ is the distribution of data under
279 environment $\tilde{\mathcal{G}}_{env}$ combined with various rationales, $f(\cdot)$ is the prediction model and $R(\cdot, \cdot)$ is the
280 risk function such as cross-entropy loss. Equation 19 aims to minimize the maximum errors across
281 different environments, thus guaranteeing the capture of invariance across environments (Wu et al.,
282 2022c;b).
283

284 Directly solving Equation 19 is impractical due to limited training data across the various environments in \mathbf{E} . Here, we introduce VQ van den Oord et al. (2017); Razavi et al. (2019) to create a
285 trainable environment codebook $W = \{env_1, env_2, \dots, env_M\}$, defining a latent embedding space
286 $env \in \mathbb{R}^{M \times F}$. Here, M represents the number of discrete environments (i.e., env), and F denotes
287 the dimension of each latent vector. A nearest neighbor lookup is used in the shared embedding space
288 \mathbf{E} to find the closest latent vector env_m , indexed by m . Additionally, the set2set network (Vinyals
289 et al., 2015) is utilized to pool $\tilde{\mathcal{G}}_{IB}$, $\tilde{\mathcal{G}}_{env}$, $\tilde{\mathcal{G}}$, resulting in the substructure representation vectors \tilde{s}_{IB} ,
290 \tilde{s}_{env} and $\tilde{s}_{\mathcal{G}}$. This process acts as a specific non-linearity that maps the latent vectors \tilde{s}_{env} to one of
291 the M embedding vectors:
292

$$294 q(m \mid \tilde{s}_{env}) = \begin{cases} 1 & \text{for } m = \arg \min_j \|\tilde{s}_{env} - env_j\|_2, \\ 0 & \text{otherwise.} \end{cases} \quad (20)$$

295 To update the codebook and encourage the output of the encoder to stay close to the chosen codebook
296 embedding, where the $sg[\cdot]$ denotes the stop-gradient and δ is set to 0.25 Xia et al. (2022):
297

$$299 \mathcal{L}_{vq} = \|\mathbf{sg}[\tilde{s}_{env}] - env_m\|_2^2 + \delta \|\tilde{s}_{env} - \mathbf{sg}[env_m]\|_2^2. \quad (21)$$

300 As \mathcal{L}_{vq} gradually converges, we obtain a stable codebook set W , which clusters the infinite possible
301 environment space \mathbf{E} into a discretized set of M finite environments represented by W . Subsequently,
302 we traverse all potential environment vectors (env) and assign rationales to different environments to
303 achieve stable predictions. This ensures that the prediction results of the rationales are independent,
304 thereby guaranteeing the independence (Invariance assumption Yang et al. (2022b)).
305

$$306 \min_f \mathbb{E}_{env_i \in W} \mathbb{E}_{(\tilde{\mathcal{G}}, \mathbf{Y}) \sim q(env_i)} [R(f(\tilde{s}_{\mathcal{G}}), \mathbf{Y}) \mid env_i]. \quad (22)$$

308 This formula can be obtained by minimizing the weighted sum of cross-entropy losses across different
309 environments. Assuming a total of C classes, let ϕ_i denote the probability that env belongs to env_i ,
310 and let Φ represents the classification head that maps the molecular representation to the category
311 labels. the encoder f_{env} and the classification head Φ together form the prediction model. So, the
312 loss can be expressed in the following form, where \parallel denotes the concatenation operation:
313

$$314 \mathcal{L}_{inv} = - \sum_{i=1}^M \phi_i \sum_{\tilde{s}_{\mathcal{G}} \in \mathcal{D}_{train}} \sum_{c=1}^C \mathbf{Y}_{\tilde{s}_{\mathcal{G}}} \log \Phi(f_{env}(\tilde{s}_{IB} \parallel env_i)). \quad (23)$$

316 3.4 TRAINING OBJECTIVE
317

318 Finally, we train the model with the following objective:
319

$$320 \mathcal{L}_{total} = \mathcal{L}_{inv} + \mathcal{L}_{pre} + \beta \mathcal{L}_{MI} + \gamma \mathcal{L}_{vq} \quad (24)$$

321 Here, \mathcal{L}_{pre} and \mathcal{L}_{MI} are guided by the GIB. \mathcal{L}_{pre} is the cross-entropy loss for classification tasks. \mathcal{L}_{MI}
322 represents the KL divergence between the core substructures and the non-core subgraph, encour-
323 aging substructure compression. And \mathcal{L}_{inv} aims to minimize the disturbance loss across various
324 environments. β and γ are trade-off parameters that govern the weight of \mathcal{L}_{MI} and \mathcal{L}_{vq} .
325

324 Table 1: Performance of different methods in transductive setting. (Bold numbers are the best results,
 325 while the top-performing baseline is superscript cross. **The standard deviations is in parentheses**).
 326

	ZhangDDI			ChchMiner			DeepDDI		
	ACC (↑)	AUROC (↑)	F1 (↑)	ACC (↑)	AUROC (↑)	F1 (↑)	ACC (↑)	AUROC (↑)	F1 (↑)
DeepDDI	83.35 _(0.49)	91.13 _(0.58)	80.24 _(0.47)	90.34 _(0.44)	95.71 _(0.37)	91.83 _(0.28)	92.39 _(0.38)	95.10 _(0.42)	91.32 _(0.39)
SSI-DDI	86.97 _(0.62)	93.76 _(0.34)	82.99 _(0.30)	93.26 _(0.24)	97.81 _(0.22)	93.11 _(0.19)	94.27 _(0.25)	97.42 _(0.31)	95.41 _(0.19)
MDF-SA-DDI	86.89 _(0.15)	94.03 _(0.22)	83.67 _(0.14)	94.63 _(0.21)	98.10 _(0.17)	94.17 _(0.16)	94.12 _(0.21)	88.84 _(0.26)	96.13 _(0.17)
DSN-DDI	87.65 _(0.13)	94.63 _(0.18)	84.30 _(0.09)	94.25 _(0.11)	98.31 _(0.10)	95.34 _(0.08)	95.74 _(0.18)	98.06 _(0.16)	96.71 _(0.11)
CGIB	87.32 _(0.71)	94.43 _(0.60)	84.53 _(0.45)	94.37 _(0.39)	98.38 _{(0.31)†}	95.44 _(0.24)	95.76 _(0.72)	98.08 _{(0.64)†}	96.53 _(0.53)
CMRL	87.78 _(0.37)	94.08 _(0.23)	84.78 _(0.25)	94.43 _(0.25)	98.37 _(0.12)	95.62 _(0.17)	95.49 _(0.34)	98.03 _(0.31)	96.82 _{(0.29)†}
IE-HGNN	86.93 _(0.18)	94.32 _(0.23)	84.93 _(0.12)	94.48 _(0.28)	98.36 _(0.19)	95.57 _(0.18)	95.57 _(0.22)	97.98 _(0.23)	96.58 _(0.20)
IGIB-ISE	88.08 _{(0.26)†}	94.71 _{(0.18)†}	85.39 _{(0.17)†}	94.92 _{(0.21)†}	98.24 _(0.14)	95.84 _{(0.16)†}	95.85 _{(0.19)†}	98.02 _(0.20)	96.71 _(0.15)
Ours	88.64 _(0.24)	95.12 _(0.12)	85.87 _(0.20)	95.34 _(0.19)	98.84 _(0.10)	96.21 _(0.25)	96.51 _(0.14)	99.04 _(0.22)	97.53 _(0.15)

335 Table 2: Performance of different methods in inductive settings. (Bold numbers are the best results,
 336 while the top-performing baseline is superscript cross. **The standard deviations is in parentheses**).
 337

	Type1								
	ZhangDDI			ChchMiner			DeepDDI		
ACC (↑)	AUROC (↑)	F1 (↑)	ACC (↑)	AUROC (↑)	F1 (↑)	ACC (↑)	AUROC (↑)	F1 (↑)	
DeepDDI	60.84 _(1.34)	59.51 _(1.18)	43.81 _(1.26)	66.19 _(1.08)	68.51 _(1.53)	67.67 _(1.29)	64.39 _(1.71)	69.52 _(1.53)	68.31 _(1.45)
SSI-DDI	62.38 _(1.53)	69.56 _(1.21)	47.59 _(1.17)	76.94 _(1.32)	79.64 _(1.53)	77.61 _(1.24)	69.77 _(0.86)	75.93 _(1.14)	72.23 _(0.77)
MDF-SA-DDI	64.51 _(1.39)	70.99 _(1.27)	51.53 _(1.15)	75.39 _(0.80)	80.47 _(0.68)	79.83 _(1.05)	71.13 _(0.77)	80.54 _(0.94)	71.61 _(0.88)
DSN-DDI	67.68 _(0.87)	72.49 _(1.02)	53.64 _(0.77)	78.94 _(0.72)	85.93 _(0.65)	83.81 _(0.83)	73.35 _(0.62)	83.11 _(0.76)	75.68 _(0.70)
CGIB	68.34 _(0.66)	72.80 _(0.43)	57.29 _{(0.58)†}	79.75 _(0.73)	86.41 _(0.93)	85.13 _(0.43)	73.86 _(0.97)	80.80 _(0.53)	78.47 _(0.47)
CMRL	68.38 _(1.12)	74.59 _(1.05)	56.41 _(0.97)	80.54 _(0.66)	87.64 _(0.54)	86.55 _{(0.57)†}	74.12 _(0.55)	84.96 _(0.87)	77.81 _(0.74)
IE-HGNN	68.24 _(0.92)	74.02 _(0.83)	56.73 _(0.88)	80.21 _(0.77)	87.92 _(0.69)	86.21 _(0.81)	73.51 _(0.64)	85.07 _(0.71)	77.42 _(0.66)
IGIB-ISE	68.49 _{(0.87)†}	74.61 _{(0.78)†}	57.10 _(0.74)	80.83 _{(0.71)†}	88.22 _{(0.64)†}	86.52 _(0.70)	74.32 _{(0.61)†}	85.41 _{(0.66)†}	78.65 _{(0.58)†}
Ours	69.12 _(0.23)	75.14 _(0.42)	57.89 _(1.55)	81.59 _(1.10)	88.51 _(0.31)	87.43 _(0.74)	75.27 _(0.64)	85.62 _(0.74)	78.96 _(0.37)

	Type2								
	ZhangDDI			ChchMiner			DeepDDI		
ACC (↑)	AUROC (↑)	F1 (↑)	ACC (↑)	AUROC (↑)	F1 (↑)	ACC (↑)	AUROC (↑)	F1 (↑)	
DeepDDI	58.62 _(2.03)	56.34 _(1.97)	25.19 _(4.34)	63.78 _(2.14)	66.71 _(2.67)	71.37 _(3.38)	61.68 _(4.18)	65.17 _(3.72)	66.74 _(4.16)
SSI-DDI	57.24 _(2.38)	59.34 _(3.26)	37.16 _(3.84)	65.61 _(2.51)	68.39 _(1.94)	74.95 _(2.17)	65.53 _(3.53)	69.37 _(4.16)	62.18 _(3.94)
MDF-SA-DDI	57.63 _(1.89)	55.97 _(1.67)	33.94 _(2.78)	65.24 _(1.97)	68.54 _(2.04)	77.32 _(1.89)	66.34 _(1.55)	70.81 _(2.01)	70.95 _(1.71)
DSN-DDI	58.37 _(1.31)	58.88 _(1.12)	39.49 _(2.32)	68.36 _(1.54)	69.34 _(1.34)	77.52 _(1.21)	68.17 _(1.28)	72.71 _(1.37)	71.96 _(1.64)
CGIB	58.39 _(2.04)	57.24 _(1.97)	28.83 _(4.53)	68.78 _(1.84)	69.82 _(1.39)	78.46 _(2.03)	68.26 _(1.39)	68.78 _(1.67)	75.75 _{(1.75)†}
CMRL	60.78 _{(1.37)†}	60.02 _{(2.03)†}	38.73 _{(3.04)†}	67.09 _(1.54)	69.62 _(1.67)	75.76 _(1.28)	68.29 _(1.78)	73.38 _(1.96)	73.91 _(2.14)
IE-HGNN	60.47 _(1.34)	61.18 _(1.21)	38.92 _(1.87)	68.71 _(1.06)	69.47 _(0.97)	78.92 _(1.24)	68.13 _(0.92)	73.56 _(1.02)	74.92 _(1.17)
IGIB-ISE	59.96 _(1.20)	59.71 _(1.12)	38.62 _(1.58)	68.92 _{(0.96)†}	69.94 _{(0.89)†}	79.32 _{(1.05)†}	68.41 _{(0.88)†}	74.10 _{(0.92)†}	75.60 _(1.01)
Ours	61.35 _(1.01)	62.02 _(1.09)	39.95 _(1.56)	69.23 _(0.17)	70.02 _(0.85)	79.67 _(0.35)	69.92 _(0.11)	74.27 _(0.62)	75.83 _(0.43)

4 EXPERIMENT AND ANALYSE

4.1 DATASETS AND SETUPS

362 **Datasets.** To evaluate the performance of our model, we conduct experiments based on three
 363 commonly used datasets in DDI event prediction task, including ZhangDDI (Zhang et al., 2017),
 364 DeepDDI (Ryu et al., 2018) and ChChMiner (Zitnik et al.). Details are present in Appendix E.1.
 365 **Baselines.** In our extensive assessment, our model is compared with eight advanced DDI event
 366 prediction methods, all leveraging molecular graphs as input features. The compared methods include
 367 DeepDDI (Ryu et al., 2018), SSI-DDI (Nyamabo et al., 2021), CGIB (Lee et al., 2023a), CMRL (Lee
 368 et al., 2023c), MDF-SA-DDI (Lin et al., 2022), DSN-DDI (Li et al., 2023), IE-HGNN (Ye & Qian,
 369 2024) and IGIB-ISE (Zhang et al., 2025b). A more detailed description is in Appendix E.2.

