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Abstract

High-stakes applications like finance and health-
care require risk-sensitive methods that maximize
a risk measure of the return distribution. Existing
risk-sensitive reinforcement learning faces com-
putational and statistical challenges due to the
non-linearity of risk measures. This paper pro-
poses computationally efficient distributional rein-
forcement learning (DRL) algorithms with regret
guarantees, addressing these challenges. In partic-
ular, we introduce two variants of the principled
DRL algorithm, RODI (Liang & Luo, 2022), that
use a novel distribution representation and pro-
jection method, maintaining regret bound while
keeping computational efficiency. Our algorithms,
RODI-Rep, demonstrate improved regret perfor-
mance compared to traditional non-distributional
RL methods through theoretical analysis and em-
pirical validation.

1. Introduction
Standard reinforcement learning (RL) aims to develop opti-
mal policies that maximize expected returns, often described
as risk-neutral RL due to its focus on the average outcomes
of return distributions (Sutton & Barto, 2018). However, in
high-stakes environments such as finance (Davis & Lleo,
2008; Bielecki et al., 2000), medical treatment (Ernst et al.,
2006), and operations research (Delage & Mannor, 2010),
decision-makers frequently prioritize risk-sensitive mea-
sures that account for return distribution variability.

Originating from the foundational work of Howard & Math-
eson (1972), risk-sensitive reinforcement learning (RSRL)
utilizing the exponential risk measure (ERM) has been ex-
tensively applied across various sectors (Shen et al., 2014;
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Nass et al., 2019; Hansen & Sargent, 2011). The ERM facil-
itates a balance between expected return and variance, with
adjustable risk sensitivity through a risk parameter. How-
ever, the non-linear nature of ERM typically necessitates
complex algorithmic solutions.

Distributional reinforcement learning (DRL) has outper-
formed traditional methods in several challenging risk-
neutral scenarios (Bellemare et al., 2017; Dabney et al.,
2018b;a), by learning the full return distribution rather than
a scalar value function. This distributional insight offers a
unique advantage in optimizing risk measures beyond mere
expectations (Dabney et al., 2018a; Singh et al., 2020; Ma
et al., 2020). Despite this, existing RSRL implementations
using DRL lack comprehensive regret analysis (Dabney
et al., 2018a; Ma et al., 2021; Achab & Neu, 2021), limiting
their evaluative and enhancement capabilities in terms of
sample efficiency.

Recently, Liang & Luo (2022) introduced a new DRL algo-
rithm, RODI, with near-optimal regret bounds that bridge
the gap between DRL and RSRL regarding sample effi-
ciency. Yet, the algorithm faces computational challenges
due to the infinite-dimensional nature of distributions, as
highlighted in our study. This introduces a crucial question:

Is it feasible for DRL to achieve near-optimal regret in
RSRL while maintaining computational efficiency?

Our work provides a positive answer by developing compu-
tationally efficient DRL algorithms with regret guarantees.
We propose two variants of RODI, with computational ef-
ficiency and principled exploration strategies for tabular
ERM-MDPs. These algorithms incorporate the principle
of optimism in the face of uncertainty (OFU) at a distribu-
tional level, adeptly managing the exploration-exploitation
trade-off. Thus, we effectively bridge the computational
and sample complexity gap between DRL and RSRL. Our
contributions advance the understanding and efficiency of
RSRL through a distributional perspective.

1.1. Related Work

The field of DRL has seen significant growth since the pio-
neering work by (Bellemare et al., 2017). Numerous studies
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have focused on enhancing performance in risk-neutral envi-
ronments (see Rowland et al., 2018; Dabney et al., 2018b;a;
Barth-Maron et al., 2018; Yang et al., 2019; Lyle et al.,
2019; Zhang et al., 2021). However, efforts to incorporate
risk-sensitive behaviors are relatively scarce, with notable
contributions including Dabney et al. (2018a); Ma et al.
(2021); Achab & Neu (2021).

A substantial volume of research on RSRL has explored
the use of the ERM across various contexts (Borkar, 2001;
2002; Borkar & Meyn, 2002; Borkar, 2010; Bäuerle &
Rieder, 2014; Di Masi et al., 2000; Di Masi & Stettner,
2007; Cavazos-Cadena & Hernández-Hernández, 2011;
Jaśkiewicz, 2007; Ma et al., 2020; Mihatsch & Neuneier,
2002; Osogami, 2012; Patek, 2001; Shen et al., 2013; 2014).
These investigations typically deal with known transitions
and rewards or are situated within infinite-horizon settings,
often overlooking sample complexity considerations.

Recent works by Fei et al. (2020) and Fei et al. (2021) delve
into RSRL employing ERM within the same framework.
Fei et al. (2020) introduced the first regret-guaranteed algo-
rithms for risk-sensitive episodic Markov decision processes
(MDPs), but their regret upper bounds contain an additional
factor of exp(|β|H2) and their lower bound proof contains
errors, leading to a weaker bound. Fei et al. (2021) refined
their algorithm by introducing a doubly decaying bonus that
effectively removes the exp(|β|H2) factor, but the issue
with the lower bound was not resolved. Liang & Luo (2022)
further advances the field by proposing the RODI algorithm,
a principled DRL framework that achieves near-optimal re-
gret bounds and establishes a tight minimax lower bound.
However, the practical application of RODI is hampered by
computational inefficiencies.

1.2. Contributions

This paper makes the following primary contributions:

• We introduce an novel method for distribution represen-
tation and projection specifically designed to mitigate
the computational inefficiencies encountered in the ex-
isting DRL algorithm, RODI.

• We propose the RODI-Rep algorithm, an enhance-
ment of RODI that integrates the distribution repre-
sentation and projection techniques. This algorithm
maintains the same regret bound as RODI and enjoys
high computational efficiency (see Figure 1).

