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Abstract

We present Stylos, a single-forward 3D Gaussian framework for 3D style
transfer that operates on unposed content, from a single image to a multi-
view collection, conditioned on a separate reference style image. Stylos
synthesizes a stylized 3D Gaussian scene without per-scene optimization or
precomputed poses, achieving geometry-aware, view-consistent stylization
that generalizes to unseen categories, scenes, and styles. At its core, Stylos
adopts a Transformer backbone with two pathways: geometry predictions
retain self-attention to preserve geometric fidelity, while style is injected
via global cross-attention to enforce visual consistency across views. With
the addition of a voxel-based 3D style loss that aligns aggregated scene
features to style statistics, Stylos enforces view-consistent stylization while
preserving geometry. Experiments across multiple datasets demonstrate
that Stylos delivers high-quality zero-shot stylization, highlighting the ef-
fectiveness of global style–content coupling, the proposed 3D style loss, and
the scalability of our framework from single view to large-scale multi-view
settings. Our codes will be fully open-sourced soon.

1 Introduction

Image guided 3D stylization aims to preserve scene geometry and cross-view consistency
while transferring the reference style. With the rise of immersive content, augmented and
virtual reality, demand for this capability is growing. Nevertheless, achieving reliable 3D
stylization remains challenging and continues to attract significant research attention.
Early attempts rely on explicit 3D geometry such as meshes or point clouds, but their styl-
ization quality is often limited by geometric reconstruction accuracy, resulting in noticeable
artifacts in complex scenes (Kato et al., 2018; Cao et al., 2020). The introduction of implicit
radiance fields, most notably NeRF (Mildenhall et al., 2020), enables higher-fidelity render-
ing, and subsequent works extended it to artistic stylization (Zhang et al., 2022; Huang
et al., 2022; Liu et al., 2023), but typically require costly per-scene optimization, constrain-
ing their generalization to unseen scenes. More recently, 3D Gaussian Splatting (3DGS)
has emerged as a promising explicit representation that combines high reconstruction qual-
ity with real-time rendering efficiency (Kerbl et al., 2023). Stylization approaches built on
3DGS achieve efficient multi-view consistency (Liu et al., 2024; Galerne et al., 2025), yet
still struggle to generalize beyond scene-specific training.
In contrast, we introduce Stylos, a single-forward framework for 3D style transfer that
eliminates the need for per-scene optimization and precomputed camera parameters, and
generalizes effectively to novel categories, scenes, and styles. Stylos employs a shared
Transformer backbone with two pathways: content and style images are projected into a
shared feature space, where content retains self-attention for geometric reasoning, and style
is injected via global cross-attention to condition aesthetics. Notably, the global cross-
attention also benefits the preservation of geometric details. Geometry-related attributes,
such as depth, camera intrinsics, and extrinsics, are derived from backbone features, whereas
style conditioning guides the prediction of color coefficients. These outputs are estimated
through prediction heads that serve as the interface between feature space and the final
Gaussian representation. Prior works in 2D style transfer typically rely on distribution
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alignment (Li et al., 2017), which operate on image statistics but lack explicit multi-view or
3D consistency. To address this, we explore alternative objectives and propose a voxel-based
3D style loss that aligns aggregated scene features with style statistics, providing stronger
view-consistent stylization while preserving geometric fidelity.
We evaluate Stylos across different scenarios, including category-level transfer and cross-
scene generalization. Our assessment spans challenging real-world benchmarks, where Stylos
produces stylized renderings with high visual fidelity and consistent geometry, demonstrating
robustness even in previously unseen environments. Our main contributions are threefold:

• We propose a shared-backbone design with two pathways: geometry predictions
retain self-attention for geometric reasoning, while style is injected through global
cross-attention to condition aesthetics.

• We introduce a voxel-based 3D style loss that aligns aggregated scene features with
style statistics, enforcing cross-view coherence and geometry-aware stylization.

• We develop Stylos, a single-forward-pass pipeline for 3D style transfer from unposed
inputs, scaling from a single to hundreds of views with a single style image, and
achieving zero-shot generalization to unseen categories, scenes, and styles.

