
Automated Federated Learning via Informed Pruning

Christian Internò1,3 Elena Raponi2 Niki van Stein2 Thomas Bäck2 Markus Olhofer 3

Yaochu Jin 4 Barbara Hammer 1

1
CITEC, University of Bielefeld, Bielefeld, Germany

2
LIACS, Leiden University, Leiden, Netherlands

3
Honda Research Institute EU, Offenbach, Germany

4
Westlake University, Hangzhou, Zhejiang, China

Abstract Federated learning (FL) represents a pivotal shift in machine learning (ML) as it enables

collaborative training of local ML models coordinated by a central aggregator, all without

the need to exchange local data. However, its application on edge devices is hindered by

limited computational capabilities and data communication challenges, compounded by

the inherent complexity of Deep Learning (DL) models. Model pruning is identified as a

key technique for compressing DL models on devices with limited resources. Nonetheless,

conventional pruning techniques typically rely on manually crafted heuristics and demand

human expertise to achieve a balance between model size, speed, and accuracy, often

resulting in sub-optimal solutions.

In this study, we introduce an automated federated learning approach utilizing informed

pruning, called AutoFLIP, which dynamically prunes and compresses DL models within

both the local clients and the global server. It leverages a federated loss exploration phase to

investigatemodel gradient behavior across diverse datasets and losses, providing insights into

parameter significance. Our experiments showcase notable enhancements in scenarios with

strong non-IID data, underscoring AutoFLIP’s capacity to tackle computational constraints

and achieve superior global convergence.

1 Introduction

In the past decade, the proliferation of smart devices at the network edge and the surge in data gen-

erated and distributed across them have created a decentralized setting. Here, multiple participants

store their data locally, which offers an opportunity for collaborative model training, enhancing

robustness and generalization. Distributing the computational load across these devices results in

faster training times and lower energy consumption compared to centralized approaches.

Nonetheless, distributed machine learning (ML) training encounters significant challenges. One

major challenge is ensuring efficient communication and coordination among multiple participants,

as each device typically holds only a subset of the data. Effective strategies for aggregating and

updating model parameters without excessive communication overhead are crucial. This involves

designing algorithms that minimize data exchange while enabling the convergence of high-quality

models. Moreover, device heterogeneity, encompassing differences in computational power, storage

capacity, and network bandwidth, complicates distributed ML training. Developing algorithms

capable of adapting to such environments and utilizing resources efficiently is essential for scaling

up distributed learning to large-scale deployments.

Privacy and security concerns are another challenge (Hoffpauir et al., 2023). With sensitive

data distributed across various devices, ensuring the privacy of individual data points becomes

paramount. For example, medical data stored in hospitals and personal devices is valuable for

training diagnostic models but is also subject to strict privacy and security regulations. In this

context, Federated Learning (Zhu et al., 2021) emerges as an effective strategy for training always

AutoML 2024 Workshop Track © 2024 the authors, released under CC BY 4.0

mailto:christian.interno@uni-bielefeld.de
mailto:e.raponi@liacs.leidenuniv.nl
mailto:n.van.stein@liacs.leidenuniv.nl
mailto: t.h.w.baeck@liacs.leidenuniv.nl
mailto:markus.olhofer@honda-ri.de
mailto:jinyaochu@westlake.edu.cn 
mailto:bhammer@techfak.uni-bielefeld.de 
https://creativecommons.org/licenses/by/4.0/


more complex deep learning (DL) models while preserving the privacy of the data. FL facilitates

collaborative model training across multiple devices without exposing local data. A central server,

i.e., a global model, coordinates this process by aggregating the updates from locally trained models,

which ensures a secure learning environment.

Current FL research primarily focuses on enhancing privacy and adapting ML workflows for

specific uses, often with predetermined ML model configurations. For instance, tasks related to

computer vision may involve centralized servers selecting well-known neural network architectures

like VGG-16 (Simonyan and Zisserman, 2015) (with approximately 138 million parameters) or

ResNet-50 (He et al., 2016) (with around 25.6 million parameters). However, the high complexity

of these neural networks increases the risk of overfitting, especially with small training data

sizes. Additionally, FL systems typically expect clients to have access to high-speed processors

and sufficient computational power for local calculations and parameter updates. Yet, many

edge devices, such as smartphones, wearables, and sensors, have limited computing and memory

capacities, posing a challenge to DL model training systems (Hoffpauir et al., 2023). While DL

networks have significantly improved in performance and accuracy, their larger model sizes and

increased computational costs present challenges for edge devices that struggle to handle such

demands. Moreover, the communication of DL models with millions of parameters presents

significant obstacles for FL transmission (Shlezinger et al., 2020; Asad et al., 2023). Therefore, the

effective use of FL with edge devices that have limited computational capabilities, while maintaining

efficient communication, is an active research question. This underscores the need for personalized

and innovative approaches in FL, particularly in optimizing and compressing models to improve

inference time, communication cost, energy efficiency, and complexity, all while maintaining a

satisfactory accuracy (Rahman et al., 2021).

Numerous methods have been suggested to enhance the effectiveness of neural networks

through model compression (Li et al., 2023). Traditionally, this process involves the use of manual

rules and specialized expert knowledge to navigate the vast design space, balancing the size, speed

and accuracy of the model. However, the vast design space often renders human heuristics a

time-consuming strategy for model compression, often leading to suboptimal solutions. Automated

Machine Learning (AutoML) systems, like autosklearn (Feurer et al., 2022), TPOT (Olson and Moore,

2016), and H2O AutoML (H2O.ai, 2022), streamline model selection and optimization in centralized

settings. Yet, in FL, these systems face challenges due to the distributed nature of data and the

impracticality of centralizing it for model selection, given privacy or resource constraints. This

backdrop underscores the necessity for novel methods that optimize DL models in FL without

centralizing client data, taking into account the available limited resources, the privacy of sensitive

information, and addressing class imbalance among the clients in non-IID scenarios.

Our contribution. We introduce a novel automated federated learning approach via informed

pruning (AutoFLIP), which uses a loss exploration mechanism (Nikolić et al., 2023) to automatically

prune and compress DL models based on shared insights into gradient behaviors across clients.

This strategy allows for dynamically reducing the complexity of the DL models in FL environments,

hence optimizing performance with limited computational resources at the client level. In our

assumed single-server architecture, each client operates on the same initial deep neural network

structure that automatically prunes itself at each round, based on the extraction of shared knowledge

for an informed model compression. With our experiments over various datasets, tasks, and realistic

non-IID scenarios, we provide strong evidence of the effectiveness of the proposed method.

