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Abstract

Fusion oncoproteins, a class of chimeric proteins
arising from chromosomal translocations, drive
and sustain various cancers, particularly those
impacting children. Unfortunately, due to their
intrinsically disordered nature, large size and lack
of well-defined, druggable pockets, they have
historically been challenging to target therapeu-
tically: neither small molecule-based methods
nor structure-based approaches for binder design
are strong options for this class of molecules.
Recently, protein language models (pLMs) have
demonstrated success at representing protein se-
quences with information-rich embeddings, en-
abling downstream design applications from se-
quence alone. However, no current pLM has been
trained with fusion oncoprotein sequences and
thus may not produce optimal representations for
these proteins. In this work, we introduce FusOn-
pLM, a novel pLM that fine-tunes ESM-2 em-
beddings on fusion oncoprotein sequences via
masked language modeling (MLM). We specif-
ically introduce a novel MLM strategy, employ-
ing a binding-site probability predictor to focus
masking on key amino acid residues, thereby gen-
erating more optimal fusion oncoprotein-aware
ESM-2 embeddings. Our model improves per-
formance on fusion oncoprotein-specific bench-
marks in comparison to baseline representations,
including biophysical embeddings as well as base
ESM-2 embeddings, motivating downstream us-
age of FusOn-pLM embeddings for therapeutic
design tasks targeting these fusions.
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1. Introduction
Fusion oncoproteins arise from chromosomal rearrange-
ments that fuse segments of two distinct genes. The result-
ing mutants contain unrelated functional domains connected
by long regions of disorder. This flexible configuration
promotes constitutive activation or aberrant regulation of
the fusion proteins, driving oncogenic transformation and
tumor development. Thousands of unique fusion oncopro-
teins have been discovered by sequencing patient tumors,
and several common culprits such as EWS::FLI1 in Ewing’s
sarcoma, PAX3::FOXO1 in alveolar rhabdomyosarcoma
(ARMS), and MLL-fusion proteins in leukemia are well
characterized in the literature. However, even the best un-
derstood fusion oncoproteins have proven to be elusive drug
targets due to their structural instability and absence of de-
fined binding pockets (Tripathi et al., 2023). For small
molecules that are able to bind fusion oncoproteins, for ex-
ample EWS::FLI1, these compounds do not achieve strict
fusion specificity, binding to one of their head or tail pro-
tein counterparts that are often critical transcription factors
for cellular homeostasis (Erkizan et al., 2009; Vital et al.,
2023). As such, biologics, such as antibodies, miniproteins,
and peptides, represent attractive therapeutic alternatives,
but necessitate advanced design approaches for targeting to
these undruggable proteins.

Recently, structure-based prediction and design models,
such as AlphaFold and RFDiffusion (Jumper et al., 2021;
Abramson et al., 2024; Watson et al., 2023), have accelerated
the design of biologics targeting pathogenic proteins. These
tools, by default, fail to accurately capture the structure
of numerous conformationally unstable proteins, limiting
their usefulness for fusion oncoprotein targeting (Piovesan
et al., 2022). Meanwhile, protein language models (pLMs),
such as ESM-2 and ProtT5, have been trained on the amino
acid sequences of over 250 million proteins, from the ex-
ceedingly stable to the intrinsically disordered (Lin et al.,
2023; Elnaggar et al., 2022). They capture physicochem-
ical, structural, and functional properties of proteins from
their sequence alone, and have even been extended to de-
signing novel proteins and binders (Brixi et al., 2023; Bhat
et al., 2023; Chen et al., 2023). However, these models were
not trained on fusion oncoprotein sequences, which are
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functionally and structurally distinct from their wild-type
counterparts due to their altered binding sites and unique
breakpoint junctions.