2 Related Work

2.1 Single-Forward 3D Reconstruction

Early CNN models (Ummenhofer et al., 2017; Zhou et al., 2018; Teed & Deng, 2020)
demonstrate the feasibility of end-to-end 3D reconstruction. While the Transformer-based
DUSt3R (Wang et al., 2024) has shown impressive performance, yet remains constrained by
pairwise inputs and reliance on traditional optimization for pose estimation. VGGT (Wang
et al., 2025a) advances this line by jointly predicting camera parameters, depth, point maps,
and tracks from one to hundreds of views in a single forward pass, while AnySplat (Jiang
et al., 2025) complements it with a feed-forward Gaussian splatting pipeline trained with
VGGT priors to directly predict Gaussian parameters along with depth and camera param-
eters from uncalibrated images.

2.2 3D Style Transfer and Losses

Explicit-representation approaches to 3D stylization (Kato et al., 2018; Cao et al., 2020; Guo
et al., 2021; Huang et al., 2021; Höllein et al., 2022; Mu et al., 2022) have shown promising
results, but their reliance on accurate geometry limits applicability in complex real-world
scenes. Implicit neural representations like NeRF (Mildenhall et al., 2020) improve geometric
consistency, inspiring a range of stylization methods based on stylized view supervision or
auxiliary networks (Nguyen-Phuoc et al., 2022; Zhang et al., 2022; Chiang et al., 2022;
Huang et al., 2022). StyleRF (Liu et al., 2023) further enhances fidelity and enables zero-
shot transfer by applying style transformations in radiance-field feature space.
More recently, 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) has emerged as an efficient
alternative to NeRF. StyleGaussian (Liu et al., 2024) extends 3DGS with efficient feature
rendering to enable real-time stylization, while subsequent works refine 3DGS for specialized
settings and efficiency improvements (Mei et al., 2024; Zhang et al., 2024; Yu et al., 2024;
Galerne et al., 2025). In parallel, Styl3R (Wang et al., 2025b) disentangles geometry and
style using separate encoders, but is restricted to 2–8 input views. In contrast, Stylos follows
the shared-backbone paradigm of AdaIN (Huang & Belongie, 2017), leveraging VGGT for
unified feature extraction, and scales from a single to hundreds of input views.
Underlying these architectures, style transfer objectives play a crucial role. Classical style
transfer relies on Gram-matrix correlations (Gatys et al., 2016), while channel-wise statistics
such as mean and variance (Li et al., 2017) offer efficient alternatives, forming the basis of
AdaIN (Huang & Belongie, 2017). Extensions to video and multi-view stylization (Ruder
et al., 2016; Gupta et al., 2017; Nguyen-Phuoc et al., 2022; Zhang et al., 2022) address
temporal and cross-view consistency, and CLIP-based losses (Radford et al., 2021) introduce
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Figure 1: Architecture overview. Given multi-view content inputs and a style reference,
Stylos enables instant 3D stylization without scene-specific training or post-optimization. A
key component is the 3D style loss, matching voxelized 3D features with 2D style statistics.

semantic alignment with text or image prompts. However, most objectives remain inherently
2D and cannot guarantee consistency across complex 3D scenes. To this end, we extend
statistics-based style losses into voxel space, introducing a 3D-aware objective that aligns
feature distributions after multi-view fusion. This formulation complements perceptual and
CLIP-based losses, enforcing geometry-aware and view-consistent stylization.

3 Method

We propose Stylos, a transformer-based framework for stylized 3D scene reconstruction.
Given a style reference image and one or more content views (also referred to as context
views), Stylos predicts a set of stylized 3D Gaussian primitives together with camera param-
eters, enabling faithful reconstruction of the observed scene while transferring the desired
style. We first formulate the problem in Sec. 3.1, then present the network architecture in
Sec. 3.2, and finally detail our training strategy in Sec. 3.3 and the used style loss in Sec. 3.4.