Reproducibility. Our code for reproducing the experiments is available on GitHub.
1

1 https://github.com/ChristianInterno/AutoFLIP

2

https://github.com/ChristianInterno/AutoFLIP


2 Background and Related Work

2.1 Federated Learning

One widely accepted FL standard is known as FedAvg (McMahan et al., 2023). It operates on a

distinctive collaborative principle. The global model disseminates a model to different clients for

localized training. The impact of each client on the global model update is determined by the

size of its dataset, ensuring that clients with larger datasets have a more significant influence on

the final global model. This is accomplished by calculating the server parameters as a weighted

average of the individual parameters learned by each client. This iterative process, characterized

by collaborative learning dynamics, continues until the model reaches an satisfactory termination

criterion. Empirical studies have shown the robustness of this approach, even when handling

non-convex optimization problems (Das et al., 2022). As a result, it is commonly used as a standard

for evaluating newly developed FL protocols. In this study, we will compare the performance of

the proposed AutoFLIP method to FedAvg, with and without random pruning, as tested in (Wu

et al., 2023). Indeed, among various parameter selection criteria, random pruning demonstrated

rapid convergence within their proposed framework, outperforming any other pruning heuristic.

2.2 Model Pruning

Following the assumption that a DL model can contain a sub-network that represents the per-

formance of the entire model after being trained, model pruning is a good strategy to reduce

computational requirements of resource-constrained devices. First attempts of using pruning to

deploy deep neural networks on resource-limited devices have considered pre-trained convolutional

neural networks in a centralized setting (You et al., 2019; Lin et al., 2020). After this, there has also

been work focused on dynamic active pruning to increase communication efficiency and reduce

the computation cost on the clients during training (Liu et al., 2022; Zhou et al., 2021). Nonetheless,

this increases the amount of calculations at the client level. Jiang et al. (2023) introduce PruneFL, a
FL method that incorporates adaptive and distributed parameter pruning. Their approach utilizes

an unstructured method that does not take advantage of the collective insights of participating

clients to develop a cooperative structured pruning strategy. This is in contrast to the objectives

of AutoFLIP, which seeks to harness client-specific knowledge to facilitate a structured approach

to pruning. Lin et al. (2022) introduced a novel approach for adaptive per-layer sparsity, however

without incorporating any parameter aggregation scheme to reduce the error caused by pruning.

This challenge was addressed by Tingting et al. (2023), who were the first applying model pruning

directly into a federated learning framework. They moved the pruning process to the global model

that works on a computationally more powerful server. The pruned model is distributed to each

client, where it undergoes training. Subsequently, each client sends back to the server only the

updated parameters, restoring the full structure of the model at the server. Although this study

includes various parameter selection criteria from the literature, its pruning method does not

incorporate the information gathered during model training. This contrasts with our strategy,

AutoFLIP, which leverages such information to enhance the pruning process. The work by Yu

et al. (2021) explores enhancing FL with an adaptive pruning method to remove less important

parameters, but this adds complexity and overhead. Yu et al. (2023) then proposed Resource-aware

Federated Foundation Models, focusing on integrating large transformer-based models into FL, with

the limitation of not exploring other architectures. Our method, AutoFLIP, diverges by introducing

a pruning strategy that avoids the need for continuous evaluation of parameter significance and is

universally applicable across various FL aggregation algorithms and model architectures.

3 Methodology
AutoFLIP is an automatized FL approach relying on informed pruning. Preliminary step to the FL

rounds is an initial exploration phase. Here, a portion or the totality of the clients, which inherit

3



… …

Client 1

Client 2

Client C

Initial Exploration Compute
Deviations

Local 
Guidance 

Matrix

Global
Guidance

Matrix

…

w1

w2

wD

for every client

𝐺!"#$!
%

𝐺!"#$!
&

𝐺!"#$!
'

Prune

Download

𝐺(!")$!

winit wfinal

Global
Model

not selected in 
current FL round

Figure 1: Illustration of the pruning procedure. The local guidance matrices are computed a priori

through an exploration phase. The global guidance matrix is computed aggregating the

elements of the local guidance matrices corresponding to the clients participating in each FL

round. The global model is pruned and the reduced model is downloaded by the clients.

their topology from the global model, are trained for a certain number of exploration epochs. Based

on this, for each client, we compute a local guidance matrix, which records how important a certain

parameter (weight or bias) is in terms of parameter deviation during the exploration, which reflects

loss variability. Afterward, we aggregate the information collected locally in a global guidance

matrix, which guides the pruning of the global model.

In each FL round, only a subset of clients influence the global model pruning. The global

guidance matrix is recalculated by summing entries from local matrices of selected clients. Using

the updated global guidance matrix, the global model pruned parameters are adjusted. Subsequently,

the reduced model is distributed to participating clients, who train their pruned models. Server

parameters are computed as a weighted average of individual client parameters. The iterative

procedure, consisting of (1) pruning of the global and local models, (2) training of the reduced local

models, (3) computation of the global model parameters, and (4) local and global model performance

evaluation, continues until a prescribed termination criterion is met.

The pruning workflow of AutoFLIP is illustrated in Figure 1. Please note that the initial

exploration, computation of weight deviations, and definition of local guidance matrices occur

only once. In contrast, the global guidance matrix and subsequent pruning are redefined at each FL

round, considering the clients participating in that round.

In the following, we present the notation used to formalize the above procedure and delve

deeper into the problem formulation, exploring specific phases of the AutoFLIP workflow.

Notation. We consider a total number of 𝐶 clients. At each FL round, 𝐾 clients are chosen and

trained on different batches of size 𝐵 at each epoch, for a total amount of 𝐸 epochs. The total

number of rounds is 𝑅, which represents our termination criterion. For the exploration phase, we

denote with 𝐶𝑒𝑥𝑝 the number of clients selected, which, in this study, we take as the totality 𝐶 of

available clients. The exploration lasts for 𝐸𝑒𝑥𝑝 epochs. For our informed pruning technique, we

define a threshold 𝑇𝑝 for the parameter deviations in the exploration.