370 **Metric.** Three metrics are employed to evaluate the model performance: accuracy (ACC), area under
 371 the receiver operating characteristic (AUROC), harmonic mean of precision and recall (F1). All
 372 experiments are repeated eight times with the same dataset split, and average result is presented.
 373

4.2 MODEL PERFORMANCE

375 Similar to previous studies (Deac et al., 2019; Nyamabo et al., 2021), we first performed the
 376 transductive setting that is the common method evaluation scheme, where the entire dataset is
 377 randomly split and aims to predict the undiscovered DDI events among known drugs. We split the
 378 dataset into training (60%), validation (20%), and test (20%) parts. Key observations can be got:

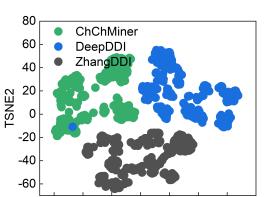


Figure 4: TSNE map for three DDI datasets (3000 drug pairs are respectively selected.)

Table 3: Performance on domain generalization experiments. Bold numbers are the best results, and the standard deviations is in parentheses.)

	ChChMiner			DeepDDI		
	ACC (\uparrow)	AUROC (\uparrow)	F1 (\uparrow)	ACC (\uparrow)	AUROC (\uparrow)	F1 (\uparrow)
DeepDDI	48.27 _(0.24)	61.21 _(0.32)	60.25 _(0.27)	50.34 _(0.14)	65.21 _(0.27)	61.83 _(0.25)
SSI-DDI	51.25 _(0.21)	60.47 _(0.31)	62.34 _(0.52)	53.26 _(0.45)	67.24 _(0.42)	63.11 _(0.34)
MDF-SA-DDI	33.54 _(0.12)	65.34 _(0.32)	63.55 _(0.54)	54.63 _(0.34)	68.50 _(0.25)	64.17 _(0.21)
DSN-DDI	52.24 _(0.24)	62.45 _(0.28)	64.20 _(0.09)	54.86 _(0.21)	68.25 _(0.24)	65.34 _(0.24)
CGIB	55.21 _(0.21)	67.54 _(0.46)	64.53 _(0.44)	55.37 _(0.29)	68.48 _(0.45)	65.44 _(0.32)
CMRL	55.76 _(0.21)	68.14 _(0.23)	64.82 _(0.15)	56.43 _(0.55)	68.45 _(0.21)	65.62 _(0.45) [†]
IE-HGNN	56.48 _(0.19)	68.32 _(0.27)	65.01 _(0.22)	56.35 _(0.18)	68.63 _(0.26)	65.48 _(0.28)
IGIB-ISE	57.06 _(0.17) [†]	68.63 _(0.24) [†]	65.11 _(0.19) [†]	57.21 _(0.21) [†]	68.67 _(0.23) [†]	65.57 _(0.25)
Ours	59.25 _(0.15)	69.22 _(0.31)	65.25 _(0.26)	58.12 _(0.09)	68.72 _(0.42)	65.76 _(0.23)

Obs.1: I2Mole exhibits the excited predictive performance in transductive setting. The results of our model and eight baseline models are presented in Table 1. We observe that our model demonstrates the optimal predictive performance across three different scales of datasets. Regarding the ACC evaluation metric, it outperforms other models on the ZhangDDI and DeepDDI datasets, while its performance on the ChChMiner dataset is comparable to IGIB-ISE.

Obs.2: I2Mole shows more pronounced performance improvements on the large-scale DeepDDI dataset. The model’s performance across different datasets may be influenced by variations in dataset characteristics, where larger datasets imply a greater diversity of drugs and more complex DDI relationships. Compared to the second-best model, I2Mole has improved by 0.98% on the large-scale DeepDDI dataset, while only by 0.45% on the medium and small-scale datasets in AUROC index.

4.3 GENERALIZATION TEST

In this section, we evaluated I2Mole’s generalizability by inductive settings and domain shifting tests. Type 1 aims to predict potential interaction properties between known and unseen drugs, while Type 2 aims to predict potential interaction properties between unseen and unseen drugs as in Table 2.

Obs.3: I2Mole demonstrates excellent generalization ability on inductive settings. We assessed the generalization capability on I2Mole to unseen drugs, which holds significant practical and real-world implications. This process was implemented by partitioning drugs, and the testing results, compared with baseline models, are documented in Table 2. Evidently, when predicting with new drugs, the performance of all models experiences varying degrees of decline. However, I2Mole exhibiting excellent predictive performance has the minimized sensitivity to unseen drug pairs.

Obs.4: I2Mole shows robust performance on domain generalization experiments. To investigate the impact of domain shifting on generalization, we transfer a model trained on a smaller dataset to a larger one. Specifically, I2Mole, trained on the ZhangDDI dataset, is tested on two other datasets. Notably, ZhangDDI and DeepDDI exhibit entirely distinct distributions of molecular species, as depicted in Figure 4. I2Mole outperforms other baseline models consistently across all conditions, underscoring its superior generalization capability, as recorded in Table 3.

Obs.5: I2Mole demonstrates superior performance in scaffold and size splitting experiments. As presented in Table 20 (Appendix L), our proposed model consistently surpasses state-of-the-art methods, achieving the highest accuracy in both scaffold and size splits. These results underscore the advantages of our approach, enabling the model to effectively extract rationales with impressive generalization capabilities, and perform robustly across different test scenarios.

4.4 EXPLORING THE IMPACT AND EFFECTS OF ENVIRONMENT CODEBOOK

In this section, we provide an intuitive understanding through t-SNE analysis of environment vectors and molecular embeddings from ChChMiner dataset, as presented in Figure 5.

Obs.6: Different environment embeddings in the environment codebook have clear boundaries in the visualization results. The 10 distinct environment embeddings exhibit clear distinctions (Figure 5 (a)), ensuring that the model adequately learns different types of environmental variables and thereby enhances its generalization. Moreover, different molecular substructure embeddings are

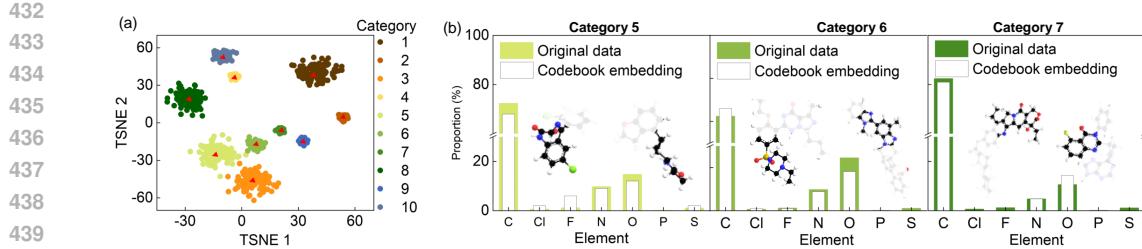


Figure 5: Environmental codebook vectors analysis. (a) TSNE dimensionality reduction plot of drug molecular pairs and the 10-class environment codebook vectors. Different colors represent the chosen codebook vectors, with red dots within clusters indicating the codebook vectors location. (b) Elemental composition of molecular pairs in clusters 5, 6, and 7 (colored) compared to the elemental composition represented by the codebook vectors (blank), along with an example pair of molecules.

Table 4: Ablation experiment. Intermolecular interaction denotes as Δ .

	ZhangDDI		
	ACC	AUROC	F1
w/o VQ	74.52 _(0.11)	83.61 _(0.13)	74.01 _(0.24)
w/o Δ	84.51 _(0.22)	87.21 _(0.27)	80.21 _(0.33)
w/o GIB	84.72 _(0.08)	87.21 _(0.24)	81.07 _(0.43)
Ours	88.64 _(0.24)	95.12 _(0.12)	85.87 _(0.20)

tightly centered around their corresponding environment embedding. This suggests that updating the codebook vector is essentially equivalent to performing clustering on the molecular embeddings, with the environment embeddings serving as the clustering centers as shown in Figure 5 (a).

Obs.7: Different environment codes tend to encode the local environments of various molecular pairs. Figure 5 (b) shows the distribution of atom types for each environmental embedding, which is close to real-world data. Notably, significant differences exist between environment codes; for example, carbon is predominant in Category 7, while nitrogen and oxygen play important roles in Categories 5 and 6. These environmental embeddings represent the non-core substructures of molecular pairs. For each codebook category, we provide examples of molecular pairs in Figure 5 (b), illustrating the types of real-world substructures represented. [More analysis are in Appendix M and N](#).

5 ABLATION STUDY AND SENSITIVITY ANALYSIS

Ablation study. To further investigate the role of each component, we conducted a series of ablation studies. As shown in Table 4, removing the GIB module reduced the model’s ability to capture core substructures, limiting its performance. Similarly, the removal of intermolecular interaction disrupted accurate chemical modeling, degrading the model’s capabilities. Notably, eliminating VQ module led to substantial performance drops, highlighting the importance of codebook and vector quantization operation (more details in Appendix H and complexity are in Appendix I and J).

Sensitivity analysis. We investigate the sensitivity of β and γ , which govern the trade-off between prediction and compression, and the codebook updating process, respectively. These parameters correspond to the weights of \mathcal{L}_{MI} and \mathcal{L}_{vq} in Equation 24. Overall, the model demonstrates robustness to variations in β and γ , but performance degrades significantly when β is sharply increased. More detailed sensitivity analysis results, are presented in Appendix G.

6 CONCLUSION AND FUTURE OUTLOOK

In this work, we introduce I2Mole, a novel framework for precise DDI prediction that aims to address the imbalance between training and testing data distributions commonly observed in real-world scenarios. I2Mole constructs a merged graph to capture complex molecular interactions and, through an enhanced information bottleneck theory to extract invariant subgraphs. Meanwhile, we design an environment codebook based on the molecular environments, which encodes environmental information and integrates it into data from diverse distributions, further improving the model’s generalization capability. I2Mole enables the rapid identification of potential DDIs and reducing risks associated with drug misuse. The limitations of I2Mole are discussed in Appendix K.

