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ABSTRACT

We present Stylos, a single-forward 3D Gaussian framework for 3D style
transfer that operates on unposed content, from a single image to a multi-
view collection, conditioned on a separate reference style image. Stylos
synthesizes a stylized 3D Gaussian scene without per-scene optimization or
precomputed poses, achieving geometry-aware, view-consistent stylization
that generalizes to unseen categories, scenes, and styles. At its core, Stylos
adopts a Transformer backbone with two pathways: geometry predictions
retain self-attention to preserve geometric fidelity, while style is injected
via global cross-attention to enforce visual consistency across views. With
the addition of a voxel-based 3D style loss that aligns aggregated scene
features to style statistics, Stylos enforces view-consistent stylization while
preserving geometry. Experiments across multiple datasets demonstrate
that Stylos delivers high-quality zero-shot stylization, highlighting the ef-
fectiveness of global style—content coupling, the proposed 3D style loss, and
the scalability of our framework from single view to large-scale multi-view
settings. Our codes will be fully open-sourced soon.

1 INTRODUCTION

Image guided 3D stylization aims to preserve scene geometry and cross-view consistency
while transferring the reference style. With the rise of immersive content, augmented and
virtual reality, demand for this capability is growing. Nevertheless, achieving reliable 3D
stylization remains challenging and continues to attract significant research attention.

Early attempts rely on explicit 3D geometry such as meshes or point clouds, but their styl-
ization quality is often limited by geometric reconstruction accuracy, resulting in noticeable
artifacts in complex scenes (Kato et al), 2018; Cao ef all, 2020). The introduction of implicit
radiance fields, most notably NeRF (Mildenhall et al), 2020), enables higher-fidelity render-
ing, and subsequent works extended it to artistic stylization (Zhang et al), 2022; Huang
et al), 2022; Liu et all, 2023), but typically require costly per-scene optimization, constrain-
ing their generalization to unseen scenes. More recently, 3D Gaussian Splatting (3DGS)
has emerged as a promising explicit representation that combines high reconstruction qual-
ity with real-time rendering efficiency (Kerbl et all, 2023). Stylization approaches built on
3DGS achieve efficient multi-view consistency (Liu et all, 2024; Galerne et al, 2025), yet
still struggle to generalize beyond scene-specific training.

In contrast, we introduce Stylos, a single-forward framework for 3D style transfer that
eliminates the need for per-scene optimization and precomputed camera parameters, and
generalizes effectively to novel categories, scenes, and styles. Stylos employs a shared
Transformer backbone with two pathways: content and style images are projected into a
shared feature space, where content retains self-attention for geometric reasoning, and style
is injected via global cross-attention to condition aesthetics. Notably, the global cross-
attention also benefits the preservation of geometric details. Geometry-related attributes,
such as depth, camera intrinsics, and extrinsics, are derived from backbone features, whereas
style conditioning guides the prediction of color coefficients. These outputs are estimated
through prediction heads that serve as the interface between feature space and the final
Gaussian representation. Prior works in 2D style transfer typically rely on distribution
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alignment (, ), which operate on image statistics but lack explicit multi-view or
3D consistency. To address this, we explore alternative objectives and propose a voxel-based
3D style loss that aligns aggregated scene features with style statistics, providing stronger
view-consistent stylization while preserving geometric fidelity.

We evaluate Stylos across different scenarios, including category-level transfer and cross-
scene generalization. Our assessment spans challenging real-world benchmarks, where Stylos
produces stylized renderings with high visual fidelity and consistent geometry, demonstrating
robustness even in previously unseen environments. Qur main contributions are threefold:

¢ We propose a shared-backbone design with two pathways: geometry predictions
retain self-attention for geometric reasoning, while style is injected through global
cross-attention to condition aesthetics.

o We introduce a voxel-based 3D style loss that aligns aggregated scene features with
style statistics, enforcing cross-view coherence and geometry-aware stylization.

o We develop Stylos, a single-forward-pass pipeline for 3D style transfer from unposed
inputs, scaling from a single to hundreds of views with a single style image, and
achieving zero-shot generalization to unseen categories, scenes, and styles.