3.1 Problem Formulation

We aim to disentangle geometry and style within a unified 3D scene representation. The
input to Stylos consists of a set of N context views {Ii}Ni=1 of a scene, with N ≥ 1 and
Ii ∈ RH×W×3, together with a single style reference image S ∈ RH×W×3. The context
views provide geometric cues, while the style image specifies the desired aesthetic.
Formally, Stylos defines a conditional mapping,

fθ : ({Ii}Ni=1, S) 7→
(
G, {gi}Ni=1

)
,

where the scene representation G = {(pm, cm)}Mm=1 is parameterized by M anisotropic 3D
Gaussians. Each Gaussian has geometry attributes pm = (µm, α, rm, sm), comprising 3D
position µm ∈ R3, opacity α ∈ R+, orientation quaternion rm ∈ R4, and anisotropic scale
sm ∈ R3, as well as a style-dependent color embedding cm ∈ R3×(k+1)2 represented with
spherical harmonics of degree k. In addition, Stylos jointly predicts camera parameters
{gi ∈ R9}Ni=1 for each input view, leveraging pose cues estimated by the VGGT backbone.

3.2 Network Architecture

Architecture Overview. At its core, Stylos employs a geometry backbone that alternates
frame-wise and global attention to process multiple input views and infer geometry-related

3
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parameters such as positions, scales, orientations, and opacities. To enable stylization,
we introduce a dedicated conditioning branch, the Style Aggregator, which fuses content
and style features through cross-attention and predicts style-aware color embeddings for
each Gaussian. In this way, geometry remains derived solely from the backbone, while
style representation is conditioned on the style reference. We next detail the geometric
backbone in Sec. 3.2.1, the style aggregation module in Sec. 3.2.2, and the prediction heads
in Sec. 3.2.3.

3.2.1 Geometric Backbone

The geometric backbone follows the alternating-attention design of VGGT (Wang et al.,
2025a), which interleaves frame and global self-attention layers to capture both intra-frame
structure and cross-view consistency. This component is kept unchanged to retain strong
geometric reasoning, serving as the foundation on which we integrate style information.

3.2.2 Style Aggregator

The Style Aggregator extends the geometric backbone by adapting its attention layers from
self-attention to cross-attention. Both content views and the style image are embedded with
a shared patch encoder, ensuring that their tokens lie in a common feature space. In this
design, content tokens serve as queries while style tokens provide keys and values, so that
style information conditions the token representations later used for predicting Gaussian
colors. Geometry-related parameters, in contrast, are still predicted from the backbone
pathway and remain unaffected by style conditioning.
Formally, let T ∈ RB×N×K×C denote the content tokens from N views, each with K patches
and C channels, and let S ∈ RB×K×C represent the style tokens. Let Ti be the token set of
the i-th view, and let Attn(Q,KV ) denote a standard cross-attention operation. Depending
on how queries are formed, we distinguish three style–content coupling mechanisms,

(Frame-only): T frame
i = Attn(Ti, S), Q = Ti, K = V = S, (1)

(Global-only): T global = Attn({Ti}Ni=1, S), Q = {Ti}Ni=1, K = V = S, (2)
(Hybrid): T hybrid = [ {T frame

i }Ni=1 ‖T global ], concatenation along channel dim. (3)

Frame-only injects style independently per view, global-only enforces a shared conditioning
across all views, and hybrid concatenates the frame-level and global-level outputs along
the channel dimension, yielding 2 × C-dimensional features. In our design, Stylos adopts
the global-only configuration, implemented with CrossBlock layers where {Ti}Ni=1 serve as
queries and S provides keys and values. The resulting features are passed to the prediction
heads described in Sec. 3.2.3.