486 7 REPRODUCIBILITY
487488 We provide the complete implementation in the repository along with guidance on how to re-
489 produce our results. Our code is available at <https://anonymous.4open.science/r/I2Mol-C616>.
490492 8 ETHICS STATEMENT
493494 Our study does not involve human participants, personal data, or sensitive information. The datasets
495 and resources used are either publicly available or released under appropriate licenses. We confirm
496 that our research does not raise any ethical concerns related to privacy, safety, fairness, or potential
497 misuse. The contributions of this work are intended solely for advancing scientific research and are
498 not designed or evaluated for harmful applications.
499500 REFERENCES
501502 Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. Deep variational information
503 bottleneck. *arXiv preprint arXiv:1612.00410*, 2016.505 Martín Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
506 *CoRR*, abs/1907.02893, 2019. URL <http://arxiv.org/abs/1907.02893>.507 Jörg Behler. Constructing high-dimensional neural network potentials: a tutorial review. *International
508 Journal of Quantum Chemistry*, 115(16):1032–1050, 2015. ISSN 0020-7608.510 Jörg Behler. Perspective: Machine learning potentials for atomistic simulations. *The Journal of
511 chemical physics*, 145(17):170901, 2016. ISSN 0021-9606.512 Shiyu Chang, Yang Zhang, Mo Yu, and Tommi S. Jaakkola. Invariant rationalization. In *Proceedings
513 of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual
514 Event*, volume 119 of *Proceedings of Machine Learning Research*, pp. 1448–1458. PMLR, 2020.
515 URL <http://proceedings.mlr.press/v119/chang20c.html>.516 Y. Chung, F. H. Vermeire, H. Y. Wu, P. J. Walker, M. H. Abraham, and W. H. Green. Group
517 contribution and machine learning approaches to predict abraham solute parameters, solvation
518 free energy, and solvation enthalpy. *Journal of Chemical Information and Modeling*, 62(3):433–
519 446, 2022a. ISSN 1549-9596. doi: 10.1021/acs.jcim.1c01103. URL <Go to ISI>://WOS:
520 000745910500001.521 Yunsie Chung, Florence H Vermeire, Haoyang Wu, Pierre J Walker, Michael H Abraham, and
522 William H Green. Group contribution and machine learning approaches to predict abraham solute
523 parameters, solvation free energy, and solvation enthalpy. *Journal of Chemical Information and
524 Modeling*, 62(3):433–446, 2022b.526 Andreea Deac, Yu-Hsiang Huang, Petar Veličković, Pietro Liò, and Jian Tang. Drug-drug adverse
527 effect prediction with graph co-attention. *arXiv preprint arXiv:1905.00534*, 2019.529 Yifan Deng, Xinran Xu, Yang Qiu, Jingbo Xia, Wen Zhang, and Shichao Liu. A multimodal deep
530 learning framework for predicting drug–drug interaction events. *Bioinformatics*, 36(15):4316–4322,
531 2020.532 Malcolm J. D’Souza, Anthony M. Darrington, and Dennis N. Kevill. A study of solvent effects in
533 the solvolysis of propargyl chloroformate. *International Scholarly Research Notices*, 2011, 2011.
534 ISSN 2090-5149.536 Wenjie Du, Shuai Zhang, Di Wu, Jun Xia, Ziyuan Zhao, Junfeng Fang, and Yang Wang. Mmgnn:
537 a molecular merged graph neural network for explainable solvation free energy prediction. In
538 *Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence, IJCAI
539 ’24*, 2024. ISBN 978-1-956792-04-1. doi: 10.24963/ijcai.2024/642. URL <https://doi.org/10.24963/ijcai.2024/642>.

540 Wenjie Du, Shuai Zhang, Zhaoxi Cai, Xuqiang Li, Zhiyuan Liu, Junfeng Fang, Jianmin Wang,
 541 Xiang Wang, and Yang Wang. Molecular merged hypergraph neural network for explainable
 542 solvation gibbs free energy prediction. *Research*, 8:0740, 2025a. doi: 10.34133/research.0740.
 543 URL <https://spj.science.org/doi/abs/10.34133/research.0740>.

544 Wenjie Du, Shuai Zhang, Zhaoxi Cai, Xuqiang Li, Zhiyuan Liu, Junfeng Fang, Jianmin Wang,
 545 Xiang Wang, and Yang Wang. Molecular merged hypergraph neural network for explainable
 546 solvation gibbs free energy prediction. *Research*, 8:0740, 2025b.

547 Tyrone E Duncan. On the calculation of mutual information. *SIAM Journal on Applied Mathematics*,
 548 19(1):215–220, 1970.

549 Junfeng Fang, Shuai Zhang, Chang Wu, Zhengyi Yang, Zhiyuan Liu, Sihang Li, Kun Wang, Wenjie
 550 Du, and Xiang Wang. Moltc: Towards molecular relational modeling in language models. *CoRR*,
 551 abs/2402.03781, 2024.

552 Reza Ferdousi, Reza Saifari, and Yadollah Omidi. Computational prediction of drug-drug interactions
 553 based on drugs functional similarities. *Journal of biomedical informatics*, 70:54–64, 2017.

554 Tianfan Fu, Cao Xiao, and Jimeng Sun. Core: Automatic molecule optimization using copy & refine
 555 strategy. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 34, pp. 638–645,
 556 2020.

557 Assaf Gottlieb, Gideon Y Stein, Yoram Oron, Eytan Ruppin, and Roded Sharan. Indi: a computational
 558 framework for inferring drug interactions and their associated recommendations. *Molecular systems
 559 biology*, 8(1):592, 2012.

560 Marc W Harrold and Robin M Zavod. Basic concepts in medicinal chemistry, 2014.

561 Yue He, Zheyuan Shen, and Peng Cui. Towards non-iid image classification: A dataset and baselines.
 562 *Pattern Recognition*, 110:107383, 2021.

563 Patricia Jaaks, Elizabeth A Coker, Daniel J Vis, Olivia Edwards, Emma F Carpenter, Simonetta M
 564 Leto, Lisa Dwane, Francesco Sassi, Howard Lightfoot, Syd Barthorpe, et al. Effective drug
 565 combinations in breast, colon and pancreatic cancer cells. *Nature*, 603(7899):166–173, 2022.

566 Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. *arXiv
 567 preprint arXiv:1611.01144*, 2016.

568 Yuanfeng Ji, Lu Zhang, Jiaxiang Wu, Bingzhe Wu, Lanqing Li, Long-Kai Huang, Tingyang Xu,
 569 Yu Rong, Jie Ren, Ding Xue, et al. Drugood: Out-of-distribution dataset curator and benchmark
 570 for ai-aided drug discovery—a focus on affinity prediction problems with noise annotations. In
 571 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp. 8023–8031, 2023.

572 Jia Jia, Feng Zhu, Xiaohua Ma, Zhiwei W Cao, Yixue X Li, and Yu Zong Chen. Mechanisms of
 573 drug combinations: interaction and network perspectives. *Nature reviews Drug discovery*, 8(2):
 574 111–128, 2009.

575 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint
 576 arXiv:1412.6980*, 2014.

577 William Klemperer. Intermolecular interactions. *Science*, 257(5072):887–888, 1992.

578 Namkyeong Lee, Dongmin Hyun, Gyoung S. Na, Sungwon Kim, Junseok Lee, and Chanyoung Park.
 579 Conditional graph information bottleneck for molecular relational learning. In *ICML*, volume 202
 580 of *Proceedings of Machine Learning Research*, pp. 18852–18871. PMLR, 2023a.

581 Namkyeong Lee, Dongmin Hyun, Gyoung S. Na, Sungwon Kim, Junseok Lee, and Chanyoung
 582 Park. Conditional graph information bottleneck for molecular relational learning. *arXiv preprint
 583 arXiv:2305.01520*, 2023b.

584 Namkyeong Lee, Kanghoon Yoon, Gyoung S. Na, Sein Kim, and Chanyoung Park. Shift-robust
 585 molecular relational learning with causal substructure. *arXiv preprint arXiv:2305.18451*, 2023c.

594 Zimeng Li, Shichao Zhu, Bin Shao, Xiangxiang Zeng, Tong Wang, and Tie-Yan Liu. Dsn-ddi: an ac-
 595 curate and generalized framework for drug–drug interaction prediction by dual-view representation
 596 learning. *Briefings in Bioinformatics*, 24(1):bbac597, 2023.

597

598 Shenggeng Lin, Yanjing Wang, Lingfeng Zhang, Yanyi Chu, Yatong Liu, Yitian Fang, Mingming
 599 Jiang, Qiankun Wang, Bowen Zhao, Yi Xiong, et al. Mdf-sa-ddi: predicting drug–drug interaction
 600 events based on multi-source drug fusion, multi-source feature fusion and transformer self-attention
 601 mechanism. *Briefings in Bioinformatics*, 23(1):bbab421, 2022.

602 K. Low, M. L. Coote, and E. I. Izgorodina. Explainable solvation free energy prediction combining
 603 graph neural networks with chemical intuition. *J Chem Inf Model*, 62(22):5457–5470, 2022a.
 604 ISSN 1549-960X (Electronic) 1549-9596 (Linking). doi: 10.1021/acs.jcim.2c01013. URL
 605 <https://www.ncbi.nlm.nih.gov/pubmed/36317829>.

606

607 Kaycee Low, Michelle L. Coote, and Ekaterina I. Izgorodina. Explainable solvation free energy
 608 prediction combining graph neural networks with chemical intuition. *Journal of Chemical In-
 609 formation and Modeling*, 62(22):5457–5470, 2022b. doi: 10.1021/acs.jcim.2c01013. URL
 610 <https://doi.org/10.1021/acs.jcim.2c01013>. PMID: 36317829.

611 Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang Zhang.
 612 Parameterized explainer for graph neural network. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia
 613 Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), *Advances in Neural Information Pro-
 614 cessing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
 615 2020, December 6-12, 2020, virtual*, 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/e37b08dd3015330dcbb5d6663667b8b8-Abstract.html>.

616

617 Fangrui Lv, Jian Liang, Shuang Li, Bin Zang, Chi Harold Liu, Ziteng Wang, and Di Liu. Causality
 618 inspired representation learning for domain generalization. In *Proceedings of the IEEE/CVF
 619 conference on computer vision and pattern recognition*, pp. 8046–8056, 2022.

620

621 Siqi Miao, Mia Liu, and Pan Li. Interpretable and generalizable graph learning via stochastic attention
 622 mechanism. In *International Conference on Machine Learning*, pp. 15524–15543. PMLR, 2022.

623

624 Arnold K Nyamabo, Hui Yu, and Jian-Yu Shi. Ssi-ddi: substructure–substructure interactions for
 625 drug–drug interaction prediction. *Briefings in Bioinformatics*, 22(6):bbab133, 2021.

626

627 Debleena Paul, Gaurav Sanap, Snehal Shenoy, Dnyaneshwar Kalyane, Kiran Kalia, and Rakesh K
 628 Tekade. Artificial intelligence in drug discovery and development. *Drug discovery today*, 26(1):80,
 629 2021.

630

631 Elina Petrova. Innovation in the pharmaceutical industry: The process of drug discovery and
 632 development. In *Innovation and Marketing in the Pharmaceutical Industry: Emerging Practices,
 633 Research, and Policies*, pp. 19–81. Springer, 2013.

634

635 Ali Razavi, Aäron van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with
 636 VQ-VAE-2. In *NeurIPS*, pp. 14837–14847, 2019.

637

638 Mateo Rojas-Carulla, Bernhard Schölkopf, Richard E. Turner, and Jonas Peters. Invariant models
 639 for causal transfer learning. *J. Mach. Learn. Res.*, 19:36:1–36:34, 2018a. URL <http://jmlr.org/papers/v19/16-432.html>.

640

641 Mateo Rojas-Carulla, Bernhard Schölkopf, Richard E. Turner, and Jonas Peters. Invariant models
 642 for causal transfer learning. *J. Mach. Learn. Res.*, 19:36:1–36:34, 2018b. URL <http://jmlr.org/papers/v19/16-432.html>.

643

644 Karen A Ryall and Aik Choon Tan. Systems biology approaches for advancing the discovery of
 645 effective drug combinations. *Journal of cheminformatics*, 7(1):1–15, 2015.

646

647 Jae Yong Ryu, Hyun Uk Kim, and Sang Yup Lee. Deep learning improves prediction of drug–drug and
 648 drug–food interactions. *Proceedings of the national academy of sciences*, 115(18):E4304–E4311,
 2018.

648 Zheyuan Shen, Peng Cui, Kun Kuang, Bo Li, and Peixuan Chen. Causally regularized learning
 649 with agnostic data selection bias. In *Proceedings of the 26th ACM international conference on*
 650 *Multimedia*, pp. 411–419, 2018.

651

652 Zheyuan Shen, Peng Cui, Tong Zhang, and Kun Kunag. Stable learning via sample reweighting. In
 653 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 34, pp. 5692–5699, 2020.

654

655 Zhenchao Tang, Guanxing Chen, Hualin Yang, Weihe Zhong, and Calvin Yu-Chian Chen. Dsill-
 656 ddi: A domain-invariant substructure interaction learning for generalizable drug–drug interaction
 657 prediction. *IEEE Transactions on Neural Networks and Learning Systems*, 2023.

658

659 Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learning.
 660 In *NIPS*, pp. 6306–6315, 2017.

661

662 Jithin John Varghese and Samir H Mushrif. Origins of complex solvent effects on chemical reactivity
 663 and computational tools to investigate them: a review. *Reaction Chemistry & Engineering*, 4(2):
 165–206, 2019.