• We provide both theoretical and empirical validations
of the advantages posed by RODI-Rep compared to
traditional non-distributional RL algorithms.

2. Preliminaries
Notations We use I{·} to denote the indicator function.
For any x ∈ R, we define [x]+ ≜ max{x, 0}. We denote by
δc the Dirac measure at c. We denote by D(a, b), DM and
D the set of distributions supported on [a, b], [0,M ] and the
set of all distributions respectively. For a discrete set x =
{x1, · · · , xn} and a probability vector p = (p1, · · · , pn),
the notation (x, p) represents the discrete distribution with
P(X = xi) = pi. We use (x1, x2; p) to denote a binary r.v.
taking values x1 and x2 with probability 1− p and p. For a
discrete distribution η = (x, p), we use |η| = |x| to denote
the number of atoms of the distribution η. We use Õ(·) to
denote O(·) omitting logarithmic factors.

Episodic MDP An episodic MDP is identified byM ≜
(S,A, (Ph)h∈[H], (rh)h∈[H], H), where S is the state space,
A the action space, Ph : S × A → ∆(S) the probability
transition kernel at step h, rh : S × A → [0, 1] the collec-
tion of reward functions at step h and H the length of one
episode. The agent interacts with the environment for K
episodes. At the beginning of episode k, Nature selects an
initial state sk1 arbitrarily. In step h, the agent takes action akh
and observes reward rh(skh, a

k
h) and reaches the next state

skh+1 ∼ Ph(·|skh, akh). The episode terminates at H+1 with
rH+1 = 0, then the agent proceeds to next episode.

Entropic risk measure and exponential utility We direct
our attention to ERM, a prominent risk measure in risk-
sensitive decision-making, such as mathematical finance
(Föllmer & Schied, 2016), Markovian decision processes
(Howard & Matheson, 1972; Bäuerle & Rieder, 2014). For
a random variable X ∼ F and a non-zero coefficient β, the
ERM is defined as:

Uβ(X) ≜
1

β
log
(
EX∼F

[
eβX

])
=

1

β
log

(∫
R
eβXdF (x)

)
.

We denote Uβ(F ) as Uβ(X) forX ∼ F . When β possesses
a small absolute value, employing Taylor’s expansion yields

Uβ(X) = E[X] +
β

2
V[X] +O(β2). (1)

Therefore, a decision-maker aiming to maximize the ERM
value demonstrates risk-seeking behavior (preferring higher
uncertainty in X) when β > 0, and risk-averse behavior
(preferring lower uncertainty in X) when β < 0. The abso-
lute value of β dictates the risk sensitivity, with the measure
converging to the mean functional as β approaches zero.

ERM is closed related to the Exponential Utility (EU):

Eβ(F ) ≜ eβUβ(F ) =

∫
R
eβxdF (x).

The equivalence between ERM and EU in terms of optimal
policies is a critical aspect leveraged by Fei et al. (2021) and
Liang & Luo (2022) to facilitate their regret analysis.
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Algorithm Regret bound Time Space

RSVI (Fei et al., 2020) Õ
(
exp(|β|H2) exp(|β|H)−1

|β|

√
HS2AT

)
O
(
TS2A

)
O (HSA+ T )RSVI2 (Fei et al., 2021)

Õ
(

exp(|β|H)−1
|β|

√
HS2AT

)
RODI-Rep (ours)

RODI (Liang & Luo, 2022) O(KSH) O(SH)

lower bound (Liang & Luo, 2022) Ω
(

exp(βH/6)−1
β

√
SAT

)
- -

Table 1. Regret bounds and computational complexity comparisons.

2.1. Risk-sensitive Distributional Dynamic
Programming Revisited

We revisits the Distributional Dynamic Programming (DDP)
framework for risk-sensitive control proposed in Liang &
Luo (2022). To start with, We define the return for a policy
π starting from state-action pair (s, a) at step h

Zπ
h (s, a) ≜

H∑
h′=h

rh′(sh′ , ah′) | sh = s, ah′ = πh′(sh′).

Define Y π
h (s) ≜ Zπ

h (s, πh(s)), then it is immediate that

Zπ
h (s, a) = rh(s, a) + Y π

h+1(S
′), S′ ∼ Ph(·|s, a).

There are two sources of randomness in Zπ
h (s, a): the tran-

sition Pπ
h and the next-state return Y π

h+1. Denote by νπh (s)
and ηπh(s, a) the cumulative distribution function (CDF) cor-
responding to Y π

h (s) and Zπ
h (s, a) respectively. Rewriting

the random variable in the form of CDF, we have the distri-
butional Bellman equation

ηπh(s, a) =
∑
s′

Ph(s
′|s, a)νπh+1(s

′)(· − rh(s, a)),

νπh (s) = ηπh(s, πh(s)).

The risk-sensitive action-value functions of a policy π at
step h are defined as

Qπ
h(s, a) ≜ Uβ(Z

π
h (s, a)), V

π
h (s) ≜ Qπ

h(s, πh(s)).

We focus on the risk-sensitive control setting, in which
the goal is to find an optimal policy to maximize the risk-
sensitive value function

π∗(s) ≜ arg max
(π1,...,πH)∈Π

V π1...πH
1 (s).