4



Problem Definition and Objective. In FL, the main task is to train a global model across 𝐶 clients,

each having a distinct dataset 𝐷𝑖 = {(x𝑖 , y𝑖)} of size 𝑛𝑖 in a non-IID environment with limited

computational resources. This means that each 𝐷𝑖 is sampled independently from a distribution

𝑃𝑖 on both input and label spaces. Each client model has its own parameters𝑊𝑖 , but on the same

DL model architecture. The expected loss for each client model can be defined as 𝐿𝑃𝑖 (ℎ𝑖 ,𝑊𝑖) =
E(x𝑖 ,y𝑖 )∼𝑃𝑖 [𝑙 (ℎ𝑖 (x𝑖 ;𝑊𝑖), y𝑖)], where 𝐿𝑃𝑖 denotes the expected loss over the data distribution 𝑃𝑖 for

client 𝑐𝑖 with hypothesis ℎ from the model space 𝐻 , encompassing all possible models.

Our objective is to automatically determine the best structured pruning strategy to significantly

compress client models while aligning the global model parameters𝑊𝑔𝑙𝑜𝑏𝑎𝑙 with the optimal𝑊 ∗
𝑔𝑙𝑜𝑏𝑎𝑙

that minimizes the combined loss:

min

ℎ𝑖 ∈𝐻

1

𝐶

𝐶∑︁
𝑖=1

𝐿𝑃𝑖 (ℎ𝑖 ,𝑊𝑖,𝑡 ), (1)

where𝑊𝑖,𝑡 represents the parameters of client 𝑐𝑖 at iteration 𝑡 .

Pruning with AutoFLIP. In AutoFLIP, the model initialization phase is augmented by a crucial

loss federated exploration phase, allowing clients to explore their loss function landscapes. This

exploration phase is completed for embedding gradient variability information into a Pruning

Guidance mask 𝑃𝐺global. This mask is updated and shared among participating clients in each FL

round to guide the evolution of client model structures within an informed pruning session.

To construct the mask 𝑃𝐺global, we need an initial exploration phase conducted on 𝐶𝑒𝑥𝑝 clients.

In this study, we consider 𝐶𝑒𝑥𝑝 = 𝐶 . We train the clients for 𝐸𝑒𝑥𝑝 epochs, and, for each model

parameter, we evaluate its evolution in the search space during the loss exploration phase. This

evaluation is conducted by calculating the deviation 𝐷1,𝑚 for the𝑚𝑡ℎ
parameter of a client model 𝑐𝑖

as the squared difference between the initial (𝑊 Initial

𝑖,𝑚 ) and final (𝑊 Final

𝑖,𝑚 ) parameter values, following

𝐸𝑒𝑥𝑝 epochs of exploration:

𝐷𝑖,𝑚 = (𝑊 Initial

𝑖,𝑚 −𝑊 Final

𝑖,𝑚 )2. (2)

Given that we use stochastic gradient descent for the exploration, this deviation acts as a measure

of loss variability dependent on the parameter𝑚. The greater the variation in the parameter space,

the more significant the improvement in loss. The𝐶𝑒𝑥𝑝 clients compile these deviations into a local

matrix 𝐺𝑙𝑜𝑐𝑎𝑙 , whose entries are the deviations for the model parameters.

At each FL round, where only 𝐾 clients are involved, the server aggregates the 𝐺𝑙𝑜𝑐𝑎𝑙 matrices

associated to those client to formulate 𝐺global through a normalization process:

𝐺global =
1

𝐾

𝐾∑︁
𝑘=1

𝐺𝑙𝑜𝑐𝑎𝑙𝑘 −min(𝐺local)
max(𝐺local) −min(𝐺local)

(3)

Each element of 𝐺global thus represents the mean normalized deviation for each parameter,

scaled between 0 and 1. A value closer to 0 indicates minimal deviation, suggesting gradient stability

during the exploration, hence scarce relevance of the parameter itself. Conversely, values near 1

highlight significant parameter deviations, pointing to more dynamic and potentially insightful

areas of the loss landscape. Then, a binarization process is then applied to 𝐺global where elements

below 𝑇𝑝 are set to 0 and those above are set to 1:

𝑃𝐺global,𝑚 =

{
0 if 𝐺global,𝑚 < 𝑇𝑝

1 otherwise

(4)

Given their smaller influence, parameters corresponding to 0 are flagged for pruning, whereas those

marked with 1 are retained, indicating important search directions within the model parameter

5



space. During each FL round, the 𝐾 participating clients update 𝑃𝐺global by incorporating their

𝐺local deviation values derived from the initial loss exploration phase.

Algorithm 1 AutoFLIP Algorithm

1: Server Initialization: Initial weight matrix𝑊
(0)
𝑔𝑙𝑜𝑏𝑎𝑙

, number of clients for exploration 𝐶𝑒𝑥𝑝 ,

exploration epochs 𝐸𝑒𝑥𝑝 , pruning threshold 𝑇𝑝 , FL rounds 𝑅, training epochs 𝐸, number of

selected clients per round 𝐾

2: Server selects 𝐶𝑒𝑥𝑝 clients for exploration

3: 𝐺𝑙𝑜𝑐𝑎𝑙𝑖 = (𝑊 Initial

𝑖 −𝑊 Final

𝑖 )2,∀𝑖 ∈ [1,𝐶𝑒𝑥𝑝]
4: for round 𝑟 = 1 to 𝑅 do
5: Server selects 𝐾 clients

6: Compute 𝐺
(𝑟 )
global

using Eq. (3)

7: Compute mask 𝑃𝐺
(𝑟 )
global

using Eq. (4)

8: for client 𝑘 = 1 to 𝐾 do
9: 𝑊

(𝑟 )
𝑘,pruned

=𝑊
(𝑟 )
𝑘

⊙ 𝑃𝐺 (𝑟 )
global

10: for each local epoch 𝑒 = 0 to 𝐸 − 1 do
11: 𝑊

(𝑒+1)
𝑘,pruned

=𝑊
(𝑒 )
𝑘,pruned

− 𝜂∇𝐿𝑘
(
𝑊

(𝑒 )
𝑘,pruned

)
12: end for
13: end for
14: 𝑊

(𝑟 )
𝑔𝑙𝑜𝑏𝑎𝑙

= 1

𝐾

∑𝐾
𝑘=1

𝑊
(𝐸 )
𝑘,pruned

15: end for

Federated Learning with AutoFLIP. Here our aim is to argument how the parameter pruning

mechanism based on loss exploration enters a general FL edge training framework. Algorithm 1

provides an overview of the entire framework of the proposed AutoFLIP algorithm for FL. It is

composed by the following steps.