664

665 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
 666 Bengio. Graph attention networks. *arXiv preprint arXiv:1710.10903*, 2017.

667

668 Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to sequence for sets.
 669 *arXiv preprint arXiv:1511.06391*, 2015.

670

671 Tan Wang, Jianqiang Huang, Hanwang Zhang, and Qianru Sun. Visual commonsense r-cnn. In
 672 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10760–
 673 10770, 2020.

674

675 Mingjian Wen, Samuel M. Blau, Evan Walter Clark Spotte-Smith, Shyam Dwaraknath, and Kristin A.
 676 Persson. Bondnet: a graph neural network for the prediction of bond dissociation energies for
 677 charged molecules. *Chemical science*, 12(5):1858–1868, 2021.

678

679 Qitian Wu, Hengrui Zhang, Junchi Yan, and David Wipf. Handling distribution shifts on graphs: An
 680 invariance perspective. In *The Tenth International Conference on Learning Representations, ICLR*
 681 2022, *Virtual Event, April 25-29, 2022*. OpenReview.net, 2022a. URL <https://openreview.net/forum?id=FQOC5u-1egI>.

682

683 Qitian Wu, Hengrui Zhang, Junchi Yan, and David Wipf. Handling distribution shifts on graphs: An
 684 invariance perspective. *arXiv preprint arXiv:2202.02466*, 2022b.

685

686 Ying-Xin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat-Seng Chua. Discovering invariant
 687 rationales for graph neural networks. *arXiv preprint arXiv:2201.12872*, 2022c.

688

689 Yingxin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat-Seng Chua. Discovering invariant
 690 rationales for graph neural networks. In *The Tenth International Conference on Learning*
 691 *Representations, ICLR 2022, Virtual Event, April 25-29, 2022*. OpenReview.net, 2022d. URL
 692 <https://openreview.net/forum?id=hGXij5rfiHw>.

693

694 Jun Xia, Chengshuai Zhao, Bozhen Hu, Zhangyang Gao, Cheng Tan, Yue Liu, Siyuan Li, and Stan Z
 695 Li. Mole-bert: Rethinking pre-training graph neural networks for molecules. In *The Eleventh*
 696 *International Conference on Learning Representations*, 2022.

697

698 Jun Xia, Yanqiao Zhu, Yuanqi Du, Yue Liu, and Stan Z Li. A systematic survey of chemical
 699 pre-trained models. *IJCAI*, 2023.

700

701 Nianzu Yang, Kaipeng Zeng, Qitian Wu, Xiaosong Jia, and Junchi Yan. Learning substructure
 702 invariance for out-of-distribution molecular representations. In Sanmi Koyejo, S. Mo-
 703 hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural*
 704 *Information Processing Systems 35: Annual Conference on Neural Information Process-
 705 ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,*
 706 *2022*, 2022a. URL http://papers.nips.cc/paper_files/paper/2022/hash/547108084f0c2af39b956f8eadb75d1b-Abstract-Conference.html.

702 Nianzu Yang, Kaipeng Zeng, Qitian Wu, Xiaosong Jia, and Junchi Yan. Learning substructure
 703 invariance for out-of-distribution molecular representations. *Advances in Neural Information
 704 Processing Systems*, 35:12964–12978, 2022b.

705 Wenbin Ye and Quan Qian. Forecasting the molecular interactions: A hypergraph-based neu-
 706 ral network for molecular relational learning. *Knowledge-Based Systems*, 300:112177, 2024.
 707 ISSN 0950-7051. doi: <https://doi.org/10.1016/j.knosys.2024.112177>. URL <https://www.sciencedirect.com/science/article/pii/S0950705124008116>.

710 Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
 711 Generating explanations for graph neural networks. In Hanna M. Wallach, Hugo Larochelle,
 712 Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), *Advances in
 713 Neural Information Processing Systems 32: Annual Conference on Neural Information Pro-
 714 cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada*, pp.
 715 9240–9251, 2019. URL <https://proceedings.neurips.cc/paper/2019/hash/d80b7040b773199015de6d3b4293c8ff-Abstract.html>.

716 Hui Yu, ShiYu Zhao, and JianYu Shi. Stnn-ddi: a substructure-aware tensor neural network to predict
 717 drug–drug interactions. *Briefings in Bioinformatics*, 23(4):bbac209, 2022a.

718 Junchi Yu, Tingyang Xu, Yu Rong, Yatao Bian, Junzhou Huang, and Ran He. Graph information
 719 bottleneck for subgraph recognition. *arXiv preprint arXiv:2010.05563*, 2020.

720 Junchi Yu, Jie Cao, and Ran He. Improving subgraph recognition with variational graph information
 721 bottleneck. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR
 722 2022, New Orleans, LA, USA, June 18-24, 2022*, pp. 19374–19383. IEEE, 2022b. doi: 10.
 723 1109/CVPR52688.2022.01879. URL <https://doi.org/10.1109/CVPR52688.2022.01879>.

724 Dong Zhang, Hanwang Zhang, Jinhui Tang, Xian-Sheng Hua, and Qianru Sun. Causal intervention for
 725 weakly-supervised semantic segmentation. *Advances in Neural Information Processing Systems*,
 726 33:655–666, 2020.

727 Peiliang Zhang, Jingling Yuan, Chao Che, Yongjun Zhu, and Lin Li. Subgraph information bottleneck
 728 with causal dependency for stable molecular relational learning. In James Kwok (ed.), *Proceedings
 729 of the Thirty-Fourth International Joint Conference on Artificial Intelligence, IJCAI-25*, pp. 7931–
 730 7939. International Joint Conferences on Artificial Intelligence Organization, 8 2025a. doi:
 10.24963/ijcai.2025/882. URL <https://doi.org/10.24963/ijcai.2025/882>. Main
 731 Track.

732 Shuai Zhang, Junfeng Fang, Xuqiang Li, ALAN XIA, Ye Wei, Wenjie Du, Yang Wang, et al.
 733 Iterative substructure extraction for molecular relational learning with interactive graph information
 734 bottleneck. In *The Thirteenth International Conference on Learning Representations*, 2025b.

735 Wen Zhang, Yanlin Chen, Feng Liu, Fei Luo, Gang Tian, and Xiaohong Li. Predicting potential
 736 drug-drug interactions by integrating chemical, biological, phenotypic and network data. *BMC
 737 bioinformatics*, 18:1–12, 2017.

738 Yi Zhong, Xueyu Chen, Yu Zhao, Xiaoming Chen, Tingfang Gao, and Zuquan Weng. Graph-
 739 augmented convolutional networks on drug-drug interactions prediction. *arXiv preprint
 740 arXiv:1912.03702*, 2019.

741 Yi Zhong, Gaozheng Li, Ji Yang, Houbing Zheng, Yongqiang Yu, Jiheng Zhang, Heng Luo, Biao
 742 Wang, and Zuquan Weng. Learning motif-based graphs for drug–drug interaction prediction via
 743 local–global self-attention. *Nature Machine Intelligence*, 6(9):1094–1105, 2024.

744 Marinka Zitnik, Rok Sosič, Sagar Maheshwari, and Jure Leskovec. Biosnap datasets: Stanford
 745 biomedical network dataset collection. 2018. URL <http://snap.stanford.edu/biodata>.

746

747

748

749

750

751

752

753

754

755

756	CONTENTS	
757		
758		
759	1 Introduction	1
760		
761	2 Preliminaries	3
762	2.1 Problem Formulation	3
763	2.2 Graph Information Bottleneck (GIB)	3
764	2.3 Invariant Learning	3
765		
766		
767		
768	3 Methodology	3
769	3.1 Merged Molecular Representation	3
770	3.2 Core Substructure Extraction Based on GIB	4
771	3.2.1 Extract target-oriented information	5
772	3.2.2 Optimize minimized \tilde{G}	5
773	3.3 Environment Inference	6
774	3.4 Training Objective	6
775		
776		
777		
778		
779	4 Experiment and Analyse	7
780	4.1 Datasets and setups	7
781	4.2 Model Performance	7
782	4.3 Generalization Test	8
783	4.4 Exploring the impact and effects of Environment Codebook	8
784		
785		
786		
787	5 Ablation study and Sensitivity analysis	9
788		
789	6 Conclusion and Future outlook	9
790		
791		
792	7 Reproducibility	10
793		
794	8 Ethics Statement	10
795		
796		
797	Appendix	17
798		
799	A Regarding the Use of LLMs	17
800		
801	B Related Work	17
802	B.1 Drug-Drug Interaction (DDI) prediction	17
803	B.2 OOD generalization	17
804		
805		
806		
807	C Proofs	18
808	C.1 Proof of \mathcal{L}_{pre}	18
809	C.2 Proof of \mathcal{L}_{MI}	18

810	D The Detailed Features For Atoms, Bonds and Molecular Global	20
811		
812	E Experimental Settings	20
813		
814	E.1 Datasets	20
815	E.2 Baselines	20
816	E.3 Parameter Setting	21
817		
818		
819	F Results significance analysis	21
820		
821	G Sensitivity analysis	22
822		
823	H VQ module analysis	23
824		
825	I Data scalability analysis	23
826		
827	J Computational complexity	24
828		
829	K Limitation analysis	24
830		
831	L The scaffold and size splitting experiments result.	26
832		
833	M Visualization analysis	26
834		
835	N Maximum Common Substructure (MCS) Analysis of VQ Environments	28
836		
837		
838		
839		
840		
841		
842		
843		
844		
845		
846		
847		
848		
849		
850		
851		
852		
853		
854		
855		
856		
857		
858		
859		
860		
861		
862		
863		

864

A REGARDING THE USE OF LLMs

865
866 In this work, LLMs are used solely for polishing and refining the writing. All substantive content,
867 ideas, and analyses are authored and created by the authors. The LLMs are only employed to improve
868 clarity, grammar, and overall readability, and did not contribute to the generation of scientific content
869 or results.
870871

B RELATED WORK

872

B.1 DRUG-DRUG INTERACTION (DDI) PREDICTION

873
874 In recent years, computational approaches, particularly employing machine learning and deep learning
875 methods, have emerged as indispensable tools for swiftly and economically predicting potential
876 DDI (Ryall & Tan, 2015; Jaaks et al., 2022). Initially, DDI prediction models predominantly focused
877 on drug attribute information, assuming that similar drugs would exhibit common interactions (Ryu
878 et al., 2018; Deng et al., 2020). For instance, Gottlieb et al. (2012) utilized seven types of drug features
879 to construct similarity vectors, forming a DDI prediction model based on logistic regression. Ferdousi
880 et al. (2017) designed a deep neural network using drug molecular similarity vectors as descriptors
881 for predicting potential DDIs. Recently, there has been a shift towards graph-based DDI prediction
882 methodologies. Zhong et al. (2019) employed Graph Convolutional Neural Networks (GCNNs) for
883 message aggregation and an attention-based pooling method for DDI prediction. Given that the
884 interaction between two drugs is influenced by their specific substructures and functions, recent
885 efforts have focused on substructure extraction and interaction Harrold & Zavod (2014); Fu et al.
886 (2020). For instance, Yu et al. (2022a) utilized functional group information of drug molecules as their
887 substructures, while Nyamabo et al. (2021) introduced the Substructure-Substructure Interaction for
888 Drug-Drug Interaction (SSI-DDI) method, employing graph attention network (GAT) layers to extract
889 substructure representations and co-attention layers to model interactions among substructures.
890891 Despite the proficiency of existing methodologies in elucidating essential structural characteristics
892 of individual molecular models, considerable variation in crucial substructures may occur during
893 molecular interactions (Tang et al., 2023; Lee et al., 2023c). Notably, while some pioneering work
894 like DSIL-DDI (Tang et al., 2023) and CMRL (Lee et al., 2023c) has provided foundational insights,
895 a noticeable gap remains in comprehensively modeling intermolecular interactions. CMRL (Lee et al.,
896 2023c) innovatively incorporates conditional graph information bottleneck theory to obtain rationales,
897 simultaneously considering a second drug as a conditional factor during drug subgraph generation (Lee
898 et al., 2023b). However, prevailing methodologies encounter limitations in adequately capturing
899 molecular interactions, particularly at the atomic level. Moreover, integrating a comprehensive
900 profile of interacting molecules into subgraph generation poses significant challenges, including
901 overwhelming complexity and the risk of incorporating redundant information (Jia et al., 2009).
902903

B.2 OOD GENERALIZATION

904 The susceptibility of deep neural networks to significant performance degradation under distribution
905 shifts has spurred extensive research on out-of-distribution (OOD) generalization. In response, the
906 invariant rationalization theory has been introduced, aiming to achieve an invariant representation
907 across diverse environments (Chang et al., 2020; Rojas-Carulla et al., 2018b). This theory involves
908 a rationalization module that discerns a crucial subset within the input graph, referred to as rationale,
909 essential for prediction (Ying et al., 2019; Luo et al., 2020). Subsequently, through invariant
910 learning, these rationales are exposed to diverse environments, thereby fortifying the learned repre-
911 sentation against environmental fluctuations and effectively bolstering the model’s OOD capacity.
912 1) **sufficiency**: shows sufficient predictive power for the target, 2) **invariance**: contributes to
913 equal (optimal) performance for the downstream tasks across all environments. Certain methods in
914 computer vision Lv et al. (2022); Zhang et al. (2020); Wang et al. (2020) achieve OOD generalization
915 by learning domain-invariant representations. Additionally, methods such as Shen et al. (2018); He
916 et al. (2021); Shen et al. (2020) aim to achieve OOD generalization by decorrelating correlated and
917 irrelevant features, considering the statistical correlation between these features as a major factor for
918 distribution shifts. In terms of molecular applications, DIR (Wu et al., 2022d) introduces an inventive
919 method to unveil invariant rationales by intervening in the training distribution, generating multiple
920

918 interventional distributions, and identifying causal rationales consistent across varied distributions.
 919 Similarly, MoleOOD (Yang et al., 2022a) suggests that leveraging causal data-generating invariance
 920 from substructures across environments, linked to specific properties, holds promise for enhancing
 921 OOD generalization. However, learning a domain-invariant representation for intermolecular
 922 interaction remains an open problem, and current discussions on OOD issues are limited.