2 RELATED WORK

2.1 SINGLE-FORWARD 3D RECONSTRUCTION

Early CNN models (|Urnmenhofer et al], tZOl?I; thou et alL bOld; Ifeed & Dené, l202d)
demonstrate the feasibility of end-to-end 3D reconstruction. While the Transformer-based
DUStSR (Wang et al), 2024) has shown impressive performance, yet remains constrained by
pairwise inputs and rehance on traditional optimization for pose estimation. VGGT
w advances this line by jointly predicting camera parameters, depth, point map

a n d_tra ‘ from one to hundreds of views in a single forward pass, while AnySplat
) complements it with a feed-forward Gaussian splatting pipeline trained with
VGGT priors to directly predict Gaussian parameters along with depth and camera param-
eters from uncalibrated images.

2.2 3D STYLE TRANSFER AND LOSSES

cit-rep i proaches to 3D stylizati _IKam_e_t_alL_}ZD_lé bao et alJ l202d bud
it al ﬁuang et al]

, 2021); 021; Héllein et all, 202 u et all IZOQ?I) have shown promising
results, but their reliance on accurate geometry li complex real-world
scenes. Implicit neural representatlons hke NeRF ( ildenhall et al 50221 1mpr0ve geometric

consistency, inspiring isi
ili t s (Nguyen- Pb]]Qc et al hang et all, 02 hiang et al), 2022;

uang et al), 2022). StyleRF (Liu et all, 2023) further enhances ﬁdehty and enables zero-
shot transfer by applylng style transforrnatlons in radiance-field feature space.

More recently, 3D Gaussian Splatting (3DGS) (Kerbl et alj, I2023|) has emerged as an efficient
alternative to NeRF. StyleGaussian (Liu et al), 2024) extends 3DGS with efficient feature

rendering to enable real-time stylizatio i b elgﬂmr_ks_r_eﬁli ;Sl)j}’S’ for speTiT ,lizfji

] cy improvements (Mei ‘’hang et al u et al
E?Eralerne et alj %%) In parallel, Styl3R (Wang et al), 20251) disentangles geometry and
style using separate encoders, but is restric = W contrast, Stylos follows
the shared-backbone paradlgm of AdaIN (Suang & Belonglj, 017), leveraglng VGGT for
unified feature extraction, and scales from a Single to hundreds of input views.

Underlying these architectures, style transf a crucial role. Classical style
atys et all, 2016), while channel-wise statistics

transfer relies on Gram-matr

such as Eean and yamangg %ﬂﬂ ) offer efficient alternatives, formlng the b

S‘iﬂdal N (Huang & Belongi [ Extensions to y]de- j] ti-view st;I ude
t all, l20161 Gupta et all, &Ol?l guyen-Phuoc et al ‘hang et al ) address
temporal and cross-view consistency, and CLIP-based losses [Radford et all, 2021)) introduce
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Figure 1: Architecture overview. Given multi-view content inputs and a style reference,
Stylos enables instant 3D stylization without scene-specific training or post-optimization. A
key component is the 3D style loss, matching voxelized 3D features with 2D style statistics.

semantic alignment with text or image prompts. However, most objectives remain inherently
2D and cannot guarantee consistency across complex 3D scenes. To this end, we extend
statistics-based style losses into voxel space, introducing a 3D-aware objective that aligns
feature distributions after multi-view fusion. This formulation complements perceptual and
CLIP-based losses, enforcing geometry-aware and view-consistent stylization.

3 METHOD

We propose Stylos, a transformer-based framework for stylized 3D scene reconstruction.
Given a style reference image and one or more content views (also referred to as context
views), Stylos predicts a set of stylized 3D Gaussian primitives together with camera param-
eters, enabling faithful reconstruction of the erved scene while transferring the desired
style, We first formulate the problem in Sec. ﬁ the esent the network architectur

Sec. @Z,vand finally detail our training strategy in Sec.r@land the used style loss in Sec. @]

3.1 PROBLEM FORMULATION

We aim to disentangle geometry and style within a unified 3D scene representation. The
input to Stylos consists of a set of N context views {I;}}¥; of a scene, with N > 1 and
I; € REXW>X3 tooether with a single style reference image S € R¥*WX3 The context
views provide geometric cues, while the style image specifies the desired aesthetic.