Server initialization (Line 1). The server is initialized with a global model that it is sent to all the

clients. At this stage, the total number of clients undergoing exploration, the number of exploration

epochs, and the pruning threshold are also decided.

Exploration phase (Lines 2–3). The preliminary exploration phase aimed at understanding the

relevance of each parameter (weight or bias) in view of loss improvement starts. For each client

participating (in this study we select all the available clients), a local guidance matrix storing

parameter deviations is computed.

Mask update (Lines 5–7). A FL round starts. The server selects 𝐾 clients that participate in

the round. Only the local guidance matrices of those clients are considered to compute a global

guidance matrix, which is then used to generate a binary mask for pruning. The mask contains

ones only for the parameters with normalized deviations higher than a prescribed threshold 𝑇𝑝 .

Pruning (Lines 8–9). During each round, clients use the pruning mask to compress their models.

This happens through element-wise multiplication between their weight matrix and 𝑃𝐺global at that

FL round. Parameters aligned with a 0 in 𝑃𝐺global are pruned; those corresponding to a 1 are kept.

FL round with reduced client models (Lines 10–14). The standard algorithm FedAvg (McMahan

et al., 2023) is used on the reduced framework. The pruned clients are trained. The server receives

the local model updates and, upon aggregation, proceeds to update the global model with the FL

aggregation strategy. Once updated, the global model is either ready for the next communication

round or deemed ready for deployment if the convergence criteria are satisfied.

Accuracy-Improved Model Compression. A key aspect of AutoFLIP is its ability to maintain

or potentially improve model accuracy during compression. Its iterative updating technique,

6



powered by automated parameter importance evaluation, continuously refines the compression

strategy, ensuring alignment with evolving data distributions and learning objectives. In non-

IID data environments, AutoFLIP adapts its compression approach to suit each client’s dataset

characteristics, preventing disproportionate impact on clients with less represented data features

and safeguarding overall model accuracy across the network.

The global pruning mask, 𝑃𝐺global, is designed to systematically minimize the variance of the

trained parameters across different clients, 𝜎2Δ𝑊 = Var[Δ𝑊1,Δ𝑊2, . . . ,Δ𝑊𝐾 ]. As shown in Figure

2, we prune the parameters that are characterized by scarce variability during the exploration

phase and are therefore heavily influenced by their initialization value. Conversely, we continue to

include in training the parameters that exhibit the highest deviations during the exploration phase.

This indicates that their evolution was marked by high gradients, resulting in rapid exploration

over similar loss landscapes (given that we are addressing similar prediction tasks).

By reducing variance through the preliminary exploration procedure, 𝑃𝐺global crucially improves

the convergence efficiency of the global model. This ensures that the global model evolves efficiently

while aligning with the collective learning objectives of all participating clients.

0.0 0.5 1.0
Deviation Value

103

106

Ab
so

lu
te

 Fr
eq

ue
nc

y

Tp = 0.3
Six-layer CNN

0.0 0.5 1.0
Deviation Value

102

105

Ab
so

lu
te

 Fr
eq

ue
nc

y

Tp = 0.3
EfficientNet-B3

0.0 0.5 1.0
Deviation Value

103

106

Ab
so

lu
te

 Fr
eq

ue
nc

y

Tp = 0.3
ResNet

0.0 0.5 1.0
Deviation Value

103

106

Ab
so

lu
te

 Fr
eq

ue
nc

y

Tp = 0.3
FEMNIST-CNN

0.0 0.5 1.0
Deviation Value

102

105

Ab
so

lu
te

 Fr
eq

ue
nc

y

Tp = 0.3
Two-layer LSTM

Figure 2: Distribution of parameter deviations in 𝐺𝑔𝑙𝑜𝑏𝑎𝑙 after exploration. Absolute frequency in log-

scale is shown for each normalized deviation. Higher frequencies are recorded for smaller

deviation values, indicating that many parameters are irrelevant for loss improvement.

Communication efficiency. AutoFLIP enhances communication efficiency in FL by reducing model

sizes transmitted between clients and the server, thus lowering bandwidth requirements for FL

rounds. Its selective updating mechanism ensures only essential parameters, those significantly

affecting model performance, are communicated. Integrating AutoFLIP into FL systems enhances

faster training and inference times, lower energy consumption, and improved model scalability.

The appendices D, E and F provide a detailed analysis of how AutoFLIP accelerates inference and
improves training efficiency, demonstrating its significant role in lowering computational costs

and boosting FL’s overall efficiency.

4 Experiments

Inspired by Hahn et al. (2022), we benchmark AutoFLIP across established datasets to evaluate its

robustness and adaptability in various Non-IID environments. We explore three distinct partitioning

approaches for creating strongly Non-IID conditions: a Pathological Non-IID scenario, which
involves 20 clients, each using data from two distinct classes, employing MNIST with a six-layer

CNN (7,628,484 parameters) and CIFAR10 with EfficientNet-B3 (10,838,784 parameters), a Dirichlet-
based Non-IID scenario, which utilizes the Dirichlet distribution to distribute data among 20

clients, with varying class counts per client, using CIFAR100 and a ResNet architecture (23,755,900

parameters), and a LEAF Non-IID scenario, which adopts the LEAF benchmark with FEMNIST

and Shakespeare datasets. For FEMNIST, a CNN architecture with 13,180,734 parameters is used.

For Shakespeare, we consider a two-layer LSTM model with 5,040,000 parameters. Further details

on these scenarios are provided in Appendix B.

7



4.1 Experimental Setup

We evaluate AutoFLIP against FedAvg and different SOTA federated pruning strategies, including

Random, L1, L2, Similarity, and BN mask, as described in Wu et al. (2023). We use 20 clients, a batch

size of 350, and a learning rate of 0.0003 over 200 FL rounds involving 5 clients each. The setup

includes a server momentum of 0.9, an SGD optimizer with weight decay, up to 150 exploration

epochs, and a pruning threshold of 0.3. Data is split into 80-20 for training and testing, with model

performance assessed by average prediction accuracy on test sets. We run 10 experiment repetitions

to ensure statistical validity, measuring the compression rate to gauge model size reduction and its

impact. We conducted experiments on two workstations, one with an Intel Core i5 and 16 GB RAM,

and another with an Intel Xeon X5680, 128 GB of DDR4 RAM, and an NVIDIA TITAN X GPU.