In the risk-sensitive setting, however, the principle of op-
timality does not always hold for general risk measures.
For example, the optimal policy for CVaR may be non-
Markovian or history-dependent (Shapiro et al., 2021). By
identifying certain properties of ERM, Liang & Luo (2022)
establishes the distributional Bellman optimality equation

in the risk-sensitive setting. In particular, the optimal policy
π∗ is given by the following backward recursions:

ν∗H+1(s) = ψ0, η
∗
h(s, a) = [Phν

∗
h+1](s, a)(· − rh(s, a)),

π∗
h(s) = argmax

a∈A
Uβ(η

∗
h(s, a)), ν

∗
h(s) = η∗h(s, π

∗
h(s)),

(2)
where F (· − c) denotes the CDF obtained by shifting F
to the right by c. The sequence (η∗h)h∈[H] and (ν∗h)h∈[H]

represent the sequence of distributions corresponding to the
optimal returns in each step.

For simplicity, we define the distributional Bellman operator
T (P, r) : DS → DS×A with associated model (P, r) =
(P (s, a), r(s, a))(s,a)∈S×A as

[T (P, r)ν](s, a) ≜ [Pν](s, a)(·−r(s, a)), ∀(s, a) ∈ S×A.

Denote by Th ≜ T (Ph, rh), then we can rewrite the Bell-
man recursion in Equation 2 in a compact form:

η∗h(s, a) = [Thν∗h+1](s, a). (3)

3. Computational Inefficiency of RODI
Based on the distributional dynamic programming frame-
work, Liang & Luo (2022) introduces the algorithm Risk-
sensitive Optimistic Distribution Iteration (RODI), as de-
tailed in Algorithm 1. In each episode, Algorithm 1 com-
prises two distinct phases: the planning phase and the inter-
action phase. During the planning phase, the algorithm exe-
cutes an optimistic variant of the approximate Risk-Sensitive
Distributional Dynamic Programming (RS-DDP), progress-
ing backward from step H +1 to step 1 within each episode.
This process results in a policy to be employed during the
subsequent interaction phase.

RODI deviates from the DDP in two crucial updates:

η̂h ← T̂hνh+1

η̃h ← Ocη̂h.

In RODI, the approximate distributional Bellman operator
T̂ is applied first, which relies on the empirical transition
P̂ rather than the true transition P . Then, the distributional
optimism operator Oc is used to generate an optimistic
return distribution.
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Algorithm 1 RODI (Liang & Luo, 2022)
1: Input: T and δ
2: Initialize Nh(·, ·)← 0; ηh(·, ·), νh(·)← δH+1−h

3: for k = 1 : K do
4: for h = H : 1 do
5: ηh(·, ·)← [T (P̂h, rh)νh+1](·, ·)
6: ch(·, ·)←

√
2S

Nh(·,·)∨1 ι

7: ηh(·, ·)← Och(·,·)ηh(·, ·)
8: πh(·)← argmaxa Uβ(ηh(·, a))
9: νh(·)← ηh(·, πh(·))

10: end for
11: Receive sk1
12: for h = 1 : H do
13: akh ← πh(s

k
h) and transit to skh+1

14: Update P̂
15: end for
16: end for

3.1. Computational inefficiency

While RODI enjoys near-optimal regret guarantee, it suffers
from computational inefficiency, especially in contexts with
a large number of states or a long horizon. For better illustra-
tion, let’s consider a Markov Reward Process with S states
at each step. In particular, assume the transition kernel is
uniform (Ph(s

′|s) = 1/S) for any (h, s′) ∈ [H − 1] × S,
and the reward function is bounded (rh(s) ∈ [0, 1]). Starting
from the final stepH , the return distribution ηH(s) = δrH(s)

is a Dirac function centered at rH(s). Applying the distribu-
tional Bellman equation at step H − 1, we get

ηH−1(s) =
∑
s′

pH−1(s
′|s)δrH(s′)+rH−1(s).

|η| represents the number of atoms (distinct elements) in a
discrete distribution η, indicating the memory required to
store this distribution. Since |ηH(s)| = |δrH(s)| = 1 for
each s ∈ S , and ηH−1(s) is a uniform mixture of all ηH(s)
shifted by rH−1(s), we find

|ηH−1(s)| =
∣∣∣∣(rH−1(s) + rH(s′),

1

S

)
s′∈S

∣∣∣∣ = O(S).
Continuing this process backwards through the time steps:

|ηH−2(s)| = O(S2)

· · ·
|η1(s)| = O(SH−1).

This analysis shows that the number of atoms in the re-
turn distribution exponentially increases with the horizon
H , scaled by the number of states S at each application of
the distributional Bellman operator. As a result, the mem-
ory and computational requirements to implement an exact

distributional RL algorithm like RODI become prohibitive,
particularly for problems with many states or a long horizon.
This exponential growth in complexity highlights the com-
putational challenges associated with RODI and underscores
the need for approximations for practical implementations.

4. Distribution Representation and Projection
To address the computational challenges, we introduce two
variants of RODI that use distribution representation. A
widely used method of distribution representation is the
categorical representation (Bellemare et al., 2023). This
approach parameterizes the probability distribution at fixed
locations. Specifically, we consider the simplest form of
categorical representation that uses only two atoms. We
refer to this as the Bernoulli representation. It represents
the set of all discrete distributions with two distinct atoms,
denoted as θ = (θ1, θ2). It is formally defined as:

FB(θ) = {(1− p)δθ1 + pδθ2 : p ∈ [0, 1]} .

We introduce the Bernoulli representation for Th. Let

ν̄h+1(s) = (Lh+1(s), Rh+1(s); qh+1(s))

∈ FB(Lh+1(s), Rh+1(s))

be a Bernoulli representation of the true return distribution
νh+1(s), where Lh+1(s) and Rh+1(s) are the left and right
atoms, and qh+1(s) is the probability at Rh+1(s). Applying
Th to ν̄h+1, we obtain

[Thν̄h+1](s, a) = (rh(s, a) + Lh+1(s
′), rh(s, a) +Rh+1(s

′);

ph(s
′|s, a)qh+1(s

′))s′∈S ̸∈ FB.