926 C PROOFS

929 C.1 PROOF OF \mathcal{L}_{pre}

931 *Proof.* Regarding $I(Y; \tilde{\mathcal{G}})$, we consider $P_\theta(Y | \tilde{\mathcal{G}})$ as the variational estimation of $P(Y | \tilde{\mathcal{G}})$.
 932 Therefore, we can proceed with the following derivation:

$$\begin{aligned} 936 \quad I(Y; \tilde{\mathcal{G}}) &= \mathbb{E}_{(Y, \tilde{\mathcal{G}})} \log \left[\frac{P(Y | \tilde{\mathcal{G}})}{P(Y)} \right] \\ 937 \quad &= \mathbb{E}_{(Y, \tilde{\mathcal{G}})} \log \left[\frac{P_\theta(Y | \tilde{\mathcal{G}})}{P(Y)} \right] + \\ 938 \quad &\quad \mathbb{E}_{\tilde{\mathcal{G}}} \log \left[KL \left(P(Y | \tilde{\mathcal{G}}) \| P_\theta(Y | \tilde{\mathcal{G}}) \right) \right]. \end{aligned} \quad (25)$$

945 Considering the non-negativity property of the Kullback-Leibler divergence, we can conclude that:

$$\begin{aligned} 949 \quad I(Y; \tilde{\mathcal{G}}) &\geq \mathbb{E}_{(Y, \tilde{\mathcal{G}})} \log \left[\frac{P_\theta(Y | \tilde{\mathcal{G}})}{P(Y)} \right] \\ 950 \quad &= \mathbb{E}_{(Y, \tilde{\mathcal{G}})} \log \left[P_\theta(Y | \tilde{\mathcal{G}}) \right] + H(Y). \end{aligned} \quad (26)$$

955 As $H(Y)$ remains constant across all data, it can be omitted, resulting in the final formulation of this
 956 term:
 957

$$960 \quad \mathcal{L}_{pre} := \mathbb{E}_{(Y, \tilde{\mathcal{G}})} \log \left[P_\theta(Y | \tilde{\mathcal{G}}) \right]. \quad (27)$$

962 \square

963 C.2 PROOF OF \mathcal{L}_{MI}

964 *Proof.* We first use a readout function to obtain the graph representation $z_{\tilde{G}_{IB}}$ of the perturbed graph
 965 \tilde{G}_{IB} . And we assume there is no information loss in this process. Therefore we have $I(z_{\tilde{G}_{IB}}; \tilde{G}) \approx$

972 $I(\tilde{G}_{\text{IB}}; \tilde{G})$. Now we bound $I(z_{\tilde{G}_{\text{IB}}}; \tilde{G})$ using variational approximation:
 973

$$\begin{aligned}
 974 \quad I(z_{\tilde{G}_{\text{IB}}}; \tilde{G}) &= \iint p(z_{\tilde{G}_{\text{IB}}}, \tilde{G}) \log \frac{p(z_{\tilde{G}_{\text{IB}}} | \tilde{G})}{p(z_{\tilde{G}_{\text{IB}}})} dz_{\tilde{G}_{\text{IB}}} d\tilde{G} \\
 975 \quad &= \iint p(z_{\tilde{G}_{\text{IB}}}, \tilde{G}) \log \frac{p(z_{\tilde{G}_{\text{IB}}} | \tilde{G})}{q(z_{\tilde{G}_{\text{IB}}})} dz_{\tilde{G}_{\text{IB}}} d\tilde{G} \\
 976 \quad &\quad + \iint p(z_{\tilde{G}_{\text{IB}}}, \tilde{G}) \log \frac{q(z_{\tilde{G}_{\text{IB}}})}{p(z_{\tilde{G}_{\text{IB}}})} dz_{\tilde{G}_{\text{IB}}} d\tilde{G} \\
 977 \quad &= \mathbb{E}_{p(\tilde{G})} [\text{KL}(p(z_{\tilde{G}_{\text{IB}}} | \tilde{G}) || q(z_{\tilde{G}_{\text{IB}}}))] \\
 978 \quad &\quad - \mathbb{E}_{p(z_{\tilde{G}_{\text{IB}}} | \tilde{G})} [\text{KL}(p(z_{\tilde{G}_{\text{IB}}}) || q(z_{\tilde{G}_{\text{IB}}}))] \\
 979 \quad &\leq \mathbb{E}_{p(\tilde{G})} [\text{KL}(p(z_{\tilde{G}_{\text{IB}}} | \tilde{G}) || q(z_{\tilde{G}_{\text{IB}}}))], \\
 980 \quad &\quad \dots \\
 981 \quad &\quad \dots \\
 982 \quad &\quad \dots \\
 983 \quad &\quad \dots \\
 984 \quad &\quad \dots \\
 985 \quad &\quad \dots \\
 986 \quad &\quad \dots \\
 987 \quad &\quad \dots \\
 988 \quad &\quad \dots \\
 989 \quad &\quad \dots \\
 990 \quad &\quad \dots
 \end{aligned} \tag{28}$$

991 where $q(z_{\tilde{G}_{\text{IB}}})$ is the variational approximation to $p(z_{\tilde{G}_{\text{IB}}})$. And the inequality is due to the fact
 992 that Kullback-Leibler divergence is non-negative. We assume that $q(z_{\tilde{G}_{\text{IB}}})$ is a noninformative
 993 distribution following VIB Alemi et al. (2016). That is, we obtain $q(z_{\tilde{G}_{\text{IB}}})$ by aggregating the node
 994 representations in a fully perturbed graph. The noise $\epsilon_{\tilde{G}} \sim \mathcal{N}(\mu_h, \sigma_h^2)$ is sampled from the Gaussian
 995 distribution. μ_h, σ_h^2 are mean and variance of h_j in \tilde{G} .
 996

997 When we choose sum pooling as the readout function, we have:
 998

$$q(z_{\tilde{G}_{\text{IB}}}) = \mathcal{N}(m_{\tilde{G}}\mu_h, m_{\tilde{G}}\sigma_h^2). \tag{29}$$

1000 This is because the summation of **Gaussian** distributions is also a Gaussian distribution. Then, for
 1001 $p(z_{\tilde{G}_{\text{IB}}} | \tilde{G})$, we have:
 1002

$$\begin{aligned}
 1003 \quad p(z_{\tilde{G}_{\text{IB}}} | \tilde{G}) \\
 1004 \quad &= \mathcal{N}\left(m_{\tilde{G}}\mu_h + \sum_{j=1}^{m_{\tilde{G}}} \lambda_j h_j - \sum_{j=1}^{m_{\tilde{G}}} \mu_h \lambda_j, \sum_{j=1}^{m_{\tilde{G}}} (1 - \lambda_j)^2 \sigma_h^2\right). \\
 1005 \quad &\quad \dots \\
 1006 \quad &\quad \dots \\
 1007 \quad &\quad \dots \\
 1008 \quad &\quad \dots \\
 1009 \quad &\quad \dots \\
 1010 \quad &\quad \dots \\
 1011 \quad &\quad \dots
 \end{aligned} \tag{30}$$

1012 Plug Equation 29 and Equation 30 into Equation 28 and we have:
 1013

$$\begin{aligned}
 1014 \quad I(z_{\tilde{G}_{\text{IB}}}; \tilde{G}) \\
 1015 \quad &\leq \int p(\tilde{G}) \left(-\frac{1}{2} \log A_{\tilde{G}} + \frac{1}{2m_{\tilde{G}}} A_{\tilde{G}} + \frac{1}{2m_{\tilde{G}}} B_{\tilde{G}}^2 \right) d\tilde{G} \\
 1016 \quad &\quad + \int \frac{1}{2} p(\tilde{G}) \log m_{\tilde{G}} d\tilde{G} \\
 1017 \quad &\quad = \int p(\tilde{G}) \left(-\frac{1}{2} \log A_{\tilde{G}} + \frac{1}{2m_{\tilde{G}}} A_{\tilde{G}} + \frac{1}{2m_{\tilde{G}}} B_{\tilde{G}}^2 \right) d\tilde{G} + C,
 \end{aligned} \tag{31}$$

1018 where $A_{\tilde{G}} = \sum_{j=1}^{m_{\tilde{G}}} (1 - \lambda_j)^2$ and $B_{\tilde{G}} = \frac{\sum_{j=1}^{m_{\tilde{G}}} \lambda_j (h_j - \mu_h)}{\sigma_h}$. C is a constant and can be ignored in the
 1019 optimization process.
 1020

1021 \square

1026 **D THE DETAILED FEATURES FOR ATOMS, BONDS AND MOLECULAR
1027 GLOBAL**

1029 A comprehensive overview of the selected atom, bond, and global input features is presented in Table
1030 6. The initial step involves the conversion of the SMILES string of both solute and solvent into a
1031 graph structure using the RDKit package. This package is employed not only for graph creation
1032 but also for the computation of atom and bond features for each graph. The selection of features
1033 was restricted to those computable in RDKit to mitigate the computational expenses associated with
1034 performing quantum mechanics calculations for the entire dataset. In order to standardize the lengths
1035 of the bond, atom, and global feature vectors, a linear transformation is applied to each vector before
1036 the commencement of the message-passing steps.

1037 **Table 6: Atoms (nodes), bonds (edges), and global features for molecular representation**

1040 Atomic features (\mathcal{V})	1041 Bond features (\mathcal{E})	1042 Global features (\mathcal{U})
1043 Atomic species	1044 Bond type	1045 Total No. of atoms
1046 No. of bonds	1047 Conjugated status	1048 Total No. of bonds
1049 No. of bonded H atoms	1050 Ring size	1051 Molecular weight
1052 Ring status	1053 Stereo-chemistry	1054 –
1055 Valence	1056 –	1057 –
1058 Aromatic status	1059 –	1060 –
1061 Hybridization type	1062 –	1063 –
1064 Acceptor status	1065 –	1066 –
1067 Donor status	1068 –	1069 –
1069 Partial charge	1070 –	1071 –

1053 **E EXPERIMENTAL SETTINGS**

1055 In this section, we will provide a comprehensive overview of our experimental setup. Section E.1 will
1056 provide detailed information about all the datasets utilized in the experiments. Subsequently, Section
1057 E.2 will offer a basic introduction to the baseline methods incorporated in our study. Following that,
1058 Section E.3 will delineate the diverse hyperparameters employed in the network architecture of our
1059 model. Additionally, it will elucidate the search space for hyperparameters and present the optimal
1060 hyperparameters.