4.2 Results

In Figure 3, we show the accuracy convergence profiles for the global model. The different federated

pruning strategies are evaluated on both image recognition and text prediction tasks using five

distinct datasets: MNIST, CIFAR10, CIFAR100, FEMNIST, and Shakespeare. Due to the varying

complexities of each task, we use different model structures for different datasets. A plot depicting

the evolution of the loss metric is presented in Appendix C.

Figure 3: Average accuracy convergence profiles for the global model within the FL framework.

Pathological Non-IID. Here, AutoFLIP achieves an average client compression rate of x1.74. At each

round, we remove on average 3244298 parameters for the six-layer CNN. For the EfficientNet-B3, we

obtain an average compression rate of x2.1 with 5677458 deleted parameters. For the baselines we

compare AutoFLIP to, we ensure that the number of parameters pruned matches the compression

ratio of AutoFLIP, quantified as 42% for the six-layer CNN and 52.38% for EfficientNet-B3.

The first two subplots in Figure 3 show the evolution of global model accuracy during the FL

rounds for the four-layer CNN with the MNIST dataset and for EfficientNet-B3 with the CIFAR10

dataset. In the case of the MNIST, the early rounds of FL show that AutoFLIP achieves slightly

higher accuracy compared to both FedAvg and the other federated pruning strategies, among which

RandomPruning emerges as the top performer. This indicates a faster convergence rate for our

proposed method. However, the performance of the three baselines soon becomes comparable,

with no clear superiority as the FL procedure progresses. We attribute this to the simplicity of the

prediction tasks on the MNIST dataset compared to the excessive complexity of the four-layer CNN,

8



which already possesses extremely good prediction capabilities that cannot be further enhanced by

pruning. For the CIFAR10 dataset, we do not observe any advantage in using AutoFLIP over the

other baselines. Surprisingly, all methods exhibit severe fluctuations in the accuracy convergence

profiles up to FL round 100, after which they stabilize and become comparable.

Dirichlet-based Non-IID. For ResNet, AutoFLIP achieves an average compression rate for the

clients of x1.58, with 8,720,520 parameters pruned on average out of 23,755,900 total parameters.

Hence, we adjust the percentage of parameters to be pruned to 36.71% for the different baselines.

The third subplot in Figure 3 illustrates the evolution of the global model accuracy during the FL

rounds for ResNet on CIFAR100. Here, AutoFLIP exhibits a performance enhancement throughout

the considered training rounds. At round 200, it achieves an accuracy of 0.987, compared to

0.918 for FedAvg and 0.925 for RandomPruning. This enhancement signifies the robustness of

AutoFLIP, showcasing its ability to maintain elevated performance levels, even when integrated

with larger-complex neural networks and larger datasets.

LEAF Non-IID. In this scenario, AutoFLIP achieves an average compression rate of x1.8 for 5858104

client parameters pruned out of 13180734. Hence, we adjust the number of parameters to be

pruned for the different baselines to 44%. As observed in the last two subplots of Figure 3 for

the FEMNIST and Shakespeare datasets, AutoFLIP consistently outperforms the other pruning

strategies by a significant margin. What stands out is the initial acceleration in convergence speed

observed for AutoFLIP, firmly establishing it as a superior choice over FedAvg, RandomPruning

and the other baselines in terms of maintaining limited computation and communication costs

(see Appendices D and E). Furthermore, this superiority persists throughout the entire FL training

procedure. The final average accuracy values are 0.985 for AutoFLIP, 0.905 for FedAvg, and 0.935 for
RandomPruning on the FEMNIST dataset. For the Shakespeare dataset, the values are 0.815, 0.783,

and 0.738, respectively. Here, even L1 proves to be competitive, reaching a final accuracy equal

to 0.802. However, it demonstrates inferior initial convergence. The remarkable performance of

AutoFLIP in these tasks underscores its effectiveness in handling complex and realistic FL scenarios,

thus emphasizing its applicability and robustness in real-world settings.

5 Conclusion and future perspectives

We presented AutoFLIP, an automated federated learning (FL) approach via informed pruning. Our

method adjusts client DL model compression through informed pruning, leveraging information

from a preliminary federated loss exploration phase. This enables efficient global model training

and inference on clients with limited computational resources, such as network edge devices.

Extensive experiments across various non-IID scenarios show AutoFLIP’s ability to achieve

high model accuracy while reducing computational and communication overhead. It improves

convergence rates in federated settings with non-IID data distributions compared to FedAvg, with

or without random pruning. AutoFLIP demonstrates adaptability and scalability across DL network

types and multi-class datasets, showing notable improvements as task complexity increases. This

underscores its potential for future research avenues, such as leveraging loss exploration for guiding

more complex neural architecture search tasks.

While AutoFLIP has achieved promising results, we recognize that our analysis is not yet

complete. Firstly, although to our knowledge we are the first to introduce automated informed
pruning in an FL framework, we plan to conduct extensive comparisons with other SOTA pruning

methods for FL. Additionally, validating AutoFLIP across various real-world domains such as

healthcare, Internet of Things, and mobile computing could further demonstrate its effectiveness

across different federated environments and data modalities.

9



6 Broader Impact Statement

After careful reflection, the authors have determined that this work presents no notable negative

impacts on society or the environment. On the contrary, by introducing an automatic informed

pruning strategy for federated learning, the method presented in this study offers a more sustainable

and efficient utilization of edge devices in federated learning tasks.

References
Acknowledgements.

Asad, M., Shaukat, S., Hu, D., Wang, Z., Javanmardi, E., Nakazato, J. and Tsukada, M. (2023),

‘Limitations and future aspects of communication costs in federated learning: A survey’, Sensors
23(17).

Caldas, S., Duddu, S. M. K., Wu, P., Li, T., Konečný, J., McMahan, H. B., Smith, V. and Talwalkar, A.

(2019), ‘Leaf: A benchmark for federated settings’.

Das, R., Acharya, A., Hashemi, A., Sanghavi, S., Dhillon, I. S. and Topcu, U. (2022), Faster non-convex

federated learning via global and local momentum, in ‘Conference on Uncertainity in Artificial

Intelligence (UAI) (UAI)’.

Deng, L. (2012), ‘The mnist database of handwritten digit images for machine learning research

[best of the web]’, IEEE Signal Processing Magazine .

Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M. and Hutter, F. (2022), ‘Auto-sklearn 2.0:

hands-free automl via meta-learning’, J. Mach. Learn. Res. 23(1).

H2O.ai (2022), h2o: Python Interface for H2O. Python package version 3.42.0.2.