Formally, Stylos defines a conditional mapping,
({I }z 1 ) — (G7 {gl ivzl)a

where the scene representation G = {(pm, ¢ )}M_, is parameterized by M anisotropic 3D
Gaussians. Each Gaussian has geometry attributes p,, = (tm, @, Tm, Sm), comprising 3D
position p,, € R3, opacity o € R, orientation quaternion r,, € R*, and anisotropic scale
sm € R3, as well as a style-dependent color embedding c¢,, € R3x (k+1)* represented with
spherical harmonics of degree k. In addition, Stylos jointly predicts camera parameters
{gi € R}V, for each input view, leveraging pose cues estimated by the VGGT backbone.

3.2 NETWORK ARCHITECTURE

Architecture Overview. At its core, Stylos employs a geometry backbone that alternates
frame-wise and global attention to process multiple input views and infer geometry-related
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parameters such as positions, scales, orientations, and opacities. To enable stylization,
we introduce a dedicated conditioning branch, the Style Aggregator, which fuses content
and style features through cross-attention and predicts style-aware color embeddings for
each Gaussian. In this way, geometry remains derived solely from the backbone, while

style representation is conditioned on the style reference. next detail the geometric
backbo,ﬁ Sec. , the style aggregation module in Sec. , and the prediction heads
in Sec. .

3.2.1 GEOMETRIC BACKBONE

The_geometric backbone follows the alternating-attention design of VGGT (Wang et all,
20254), which interleaves frame and global self-attention layers to capture both intra-frame
structure and cross-view consistency. This component is kept unchanged to retain strong
geometric reasoning, serving as the foundation on which we integrate style information.

3.2.2 STYLE AGGREGATOR

The Style Aggregator extends the geometric backbone by adapting its attention layers from
self-attention to cross-attention. Both content views and the style image are embedded with
a shared patch encoder, ensuring that their tokens lie in a common feature space. In this
design, content tokens serve as queries while style tokens provide keys and values, so that
style information conditions the token representations later used for predicting Gaussian
colors. Geometry-related parameters, in contrast, are still predicted from the backbone
pathway and remain unaffected by style conditioning.

Formally, let T' € REXN*KXC denote the content tokens from N views, each with K patches
and C channels, and let S € RBEXEXC represent the style tokens. Let T be the token set of
the i-th view, and let Attn(Q, K'V') denote a standard cross-attention operation. Depending
on how queries are formed, we distinguish three style-content coupling mechanisms,

ame-only): : = Attn(13,5), =13, =V =25,

Fr 1 Tiame — Attn(T;, S Q=T, K=V==_8 1

(Global-only): T#°* = Attn({T;}}Y;, 5), Q={T}Y,, K=V=5, (2)
(Hybrid): 7hwbrid — [{pframeyV | pelobal) = concatenation along channel dim. (3)

Frame-only injects style independently per view, global-only enforces a shared conditioning
across all views, and hybrid concatenates the frame-level and global-level outputs along
the channel dimension, yielding 2 x C-dimensional features. In our design, Stylos adopts
the global-only configuration, implemented with CrossBlock layers where {T;}¥ , serve as
queries and S provides nd values. The resulting features are passed to the prediction
heads described in Sec.l@a

3.2.3 PREDICTION HEADS

To connect the geometric backbone and Style Aggregator with the Gaussian scene, we
introduce prediction heads that translate feature tokens into explicit parameters. These
heads serve as modular interfaces, keeping geometry and style distinct in feature space
while ensuring their integration in the final Gaussian representation. We next describe the
individual heads in detail.