3.2.3 Prediction Heads

To connect the geometric backbone and Style Aggregator with the Gaussian scene, we
introduce prediction heads that translate feature tokens into explicit parameters. These
heads serve as modular interfaces, keeping geometry and style distinct in feature space
while ensuring their integration in the final Gaussian representation. We next describe the
individual heads in detail.
Geometry Head. Geometric backbone features are passed through a DPT-style regression
head that outputs the Gaussian geometry parameters pm = (µm, sm, rm, αm), i.e., position,
scale, orientation, and opacity (as defined in Sec. 3.1). By relying on this established design,
structural predictions are derived from backbone features alone, without direct influence
from style conditioning.
Style Head. The outputs of the Style Aggregator are subsequently processed by a color
head to predict the spherical-harmonic coefficients cm that define appearance. This pathway
injects style information directly into Gaussian colors while leaving the geometry parameters
pm unaffected, enabling the two factors to be recombined seamlessly at the Gaussian level.
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Auxiliary Heads, Adapter, and Voxelization. We employ the existing VGGT camera
head to estimate camera intrinsics and extrinsics, and a depth head to predict scene geometry
cues, which are unprojected into 3D anchors for Gaussian placement (Kerbl et al., 2023; Ren
et al., 2024). A Gaussian adapter then consolidates geometry and style outputs into a unified
set of primitives {(pm, cm)}Mm=1 for differentiable rendering. Finally, to reduce redundancy
and balance density, we follow the voxelization step introduced by AnySplat (Jiang et al.,
2025), nearby points are clustered within a discretized 3D grid and fused using confidence-
aware weighting. This operation depends only on the unprojected 3D points and features,
and is independent of camera parameters.

3.3 Training Strategy

We adopt a two-stage training strategy for structure-aware stylization.
Stage 1: Geometry Pretraining. We initialize the geometric backbone of Stylos with
VGGT weights (Wang et al., 2025a) and train the network end-to-end to learn geometry and
photometric appearance. To avoid trivial identity mapping and improve robustness to color
variations, one input view is randomly selected and color-jittered as the style reference.
A frozen VGGT teacher provides pose and depth supervision. The objective combines
reconstruction and distillation,

Lstage1 = Lrec + λdistill Ldistill.

Stage 2: Stylization Fine-tuning. We freeze all geometry-related modules and only
update the Style Aggregator and the color head. Following ArtFlow (An et al., 2021), we
use feature-level style and content losses in VGG space, matching channel-wise statistics
for style and feature activations for content. We further extend these objectives with a 3D
voxel-space style loss for cross-view consistency, and add a CLIP-based loss for semantic
alignment. A total variation (TV) regularizer is also included to suppress high-frequency
artifacts and stabilize optimization. The total loss is,

Lstage2 = Lrec + λstyle L3D
style + λcnt Lcontent + λclip Lclip + λtv LTV.

3.4 Style Losses

We denote by F l
b,s ∈ RCl×Hl×Wl the VGG feature map of the rendered (stylized) image for

the b-th scene and s-th view at layer l, and by Sl
b ∈ RCl×Hl×Wl the feature map of the style

reference image. Building on the BN-statistics formulation (Li et al., 2017), which inter-
prets channel-wise mean and variance as style descriptors, we progressively extend statistics
matching beyond the standard 2D setting. This progression starts from independent image-
level matching, moves to multi-view feature aggregation for enforcing cross-view consistency,
and culminates in a voxel-space loss that directly constrains the fused 3D representation.
Image-Level Style Loss. The simplest baseline aligns each rendered frame independently
with the style reference,

Limg
sty =

1

BS

B∑
b=1

S∑
s=1

∑
l

αl

(
‖µ(F l

b,s)− µ(Sl
b)‖22 + ‖σ(F l

b,s)− σ(Sl
b)‖22

)
. (4)

This encourages per-frame stylization but does not enforce multi-view consistency.
Scene-Level Style Loss. To encourage consistent stylization across multiple views, we
concatenate the per-view features {F l

b,s}Ss=1 along the spatial dimension to form F̃ l
b , and

compute statistics on this aggregated map,

Lscn
sty =

1

B

B∑
b=1

∑
l

αl

(
‖µ(F̃ l

b)− µ(Sl
b)‖22 + ‖σ(F̃ l

b)− σ(Sl
b)‖22

)
. (5)

This step enforces cross-view consistency but still operates in 2D feature space.
3D Style Loss. Finally, we fuse multi-view features into a voxel grid using differentiable
unprojection, where features from different views are accumulated into spatial bins of a
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discretized 3D volume. Let Gl
b denote the voxelized features for the b-th scene at layer l.