Hahn, S.-J., Jeong, M. and Lee, J. (2022), Connecting low-loss subspace for personalized federated

learning, in ‘Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and

Data Mining’, ACM.

He, K., Zhang, X., Ren, S. and Sun, J. (2016), Deep residual learning for image recognition, in ‘2016

IEEE Conference on Computer Vision and Pattern Recognition (CVPR)’.

Hoffpauir, K., Simmons, J., Schmidt, N., Pittala, R., Briggs, I., Makani, S. and Jararweh, Y. (2023), ‘A

survey on edge intelligence and lightweight machine learning support for future applications

and services’, J. Data and Information Quality 15(2).

Hsu, T.-M. H., Qi, H. and Brown, M. (2019), ‘Measuring the effects of non-identical data distribution

for federated visual classification’.

Jiang, Y., Wang, S., Valls, V., Ko, B. J., Lee, W.-H., Leung, K. K. and Tassiulas, L. (2023), ‘Model

Pruning Enables Efficient Federated Learning on Edge Devices’, IEEE Transactions on Neural
Networks and Learning Systems 34(12), 10374–10386.

Krizhevsky, A. (2012), ‘Learning multiple layers of features from tiny images’, University of Toronto .

Li, Z., Li, H. andMeng, L. (2023), ‘Model compression for deep neural networks: A survey’, Computers
12(3).

Lin, M., Ji, R., Wang, Y., Zhang, Y., Zhang, B., Tian, Y. and Shao, L. (2020), ‘HRank: Filter Pruning

using High-Rank Feature Map’. arXiv:2002.10179 [cs].

10



Lin, R., Xiao, Y., Yang, T.-J., Zhao, D., Xiong, L., Motta, G. and Beaufays, F. (2022), ‘Federated

Pruning: Improving Neural Network Efficiency with Federated Learning’. arXiv:2209.06359 [cs].

Liu, S., Yu, G., Yin, R., Yuan, J., Shen, L. and Liu, C. (2022), ‘Joint Model Pruning and Device Selection

for Communication-Efficient Federated Edge Learning’, IEEE Transactions on Communications
70(1), 231–244. Conference Name: IEEE Transactions on Communications.

McMahan, H. B., Moore, E., Ramage, D., Hampson, S. and y Arcas, B. A. (2023), ‘Communication-

efficient learning of deep networks from decentralized data’.

Nikolić, D., Andrić, D. and Nikolić, V. (2023), ‘Guided Transfer Learning’. arXiv:2303.16154 [cs].

Olson, R. S. and Moore, J. H. (2016), Tpot: A tree-based pipeline optimization tool for automating

machine learning, in F. Hutter, L. Kotthoff and J. Vanschoren, eds, ‘Proceedings of the Workshop

on Automatic Machine Learning’, Vol. 64 of Proceedings of Machine Learning Research, PMLR,

New York, New York, USA, pp. 66–74.

Rahman, K. M. J., Ahmed, F., Akhter, N., Hasan, M., Amin, R., Aziz, K. E., Islam, A. K. M. M., Mukta,

M. S. H. and Islam, A. K. M. N. (2021), ‘Challenges, applications and design aspects of federated

learning: A survey’, IEEE Access 9, 124682–124700.

Shlezinger, N., Rini, S. and Eldar, Y. C. (2020), The communication-aware clustered federated

learning problem, in ‘2020 IEEE International Symposium on Information Theory (ISIT)’.

Simonyan, K. and Zisserman, A. (2015), ‘Very deep convolutional networks for large-scale image

recognition’.

Tingting, W., Song, C. and Zeng, P. (2023), ‘Efficient federated learning on resource-constrained

edge devices based on model pruning’, Complex & Intelligent Systems 9.

Wu, T., Song, C. and Zeng, P. (2023), ‘Efficient federated learning on resource-constrained edge

devices based on model pruning’, Complex & Intelligent Systems 9(6), 6999–7013.

You, Z., Yan, K., Ye, J., Ma, M. and Wang, P. (2019), ‘Gate Decorator: Global Filter Pruning Method

for Accelerating Deep Convolutional Neural Networks’. arXiv:1909.08174 [cs, eess].

Yu, S., Muñoz, J. P. and Jannesari, A. (2023), ‘Bridging the gap between foundation models and

heterogeneous federated learning’.

Yu, S., Nguyen, P., Anwar, A. and Jannesari, A. (2021), ‘Adaptive dynamic pruning for non-iid

federated learning’, CoRR abs/2106.06921.
URL: https://arxiv.org/abs/2106.06921

Zhou, G., Xu, K., Li, Q., Liu, Y. and Zhao, Y. (2021), ‘AdaptCL: Efficient Collaborative Learning with

Dynamic and Adaptive Pruning’. arXiv:2106.14126 [cs].

Zhu, H., Xu, J., Liu, S. and Jin, Y. (2021), ‘Federated learning on non-iid data: A survey’, Neurocom-
puting (Amsterdam) 465, 371 – 390.

11



Submission Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]

(c) Did you discuss any potential negative societal impacts of your work? [Yes]

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them?

https://2022.automl.cc/ethics-accessibility/ [Yes]

2. If you ran experiments. . .

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same

benchmarks, data (sub)sets, available resources)? [Yes]

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing,

search spaces, hyperparameter tuning)? [Yes]

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account

for the impact of randomness in your methods or data? [Yes]

(d) Did you report the uncertainty of your results (e.g., the variance across random seeds or

splits)? [Yes]

(e) Did you report the statistical significance of your results? [Yes]

(f) Did you use tabular or surrogate benchmarks for in-depth evaluations? [N/A] However, we

performed our experiments based on publicly available datasets.

(g) Did you compare performance over time and describe how you selected the maximum

duration? [Yes] We based our choices on previouslt published works.

(h) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes]

(i) Did you run ablation studies to assess the impact of different components of your approach?