Geometry Head. Geometric backbone features are passed through a DPT-style regression
head that outputs the Gaussian geometry parameters p,, = (fm, Sm, Tm, Qm ), 1.€., position,
scale, orientation, and opacity (as defined in Sec. B.1l). By relying on this established design,
structural predictions are derived from backbone features alone, without direct influence
from style conditioning.

Style Head. The outputs of the Style Aggregator are subsequently processed by a color
head to predict the spherical-harmonic coefficients ¢,,, that define appearance. This pathway
injects style information directly into Gaussian colors while leaving the geometry parameters
Pm unaffected, enabling the two factors to be recombined seamlessly at the Gaussian level.
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Auxiliary Heads, Adapter, and Voxelization. We employ the existing VGGT camera
head to estimate camera intrinsics and extrinsics, and a depth head to predict scene geometry
cues, which are unprojected into 3D anchors for Gaussian placement (Kerbl et al, 2023; Ren
et al), 2024). A Gaussian adapter then consolidates geometry and style outputs into a unified
set of primitives {(pm, cm)}M_, for differentiable rendering. Finally, to reduce redundancy
and balance density, we follow the voxelization step introduced by AnySplat (Jiang et all,
2025), nearby points are clustered within a discretized 3D grid and fused using confidence-
aware weighting. This operation depends only on the unprojected 3D points and features,
and is independent of camera parameters.

3.3 TRAINING STRATEGY

We adopt a two-stage training strategy for structure-aware stylization.

Stage 1: Geometry Pretraining. We initialize the geometric backbone of Stylos with
VGGT weights (Wang et all, 20254) and train the network end-to-end to learn geometry and
photometric appearance. To avoid trivial identity mapping and improve robustness to color
variations, one input view is randomly selected and color-jittered as the style reference.
A frozen VGGT teacher provides pose and depth supervision. The objective combines
reconstruction and distillation,

ﬁstagel = Lrec + )\distill Ldistill-

Stage 2: Stylization Fine-tuning. We freeze all geometry-related_modules and only
update the Style Aggregator and the color head. Following ArtFlow (An et all, 2021)), we
use feature-level style and content losses in VGG space, matching channel-wise statistics
for style and feature activations for content. We further extend these objectives with a 3D
voxel-space style loss for cross-view comnsistency, and add a CLIP-based loss for semantic
alignment. A total variation (TV) regularizer is also included to suppress high-frequency
artifacts and stabilize optimization. The total loss is,

3D
»Cstagc2 = Ercc + )\stylc ‘Cstylc + >\cnt ﬁcontcnt + )\clip ﬁclip + >\tv ETV~

3.4 STYLE LOSSES

We denote by Flf}s € REOXHXWi the VGG feature map of the rendered (stylized) image for

the b-th scene and s-th view at layer [, and by Sé € REOXHXWi_the feature map of the style
reference image. Building on the BN-statistics formulation (Li et all, 2017), which inter-
prets channel-wise mean and variance as style descriptors, we progressively extend statistics
matching beyond the standard 2D setting. This progression starts from independent image-
level matching, moves to multi-view feature aggregation for enforcing cross-view consistency,
and culminates in a voxel-space loss that directly constrains the fused 3D representation.

Image-Level Style Loss. The simplest baseline aligns each rendered frame independently
with the style reference,

B S
£ = =SS S (e — wSHIE + lo(FL) —o(sDIB)- @)

b=1s=1 1
This encourages per-frame stylization but does not enforce multi-view consistency.

Scene-Level Style Loss. To encourage consistent stylization across multiple views, we
concatenate the per-view features {Fés 5 | along the spatial dimension to form F}, and
compute statistics on this aggregated map,

B
Sy = éZZm(Hu(ﬁb — u(SHI3 + lo(B}) = o(SpI)- ®)
b=1 1

This step enforces cross-view consistency but still operates in 2D feature space.