We then compute style statistics directly in voxel space,

L3D
sty =

1

B

B∑
b=1

∑
l

αl

(
‖µ(Gl

b)− µ(Sl
b)‖22 + ‖σ(Gl

b)− σ(Sl
b)‖22

)
. (6)

By operating on voxelized features, this loss explicitly encodes geometry and enforces style
consistency across both views and the underlying 3D structure.

(a) GT (b) Hybrid (c) Frame (d) Global (Ours)

Figure 2: CO3D pizza scene comparing different style–content cross-attention strategies.

Table 1: Ablation on the style-content coupling strategies, comparing frame-level, global-
level and hybrid cross-attention. The first frame of each scene is used as the style reference.
Reconstruction quality is evaluated with PSNR↑, SSIM↑, and LPIPS↓ on the CO3D dataset.

Strategies Skateboard Pizza Donut
Global Frame PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

✓ ✓ 21.12 0.6858 0.2821 19.78 0.5939 0.3326 21.39 0.7198 0.3264
✓ 20.93 0.6917 0.2912 19.72 0.5940 0.3405 21.40 0.7167 0.3340

✓ 21.68 0.7043 0.2684 20.57 0.6177 0.3110 22.09 0.7362 0.3125

4 Experiment

Datasets. We evaluate cross-category generalization on the CO3D (Reizenstein et al.,
2021) dataset by training on 17 categories and testing on 3 held-out ones, and cross-scene
generalization by training on the full DL3DV-10K (Ling et al., 2024) and testing on Tanks
and Temples (Knapitsch et al., 2017b). Style supervision is provided by WikiArt (WikiArt),
with 50 images reserved for unseen-style evaluation.
Baselines. We compare with two representative open-source baselines, StyleRF (Liu et al.,
2023) and StyleGS (Liu et al., 2024), using their released per-scene trained weights against
our single DL3DV-trained model. Concurrent to Stylos, the other instant stylization solution
Styl3R (Wang et al., 2025b) was proposed, but its official codes are not yet available at the
time of our submission. We plan to provide comparisons once they are released.
Evaluation Metrics. Our evaluation covers three aspects. (1) To assess geometry recon-
struction in the style-free setting, we report PSNR, SSIM, and LPIPS (Zhang et al., 2018)
between content views and predictions, conditioned on the original first frame of each scene
as the style input. (2) To measure stylization consistency, following prior work (Chiang
et al., 2022), we compute LPIPS and RMSE in both short-range (consecutive frames t and
t−1) and long-range (distant frames t and t−7) settings. (3) To further evaluate stylization
quality, we report ArtScore (Chen et al., 2024), a recent metric specifically designed for
reference-free evaluation of artness in generated images.
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4.1 Ablation Study

In this section, we analyze the impact of each design choice on the CO3D dataset. To ensure
fairness, all variants are trained with identical configurations in each experimental round.
Style-Content Cross Attention. As reported in Table 1, restricting cross-attention to
the frame level yields only moderate performance, with a PSNR of 20.9 dB on skateboard
and 19.7 dB on pizza. The hybrid variant, which combines frame-level and global attention,
provides observable improvement on donut with 21.4 dB, but brings limited gains on the
other categories and overall underperforms the global-only setup. By contrast, applying
cross-attention at the global level consistently achieves the best results, reaching a PSNR of
21.7 dB on skateboard, 20.6 dB on pizza, and 22.1 dB on donut. Qualitative comparisons
in Fig. 2 highlight these differences on the pizza example. Frame-only attention produces
a poorly defined crust with noticeable artifacts, the hybrid variant recovers part of the
structure but leaves the box edges blurred and unstable, while global attention delivers the
most faithful result, with clear toppings and a well-preserved crust boundary.

3D Style LossImage Loss Scene LossContentStyle

Figure 3: Comparison of style losses on unseen donut, skateboard, and pizza scenes from
the CO3D dataset. Both scene and 3D style losses yield cleaner stylized textures compared
to image-level matching, while the 3D loss further conveys a stronger sense of 3D geometry.