1061 **E.1 DATASETS**

- 1063 • **ZhangDDI** Zhang et al. (2017) is a small-scale dataset, including 548 drugs with 48,548 pairwise
1064 interaction data points, encompassing various types of similarity information for these drug pairs.
- 1065 • **ChChMiner** Zitnik et al. a medium-scale dataset, comprises 1,514 drugs and 48,514 labeled
1066 DDIs, sourced from drug labels and scientific publications.
- 1067 • **DeepDDI** Ryu et al. (2018) is a larger-scale dataset with 1,704 drugs and 192,284 labeled DDIs,
1068 along with comprehensive side-effect information.

1069 These datasets provide detailed drug information, including SMILES string representations, forming
1070 a robust foundation for evaluating the proposed model.

1073 **E.2 BASELINES**

1075 In this chapter, we will provide a brief introduction to the baseline models mentioned in the experi-
1076 mental section. In our extensive assessment, our model is compared with eight advanced DDI event
1077 prediction methods, all leveraging molecular graphs as input features.

1078 **DeepDDI.** Ryu et al. (2018) It is based on the structural similarity profile between input drugs and
1079 others.

1080 **SSI-DDI.** Nyamabo et al. (2021) it use a 4-layer GAT network to extract substructures at different
 1081 levels, and finally complete the final prediction based on the co-attention mechanism.
 1082

1083 **CGIB.** Lee et al. (2023b) Based on the graph conditional information bottleneck theory, conditional
 1084 subgraphs are extracted to complete the interaction between molecules.
 1085

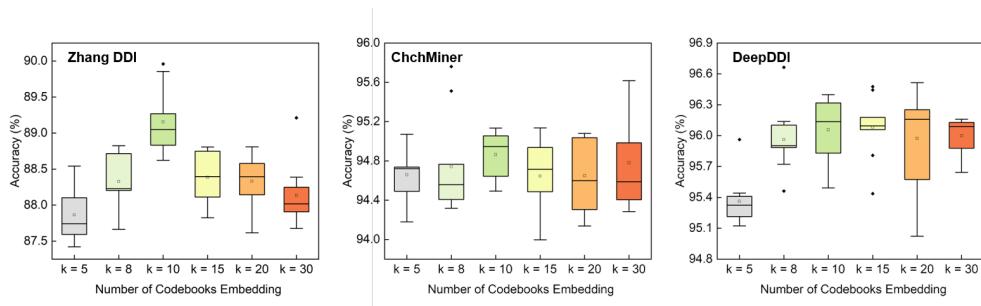
1086 **CMRL.** Lee et al. (2023c) it detects the core substructure that is causally related to chemical reactions.
 1087 we introduce a novel conditional intervention framework whose intervention is conditioned on the
 1088 paired molecule. With the conditional intervention framework.
 1089

1090 **MDF-SA-DDI.** Lin et al. (2022), achieving DDI prediction by incorporating multi-source drug fusion,
 1091 multi-source feature fusion and transformer self-attention mechanism.
 1092

1093 **DSN-DDI.** Li et al. (2023) it employs local and global representation learning modules iteratively
 1094 and learns drug substructures from the single drug ('intra-view') and the drug pair ('inter-view')
 1095 simultaneously.
 1096

1097 **IE-HGNN.** Ye & Qian (2024) It introduces an internal–external bi-view hypergraph neural network,
 1098 where cross-interaction message passing is applied to capture molecular relational patterns and reduce
 1099 edge redundancy in paired molecular graphs.
 1100

1101 **IGIB-ISE.** Zhang et al. (2025b) It integrates an iterative substructure extraction framework with
 1102 the Interactive Graph Information Bottleneck, progressively refining interactive core substructures
 1103 between drug pairs to improve accuracy and interpretability in molecular relational learning.
 1104



1111 Figure 6: Test results of varying numbers of environmental vectors in the environment codebook in a
 1112 transductive setting.
 1113
 1114

1115 E.3 PARAMETER SETTING

1116 **Model architecture.** For intramolecular message passing, we employ a 3-layer Gated Graph
 1117 Convolutional Network (GatedConv). For intermolecular message passing, we utilize a 3-layer Graph
 1118 Attention Network (GAT). As for the pooling layer, we opt for the set2set network. The **detailed**
 1119 hyperparameters are present in Table 7.
 1120

1121 **Model Training.** The model is trained using the Adam optimizer Kingma & Ba (2014) with an
 1122 initial learning rate of 1×10^{-4} , which is increased to 0.5, employing a batch size of 32. Binary
 1123 cross-entropy loss (BCE) is utilized as the training loss function. Training is terminated if the
 1124 validation error does not decrease for 150 epochs or if the maximum training limit of 300 epochs
 1125 is reached. I2Mole is implemented in the PyTorch framework and executed on Tesla A100 40GB
 1126 hardware.
 1127

1128 F RESULTS SIGNIFICANCE ANALYSIS

1129 In the transductive setting, which is a conventional testing method where the dataset is randomly
 1130 divided into training, validation, and test sets, we repeated the experiment 8 times and calculated the
 1131 mean, variance, and p-value of the ACC, as shown in the Table 8, compared to the second-best model,
 1132 I2Mole improved by 0.98% on the large-scale DeepDDI dataset, with an average improvement of
 1133 approximately 0.05. The p-values are less than 0.05, proving that the improvements of our model are

Table 7: Hyperparameter specifications.

Network layer hyperparameters						
GatedConv			GAT		FC	
Num-layers	3, 4, 5		Num-layers	3, 4, 5	Num-layers	3, 4, 5
Hidden-size	200, 400 , 600, 800		Hidden-size	200, 400 , 600, 800	Dropout	0.5
Layers	3, 4, 5		Layers	3, 4, 5	Hidden-size	300, 400 , 500, 600
Activation	LeakyReLU		Activation	LeakyReLU		
Training hyperparameters						
Batch-size	32		Learning rate	0.0001, 0.0005, 0.01, 0.005	β	0, $1e^{-5}$, 1e⁻⁴ , 1e⁻³ , $1e^{-1}$
Environment codebook hyperparameters						
Num of environment	5, 8, 10 , 15, 20, 30		γ	2e ⁻⁵ , 1e ⁻⁴ , 2e ⁻⁴ , 5e ⁻⁴ , 1e ⁻³		

statistically significant. Therefore, although this is a limited improvement, the results are substantial and significant.

In the inductive setting, which is a commonly used generalization testing method, a molecule (type 1) or a molecule pair (type 2) is removed in the test set to verify the model’s generalization ability. Notably, in the generalization tests, I2Mole achieved an average improvement of 1.05% in type 1 scenarios and 1.20% in type 2 scenarios. This demonstrates I2Mole’s ability to generalize to unseen molecules.

In domain generalization experiments, which is a challenging testing method, we trained and tested on datasets from different domains to verify I2Mole’s generalization ability. Clearly, I2Mole achieved the best generalization results, with an average improvement of 2.71% (Acc index), significantly outperforming the improvements in transductive and inductive settings.

G SENSITIVITY ANALYSIS

We conduct an in-depth investigation into the effect of varying the number of environment embeddings on our model’s performance, as depicted in Figure 6. The results demonstrate that altering the number of environment embeddings has a negligible impact on test performance across three different-sized test datasets, underscoring the robustness of our model. The optimal performance is achieved when the number of codebook vectors is set to 10, which we have adopted for our final model configuration.

Furthermore, we investigated the impact of varying the proportion of retained relational edges during inter-molecular message passing on the model’s performance, as illustrated in Table 9. The results indicate that gradually increasing the proportion of retained relational edges enhances the model’s performance. However, beyond a certain threshold, further increments lead to a noticeable decline in performance. Consequently, we selected 20% as the optimal parameter for the proportion of retained relational edges.

A crucial parameter in this context is the number of environmental samples, denoted as θ . Increasing the number of sampled environments expands the range of simulated molecular interactions under various conditions, though it also introduces additional training overhead. To identify the optimal value of θ , we systematically evaluated the impact of different sampling quantities, ranging from 2 to

Table 8: Significant difference analysis.

	Model Performance		
	ZhangDDI	ChchMiner	DeepDDI
Second-best model	88.08 _(0.26)	94.92 _(0.21)	95.85 _(0.19)
Our model	88.64 _(0.24)	95.34 _(0.19)	96.51 _(0.14)
P-value	3.52E-04	2.13E-03	8.74E-05

Table 9: Sensitivity analysis for retained relational edges ratio.

	ZhangDDI		
	ACC	AUROC	F1
Top_s = 5%	88.52 _(0.08)	95.02 _(0.02)	85.75 _(0.06)
Top_s = 10%	88.60 _(0.10)	95.10 _(0.03)	85.80 _(0.20)
Top_s = 20%	88.64 _(0.24)	95.12 _(0.12)	85.87 _(0.20)
Top_s = 30%	88.54 _(0.12)	95.09 _(0.12)	85.53 _(0.13)
Top_s = 50%	88.34 _(0.14)	94.87 _(0.10)	85.22 _(0.11)

6, within the framework of an environment codebook size of $k = 10$, as shown in Table 10. Based on the results, we have determined the optimal value of θ to be 4.

Table 10: Sensitivity analysis for the sampling numbers of environmental embedding.

	ZhangDDI			ChchMiner			DeepDDI		
	ACC (↑)	AUROC (↑)	F1 (↑)	ACC (↑)	AUROC (↑)	F1 (↑)	ACC (↑)	AUROC (↑)	F1 (↑)
$\theta = 2$	88.12 _(0.11)	94.79 _(0.14)	85.03 _(0.06)	94.67 _(0.14)	98.61 _(0.21)	95.83 _(0.11)	96.48 _(0.11)	97.11 _(0.10)	97.27 _(0.06)
$\theta = 3$	88.17 _(0.15)	94.74 _(0.10)	85.07 _(0.20)	94.43 _(0.14)	98.68 _(0.07)	95.71 _(0.08)	96.23 _(0.10)	97.93 _(0.18)	97.37 _(0.10)
$\theta = 4$	88.64 _(0.24)	95.12 _(0.12)	85.87 _(0.20)	95.34 _(0.19)	98.84 _(0.10)	96.21 _(0.25)	96.51 _(0.14)	99.04 _(0.22)	97.53 _(0.16)
$\theta = 5$	88.29 _(0.13)	94.87 _(0.13)	85.41 _(0.12)	94.38 _(0.19)	98.82 _(0.18)	95.61 _(0.10)	96.18 _(0.12)	98.89 _(0.12)	97.28 _(0.08)
$\theta = 6$	88.24 _(0.14)	94.85 _(0.15)	85.09 _(0.10)	94.57 _(0.16)	98.76 _(0.10)	95.78 _(0.08)	96.34 _(0.12)	97.00 _(0.13)	97.37 _(0.11)

H VQ MODULE ANALYSIS

To further illustrate the role of the VQ module, we introduced extra two variants for comparison: (1) RD Noise Variant: In this version, noise in the environment codebook is entirely random, mimicking the effects of random noise injection. (2) Instance-Dependent (ID) Noise Variant: Here, we sampled new environments from the environment codebook and added them as small perturbations to the instance-dependent environment. The Gaussian distribution of this noise is determined by the mean and variance of subgraph node vectors, emphasizing instance-dependent noisy perturbations.

Table 11: Performance comparison across different DDI datasets.

Method	ZhangDDI		ChchMiner		DeepDDI	
	Acc (↑)	AUROC (↑)	Acc (↑)	AUROC (↑)	Acc (↑)	AUROC (↑)
RD noise	87.21 _(0.11)	93.76 _(0.13)	93.47 _(0.08)	97.52 _(0.07)	92.39 _(0.38)	97.01 _(0.39)
ID noise	88.02 _(0.06)	94.47 _(0.08)	94.27 _(0.12)	98.54 _(0.06)	94.56 _(0.10)	97.42 _(0.31)
Ours	88.64 _(0.24)	95.12 _(0.12)	95.34 _(0.19)	98.84 _(0.10)	96.51 _(0.14)	99.04 _(0.22)

Our experimental results demonstrate the superiority of the VQ module and the proposed optimization strategy, particularly in improving the model’s robustness and ability to generalize across diverse chemical environments.

I DATA SCALABILITY ANALYSIS

We have included the time and space complexity results for our model and various baseline models, along with a comparison of model parameters in Table 12 and Table 14. This table clearly showcases the results of various model parameters, time and computational complexity. Compared to other baseline models, I2Mole exhibits a significantly larger number of total parameters, leading to substantially higher time consumption and computational complexity than the other baselines.

As the amount of training data increases and the test data decreases, the model’s performance exhibits a notable improvement. It is particularly worth mentioning that the model shows significant gains during the initial stages, but further increasing the training data yields only marginal improvements. Further, we evaluated the model performance under different training data sizes and model parameter conditions in Table 13. We control the model parameters by adjusting the number of message-passing layers, dimensions of embeddings and feedforward NN.