3D Style Loss. Finally, we fuse multi-view features into a voxel grid using differentiable
unprojection, where features from different views are accumulated into spatial bins of a
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discretized 3D volume. Let Gé denote the voxelized features for the b-th scene at layer [.
We then compute style statistics directly in voxel space,

B
£ = L35 (1G4 — w(SDIE + (G — o(SIE): ©
b=1 1

By operating on voxelized features, this loss explicitly encodes geometry and enforces style
consistency across both views and the underlying 3D structure.

(b) Hybrid (©) Fram (d) Global (Ours)

Figure 2: CO3D pizza scene comparing different style—content cross-attention strategies.

Table 1: Ablation on the style-content coupling strategies, comparing frame-level, global-
level and hybrid cross-attention. The first frame of each scene is used as the style reference.
Reconstruction quality is evaluated with PSNR1, SSIM?, and LPIPS| on the CO3D dataset.

Strategies Skateboard Pizza Donut
Global Frame PSNR1 SSIM1 LPIPS| PSNRT SSIM?T LPIPS| PSNRt SSIM?T LPIPS|

v v 21.12 0.6858 0.2821 19.78 0.5939 0.3326 21.39 0.7198 0.3264
v 20.93 0.6917 0.2912 19.72 0.5940 0.3405 21.40 0.7167 0.3340
v 21.68 0.7043 0.2684 20.57 0.6177 0.3110 22.09 0.7362 0.3125

4 EXPERIMENT

Datasets. We evaluate cross-category generalization on the CO3D (IReizenstein et alj7
2021) dataset by training on 17 categories and testi eld-out ones, and cross-scene

generalization t(z;z training on t DL3DV-10K (Ling et al), 2024) and testing on Tanks

and Temples (Knapitsch et al, 2017h). Style supervision is provided by WikiArt (,

with 50 images reserved for unseen—style evaluation.

Baselines. We comj wo representative open-source baselines, StyleRF (

) and StyleGS (L1u et al] tﬁ using their released per-scene tralned weights agamst

our singl -tr nodel. Concurrent to Stylos, the other instant stylization solution
%ang et al

Styl3R ( , 2025h) was proposed, but its official codes are not yet available at the
time of our submission. We plan to provide comparisons once they are released.

Evaluation Metrics. Our evaluation covers three aspects. (1) To ass -
struction in the style-free setting, we report PSNR, SSIM, and LPIPS (Zhang et al 501 &)
between content views and predictions, condltloned on the original first frame of eac

hiang

e e input. (2) To measure stylization consistency, following prior work (
t all, 2022), we compute LPIPS and RMSE in both short range (consecutive frames ¢ and

t—1) and long-range (distant settings. (3) To further evaluate stylization
quality, we report ArtScore (Chen et al., 02 ), a recent metrlc specifically designed for

reference-free evaluation of artness in generated images.
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4.1 ABLATION STUDY

In this section, we analyze the impact of each design choice on the CO3D dataset. To ensure
fairness, all variants are trained with identical configurations in each experimental round.

Style-Content Cross Attention. As reported in Table ﬂ, restricting cross-attention to
the frame level yields only moderate performance, with a PSNR of 20.9 dB on skateboard
and 19.7 dB on pizza. The hybrid variant, which combines frame-level and global attention,
provides observable improvement on donut with 21.4 dB, but brings limited gains on the
other categories and overall underperforms the global-only setup. By contrast, applying
cross-attention at the global level consistently achieves the best results, reaching a PSNR, of
21.7 dB_on skateboard, 20.6 dB on pizza, and 22.1 dB on donut. Qualitative comparisons
in Fig. E highlight these differences on the pizza example. Frame-only attention produces
a poorly defined crust with noticeable artifacts, the hybrid variant recovers part of the
structure but leaves the box edges blurred and unstable, while global attention delivers the
most faithful result, with clear toppings and a well-preserved crust boundary.

Style Content Image Loss Scene Loss 3D Style Loss

Figure 3: Comparison of style losses on unseen donut, skateboard, and pizza scenes from
the CO3D dataset. Both scene and 3D style losses yield cleaner stylized textures compared
to image-level matching, while the 3D loss further conveys a stronger sense of 3D geometry.