The result is no longer a Bernoulli distribution but a categor-
ical distribution with (at most) 2S atoms. This demonstrates
that the Bernoulli representation is not closed under Th

ν ∈ FB ̸=⇒ Thν ∈ FB.

To overcome this issue, we introduce the Bernoulli projec-
tion operator. This operator serves as a mapping from the
space of all probability distributions to FB, and we denote
it as Π : D 7→ FB. Algorithmically, we add a projec-
tion step immediately after the application of T , resulting
in a projected distributional Bellman operator ΠT . This
projection ensures that each iteration of ηh = ΠThνh+1 is
representable using a limited amount of memory.

The projection operator is not unique. Previous work (Belle-
mare et al., 2023) have developed projection operators aim-
ing to find the best approximation to a given probability
distribution, as measured by a specific probability metric.
We introduce a novel type of Bernoulli projection that pre-
serves the ERM value, an essential aspect in risk-sensitive
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settings. Starting from a Dirac measure δc, we define the
value-equivalent Bernoulli projection operator as:

Πδc ≜ (1− q(c; θ))δθ1 + q(c; θ)δθ2 = (θ1, θ2; q(c; θ)),

where the probability is defined as

q(c; θ) =
eβc − eβθ1
eβθ2 − eβθ1

∈ [0, 1]. (4)

It is easy to verify that Uβ(Πδc) = Uβ(δc) = c,∀c ∈
[θ1, θ2]. Now we extend the definition to a categorical dis-
tributions (ci, pi)i∈[n] as:

Π(ci, pi)i∈[n] = Π

∑
i∈[n]

piδci

 ≜
∑
i

piΠδci

=

(
θ1, θ2;

∑
i

piq(ci; θ)

)
.

Given that EU (δc) = EU (Πδc), the linearity of EU implies

EU

(∑
i

piδci

)
= EU

(
Π
∑
i

piδci

)
.

This verifies the value equivalence of Π. To ensure the
preservation of the value, the only requirement is that the
interval [θ1, θ2] covers the support of the input distribution,
i.e., θ1 ≤ min ci ≤ max ci ≤ θ2.

The projection preserves the risk value of the original dis-
tribution, enabling efficient and accurate representation in
DRL for RSRL. Drawing from these observations, we pro-
pose two DRL algorithms with Bernoulli representation,
differing in the order of projection and optimism operator.
We term the two algorithms as RODI-Rep.

5. DRL with Bernoulli Representation
Given that ηh ∈ DH+1−h, we set the uniform location
parameters, which are independent of (s, a), as

Lh ≜ 0, Rh ≜ H + 1− h.

We represent each iterate by a Bernoulli distribution

ηkh(s, a) = (1− qkh(s, a))δLh
+ qkh(s, a)δRh

,

νkh(s) = (1− qkh(s))δLh
+ qkh(s)δRh

,

where we overload the notation for qkh(s, a) and qkh(s). Ap-
plying T̂h to the Bernoulli represented νkh+1 ∈ FB yields

ηkh(s, a) = [T̂hνkh+1](s, a)

=
(
rh(s, a) + Lh+1, rh(s, a) +Rh+1; [P̂

k
h q

k
h+1](s, a)

)
.

With slight abuse of notation, we let

Lh(s, a) ≜ rh(s, a)+Lh+1, Rh(s, a) ≜ rh(s, a)+Rh+1.

ηkh(s, a) is a Bernoulli distribution with support not coincid-
ing with Lh and Rh. We propose two different algorithms
differing in the order of projection and optimism operator.

5.1. Optimism-Then-Projection

RODI-OTP applies the optimism operator first, followed by
the projection operator:

ηkh ← ΠOcT̂hνkh+1.

Note that ηkh ← T̂hνkh+1 ∈ FB(rh(s, a)+Lh+1, rh(s, a)+
Rh+1). For Bernoulli distribution, the optimism operator
admits a simple form

Oc (a, b; p) = (a, b; min(p+ c, 1)) .

Applying optimism operator to ηkh yields

Ockh(s,a)

(
ηkh(s, a)

)
=
(
Lh(s, a), Rh(s, a);min

(
[P̂ k

h q
k
h+1](s, a) + ckh(s, a), 1

))
.

We can simplify the update in a parametric form

qkh(s, a)← [P̂ k
h q

k
h+1](s, a),

qkh(s, a)← min(qkh(s, a) + ckh(s, a), 1).

We apply the projection rule (cf. Equation 4) to obtain

qkh(s, a)← (1− qkh(s, a))qLh (s, a) + qkh(s, a)q
R
h (s, a),

where

qRh (s, a) ≜ q(Lh(s, a);Lh, Rh) =
eβ(rh(s,a)+H−h) − 1

eβ(H+1−h) − 1
,

qLh (s, a) ≜ q(Rh(s, a);Lh, Rh) =
eβrh(s,a) − 1

eβ(H+1−h) − 1
.

Remark 5.1. qRh (s, a) and qLh (s, a) are fixed (independent
of k) and known. Thus we can compute their values for all
(h, s, a) in advance.

5.2. Projection-Then-Optimism

RODI-PTO applies the projection operator first, followed
by the optimism operator:

ηkh ← OcΠT̂hνkh+1.

The update can also be represented in a parametric form:

qkh(s, a)← [P̂ k
h q

k
h+1](s, a),

qkh(s, a)← (1− qkh(s, a))qLh (s, a) + qkh(s, a)q
R
h (s, a),

qkh(s, a)← min(qkh(s, a) + ckh(s, a), 1).
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After applying optimism operator and projection operator,
both RODI-OTP and RODI-PTO update the value func-
tions and policies accordingly

Qk
h(s, a)←

1

β
log
(
1− qkh(s, a) + qkh(s, a)e

β(H+1−h)
)

πk
h(s)← argmax

a
Qk

h(s, a), V
k
h (s)← Qk

h(s, π
k
h(s))

qkh(s)← qkh(s, π
k
h(s)).