Table 2: Consistency comparison of different style loss designs on CO3D. The 3D loss
achieves the strongest short-range and long-range consistency.

Style Loss Short-range Long-range
LPIPS↓ RMSE↓ LPIPS↓ RMSE↓

Image loss (Eq. 4) 0.046 0.035 0.147 0.135
Scene loss (Eq. 5) 0.048 0.037 0.147 0.133
3D loss (Eq. 6) 0.046 0.033 0.140 0.128

7
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1 view 16 views4 viewsContent/Style  64 views

Figure 4: Effect of varying # views / batch on the Lighthouse scene from Tanks and Temples.

Table 3: Consistency comparison across methods. We report short-range (top) and long-
range (bottom) LPIPS↓ and RMSE↓, on the four scenes from Tanks and Temples.

Method Train Truck M60 Garden
LPIPS↓ RMSE↓ LPIPS↓ RMSE↓ LPIPS↓ RMSE↓ LPIPS↓ RMSE↓

Short-range consistency
StyleRF 2023 0.075 0.065 0.060 0.062 0.039 0.042 – –
StyleGS 2024 0.033 0.038 0.031 0.034 0.038 0.037 0.069 0.061
Stylos (ours) 0.030 0.026 0.028 0.021 0.035 0.024 0.047 0.044

Long-range consistency
StyleRF 2023 0.116 0.110 0.176 0.154 0.096 0.092 – –
StyleGS 2024 0.067 0.072 0.086 0.077 0.091 0.091 0.177 0.141
Stylos (ours) 0.051 0.056 0.074 0.069 0.083 0.082 0.139 0.134

Image vs. Scene vs. 3D Style Losses. As shown in Table 2, the image-level loss achieves
short-range LPIPS of 0.046 and RMSE of 0.035, but long-range consistency rises to 0.147
and 0.135. The scene-level loss slightly improves long-range RMSE to 0.133 but degrades
short-range performance to 0.048 and 0.037, indicating that simple 2D aggregation reduces
some long-range inconsistencies but compromises short-range accuracy. In contrast, the 3D
loss applies statistics after voxel-space fusion, matching the best short-range LPIPS of 0.046,
further lowering short-range RMSE to 0.033, and improving long-range scores to 0.140 and
0.128. These results indicate that enforcing style consistency in a geometry-aligned space
yields sharper boundaries and more coherent textures across views. As further illustrated
in Fig. 3, image-level supervision often fails to faithfully transfer style. For example, the
donut lacks stylization and the wooden surface is not well synthesized, whereas scene- and
3D-level losses successfully apply the target style. Among them, the 3D style loss produces
sharper boundaries and a stronger sense of 3D geometry, as observed in the skateboard and
pizza examples, leading to the most coherent multi-view stylization.
From a Single View to Dozens of Views. While Stylos can process hundreds of content
inputs, we qualitatively observe a gradual decrease in visual quality once the number of views
per batch (denoted as “# views / batch”) exceeds 32. As shown in Fig. 4, very small batches
(1 view) fail to synthesize parts of the scene such as the bench, while overly large batches
(64 views) introduce edge artifacts on the tall building, potentially due to unstable Gaussian
representations and the gap from training settings (no more than 24 views).

4.2 Comparison with State-of-the-Art

For StyleRF (Liu et al., 2023) and StyleGS (Liu et al., 2024), we directly evaluate with
their released per-scene weights. In contrast, our Stylos is trained once on the full DL3DV
dataset (Ling et al., 2024) and tested in a zero-shot manner, without ever seeing the images of
these scenes. Quantitative Evaluation. According to Table 3, Stylos achieves consistently
lower LPIPS and RMSE than StyleGS across both short- and long-range view pairs. This
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Table 4: ArtScore↑ comparison across methods on four Tanks and Temples scenes.