Table 2: Consistency comparison of different style loss designs on CO3D. The 3D loss
achieves the strongest short-range and long-range consistency.

Short-range Long-range
LPIPS, RMSE] LPIPS] RMSE|

Image loss (Eq. 4)  0.046 0.035 0.147 0.135
Scene loss (Eg. H) 0.048 0.037 0.147 0.133
3D loss (Eq. f) 0.046 0.033 0.140 0.128

Style Loss




Under review as a conference paper at ICLR 2026

Content/Style 1 view 4 views 16 views 64 views
Figure 4: Effect of varying # views / batch on the Lighthouse scene from Tanks and Temples.

Table 3: Consistency comparison across methods. We report short-range (top) and long-
range (bottom) LPIPS| and RMSE], on the four scenes from Tanks and Temples.

Train Truck Mé60 Garden
LPIPS| RMSE| LPIPS| RMSE| LPIPS] RMSE| LPIPS| RMSE|
Short-range consistency

StyleRF 2023 0.075 0.065 0.060 0.062 0.039 0.042 - -
StyleGS 2024  0.033 0.038 0.031 0.034 0.038 0.037 0.069 0.061
Stylos (ours)  0.030 0.026 0.028 0.021 0.035 0.024 0.047 0.044

Long-range consistency

StyleRF 2023 0.116 0.110 0.176 0.154 0.096 0.092 - -
StyleGS 2024  0.067 0.072 0.086 0.077 0.091 0.091 0.177 0.141
Stylos (ours)  0.051 0.056 0.074 0.069 0.083 0.082 0.139 0.134

Method

Image vs. Scene vs. 3D Style Losses. As shown in Table E, the image-level loss achieves
short-range LPIPS of 0.046 and RMSE of 0.035, but long-range consistency rises to 0.147
and 0.135. The scene-level loss slightly improves long-range RMSE to 0.133 but degrades
short-range performance to 0.048 and 0.037, indicating that simple 2D aggregation reduces
some long-range inconsistencies but compromises short-range accuracy. In contrast, the 3D
loss applies statistics after voxel-space fusion, matching the best short-range LPIPS of 0.046,
further lowering short-range RMSE to 0.033, and improving long-range scores to 0.140 and
0.128. These results indicate that enforcing style consistency in a geometry-aligned space
yields sharper boundaries and more coherent textures across views. As further illustrated
in Fig. E, image-level supervision often fails to faithfully transfer style. For example, the
donut lacks stylization and the wooden surface is not well synthesized, whereas scene- and
3D-level losses successfully apply the target style. Among them, the 3D style loss produces
sharper boundaries and a stronger sense of 3D geometry, as observed in the skateboard and
pizza examples, leading to the most coherent multi-view stylization.

From a Single View to Dozens of Views. While Stylos can process hundreds of content
inputs, we qualitatively observe a gradual decrease in visual quality once_the number of views
per batch (denoted as “# views / batch”) exceeds 32. As shown in Fig. {, very small batches
(1 view) fail to synthesize parts of the scene such as the bench, while overly large batches
(64 views) introduce edge artifacts on the tall building, potentially due to unstable Gaussian
representations and the gap from training settings (no more than 24 views).

4.2 COMPARISON WITH STATE-OF-THE-ART

For StyleRF ( - and StyleGS ( - we directly evaluate with
their rel ene welghts In contrast, our Stylos 1s tralned once on the full DL3DV
dataset (Iilng et al ‘,) and tested in a zero-shot manner, without ever seeing the images of
these scenes. Quantitative Evaluation. According to Table , Stylos achieves consistently
lower LPIPS and RMSE than StyleGS across both short- and long-range view pairs. This
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Table 4: ArtScorel comparison across methods on four Tanks and Temples scenes.

Method Train Truck M60 Garden

StyleRF 2023 7.71 4.12 8.48 -
StyleGS 024 0.78 5.76 8.63  9.38
Stylos (ours) 9.50 9.70 9.37 9.34

Style Content Ours StyleGS StyleRF

Figure 5: Visual comparison between Stylos and recent per-scene 3D stylization baselines.

demonstrates that Stylos provides stronger cross-view consistency. Furthermore, Table E
reports iev highest ArtScore across nearly all four Tanks and Temples
scenes ([f(knapitsch et alj (20174)), outperforming both StyleRF and StyleGS.