Computational complexity. The time complexity of
RODI-OTP and RODI-PTO is given as follows: i) com-
putation of qL and qR: O(HSA); ii) parametric Bellman
update: KHSA · O(S); iii) projection: KHSA · O(1);
iv) optimism operator: KHSA · O(1); v) computation of
Q-function: KHSA · O(1); vi) greedy policy: KHS ·
O(A logA). Therefore, the total time complexity is

O(KHSA(S + logA),

which is the same as that of RSVI2. The space com-
plexity of both algorithm is given as follows: i) qL and
qR: O(HSA); ii) Nh(s, a): O(HSA); iii) trajectory
(skh, a

k
h)k,h: O(T ); iv) probabilities qh(s, a): O(HSA);

v) action-value function: O(HSA). Therefore, their total
space complexity is O(HSA+ T ).

While RODI-OTP and RODI-PTO adapts RODI by
Bernoulli representation, they maintain the optimism mainly
due to the value-equivalence property of the projection op-
erator. Therefore, they enjoys near-optimal regret bound as
RODI while maintaining computational efficiency.

5.3. Optimism of RODI-OTP

For analysis, we write the update of RODI-OTP in distribu-
tional form as:

η̂h(s, a) = [T̂hνh+1](s, a)

η̃h(s, a) = Och(s,a)η̂h(s, a)

ηh(s, a) = Πη̃h(s, a)

Qh(s, a) = Uβ (ηh(s, a)) ,

πh(s) = argmax
a

Qh(s, a)

νh(s) = ηh(s, πh(s)).

(5)

Proposition 5.2 (Optimism of RODI-OTP). Let Qk
h and

V k
h be the value functions generated by RODI-OTP as

Equation 5. It holds thatQk
h(s, a) ≥ Q∗

h(s, a) and V k
h (s) ≥

V ∗
h (s) for any (k, h, s, a) with high probability.

The proof is deferred to Section A.

5.4. Optimism of RODI-PTO

We rewrite the update of qh(s, a) in RODI-PTO as:

q̂h(s, a)← [P̂hqh+1](s, a),

η̂h(s, a) = (Lh(s, a), Rh(s, a); q̂h(s, a))

q̄h(s, a)← (1− q̂h(s, a))qLh (s, a) + q̂h(s, a)q
R
h (s, a),

η̄h(s, a) = (Lh, Rh; q̄h(s, a))

qh(s, a)← min(q̄h(s, a) + ch(s, a), 1),

ηh(s, a) = (Lh, Rh; qh(s, a)) .
(6)

Proposition 5.3 (Optimism of RODI-PTO). Let Qk
h and

V k
h be the value functions generated by RODI-PTO as

Equation 6. It holds thatQk
h(s, a) ≥ Q∗

h(s, a) and V k
h (s) ≥

V ∗
h (s) for any (k, h, s, a) with high probability.

The proof is deferred to Section A.

6. Theoretical Comparisons
6.1. RODI vs. RSVI2

We first provide theoretical justifications regarding the re-
gret ranking of RSVI (Fei et al., 2020), RSVI2 (Fei et al.,
2021), and RODI (Liang & Luo, 2022), which demonstrates
the advantage of distributional optimism over bonus-based
optimism used in RSVI and RSVI2. A key observation
regarding the ranking of their value functions V k is that:

value functions : RSVI > RSVI2 > RODI ≥ V ∗.

This ordering will be formally presented in Equation 7. The
last part of this inequality sequence indicates that all these
value functions are indeed optimistic. Given that the level of
optimism is mirrored in the value functions, we can deduce:

optimism level : RSVI > RSVI2 > RODI.

Considering the relationship between regret and the opti-
mistic value function V k

Regret =
∑

k∈[K]

V ∗
1 − V πk

1 ≤
∑

k∈[K]

V k
1 − V πk

1 ,

it is intuitive that a smaller V k or less optimism induces
reduced regret. Consequently, their regret can be ranked as:

regret : RSVI > RSVI2 > RODI,

which explains Figure 1. The regret bounds of RODI should
at least match those of RSVI2, explaining the ranking of
their regret bounds reported in Table 1:

regret bound : RSVI > RSVI2 = RODI.

Despite sharing same regret bounds with RSVI2, RODI
outperforms RSVI2 both theoretically and empirically. For-
mally speaking, let V ′, V ′′, V denote the value functions

6
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generated by RSVI, RSVI2, and RODI respectively. Let η̃
denote the distribution generated by RODI. We omit k for
simplicity.
Proposition 6.1. Fix (s, a, k, h). The comparison of their
values is as follows:

RSVI
1

β
log
([
P̂he

βV ′
h+1

]
+ b′h

)
(a)
>

1

β
log
([
P̂he

βV ′′
h+1

]
+ b′h

)
(b)
>

1

β
log
([
P̂he

βV ′′
h+1

]
+ b′′h

)
RSVI2

(c)
> Uβ (η̃h) RODI

(d)
>

1

β
log
([
Phe

βV ∗
h+1

])
.

(7)

Both RSVI and RSVI2 use exploration bonuses, defined as
b′h = |eβH−1|ch and b′′h = |eβ(H+1−h)−1|ch respectively,
where ch(s, a) represents the model estimation error∥∥∥P̂h(s, a)− Ph(s, a)

∥∥∥
1
≤ ch(s, a) =

√
Sι

Nh(s, a)
.