Method Train Truck M60 Garden
StyleRF 2023 7.71 4.12 8.48 –
StyleGS 2024 0.78 5.76 8.63 9.38
Stylos (ours) 9.50 9.70 9.37 9.34

Ours StyleRFStyleGSContentStyle

Figure 5: Visual comparison between Stylos and recent per-scene 3D stylization baselines.

demonstrates that Stylos provides stronger cross-view consistency. Furthermore, Table 4
reports that Stylos achieves the highest ArtScore across nearly all four Tanks and Temples
scenes (Knapitsch et al. (2017a)), outperforming both StyleRF and StyleGS.
Qualitative Evaluation. Fig. 5 shows that Stylos successfully transfers the target style
while preserving scene geometry and delivering consistent textures. In contrast, StyleGS
introduces noticeable geometric distortions and texture discontinues, while StyleRF tends
to over-impose style patterns, negatively impacting the object structure. Overall, Stylos
achieves the best trade-off between structural fidelity and faithful stylization.

5 Conclusion

In this work, we propose Stylos, a single-forward-pass framework for multi-view 3D styliza-
tion. By keeping geometry predictions on the self-attentive backbone path and conditioning
color via global cross-attention, together with a voxel-space 3D style loss that aggregates
multi-view features, Stylos achieves geometry-aware and view-consistent stylization. Our
ablations show that the global-only cross-attention between style and content better pre-
serves geometric details than alternative coupling strategies. Extensive experiments across
category-level and large-scale scene datasets demonstrate the generalization ability of our
approach, achieving aesthetically pleasing stylization with strong cross-view consistency.
In the future, we aim to scale Stylos to support higher-resolution inputs while improving
efficiency, paving the way for practical 3D content creation.
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6 Reproducibility Statement

We have taken several steps to ensure the reproducibility of our work. The main paper
describes all model architectures in Sec. 3. We release detailed pseudo-code for all loss
functions in Appendix A, and will release the full implementation upon acceptance. How-
ever, to support reproducibility, we provide detailed pseudo codes of the proposed style
loss functions (image-level, scene-level, and 3D-level) in Appendix A.1. All datasets used
are publicly available, as described in Sec. 4. These resources should allow researchers to
reproduce and extend our findings. In addition, we provide extensive qualitative results in
Appendix A.3, and analyze efficiency trends with respect to the number of views per batch
in Appendix A.2. Efficiency experiments are averaged over 100 iterations per setting.
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A Appendix

A.1 Style Loss Pseudo Codes

We provide pseudo codes to the three variants for style losses introduced in the main paper,
image-level, scene-level, and 3d style losses. This is for reproducibility purpose, and please
follow the implementation in our codes which will be released in the near future.

Algorithm 1 Image-level AdaIN Style Loss
Require: Content images Ic ∈ RB×S×C×H×W , Rendered images Ir, Style images Is
Ensure: Image-level style loss Limg
1: for i = 1 to B do
2: Extract style features Fs ← VGG(Is[i])
3: for j = 1 to S do
4: Extract content features Fc ← VGG(Ic[i, j])
5: Extract rendered features Fr ← VGG(Ir[i, j])
6: Content loss:

Lc ← ‖F (4)
r − F (4)

c ‖22 + ‖F (5)
r − F (5)

c ‖22
7: Style loss initialization: Ls ← 0
8: for k = 1 to 5 do
9: (µr, σr)← MeanStd(F (k)

r )

10: (µs, σs)← MeanStd(F (k)
s )

11: Ls ← Ls + ‖µr − µs‖22 + ‖σr − σs‖22
12: end for
13: end for
14: end for
15: return Limg = λcLc + λsLs + λmse‖Ir − Ic‖2

Algorithm 2 Scene-level AdaIN Style Loss
Require: Content images Ic ∈ RB×S×C×H×W , Rendered images Ir, Style images Is
Ensure: Scene-level style loss Lscene
1: for i = 1 to B do
2: Extract style features Fs ← VGG(Is[i])
3: Extract batched content features Fc ← VGG(Ic[i, :])
4: Extract batched rendered features Fr ← VGG(Ir[i, :])
5: Content loss:

Lc ← ‖F (4)
r − F (4)

c ‖22 + ‖F (5)
r − F (5)

c ‖22
6: Style loss initialization: Ls ← 0
7: for k = 1 to 5 do
8: Reshape F

(k)
r into (B,S,C,H,W )