Qualitative Evaluation. Fig. E shows that Stylos successfully transfers the target style
while preserving scene geometry and delivering consistent textures. In contrast, StyleGS
introduces noticeable geometric distortions and texture discontinues, while StyleRF tends

to over-impose style patterns, negatively impacting the object structure. Overall, Stylos
achieves the best trade-off between structural fidelity and faithful stylization.

5 CONCLUSION

In this work, we propose Stylos, a single-forward-pass framework for multi-view 3D styliza-
tion. By keeping geometry predictions on the self-attentive backbone path and conditioning
color via global cross-attention, together with a voxel-space 3D style loss that aggregates
multi-view features, Stylos achieves geometry-aware and view-consistent stylization. Our
ablations show that the global-only cross-attention between style and content better pre-
serves geometric details than alternative coupling strategies. Extensive experiments across
category-level and large-scale scene datasets demonstrate the generalization ability of our
approach, achieving aesthetically pleasing stylization with strong cross-view consistency.
In the future, we aim to scale Stylos to support higher-resolution inputs while improving
efficiency, paving the way for practical 3D content creation.
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6 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. The main paper
describes all model architectures in Sec. J. We release detailed pseudo-code for all loss
functions in Appendix A, and will release the full implementation upon acceptance. How-
ever, to support reproducibility, we provide detailed pseudo code the proposed style
loss functions (image-level, scene-level, and_3D-level) in Appendixsﬁl. All datasets used
are publicly available, as described in Sec. f. These resources should allow researchers to
reproduce extend our findings. In addition, we provide extensive qualitative results in
Appendix d analyze efficiency trends with respect to the number of views per batch
in Appendix . Efficiency experiments are averaged over 100 iterations per setting.
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A  APPENDIX

A.1 StYLE Loss PSEUDO CODES

We provide pseudo codes to the three variants for style losses introduced in the main paper,
image-level, scene-level, and 3d style losses. This is for reproducibility purpose, and please
follow the implementation in our codes which will be released in the near future.

Algorithm 1 Image-level AdaIN Style Loss

Require: Content images I, € REXSXCXHXW 'Rondered images I, Style images I,
Ensure: Image-level style loss Limg

1: for i=1to B do

2:  Extract style features Fys « VGG(I[i])

3: forj=1toSdo

4: Extract content features F,. + VGG(I.[i, j])

5: Extract rendered features F,. < VGG(I,[i, j])

6 Content loss:

Lo ||FW = FOI3+ IED - FO|3

T Style loss initialization: L4 < 0

8: for k=1to 5 do

9: (4, ) < MeanStd(F™)

10: (s, 05) MeanStd(FS(k))

11: Ls <+ Ls+ HMT_MS||%+HUT_USH%
12: end for

13:  end for

14: end for

15: return £irng = AL+ A Ls + )\mse”IT - ICH2

Algorithm 2 Scene-level AdaIN Style Loss

Require: Content images I, € REXSXCXHXW Roendered images I, Style images I,
Ensure: Scene-level style loss Lgcene

1: for i =1 to B do

2:  Extract style features Fs < VGG(I]i])

3:  Extract batched content features F,. < VGG(I.[i,:])

4:  Extract batched rendered features F, + VGG(I.[i,:])

5:  Content loss:

Lo |FY = FOI3+ | P — FO|3

6:  Style loss initialization: L4 < 0
7. fork=1to5do
8 Reshape F® into (B,S,C,H,W)

9: (r,0r) MeanStd(ESk))

10: (s, 05) < MeanStd(Fs(k))

11: Ls <_£s+”/‘T_NSHE"‘HUT_JSH%
12:  end for

13: end for

14: return Locene = AeLe + AsLs + Amse|| Iy — Ic||?