To fill this critical gap, we fine-tune the state-of-the-art
ESM-2 model on over 35,000 fusion oncoprotein sequences
collected from the FusionPDB and FOdb databases (Ku-
mar et al., 2024; Tripathi et al., 2023). To do this, we
unfreeze the query weights and biases of the final eleven
layers of the ESM-2 model and fine-tune these parameters
via a masked language modeling (MLM) head (Figure 1).
To encourage our model to learn the distinct features of
fusion oncoproteins responsible for their function and in-
teraction, we introduce a novel masking strategy, where
we apply our recent SaLT&PepPr model to predict and
bias masking toward residues most likely to participate
in protein-protein interactions (PPIs) (Brixi et al., 2023)
(Figure 1). Our results demonstrate that the output em-
beddings from our SaLT&PepPr-based masking strategy
strongly outperform baseline embeddings on diverse fusion
oncoprotein-specific tasks, while distinctly representing the
fusion oncoproteins from their original head and tail protein
counterparts. In total, these results motivate the application
of our fusion-specific embeddings for therapeutic design
tasks.

Figure 1. Overview of FusOn-pLM. Data preparation: Fusion
oncoprotein sequences (length L) undergo 15% masking by either:
(1) random masking, where each amino acid has equal likelihood
of selection, or (2) SaLT&PepPr-based masking, where poten-
tial binding sites on the fusion oncoprotein are more likely to
be masked. SaLT&PepPr-based masking produced the optimal
FusOn-pLM. The masked sequence is fed as input and the original
sequence as label into the model: 33-layer ESM-2-650M with a
MLM head. In the top third of the model (final eleven layers),
the query weights are unfrozen for finetuning. Output: the MLM
head outputs an attempted reconstruction of the original sequence,
which is compared with the label to calculate loss. FusOn-pLM
embeddings, of shape [L, 1280], are extracted from the final layer
of the ESM-2 encoder stack.

2. Methods
2.1. Amino Acid Masking Strategies

Dataset curation of fusion oncoprotein sequences are de-
scribed in the Appendix. To force comprehension of physic-
ochemical features of fusion oncoproteins, we employ a
focused probabilistic masking strategy on input amino acid
sequences. Specifically, we mask 15% of the full sequence,
as this percentage has performed well in prior studies (De-
vlin et al., 2018). Since fusion oncoproteins represent the
interaction of two distinct proteins, we masked amino acids
that are likely to participate in PPIs as determined by the
output probabilities of SaLT&PepPr (Brixi et al., 2023),
which predicts a per-amino acid probability of binding. Our
masking strategy is as follows:

Let x = (x1, x2, . . . , xn) be the input amino acid sequence
of length n, and pi be the probability that the amino acid xi

participates in a PPI as predicted by SaLT&PepPr. Define
M as the set of masked positions such that |M | = ⌈0.15n⌉.

We select M using the following probabilistic strategy:

1. Compute the probability distribution from SaLT&PepPr:
P = (p1, p2, . . . , pn).

2. Normalize the probabilities to ensure that the sum is 1:

p̂i =
pi∑n
j=1 pj

3. Sample M by selecting ⌈0.15n⌉ positions according to
the normalized probabilities P̂ = (p̂1, p̂2, . . . , p̂n).

Mathematically, the selection of M can be described as:

M ∼ Multinomial
(
⌈0.15n⌉, P̂

)
Alternatively, for the random 15% masking, we uniformly
sample M from the set {1, 2, . . . , n} without replacement:

Mrandom ∼ Uniform ({1, 2, . . . , n}, ⌈0.15n⌉)

A visualization of the masking strategy is shown in Figure
1.

2.2. FusOn-pLM

2.2.1. MODEL ARCHITECTURE AND TRAINING

FusOn-pLM is a fine-tuned encoder on curated fusion onco-
protein sequences trained via a MLM task to create fusion
oncoprotein-aware embeddings (Figure 1). To preserve com-
prehension of wild-type proteins, we train FusOn-pLM with
a MLM head on ESM-2-650M (Lin et al., 2023), where
amino acid tokens (masked using the respective masking
strategy) are passed into ESM-2-650M to retrieve its output
embeddings. The MLM loss function LMLM is defined as:
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LMLM = −
∑
i∈M

logP (xi|x\M) (1)

where M represents the set of masked positions in the in-
put sequence, xi is the true amino acid token at position
i, and x\M denotes the sequence with the masked tokens
excluded.