I2Mole also could naturally generalize to other molecular relational learning tasks due to its pairwise merged-graph design and interaction-focused information bottleneck theory. Therefore, we conducted an additional experiment to substantiate the model’s applicability beyond classification-only DDI tasks. Specifically, we adapted I2Mole for regression by (1) replacing the final classification head with a linear regression layer, (2) removing activation, normalization, and dropout, and (3) switching the loss function from BCEWithLogitsLoss to MSELoss. Without further hyperparameter tuning, we evaluated the model on five standard solute–solvent datasets involving Gibbs free energy of solvation and hydration free energy (experimental and calculated) (Du et al., 2024; 2025a). Despite minimal adaptation, I2Mole achieves competitive performance, comparable to strong baselines as present in Table 15

1242
1243 **J COMPUTATIONAL COMPLEXITY**

1244 Alongside increasing the model’s complexity, there is a clear rise in computational time, accompanied
 1245 by performance improvements. This could be attributed to the more intricate models being able to
 1246 capture deeper inter-molecular relationships, thereby enhancing performance. However, when the
 1247 model’s parameters are further increased, its performance starts to degrade. This decline is likely due
 1248 to overfitting, as the model becomes overly complex, leading to difficulties in convergence during
 1249 training.

1250
1251 Table 12: Computational complexity analysis on I2Mole on ZhangDDI dataset.

Model Parameter (M)	23.4	26.8	29.5	31.7	35.4	38.4	40.3	44.5	49
Time Consumption (h)	7.4	8.3	9.5	10.4	12.17	13.23	15.6	18.4	22.3
Performance (ACC)	83.61	85.94	87.43	88.27	88.64	88.64	88.35	87.91	86.87

1252
1253 Table 13: Data scalability analysis on I2Mole on ZhangDDI dataset.

Training Data Ratio (%)	10	20	30	40	50	60	70	80	90
Test Data Ratio (%)	45	40	35	30	25	20	15	10	5
Performance (ACC)	53.27	65.27	72.34	80.34	88.27	88.64	89.01	91.34	92.25

1254 The higher computational cost of I2Mole mainly arises from edge-level aggregation and message
 1255 passing, as the constructed merged graph contains more relational edges, which are inherent to graph
 1256 neural networks. We report two effective strategies that reduce cost while preserving most accuracy.

- 1257 • Improving the message-passing mechanism by using lightweight modules in certain layers. As
 1258 shown in the Table 16, replacing the current MPNN layer with a standard GIN backbone reduces
 1259 the complexity to approximately one-fifth of the original, with only $\sim 4\%$ drop in performance.
 1260 Therefore, we can consider replacing certain layers with GIN to reduce model complexity while
 1261 ensuring performance.
- 1262 • By constructing a Molecular Merged Hypergraph Neural Network Du et al. (2025b), specific
 1263 substructures of molecules, such as functional groups, are defined as hypernodes, reducing the
 1264 number of nodes in the merged graph and thus lowering the model complexity. We have made
 1265 preliminary attempts with the Hypergraph Neural Network (further optimizations is not within
 1266 the scope of this work.), where the computational time can be reduced to approximately half of
 1267 the original, and for larger molecules, the reduction in time consumption is even more significant,
 1268 without sacrificing much predictive accuracy.
- 1269 • For further exploration, we consider replacing the current MPNN layers (Table 18, using 3 layers)
 1270 with GIN layers to better balance model complexity and performance. Our findings show that sub-
 1271 stituting two of the three layers with GIN significantly reduces model complexity (approximately
 1272 25%) while resulting in only a marginal performance drop of $\sim 0.36\%$. Despite this slight decrease,
 1273 the model still achieves SOTA compared to the baseline. In addition, integrating the model with
 1274 a hypergraph neural network framework—by predefining functional groups or motifs as hyper-
 1275 nodes—can further reduce model complexity as present in Table 18. However, we observe that this
 1276 strategy leads to a more noticeable decline in performance, about $\sim 3.15\%$. Therefore, employing
 1277 lightweight GNN backbones and hypergraph frameworks to improve message aggregation and
 1278 reduce the number of atomic nodes presents a highly promising method, but further optimization
 1279 and parameter tuning are needed.

1280
1281 **K LIMITATION ANALYSIS**

1282 I2Mole, based on the drug pair merged graph, achieves the extraction of rationale subgraphs in
 1283 molecular interactions and combines the trained environment codebook, significantly enhancing
 1284 generalization capabilities in domain generalization experiments. However, considering the rapid
 1285 advancements in the pharmaceutical field and real-world prescription scenarios, we foresee improve-
 1286 ments to the current framework in three key aspects:

Table 14: Comparison of ZhangDDI, ChchMiner, and DeepDDI across different models.

Model	Metric	ZhangDDI	ChchMiner	DeepDDI
CGIB (Lee et al., 2023b)	ACC	87.32	94.37	95.76
	Time (h)	1.5	0.59	3.73
	Memory (G)	5.1	3.9	7.4
	Parameters (M)	11	11	11
CRML (Lee et al., 2023c)	ACC	87.78	94.43	95.49
	Time (h)	1.3	0.47	3.24
	Memory (G)	4	3.4	6.1
	Parameters (M)	10	10	10
SSI-DDI (Nyamabo et al., 2021)	ACC	86.97	93.26	94.27
	Time (h)	1.77	0.65	4.08
	Memory (G)	3.1	2.7	4.4
	Parameters (M)	13	13	13
DSN-DDI (Li et al., 2023)	ACC	87.65	94.25	95.74
	Time (h)	1.2	0.43	3.08
	Memory (G)	2.9	3.6	4.1
	Parameters (M)	0.19	0.19	0.19
IGIB-ISE (Zhang et al., 2025b)	ACC	88.08	94.92	95.85
	Time (h)	8.7	2.9	22.8
	Memory (G)	36.2	27.3	39.4
	Parameters (M)	10.5	10.5	10.5
MMGNN (Du et al., 2024)	ACC	85.40	94.18	95.12
	Time (h)	16.8	6.1	41.2
	Memory (G)	38.1	30.4	39.7
	Parameters (M)	389.10	389.10	389.10
Explainable GNN (Low et al., 2022b)	ACC	84.24	93.62	94.71
	Time (h)	11.3	4.4	29.1
	Memory (G)	20.1	15.3	18.6
	Parameters (M)	39.10	39.10	39.10
MMHNN (Du et al., 2025a)	ACC	86.17	94.55	95.43
	Time (h)	9.6	3.8	25.6
	Memory (G)	15.4	12.1	14.9
	Parameters (M)	32.26	32.26	32.26
CasualIB (Zhang et al., 2025a)	ACC	88.14	94.94	95.86
	Time (h)	15.4	5.4	33.8
	Memory (G)	22.7	17.0	20.3
	Parameters (M)	38.17	38.17	38.17
I2Mole (Ours)	ACC	88.64	95.34	96.51
	Time (h)	13.23	4.9	33.07
	Memory (G)	17	13.3	11.7
	Parameters (M)	35.4	35.4	35.4

- We aim to acquire more comprehensive data on drug interaction processes and analyses between molecules, addressing the limitations of current research. In practice, patients often have multiple comorbidities requiring the concurrent use of various drug categories. Thus, the interaction system of multiple drugs remains a critical research area.
- Constructing relationship edges in pairs, as previously done, is an effective strategy for predicting properties between molecular pairs. However, this approach significantly increases the graph's complexity, especially for large, intricate molecules, due to the substantial rise in degrees of freedom, leading to higher computational resource and time consumption.

1350 Table 15: Test performance of different methods across eight independent runs. Mean values are
 1351 reported, with standard deviations shown in parentheses. (The best result in each column is underlined,
 1352 while the top-performing baseline is marked with a superscript dagger.)

	MAE (↓)					RMSE (↓)				
	FreeSolv	CompSol	Abraham	CompSolv-Exp	MNSol	FreeSolv	CompSol	Abraham	CompSolv-Exp	MNSol
D-MPNN	0.684 _(0.052)	0.179 _(0.013)	0.454 _(0.036)	0.442 _(0.022)	0.459 _(0.032)	1.164 _(0.055)	0.343 _(0.017)	0.624 _(0.024)	0.672 _(0.051)	0.667 _(0.017)
Explainable GNN	0.724 _(0.031)	0.184 _(0.012)	0.486 _(0.042)	0.321 _(0.013)	0.396 _(0.011)	1.276 _(0.045)	0.367 _(0.012)	0.776 _(0.035)	0.404 _(0.054)	0.673 _(0.024)
SolvBERT	0.588 _(0.034)	0.167 _(0.014)	0.467 _(0.034)	0.382 _(0.023)	0.354 _(0.021)	1.021 _(0.043)	0.328 _(0.020)	0.652 _(0.022)	0.472 _(0.041)	0.623 _(0.104)
GAT	0.673 _(0.033)	0.187 _(0.011)	0.457 _(0.043)	0.970 _(0.031)	0.514 _(0.043)	1.185 _(0.075)	0.390 _(0.012)	0.726 _(0.040)	0.810 _(0.101)	0.812 _(0.124)
GROVER	0.623 _(0.054)	0.155 _(0.022)	0.307 _(0.035)	0.382 _(0.023)	0.354 _(0.024)	1.015 _(0.022)	0.332 _(0.016)	0.475 _(0.044)	0.491 _(0.053)	0.672 _(0.027)
SMD	0.574 _(0.036)	0.162 _(0.014)	0.374 _(0.024)	0.633 _(0.044)	0.427 _(0.034)	1.113 _(0.015)	0.317 _(0.011)	0.516 _(0.065)	1.023 _(0.152)	0.682 _(0.032)
Uni-Mol	0.565 _(0.038)	0.164 _(0.027)	0.322 _(0.071)	0.214 _(0.022)	0.374 _(0.021)	1.002 _(0.064)	0.303 _(0.020)	0.602 _(0.035)	0.373 _(0.043)	0.657 _(0.019)
Gem	0.584 _(0.041)	0.174 _(0.011)	0.201 _(0.065)	0.253 _(0.023)	0.367 _(0.025)	1.131 _(0.059)	0.290 _(0.019)	0.641 _(0.031)	0.551 _(0.023)	0.675 _(0.027)
CIGIN	0.564 _(0.057)	0.164 _(0.016)	0.254 _(0.010)	0.241 _(0.023)	0.347 _(0.023)	0.910 _(0.015)	0.318 _(0.020)	0.404 _(0.007)	0.411 _(0.032)	0.644 _(0.012)
CGIB	0.531 _(0.034)	0.156 _(0.014)	0.195 _(0.005)	0.203 _(0.033)	0.321 _(0.017)	0.892 _(0.022)	0.278 _(0.018)	0.391 _(0.006)	0.351 _(0.031)	0.613 _(0.023)
I2Mole	0.535 _(0.027)	0.158 _(0.011)	0.189 _(0.010)	0.175 _(0.014)	0.282 _(0.0011)	0.900 _(0.023)	0.268 _(0.013)	0.389 _(0.007)	0.306 _(0.030)	0.609 _(0.023)

Table 16: Replacing the current MPNN layer with standard backbones.

GNN backbone	ACC (%)	Train time (s)	Test time (s)	Parameters (M)
GraphSAGE	80.26	514.80	50.88	21.3
GIN	91.35	188.10	19.27	21.4
GAT	87.42	376.40	36.12	22.4
Baseline	95.34	1020.62	90.61	35.4

- An equally important aspect is that drugs often function only under specific conditions such as temperature and pH levels. Therefore, we anticipate future work to comprehensively consider the impact of external environments on the functionality of drug molecule pairs, thereby refining the model’s capabilities.

L THE SCAFFOLD AND SIZE SPLITTING EXPERIMENTS RESULT.

The scaffold and size splitting experiments result are [presented](#) in Table 20.

In the scaffold split, we follow the standard practice used in molecular OOD evaluation Chung et al. (2022b); Yang et al. (2022b). We first match all molecules against a fixed set of SMARTS-defined scaffolds, consisting of nine predefined core substructure patterns in Table 19. All molecules containing any of these scaffolds are assigned to the test set. The remaining molecules are then randomly divided into training and validation sets using a 9:1 ratio. This ensures that structurally distinct scaffolds appear exclusively in the test domain.