9: (µr, σr)← MeanStd(F (k)
r )

10: (µs, σs)← MeanStd(F (k)
s )

11: Ls ← Ls + ‖µr − µs‖22 + ‖σr − σs‖22
12: end for
13: end for
14: return Lscene = λcLc + λsLs + λmse‖Ir − Ic‖2

A.2 Efficiency Scaling

We further analyze the efficiency of Stylos by varying the number of views processed per
batch. The results in Fig. 6 indicate a clear scaling pattern. For very small batches, such
as 1–2 views, the average runtime per batch is low, around 0.3 s, but the measurements
fluctuate heavily due to overheads and GPU scheduling. This makes single-view or extremely
small-batch inference unstable, even though the raw latency is minimal.
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Algorithm 3 3D Voxel-based AdaIN Style Loss
Require: Rendered features Fr, Style features Fs, Content features Fc, 3D points P ∈

RB×S×H×W×3, Confidence C, Valid mask M
Ensure: 3D style loss L3d
1: for i = 1 to B do
2: for k = 1 to 5 do
3: Resize (C,M,P ) to match the resolution of F (k)

r

4: for s = 1 to S do
5: V ← Voxelize(F (k)

r [s], P [s], C[s],M [s])
6: (µv, σv)← MeanStd(V)
7: (µs, σs)← MeanStd(F (k)

s )
8: Ls ← Ls + ‖µv − µs‖22 + ‖σv − σs‖22
9: end for

10: end for
11: Content loss:

Lc ← ‖F (4)
r − F (4)

c ‖22 + ‖F (5)
r − F (5)

c ‖22
12: end for
13: return L3d = λcLc + λsLs + λmse‖Ir − Ic‖2

(a) Time per batch vs. # views per batch (b) GPU memory usage vs. # views per batch

Figure 6: Scaling of inference time and GPU memory with the number of views per batch.
Time is averaged over 100 iterations, and memory is reported as the peak allocation, without
rendering cost.

As the batch size increases, runtime grows roughly linearly, reaching 0.75 s at 16 views and
4.83 s at 64 views. Importantly, once the batch size exceeds 4–8 views, the runtime becomes
much more stable, showing only minor variation across repeated runs.
Memory usage shows a similarly consistent trend: GPU memory rises steadily from 4.16
GB at 1 view to 10.42 GB at 64 views. The growth is close to linear with respect to batch
size, which makes resource requirements easy to estimate when scaling to larger workloads.

A.3 Additional Visual Results

Figure 7-16 presents additional qualitative results of Stylos on diverse style–content pairs.
Across different styles and object categories, Stylos produces visually pleasing stylizations
that respect the input content geometry while transferring the target artistic appearance.
These examples further demonstrate the versatility and robustness of our approach beyond
the main results shown in the paper.
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Figure 7: Additional visual results of Stylos on diverse style–content pairs on Tanks and
Temples Dataset (Knapitsch et al. (2017a)). Stylos consistently produces visually pleasing
stylizations that preserve content geometry while transferring the target style.
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Figure 8: Additional visual results of Stylos on the CO3D dataset. The top left is the style
image while the rest of the top row are the rendered images. The mid row are the rendered
images conditioned on the mid left imamge. The bottom row is the content inputs.
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Figure 9: Additional visual results of Stylos on diverse style–content pairs.
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Figure 10: Additional visual results of Stylos on diverse style–content pairs.
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Figure 11: Additional visual results of Stylos on diverse style–content pairs.
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Figure 12: Additional visual results of Stylos on diverse style–content pairs.
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Figure 13: Additional visual results of Stylos on diverse style–content pairs.
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Figure 14: Additional visual results of Stylos on the DL3DV-10K dataset. The top left is
the style image while the rest of the top row are the rendered images. The mid row are
the rendered images conditioned on the mid left imamge. The bottom row is the content
inputs.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 15: Additional visual results of Stylos on diverse style–content pairs.
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Figure 16: Additional visual results of Stylos on diverse style–content pairs.
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