FusOn-pLM was trained on a NVIDIA H100 GPU with
80 GB of VRAM for 14 epochs with batch size of 8 and
learning rate of 5e-5. The Adam optimizer was utilized
with no weight decay. Only fusion oncoproteins of length
2000 or shorter were used for training; short sequences were
padded to this maximal length.

To optimize performance while avoiding overfitting on our
new sequences, we unfroze only the query weights in a
fraction of ESM-2 layers and benchmarked the ensuing
models at each epoch (Figure 1). Using random masking,
we trained models with a minimum of three and maximum
of seventeen unfrozen terminal layers, to avoid sacrificing
on batch size (Figure 1).

2.2.2. BENCHMARKING ON EXPERIMENTAL DATA

In recent works, certain fusion oncoproteins have been
shown to form puncta, which form via phase separation
and are a hallmark pathology preceding cancer phenotypes
and tumor proliferation (Jiang et al., 2020). To determine
if our FusOn-pLM embeddings produce accurate numer-
ical representations of fusion oncoproteins, we evaluated
the embeddings’ performance on predicting the propensity
of puncta formation, and predicting if puncta form in the
nucleus or cytoplasm. Here, we utilized 177 sequences
from FOdb with experimental data on puncta formation for
pLM embedding evaluation (Tripathi et al., 2023). Cancer
associations from FusionPDB were further used to evalu-
ate FusOn-pLM’s ability to distinguish fusion proteins that
drive different malignancies.

Puncta formation and localization predictions were treated
as a binary class, where label 0 or 1 represented a lack
or presence of puncta formation in a given area. For the
cancer association task, two binary classes were defined for
1,072 test-set proteins: BRCA (class 0) and STAD (class
1). We compare FusOn-pLM embeddings against three
others: 1) Base wild-type ESM-2-650M embeddings, 2)
FOdb embeddings, which are 25 physicochemical features
manually curated by FOdb for these 177 proteins, and finally,
3) Basic one-hot embeddings. We leverage the standard
binary cross-entropy loss function and minimize this loss
function for each task using the XGBoost model with 50
trees via scikit-learn (Buitinck et al., 2013).

3. Results
3.1. Probabilistic masking enables focused training

First, we sought to identify which masking strategy obtains
optimal fusion oncoprotein embeddings. Our training re-
sults demonstrate that while both SaLT&PepPr-based and
random masking produced similar training results with low
perplexity values (Table 1), optimal results on preliminary
benchmarking were reached before the model converged or
displayed evidence of overfitting, indicating that training
loss alone cannot be relied upon to choose the final model.
As such, our final, optimal model was trained with 11 un-
frozen layers using SaLT&PepPr-based masking. By freez-
ing the weights in the remaining 22 layers of ESM-2 and the
random MLM head, we enable efficient adaptation to fusion
oncoproteins with a small set of trainable parameters. In to-
tal, our final FusOn-pLM model consists of 651,163,541 pa-
rameters in the ESM-2 encoder stack (18,036,480 of which
are trainable parameters) and 1,684,513 parameters in its
MLM head.

Table 1. FusOn-pLM perplexities at different training stages. The
optimal model, SaLT&PepPr-masked and trained for 14 epochs,
does not display minimal perplexities.

Masking Epoch Train pPL Val pPL Test pPL

SaLT&PepPr 15% 14 4.731 4.827 4.851
SaLT&PepPr 15% 20 4.455 4.598 4.607
Random 15% 14 4.620 4.700 4.840
Random 15% 20 4.342 4.475 4.506