Both b′′h and b′h are formulated as a multiplier times ch. No-
tably, b′′h, referred to as the the doubly decaying bonus (Fei
et al., 2021), decreases its multiplier exponentially across
stages h, contrasting with b′h in RSVI. In comparison, RODI
directly incorporates optimism into the return distribution us-
ing an optimism constant ch. A connection between ch and
the bonus via the Lipschitz constant of EU can be estblished

b′′h = L(Eβ , H − h)ch < L(Eβ , H)ch = b′h,

where L(Eβ ,M) denotes the Lipschitz constant of EU over
the distributions supported in [0,M ]. This distributional
perspective posits that RSVI and RSVI2 design bonuses to
offset the error in value estimates, which is bounded by the
product of the Lipschitz constant of EU and the error in the
return distribution:

V k
h − Vh ≤ L(Eβ , H − h)

∥∥ηkh − ηh∥∥
≤ L(Eβ , H − h)

∥∥P k
h − Ph

∥∥
≤ L(Eβ , H − h)ckh.

Under the distributional perspective, the multiplier in the
bonus b′′h is interpreted as the Lipschitz constant that links
the return estimation error ch to the value estimation error
b′′h. The Lipschitz constant decreases exponentially in h as
the range [0, H − h] of the return distribution narrows.

In conclusion, bonus-based optimism requires an exponen-
tially decaying multiplier or Lipschitz constant, whereas
distributional optimism functions directly at the distribu-
tional level, obviating the need for a multiplier. Next, we
theoretically justify the regret ranking of RODI-OTP and
RODI-PTO, which interpolates between RODI and RSVI2.

6.2. RODI-Rep vs. RSVI2

We delve into the analysis by first explaining why
RODI-PTO achieves marginally lower regret compared
to RSVI2, and subsequently, we justify the advantage of
RODI-OTP over RODI-PTO.

Near-equivalence between RSVI2 and RODI-PTO We
can show the near-equivalence between RSVI2 and
RODI-PTO using induction.
Proposition 6.2 (Near-equivalence). Let V and V ′ denote
the value functions generated by RODI-PTO and RSVI2
respectively. Then we have Vh ≤ V ′

h. Moreover, Vh = V ′
h

for every h ∈ [H] if q̄h(s, a) + ch(s, a) ≤ 1 for every
(h, s, a).

The proof is deferred to Section A. The condition is likely
to be met for large values of k, considering that

k ↑=⇒ Nk
h ↓=⇒ ckh ∝ 1/

√
Nk

h ↓ .

Benefits of RODI-OTP The recursion of qh(s, a) in
RODI-OTP writes

q̂h(s, a)← [P̂hqh+1](s, a)

q̃h(s, a)← min(q̂h(s, a) + ch(s, a), 1)

qh(s, a)← (1− q̃h(s, a))qLh (s, a) + q̃h(s, a)q
R
h (s, a).

Proposition 6.3. Let V and V ′ denote the value functions
generated by RODI-OTP and RSVI2 respectively. We have

Qh ≤
1

β
log
(
eβrh [P̂he

βVh+1 ] + ch(s, a)e
βrh(eβ(H−h) − 1)

)
<

1

β
log
(
eβrh [P̂he

βV ′
h+1 ] + che

βrh(eβ(H−h) − 1)
)

<
1

β
log
(
eβrh [P̂he

βV ′
h+1 ] + ch(e

β(H+1−h) − 1)
)

= Q′
h.

The proof is deferred to Section A.
Remark 6.4. This explains why RODI-OTP achieves an
order of magnitude improvement in regret compared with
RSVI2 as well as RODI-PTO, as the ”optimism level ratio”
of RODI-OTP to RSVI2 at step h is quantifiable by

eβ(rh(s,a)+H−h) − eβrh(s,a)

eβ(H+1−h) − 1
< 1.

Why OTP is better than PTO. The superiority of OTP
over PTO can be substantiated through an insightful obser-
vation about the optimization problem:

min
q

Uβ (L,R; q)

s.t. Uβ (L,R; q) ≥ Uβ (η)

∥η − η̂∥∞ ≤ c
η = D(Supp(η̂))

(8)

7
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Let (L,R; q̃) be the optimal solution to this problem. It turns
out that the optimal solution is given by (L,R; q̃) = ΠOcη̂,
aligning with the OTP principle. Fixing (h, s, a), we inter-
pret η̂ ≜ [T̂hνh+1](s, a) as the empirical Bellman operator
applied to νh+1. Suppose νh+1 is optimistic relative to
the true distribution ν∗h+1, i.e., Uβ (νh+1) ≥ ν∗h+1. Define
η̌ ≜ [Thνh+1](s, a), which is the exact Bellman operator
applied to νh+1. Given that

∥η̂ − η̌∥∞ =
∥∥∥[(T̂h − Th)νh+1](s, a)

∥∥∥
∞
≤ ch(s, a),

the optimal solution satisfies

Uβ (L,R; q̃) ≥ Uβ (η̌) = Uβ

(
[T̂hνh+1](s, a)

)
≥ Uβ

(
[T̂hν∗h+1](s, a)

)
= Uβ (η

∗
h(s, a)) = Q∗

h(s, a).

Hence, the optimal solution (L,R; q̃) is optimistic over
η∗h(s, a). The nature of the optimization problem com-
pels (L,R; q̃) to be the Bernoulli distribution with support
(Lh, Rh) that necessitates minimal optimism over η∗h(s, a).
Notably, the PTO solution OcΠη̂ is also a feasible solution.
Consequently, OTP induces less optimism than PTO:

Uβ (ΠOcη̂) < Uβ (OcΠη̂) .

This analysis elucidates the inherent advantage of the OTP
approach over PTO. By inverting the order of the projection
and optimism operators, OTP not only ensures an optimism
over the true distribution but also guarantees that the induced
optimism is minimal and necessary.