A.2 EFFICIENCY SCALING

batch. The results in Fig. fj indicate a clear scaling pattern. For very small batches, such
as 1-2 views, the average runtime per batch is low, around 0.3 s, but the measurements
fluctuate heavily due to overheads and GPU scheduling. This makes single-view or extremely
small-batch inference unstable, even though the raw latency is minimal.

We further analyze the eFﬁEiency of Stylos by varying the number of views processed per

13



Under review as a conference paper at ICLR 2026

Algorithm 3 3D Voxel-based AdaIN Style Loss

Require: Rendered features Fi., Style features F;, Content features F., 3D points P €
RBXSxHXxWxX3  Confidence C, Valid mask M
Ensure: 3D style loss L34
1: for i =1 to B do
2 for k=1to 5 do
3 Resize (C, M, P) to match the resolution of ol
4 for s=1to S do
5: V « Voxelize(F"[s], P[s], C[s], M][s))
6: (fty,04) < MeanStd(V)
7
8
9
0
1

(115, 075) < MeanStd(F™)
Ly Ls+ [|po = psll3 + llow — o513
end for
end for
Content loss:

10:

11:
Lo+ [|FD = FP|3+ |F® - FO)|3

12: end for

13: return L3g = AeLe + AL + Amsel| I — |2

—
N

6
4.829 10':”6
_5 . ~10
) 8 7.848
54 = 8 6.564 -
< g 5914 ")
= 3 ok aE» 6 4.164 4339 4.8.29 o
g2 : 24 *
= 0.75
10307 0333 0289 0418 ©2
° ° ° *
0 (1}
1 2 4 8 16 32 64 1 2 4 8 16 32 64
# Views / batch # Views / batch
(a) Time per batch vs. # views per batch (b) GPU memory usage vs. # views per batch

Figure 6: Scaling of inference time and GPU memory with the number of views per batch.
Time is averaged over 100 iterations, and memory is reported as the peak allocation, without
rendering cost.

As the batch size increases, runtime grows roughly linearly, reaching 0.75 s at 16 views and
4.83 s at 64 views. Importantly, once the batch size exceeds 4-8 views, the runtime becomes
much more stable, showing only minor variation across repeated runs.

Memory usage shows a similarly consistent trend: GPU memory rises steadily from 4.16
GB at 1 view to 10.42 GB at 64 views. The growth is close to linear with respect to batch
size, which makes resource requirements easy to estimate when scaling to larger workloads.

A.3 ADDITIONAL VISUAL RESULTS

Figure H—@ presents additional qualitative results of Stylos on diverse style-content pairs.
Across different styles and object categories, Stylos produces visually pleasing stylizations
that respect the input content geometry while transferring the target artistic appearance.
These examples further demonstrate the versatility and robustness of our approach beyond
the main results shown in the paper.
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Figure 7: Additio i los on diverse style-content pairs on Tanks and
Temples Dataset (Knapitsch et al] (20174)). Stylos consistently produces visually pleasing

stylizations that preserve content geometry while transferring the target style.
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Figure 8: Additional visual results of Stylos on the CO3D dataset. The top left is the style
image while the rest of the top row are the rendered images. The mid row are the rendered
images conditioned on the mid left imamge. The bottom row is the content inputs.
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Figure 9: Additional visual results of Stylos on diverse style—content pairs.
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Figure 10: Additional visual results of Stylos on diverse style—content pairs.
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Figure 11: Additional visual results of Stylos on diverse style—content pairs.
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Figure 12: Additional visual results of Stylos on diverse style—content pairs.
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Figure 13: Additional visual results of Stylos on diverse style-content pairs.
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Figure 14: Additional visual results of Stylos on the DL3DV-10K dataset. The top left is
the style image while the rest of the top row are the rendered images. The mid row are
the rendered images conditioned on the mid left imamge. The bottom row is the content
inputs.
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Figure 15: Additional visual results of Stylos on diverse style-content pairs.
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Figure 16: Additional visual results of Stylos on diverse style-content pairs.
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