3.2. FusOn-pLM provides fusion oncoprotein-relevant
representations

To determine if FusOn-pLM produces relevant embeddings,
we next sought to evaluate its performance on downstream
fusion oncoprotein-specific tasks. We first assessed the em-
beddings’ ability to accurately predict the propensity and
localization of puncta, critical formations driving cancer
pathology (Tripathi et al., 2023). From our classification
metrics on puncta formation propensity, we demonstrate
that FusOn-pLM embeddings strongly outperform ESM-
2-650M, FOdb, and one-hot embeddings on all relevant
classification metrics across the entire held-out test dataset
(Figure 2A), which is also the case for predicting localiza-
tion to the nucleus, the primary location of fusion onco-
proteins (Angione et al., 2021) (Figure 2B). While FOdb
embeddings perform strongly on cytoplasm localization pre-
diction, FusOn-pLM proves most effective on the critical
AUROC metric (Figure 2C), and comparatively outperforms
all other embeddings for the prediction of carcinoma class
(Figure 2D). In total, these results indicate that FusOn-pLM
learns representations capturing key semantics and proper-
ties encoded in fusion oncoprotein sequences.
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Figure 2. FusOn-pLM embeddings robustly outperform ESM-2-
650M in predicting experimentally validated properties of fusion
oncoproteins. A-C) XGBoost binary classifiers utilize FusOn-
pLM, ESM-2-650M, FOdb, and one-hot embeddings to predict
A propensity of puncta formation, B puncta localization to the
nucleus, and C puncta localization to the cytoplasm. D) XGBoost
binary classifiers utilize FusOn-pLM, ESM-2-650M, and one-hot
embeddings to classify fusion oncoproteins as causing BRCA
(breast invasive carcinoma) or STAD (stomach adenocarcinoma).
FOdb embeddings not available.

3.3. FusON-pLM embeddings discriminate fusion
oncoprotein from head and tail proteins

The primary objective of FusOn-pLM is to provide feature-
rich but distinct representations of fusion oncoproteins,
which will enable fusion-specific binder design applications.
Given this aim, we visualize FusOn-pLM embeddings in a
two-dimensional context to concretely assess the model’s
capability in achieving embedding differentiation (Figure
3). Via t-SNE visualization of the generated embeddings,
we clearly observe distinct separation between FusOn-pLM
fusion embeddings and embeddings of the head and tail
proteins for well-studied fusion oncoproteins EWS::FLI1,
PAX3::FOXO1, BCR::ABL1, CIC::DUX4, SS18::SSX1,
and EML4::ALK. The distance between the final embed-
dings suggest that FusOn-pLM learns fusion oncoprotein-
specific information in its embeddings that yield distinct,
yet accurate, numerical representations of these sequences
(Figure 3).

4. Discussion
In this work, we introduce FusOn-pLM, the first protein
language model (pLM) fine-tuned to specifically represent
fusion oncoproteins. To our knowledge, no pLM has explic-

itly sought to learn unique characteristics of fusion oncopro-
teins, which differ from most proteins due to their highly
disordered nature and altered structural and functional prop-
erties driving oncogenic transformation. Our benchmarking
results demonstrate that FusOn-pLM embeddings outper-
form those of the original ESM-2-650M model (Lin et al.,
2023), as well baseline FOdb descriptor embeddings (Tri-
pathi et al., 2023), on fusion oncoprotein-related tasks, and
retain distinct representations of fusion proteins from their
head and tail counterparts. While FOdb embeddings do per-
form strongly on certain tasks, such as cytoplasm localiza-
tion, their inherent static nature precludes their application
to design tasks via methods such as contrastive learning,
autoregressive generation, and diffusion.

Figure 3. FusOn-pLM embeddings distinguish fusion oncoproteins
from their constituent parts (Head and Tail). Six of the most com-
mon fusion oncoproteins are included: EWS::FLI, PAX3::FOXO1,
BCR::ABL1, CIC::DUX4, SS18::SSX1, EML4::ALK.