7. Numerical Experiments
To validate the empirical performance of our algorithms, we
conducted numerical experiments comparing the proposed
RODI-Rep, with the risk-neutral algorithm UCBVI (Azar
et al., 2017), RSVI in (Fei et al., 2020), RSVI2 in (Fei et al.,
2021), and RODI in (Liang & Luo, 2022).

The experimental setup involved an MDP with S = 5 states,
A = 5 actions, and a horizon H = 5, mirroring the setup
in (Du et al., 2022). The MDP consists of a fixed initial
state denoted as state 0, and S additional states. The agent
started in state 0 and could take actions from the set [A],
transitioning to one of the states in [S] in the next step.

This MDP was designed to be highly risky, with the risk-
neutral optimal policy leading to a mean reward of 0.5 but
with a chance of receiving no reward. A risk-aware policy
might prefer the last action A, which offers slightly less
mean reward but a more consistent return, indicating lower
risk. We set δ = 0.005 and β = −1.1. The results, as
illustrated in Figure 1, demonstrates the regret ranking of

these algorithms:

RODI < RODI-OTP < RODI-PTO︸ ︷︷ ︸
RODI-Rep

≲ RSVI2 < RSVI.

Figure 1 includes the following key observations:
(i) Advantage of distributional over non-Distributional al-
gorithms: DRL algorithms (RODI and RODI-Rep) out-
performs non-distributional algorithms, demonstrating the
effectiveness of distributional optimism over bonus-based
optimism.
(ii) Performance of RODI vs. RODI-Rep: While RODI
shows better performance than RODI-Rep, the latter offers
a balance between statistical and computational efficiency.
(iii) Comparison of RODI-Rep with RSVI2: RODI-Rep
demonstrates advantages over RSVI2 in terms of sample
efficiency, while also maintaining computational efficiency.
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Figure 1. Regret comparisons for different algorithms.

8. Conclusion
We introduces significant advancements in the integration
of DRL and RSRL through the development of the RODI
algorithm. Our innovations address critical challenges in
computational efficiency and provide robust regret guar-
antees. The proposed RODI-Rep variant, in particular,
demonstrates improved regret performance compared to
traditional non-distributional methods while maintaining
high computational efficiency. Promising future directions
include extending the DRL algorithm with distribution rep-
resentation to accommodate large state-action spaces.
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A. Missing Proofs
A.1. Proof of Proposition 5.2

Proof. Define
η̌h(s, a) ≜ [Thνh+1](s, a) = [Phνh+1] [s, a](· − rh(s, a)),

which is the Bellman target that replaces P̂h by the true model Ph. Note that νh+1 ∈ FB is the distribution generated by the
algorithm, which is Bernoulli represented, rather than the optimal distribution ν∗h+1. Since

∥η̌h(s, a)− η̂h(s, a)∥∞ =
∥∥∥[P̂hνh+1

]
[s, a](· − rh(s, a))− [Phνh+1] [s, a](· − rh(s, a))

∥∥∥
∞

=
∥∥∥[P̂hνh+1

]
[s, a]− [Phνh+1] [s, a]

∥∥∥
∞

≤
∥∥∥P̂h(s, a)− Ph(s, a)

∥∥∥
1
≤ ch(s, a),

we have
η̃h(s, a) = Och(s,a)η̂h(s, a) ⪰ η̌h(s, a).

We can prove the argument by induction. Fix h+ 1 ∈ [2 : H + 1]. Suppose Vh+1 = Uβ (ηh+1) ≥ Uβ

(
η∗h+1

)
= V ∗

h+1 for
any s. It follows that

Qh(s, a) = Uβ (ηh(s, a)) = Uβ (Πη̃h(s, a)) = Uβ (η̃h(s, a)) = Uβ

(
Och(s,a)η̂h(s, a)

)
≥ Uβ (η̌h(s, a)) = Uβ (Thνh+1)

≥ Uβ

(
Thν∗h+1

)
= Q∗

h(s, a),

which implies Vh(s) ≥ V ∗
h (s) for any s. The induction is completed.

A.2. Proof of Proposition 5.3

Proof. Define

q̌h(s, a) ≜ [Phqh+1] [s, a], η̌h(s, a) ≜ (Lh(s, a), Rh(s, a); q̌h(s, a)) ,

then we have
Πη̌h(s, a) =

(
Lh, Rh; (1− q̌h(s, a))qLh (s, a) + q̌h(s, a)q

R
h (s, a)

)
.

η̌h(s, a) and η̂h(s, a) are both Bernoulli distributions with the same support, thus

∥η̌h(s, a)− η̂h(s, a)∥∞ = |q̌h(s, a)− q̂h(s, a)| =
∣∣∣[(P̂h − Ph)qh+1

]
(s, a)

∣∣∣ ≤ ∥∥∥(P̂h − Ph)(s, a)
∥∥∥
1
.

We have

∥Πη̌h(s, a)−Πη̂h(s, a)∥∞ =
∣∣(1− q̌h(s, a))qLh (s, a) + q̌h(s, a)q

R
h (s, a)− (1− q̂h(s, a))qLh (s, a)− q̂h(s, a)qRh (s, a)

∣∣
=
∣∣(q̌h(s, a)− q̂h(s, a))(qRh (s, a)− qLh (s, a))∣∣

=
∣∣∣[(P̂h − Ph)qh+1](s, a)(q

R
h (s, a)− qLh (s, a))

∣∣∣
= (qRh (s, a)− qLh (s, a)) ∥η̌h(s, a)− η̂h(s, a)∥∞
≤ (qRh (s, a)− qLh (s, a))

∥∥∥P̂h(s, a)− Ph(s, a)
∥∥∥
1

≤ (qRh (s, a)− qLh (s, a))ch(s, a) < ch(s, a).