In the size split, following the procedure in Ji et al. (2023), we group molecules according to their atomic size (number of atoms). Molecules are sorted in descending order of atomic size, and the ordered sequence is partitioned as follows: the largest 60% are assigned to the training set, the middle 20% to the validation set, and the smallest 20% to the test set.

M VISUALIZATION ANALYSIS

Acetaminophen, a widely used medication for pain relief (analgesic) and fever reduction (antipyretic), is frequently found in over-the-counter formulations. However, unexpected drug-drug interactions (DDIs) between acetaminophen and compounds such as Fenoterol, Fosphenytoin, and Ethanol can pose significant threats to patient safety, as depicted in Figure 7 (a). Specifically, the aromatic ring of acetaminophen, along with its surrounding functional groups, is capable of interacting with target molecules, particularly at the central carbon atom bonded to the carboxyl group. This key interaction has been effectively captured by the I2Mole model. Additionally, the core subgraphs extracted by I2Mole exhibit good connectivity and consistent distribution across regions, although the associated weights may vary.

As demonstrated in Figure 7 (b), In the case of aspirin, a widely used anti-inflammatory drug that also serves as an analgesic, antipyretic, and, at low doses, an antiplatelet agent, its interaction with

1404
1405 Table 17: Comparison of ChchMiner across Hypergraph Neural Network (HGNN) and I2mole. AM:
1406 average number of atoms per molecule.

Model	Params (M)	AM=340	AM=549	AM=638	AM=722	AM=1934	ACC(%)
I2Mole	35.40	780.74	871.57	962.28	1012.22	1274.38	95.34
HGNN	13.225	350.27	437.63	456.94	478.81	499.75	92.37

1411
1412
1413 Table 18: Comparison of ChchMiner across different models.
1414

GIN layer	ACC (%)	Decrease	Train time (s)	Test time (s)	Params (M)
1 layer	95.07	0.27	757.79	70.38	31.40
2 layer	94.98	0.36	450.10	47.91	26.50
3 layer	91.35	3.99	188.10	19.27	21.40
2layer+HGNN	92.19	3.15	278.81	43.74	9.874
Baseline	95.34	—	1020.62	90.61	35.40

1424 Table 19: SMARTS-defined scaffold patterns used in the scaffold split.
1425

1433 molecules like Ibrutinib, Eluxadoline, and Glipizide is notably influenced by specific structural
1434 features. The aromatic branch of aspirin (excluding the carboxyl group region) is more prone to
1435 forming interactions with the nitrogen-containing heterocycles of other molecules. This suggests that,
1436 during DDI events, the merged graph substructures of these molecules have an enhanced propensity
1437 for direct interaction, leading to increased DDI potential. These observations provide important
1438 insights into the structural determinants of DDIs, further emphasizing the predictive capability of the
1439 I2Mole model in capturing complex inter-molecular relationships.

1440 To further validate the interpretability of our model, we designed an evaluation strategy inspired
1441 by Zhong et al. (2024) to benchmark the alignment between model-identified substructures and
1442 experimentally supported chemical knowledge. Specifically, we curated a dataset of 73 chemicals
1443 (perpetrators) known to inhibit metabolic enzymes through well-defined functional groups, thereby
1444 inducing metabolism-mediated DDIs. These chemicals were paired with other drugs to generate
1445 13,786 DDI instances. We evaluate the model at three complementary levels. **DDI-level matching**
1446 examines the classification performance across all 343,036 MMDDI pairs in the dataset, comprising
1447 171,518 true interactions—where drug A inhibits or induces the metabolism of drug B—and an equal
1448 number of reverse-order negative samples generated by flipping the semantic roles of the two drugs.
1449 The model must determine whether the predicted mechanism and direction for each pair are correct,
1450 i.e., whether drug A truly affects drug B. **Perpetrator-level** matching further tests whether the model
1451 can correctly identify which drug in the pair acts as the perpetrator and which serves as the victim.
1452 Finally, **Frequent Functional Groups Matching** assesses substructure-level interpretability using a
1453 manually curated set of 73 chemicals known from the literature to cause metabolism-mediated DDIs
1454 through specific functional groups or reactive substructures.

1455 Using I2Mole, we conducted interpretability analysis by comparing the substructures highlighted by
1456 our model with enzyme-inhibition functional groups reported in the literature. The results demonstrate
1457 that our model achieves a DDI-level matching rate of 60.63%, a perpetrator-level matching rate of
1458 90.35%, and a frequent functional group matching rate of 78.42%, indicating that I2Mole captures
1459 key pharmacological substructures consistent with experimentally validated mechanisms.

1458
1459

Table 20: The scaffold and size splitting experiments result.

1460
1461
1462
1463
1464
1465
1466
1467
1468

Model	ZhangDDI		Chchminer		DeepDDI	
	Scaffold (↑)	Size (↑)	Scaffold (↑)	Size (↑)	Scaffold (↑)	Size (↑)
SSI-DDI	72.34(3.73)	70.15(2.47)	72.34(1.22)	76.89(1.82)	78.27(2.12)	84.75(4.32)
MDF-SA-DDI	79.34(1.37)	79.46(0.48)	85.47(0.75)	84.23(0.63)	87.38(0.32)	86.58(0.37)
DSN-DDI	82.16(1.21)	80.38(1.23)	87.47(2.14)	87.92(1.32)	88.99(2.33)	86.53(1.65)
CGIB	83.32(1.26)	80.79(0.83)	89.47(1.10)	88.43(1.39)	89.56(2.22)	89.44(2.02)
CMRL	82.25(0.85)	81.32(0.77)	89.78(1.24)	88.49(1.91)	90.76(2.31)	90.77(1.22)
IE-HGNN	83.05(0.88)	81.67(0.69)	89.96(1.12)	89.02(1.37)	91.02(1.84)	91.05(1.14)
IGIB-ISE	83.22(0.79)	82.01(0.73)	90.11(1.05)	89.37(1.21)	91.25(1.77)	91.32(1.09)
Ours	83.45 (0.92)	82.55 (1.12)	90.32 (1.71)	89.95 (1.06)	91.76 (2.63)	91.89 (1.42)

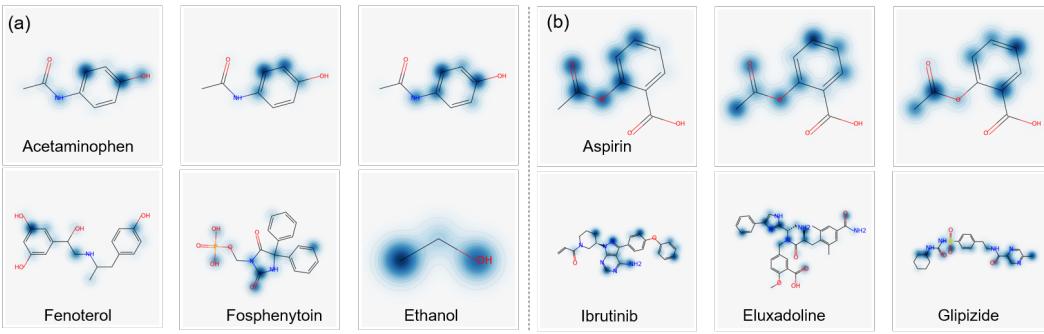
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
14791480
1481
1482
1483
1484

Figure 7: Visualization of the important substructure pairs in six drug pairs. (a) Acetaminophen with Fenoterol, Fosphenytoin, and Ethanol drug ligands. And (b) Aspirin with Ibrutinib, Eluxadoline, and Glipizide drug ligands. The darker the color means the greater the weight.

1485
1486
1487
1488

N MAXIMUM COMMON SUBSTRUCTURE (MCS) ANALYSIS OF VQ ENVIRONMENTS

1489
1490
1491

We further assess whether the learned VQ codebook captures meaningful structural patterns by performing an MCS exemplar analysis. In particular, we examine environment categories 5, 6, and 7, which contain 4,556, 20,278, and 7,666 molecular pairs, respectively.

1492
1493
1494
1495
1496

To evaluate the structural coherence of each VQ environment, we computed both inter-category and intra-category MCS similarities. Since MCS is computed at the molecular level and the overall number of molecules is large in our setting, the exact computation is computationally expensive. Therefore, we adopted a sampling-based evaluation strategy:

1497
1498
1499
1500

- **Inter-category analysis:** For each pair of categories, we randomly sampled 200 SMILES from each category. This yields 40,000 (200×200) cross-category molecular pairs. From these, we randomly selected 1,000 pairs and computed their MCS similarity. The resulting distribution reflects the structural overlap between the two categories.
- **Intra-category analysis:** For each of the three categories, we randomly sampled 200 SMILES from all molecules assigned to that category. From these 200 molecules, we randomly selected 500 molecular pairs and computed their MCS similarity. These 500 values characterize the structural consistency within the category.

1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Table 21: Interpretability evaluation results.

Evaluation Aspect	Hit-Rate (%)
DDI-level Matching	60.63
Perpetrator-level Matching	90.35
Frequent Functional Groups Matching	78.42

1512 The MCS similarity between two molecules G_1 and G_2 is defined as:
 1513

$$1514 S_{\text{MCS}} = \frac{|MCS|}{\min(|G_1|, |G_2|)}. \quad (32)$$

1517 For each category, we report the mean and variance of the intra-category and inter-category MCS
 1518 similarities, and for each pair of categories. The results are in Table 22.

1519 Table 22: Inter-category and intra-category MCS similarity (mean \pm variance).

1521 Inter-Category	1522 Category 5 vs 6	1523 Category 5 vs 7	1524 Category 6 vs 7
1525 Intra-Category	1526 Category 5	1527 Category 6	1528 Category 7
MCS similarity	0.2523 _(0.1224)	0.2366 _(0.11014)	0.2491 _(0.1144)
MCS similarity	0.3458 _(0.1259)	0.3921 _(0.1172)	0.3423 _(0.1109)

1529 Our MCS-based analysis shows that the inter-category and intra-category structural similarities
 1530 differ substantially. This indicates that the VQ-based clustering is not merely a direct grouping of
 1531 molecules by shared substructures. Instead, the VQ codebook is learned in a latent embedding space,
 1532 initialized from distinct environment vectors env , and each environment substructure vector \tilde{s}_{env}
 1533 is mapped through a non-linear projection layer into the discrete code space as Equation 20. As a
 1534 result, although the learned codewords reflect meaningful structural patterns, they are not expected to
 1535 correspond one-to-one to MCS-defined structural clusters. As \mathcal{L}_{vq} converges, the model obtains a
 1536 stable codebook \mathcal{W} , which clusters the infinite possible environment space \mathbf{E} into a discretized set of
 1537 M finite environments represented by W .

1538 Furthermore, we extracted a representative MCS structure for each category. Specifically, for each
 1539 category we randomly sampled 300 candidate molecules and computed the full 300 \times 300 Tanimoto
 1540 fingerprint similarity matrix. We then identified the “central” molecule, i.e., the one with the highest
 1541 average Tanimoto similarity within the category and selected its top-40 nearest neighbors. Using
 1542 RDKit, we computed the MCES shared by these 40 molecules. The resulting representative MCS
 1543 patterns exhibit clear qualitative differences across categories: Category 5 tends to capture exocyclic
 1544 C–C motifs, Category 6 is enriched in aromatic ring structures, and Category 7 is dominated by
 1545 non-ring nitrogen atoms. These differences further confirm that the learned VQ codebook organizes
 1546 molecular environments into semantically coherent and structurally distinct groups.

1547 Table 23: Representative MCS exemplars extracted for each VQ environment category.

1548 Category	1549 MCS exemplar (SMARTS)	1550 Illusion
5	[#6&R] –& !@ [#6&!R]	Exocyclic C–C
6	6-member aromatic ring	Aromatic rings
7	[#7&!R]	Non-ring nitrogen atom

1553 Overall, the VQ clustering results and the MCS analysis are not expected to align perfectly. Although
 1554 the intra-category MCS values within each VQ cluster are relatively small, indicating that molecules
 1555 in the same VQ category do not necessarily share large explicit common substructures, it is interesting
 1556 to observe that each category nevertheless exhibits a distinct representative MCS pattern, and these
 1557 patterns differ clearly across categories. This behavior is consistent with the fundamental difference
 1558 between the two approaches: VQ clusters substructures based on learned semantic similarity in
 1559 the latent embedding space, whereas MCS groups molecules purely according to graph-theoretic
 1560 structural overlap. As a result, VQ could capture higher-level or functional similarities that may not
 1561 correspond to large MCS fragments.

1562
 1563
 1564
 1565