[Yes]

3. With respect to the code used to obtain your results. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results, including all requirements (e.g., requirements.txt with explicit versions), random

seeds, an instructive README with installation, and execution commands (either in the

supplemental material or as a url)? [Yes]

(b) Did you include a minimal example to replicate results on a small subset of the experiments

or on toy data? [Yes]

(c) Did you ensure sufficient code quality and documentation so that someone else can execute

and understand your code? [Yes]

(d) Did you include the raw results of running your experiments with the given code, data, and

instructions? [Yes]

(e) Did you include the code, additional data, and instructions needed to generate the figures

and tables in your paper based on the raw results? [Yes]

12

https://2022.automl.cc/ethics-accessibility/


4. If you used existing assets (e.g., code, data, models). . .

(a) Did you cite the creators of used assets? [N/A]

(b) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating if the license requires it? [N/A]

(c) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]

5. If you created/released new assets (e.g., code, data, models). . .

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [Yes]

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g.,

GitHub or Hugging Face)? [Yes]

6. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A]

7. If you included theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A]

(b) Did you include complete proofs of all theoretical results? [N/A]

13



A Ablation Study on 𝑇𝑝
We perform an ablation study to assess the sensitivitiy of our method to the pruning threshold

parameter 𝑇𝑝 . In particular, we check how the average accuracy and loss for the global model

predictions vary for 𝑇𝑝 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. We do this on two datasets: MINST in Figure 4 and

CIFAR10 in Figure 5 from the Pathological Non-IID scenario. In both cases, 𝑇𝑝 = 0.3 seems the

most convenient choice.

0 100 200
Rounds

0.50

0.75

1.00

Ac
cu

ra
cy

Tp = 0.1

0 100 200
Rounds

0.50

0.75

1.00
Ac

cu
ra

cy
Tp = 0.2

0 100 200
Rounds

0.50

0.75

1.00

Ac
cu

ra
cy

Tp = 0.3

0 100 200
Rounds

0.50

0.75

1.00

Ac
cu

ra
cy

Tp = 0.4

0 100 200
Rounds

0.50

0.75

1.00

Ac
cu

ra
cy

Tp = 0.5

0 100 200
Rounds

1

2

3

Lo
ss

0 100 200
Rounds

0.5

1.0

Lo
ss

0 100 200
Rounds

2

4
Lo

ss

0 100 200
Rounds

1
2
3

Lo
ss

0 100 200
Rounds

2

4

Lo
ss

Figure 4: Ablation on 𝑇𝑝 for MINST/Non-IID based on average accuracy (top) and loss (bottom).

0 100 200
Rounds

0.50

0.75

1.00

Ac
cu

ra
cy

Tp = 0.1

0 100 200
Rounds

0.50

0.75

1.00

Ac
cu

ra
cy

Tp = 0.2

0 100 200
Rounds

0.50

0.75

1.00

Ac
cu

ra
cy

Tp = 0.3

0 100 200
Rounds

0.50

0.75

1.00

Ac
cu

ra
cy

Tp = 0.4

0 100 200
Rounds

0.50

0.75

1.00

Ac
cu

ra
cy

Tp = 0.5

0 100 200
Rounds

2

4

Lo
ss

0 100 200
Rounds

2

4

Lo
ss

0 100 200
Rounds

2

4

6

Lo
ss

0 100 200
Rounds

2

4

Lo
ss

0 100 200
Rounds

2.5

5.0

7.5

Lo
ss

Figure 5: Ablation on 𝑇𝑝 for CIFAR10/Non-IID based on average accuracy (top) and loss (bottom).

14



B Partitioning approaches

Pathological Non-IID. This experimental configuration is delineated by each client possessing

data exclusively from two distinct classes within a broader multi-class dataset. Figure 6 illustrates

this "pathological" data partitioning scenario within the CIFAR10 dataset across 20 clients. For our

experiments, we select the MNIST dataset (Deng, 2012) with a six-layer CNN (7628484 parameters)

and the CIFAR10 dataset (Krizhevsky, 2012) with EfficientNet-B3 architecture (10838784 parameters),

following the guidelines in (McMahan et al., 2023) and (Tingting et al., 2023).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Clients

0

500

1000

1500

2000

2500

Nu
m

be
r o

f s
am

pl
es

Figure 6: Illustration of pathological data partitioning on CIFAR10 for 20 clients, where each color

represents a different class.

Dirichlet-based Non-IID. This advanced experimental setup, as introduced by Hsu et al. (2019),

utilizes the Dirichlet distribution, modulated by a concentration parameter 𝛼 . Let 𝒑 = (𝑝1, 𝑝2, ..., 𝑝𝑁 )
be the class distribution for a given client, where 𝑁 is the number of classes. The Dirichlet

distribution is defined as 𝒑 ∼ Dir(𝛼 · 1𝑁 ), where “Dir” denotes the Dirichlet distribution, 𝛼 is the

concentration parameter, and 1𝑁 is a N-dimensional vector of ones. In this context, a low value of

𝛼 , or 𝛼 → 0, leads to distributions where most of the probability mass is concentrated on a single

class, thereby indicating that each client’s data is restricted to a single class. Conversely, as 𝛼 → ∞,

𝒑 approaches a uniform distribution, ensuring that the samples are evenly split across all clients.

Figure 7 illustrates this “Dirichlet-based Non-IID” data partitioning scenario within the CIFAR100

dataset across 20 clients, with individual colors denoting separate classes.

To address the complexities of larger datasets, we have extended our evaluation to include

CIFAR100 (Krizhevsky, 2012) with a 𝛼 = 100, employing ResNet (23755900 parameters) (He et al.,

2016) in alignment with the methodology proposed in (Hahn et al., 2022).

LEAF Non-IID. Utilizing the popular LEAF benchmark for FL (Caldas et al., 2019), we selected

the FEMNIST and Shakespeare datasets to simulate closer real-world FL scenarios, with each

dataset designed for specific tasks. The FEMNIST dataset is defined for a multi-class classification

challenge involving 62 distinct classes. Conversely, the Shakespeare dataset is tailored for a next-

character prediction task, requiring models to predict the subsequent character from a sequence of

80 characters, thereby testing the model capabilities in sequential data processing and language

15



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Clients

0

500

1000

1500

2000

2500

Nu
m

be
r o

f s
am

pl
es

Figure 7: Illustration of Dirichlet-based Non-IID data partitioning on CIFAR100 for 20 clients, where

each color represents a different class.

modeling. The incorporation of the next-character prediction task allows for a comprehensive

assessment of AutoFLIP adaptability and performance across diverse task types and deep neural

network architectures, such as Long Short-Term Memory (LSTM) networks.

In our experimental setup, we employed the FEMNIST-CNN architecture, as delineated in

(Caldas et al., 2019), for the FEMNIST dataset. For the Shakespeare dataset, we utilized a two-layer

(LSTM) (5040000 parameters) model, in accordance with the specifications provided in (McMahan

et al., 2023).