Recently, our lab has trained ESM-2-based models to gen-
erate peptides given only the sequence of the target pro-
tein, facilitating the design of peptide-guided E3 ubiquitin
ligases for target-specific proteasomal degradation (Bhat
et al., 2023; Chen et al., 2023). As such, our next steps
will be to replace ESM-2 embeddings in these models with
FusOn-pLM embeddings, enabling fusion-specific degrader
design. By leveraging recent advances in gene delivery,
such as lipid nanoparticles (LNPs) and adeno-associated
viral (AAV) vectors, we envision that fusion-specific biolog-
ics may eventually serve as safe and efficacious therapeutics
for fusion-positive cancer patients. Overall, the results of
our study, motivate the use of FusOn-pLM embeddings for
downstream fusion oncoprotein design tasks, serving as a
major step toward this goal.
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Toretsky, J. A. A small molecule blocking oncogenic
protein ews-fli1 interaction with rna helicase a inhibits
growth of ewing’s sarcoma. Nature Medicine, 15(7):
750–756, July 2009. ISSN 1546-170X. doi: 10.1038/
nm.1983. URL http://dx.doi.org/10.1038/
nm.1983.

Jiang, S., Fagman, J. B., Chen, C., Alberti, S., and Liu, B.
Protein phase separation and its role in tumorigenesis.
Elife, 9:e60264, 2020.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov,
M., Ronneberger, O., Tunyasuvunakool, K., Bates, R.,
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Appendix
Dataset curation

Model training data was curated from the FusionPDB and the Fusion Oncoprotein Database (FOdb) (Kumar et al., 2024;
Tripathi et al., 2023). Specifically, 41,420 FusionPDB and 4,536 FOdb unique amino acid sequences containing only the 20
natural amino acids were collected for downstream model training. Proteins longer than 2000 amino acids were removed
due to GPU memory limits. 1,308 duplicates from database overlap were removed, and 177 FOdb sequences were held out
for benchmarking tasks. All remaining sequences were clustered using MMSeqs2 easy clustering module with a minimum
sequence identity threshold of 30% and a coverage threshold of 80% (Steinegger & Söding, 2017). The resulting clusters
were split at 80/10/10 train/test/val ratio into a training set (31,788 proteins, 79.8%), validation set (4,030 proteins, 10.1%),
and testing set (4,013 proteins, 10.1%).

Datasets for the three puncta-related benchmarking tasks were collected from FOdb (Tripathi et al., 2023). 177 FOdb
sequences were held out for three classification tasks concerning the tendency of fusion oncoproteins to form condensates
(puncta) and the cellular localizations of these puncta. These sequences were clustered using MMSeqs2 easy clustering
module with a minimum sequence identity threshold of 30% and a coverage threshold of 30% (larger coverage thresholds
led to formation of very few clusters). For each task, the clusters were split at 80/20 ratio into train and test sets with similar
ratios of class 0 to class 1. For puncta propensity of formation, there were 143 train sequences (80.8% of total; 35.7%-64.3%
class 0-1) and 34 test sequences (19.2% of total; 35.3%-64.7% class 0-1). For puncta localization to the nucleus, there
were 143 train sequences (80.8%; 59.4%-40.6% class 0-1) and 34 test sequences (19.2%; 58.8%-41.2% class 0-1). For
puncta localization to the cytoplasm, there were 141 train sequences (79.7%; 64.5%-35.5% class 0-1)) and 36 test sequences
(20.3%; 63.9%-36.1% class 0-1)).

The fourth benchmarking task involved predicting fusion oncoprotein disease outcomes. Cancer associations for the test set
(4,013 proteins) were extracted from FusionPDB (Kumar et al., 2024). This data was originally collected from The Cancer
Genome Atlas (TCGA), which provided full definitions of each cancer acronym (Weinstein et al., 2013). The top two cancer
types were breast invasive carcinoma (BRCA, 583 sequences) and stomach adenocarcinoma (STAD, 489 sequences). Fusion
oncoproteins causing these diseases were extracted and clustered using MMSeqs2 easy clustering module with a minimum
sequence identity threshold of 30% and a coverage threshold of 80%. These clusters were split into train and test sets: 859
train (80.13%; 54.4%-45.6% BRCA-STAD), 213 test (19.87%; 54.5%-45.5% BRCA-STAD).