Suppose Vh+1 = Uβ (ηh+1) ≥ Uβ

(
η∗h+1

)
= V ∗

h+1 for any s. Since

ηh(s, a) = Och(s,a)Πη̂h(s, a) ⪰ Πη̌h(s, a),
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we have

Qh(s, a) = Uβ (ηh(s, a)) = Uβ

(
Och(s,a)η̄h(s, a)

)
= Uβ

(
Och(s,a)Πhη̂h(s, a)

)
≥ Uβ (Πhη̌h(s, a))

= Uβ (η̌h(s, a)) = Uβ ([Thνh+1] (s, a))) ≥ Uβ

([
Thν∗h+1

]
(s, a))

)
= Q∗

h(s, a).

which implies Vh(s) ≥ V ∗
h (s) for any s. The induction is completed.

A.3. Proof of Proposition 6.2

Proof. Let V and V ′ denote the value functions generated by RODI-PTO and RSVI2 respectively. We start with the base
case that h = H . By the construction of RODI-PTO, we have

QH(s, a) = rH(s, a) = Q′
H(s, a) =⇒

VH(s) = max
a

QH(s, a) = max
a

Q′
H(s, a) = V ′

H(s),

verifying the equivalence at step H . Now fix h ∈ [H − 1]. Suppose the following holds

Vh+1(s) =
1

β
log
(
1− qh+1(s) + qh+1(s)e

β(H−h)
)

≤ V ′
h+1(s),∀s ∈ S =⇒

1− qh+1(s) + qh+1(s)e
β(H−h) ≤ eβV

′
h+1(s),∀s ∈ S.

It follows that

Qh(s, a) =
1

β
log
(
(1− qh(s, a))e0 + qh(s, a)e

β(H+1−h)
)

=
1

β
log
(
1 + qh(s, a)(e

β(H+1−h) − 1)
)

≤ 1

β
log
(
1 + q̄h(s, a)(e

β(H+1−h) − 1) + ch(s, a)(e
β(H+1−h) − 1)

)
,

where the last inequality becomes equality if q̄h(s, a) + ch(s, a) ≤ 1. By the definition of projection, we obtain

1 + q̄h(s, a)(e
β(H+1−h) − 1) = 1− q̄h(s, a) + q̄h(s, a)e

β(H+1−h)

= (1− q̂h(s, a))eβrh(s,a) + q̂h(s, a)e
β(rh(s,a)+H−h)

= [P̂h(1− qh+1)](s, a)e
βrh(s,a) + [P̂hqh+1](s, a)e

β(rh(s,a)+H−h)

=
∑
s′

P̂h(s
′|s, a)

(
(1− qh+1(s

′))eβrh(s,a) + qh+1(s
′)eβ(rh(s,a)+H−h)

)
= eβrh(s,a)

∑
s′

P̂h(s
′|s, a)

(
(1− qh+1(s

′)) + qh+1(s
′)eβ(H−h)

)
= eβrh(s,a)

∑
s′

P̂h(s
′|s, a)eβVh+1(s

′)

≤ eβrh(s,a)
∑
s′

P̂h(s
′|s, a)eβV

′
h+1(s

′),

which implies

Qh(s, a) ≤
1

β
log

(
eβrh(s,a)

∑
s′

P̂h(s
′|s, a)eβV

′
h+1(s

′) + ch(s, a)(e
β(H+1−h) − 1)

)
= Q′

h(s, a).

Then we have Vh(s) = maxaQh(s, a) ≤ maxaQ
′
h(s, a) = V ′

h(s). The induction is completed. Moreover, it holds that
Vh = V ′

h for every h ∈ [H] if q̄h(s, a) + ch(s, a) ≤ 1 for every (h, s, a). This condition is likely to be met for large values
of k, considering that

k ↑=⇒ Nk
h ↓=⇒ ckh ∝ 1/

√
Nk

h ↓ .

12
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A.4. Proof of Proposition 6.3

Proof. The recursion of qh(s, a) in RODI-OTP writes

q̂h(s, a)← [P̂hqh+1](s, a)

q̃h(s, a)← min(q̂h(s, a) + ch(s, a), 1)

qh(s, a)← (1− q̃h(s, a))qLh (s, a) + q̃h(s, a)q
R
h (s, a).

Fix (h, s, a) ∈ [H − 1]× S ×A. Note that

Vh+1(s) =
1

β
log
(
1− qh+1(s) + qh+1(s)e

β(H−h)
)
,∀s ∈ S,

=⇒ [P̂he
βVh+1 ](s, a) = (1− q̂h(s, a)) + q̂h(s, a)e

β(H−h),∀(s, a),

then we have

Qh(s, a) =
1

β
log
(
1− qh(s, a) + qh(s, a)e

β(H+1−h)
)

=
1

β
log
(
(1− q̃h(s, a))eβrh(s,a) + q̃h(s, a)e

β(rh(s,a)+H−h)
)

≤ 1

β
log
(
(1− q̂h(s, a))eβrh(s,a) + q̂h(s, a)e

β(rh(s,a)+H−h) + ch(s, a)(e
β(rh(s,a)+H−h) − eβrh(s,a))

)
=

1

β
log
(
eβrh(s,a)[P̂he

βVh+1 ](s, a) + ch(s, a)e
βrh(s,a)(eβ(H−h) − 1)

)
<

1

β
log
(
eβrh(s,a)[P̂he

βV ′
h+1 ](s, a) + ch(s, a)e

βrh(s,a)(eβ(H−h) − 1)
)

<
1

β
log
(
eβrh(s,a)[P̂he

βV ′
h+1 ](s, a) + ch(s, a)(e

β(H+1−h) − 1)
)
= Q′

h(s, a).
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