16



C Loss plots

We present in Figure 8 the loss convergence profiles for the global model participating in the FL

procedure.for the global model. Here, we compare AutoFLIP to the different federated pruning

strategies evaluated on both image recognition and text prediction tasks using five distinct datasets:

MNIST, CIFAR10, CIFAR100, FEMNIST, and Shakespeare. Due to the varying complexities of each

task, we use different model structures for different datasets.

Figure 8: Average loss convergence profiles for the global model within the FL framework.

17



D Inference acceleration

In this section, we discuss the inference acceleration of AutoFLIP. When performing inference

on the client’s side with the pruned sub-model, we accelerate the inference time and reduce the

computational consumption. Figure 9 shows the inference acceleration comparison after applying

AutoFLIP. Notably, the FLOPs (floating point operations per second) in all the evaluated models are

reduced. Table 1 shows that the Six-layer CNN deployed for the pathological non-IID experiment

with MNIST, experienced a substantial decrease in computational load, equal to a 41.62% reduction

in FLOPs. EfficientNet-B3, used for CIFAR10 in the pathological non-IID experiment, saw further

improvements, reaching a FLOPs reduction of 46.44%. The deeper ResNet model, designed for

CIFAR100 in the Dirichlet-based non-IID experiment, achieved a significant reduction in FLOPs,

over 50%, highlighting the potential of AutoFLIP to streamline deep networks for more efficient

inference. The FEMNIST-CNN and LSTM models, employed for the LEAF non-IID experiment,

showcased a FLOPs reduction equal to 56.49% and 44.44%, respectively.

Six
-la

ye
r C

NN

Eff
icie

ntN
et-

B3
Re

sN
et

FE
MNIST

-CNN
LST

M

Model

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

FL
OP

s (
G)

41.62%

46.44%

52.75%

56.49%

44.44%

Original FLOPs
Reduced FLOPs

Figure 9: Original FLOPs and reduced FLOPs

Table 1: FLOPs comparison

Model Compression Rate Original FLOPs Reduced FLOPs FLOPs % Reduced
Six-layer CNN 1.74 13.25 G 5.43 G 41.62% ↓
EfficientNet-B3 2.1 15.67 G 7.20 G 46.44% ↓
ResNet 1.58 7.83 G 4.07 G 52.75% ↓
FEMNIST-CNN 1.8 19.36 G 10.08 G 56.49% ↓
LSTM 1.8 10.08 G 4.43 G 44.44% ↓

18



E Training efficiency

To ascertain AutoFLIP’s impact on enhancing training efficiency within FL frameworks, we delve

into an examination of the associated communication costs. For a practical perspective, the

deployed models are trained to achieve a 90% accuracy threshold. The cost function employed for

this evaluation is defined as:

Cost = # Parameters × # Rounds to Reach Target Accuracy × # Clients × Sample Rate.

In Table 2, we observe the effectiveness of AutoFLIP in reducing communication costs across

various non-IID scenarios with different models and datasets. Notably, the Six-layer CNN model,

used in the MNIST dataset for the Pathological non-IID experiment, demonstrated a significant

reduction in communication costs by 41.61%, which underscores AutoFLIP’s effectiveness in simpler

architectures. This efficiency extends to more complex architectures, like EfficientNet-B3 and

ResNet, employed for the CIFAR10 and CIFAR100 datasets respectively for the Dirichlet-based

non-IID experiment, which also saw notable cost reductions of 30.93% and 29.88%. Similarly, the

FEMNIST-CNN and LSTM models, used in the LEAF non-IID experiment, exhibited reductions in

communication costs by 19.54% and 19.29%, respectively. These results highlight AutoFLIP’s broad
applicability and substantial impact on training efficiency across a range of model complexities and

dataset types.

Table 2: Comparison of the total communication costs

Model Rounds AutoFLIP Rounds NoAutoFLIP Cost AutoFLIP Cost NoAutoFLIP % Cost Reduced
Six-layer CNN 3 58 189.45 GB 324.43 GB 41.61% % ↓
EfficientNet-B3 27 39 290.26 GB 420.27 GB 30.93% % ↓
ResNet 7 49 712.70 GB 1016.40 GB 29.88% % ↓
FEMNIST-CNN 280 348 369.06 GB 458.69 GB 19.54% % ↓
LSTM 243 301 122.47 GB 151.74 GB 19.29 % ↓

19



F Computation Cost

To evaluate AutoFLIP’s role in reducing computational effort, we investigate the number of pa-

rameters processed for a single client. Distinguishing between computational efforts on the global

model and the clients is essential, with a particular focus on the client side. For AutoFLIP, each
client handles a substantial number of parameters over an additional 150 exploration epochs (𝐸exp).

From a practical standpoint, we compare AutoFLIP and FedAvg with RandomPruning with the

same compression rate. The models are trained to meet a 90% of global accuracy. We define the

computation cost function as:

Computation cost for single client = Total Parameters Processed × # Epochs × Sample Rate

In Table 3, the pathological non-IID experiment with MNIST using the Six-layer CNN model

shows a significant reduction in computational cost by 62.51%. This efficiency extends to more

complex architectures like EfficientNet-B3 and ResNet, used for the CIFAR10 and CIFAR100 datasets

respectively, with cost reductions of 46.41% and 58.22%. Similarly, the FEMNIST-CNN and LSTM

models, employed in the LEAF non-IID experiment, demonstrated reductions in computational

costs by 45.99% and 29.60% respectively. These results underline AutoFLIP’s broad applicability

and substantial impact on reducing computational efforts across diverse model architectures and

dataset types.

Table 3: Comparison of the total computation costs

Model Processed parameters AutoFLIP Processed parameters NoAutoFLIP % Cost Reduced
Six-layer CNN 535,309,170 1,428,653,880 62.51% ↓
EfficientNet-B3 2,005,175,040 3,740,891,680 46.41% ↓
ResNet 3,919,723,500 9,378,097,500 58.22% ↓
FEMNIST-CNN 15,303,653,440 28,338,578,100 45.99% ↓
LSTM 5,871,600,000 8,335,200,000 29.60% ↓

20


	Introduction
	Background and Related Work
	Federated Learning
	Model Pruning

	Methodology
	Experiments
	Experimental Setup
	Results

	Conclusion and future perspectives
	Broader Impact Statement
	Ablation Study on Tp
	Partitioning approaches
	Loss plots
	Inference acceleration
	Training efficiency
	Computation Cost

