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ABSTRACT

We present REM (Refer Everything Model), a framework for segmenting a wide
range of concepts in video that can be described through natural language. To
achieve this level of generalization, our method capitalizes on visual-language
representations learned by video diffusion models on Internet-scale datasets. A
key insight of our approach is preserving as much of the generative model’s orig-
inal representation as possible, while fine-tuning it on narrow-domain Referring
Object Segmentation datasets. As a result, despite being exclusively trained on
object masks from a limited set of categories, our framework is able to accurately
segment and track both rare, unseen objects and non-object, dynamic concepts,
such as waves crashing in the ocean. To better quantify the generalization capa-
bilities of our model, we introduce a new benchmark for Referring Video Process
Segmentation (RVPS), which captures dynamic phenomena that exist at the inter-
section of video and language. Our experiments show that REM performs com-
parably to state-of-the-art approaches on in-domain datasets while outperforming
them by up to 28% out-of-domain, leveraging the power of Internet-scale pre-
training. We include all of the video visualizations at this anonymous page.

1 INTRODUCTION

One of the most remarkable features of natural language is its ability to describe human visual
experience in all of its richness and complexity. Whether capturing fleeting moments, like raindrops
rolling down the window, or smoke dissipating from a cigarette (see row 2 in Figure 1), or describing
dynamic processes, such as a glass shattering or a whirlpool forming in the water (row 1 in Figure 1),
if we can utter them, we can also accurately localize them in space and time. This universal mapping
between the discrete, symbolic realm of language and the continuous, ever-changing visual world is
developed through a lifetime of visual-linguistic interaction (Barsalou, 1999; Popham et al., 2021).

The corresponding problem in computer vision - Referring Video Segmentation (RVS) (Gavrilyuk
et al., 2018; Hu et al., 2016), is defined as the task of segmenting a specific region in a video based
on a natural language description. However, virtually all existing benchmarks and methods focus on
a specific subset of RVS - Referring Video Object Segmentation (RVOS) (Seo et al., 2020; Wu et al.,
2022a), where the goal is to track and segment the object referenced by a given expression. Why
has the field concentrated so narrowly on this task? Although multiple factors contribute, we argue
that the primary reason lies in the data. Historically, RVOS datasets have been developed by adding
referring expression annotations to existing object tracking benchmarks (Pont-Tuset et al., 2017; Xu
et al., 2018), which are inherently object-centric and limited in scale.

At the same time, recent advances in Internet-scale datasets with billions of paired image- and
video-language samples (Schuhmann et al., 2022; Bain et al., 2021) have opened new possibilities.
These datasets have been used to train powerful denoising diffusion models (Rombach et al., 2022;
Wang et al., 2023), and provide excellent representations of the natural visual-language manifold.
In the image domain, numerous studies have shown that re-purposing diffusion models can yield
highly generalizable representations of object shapes (Zhao et al., 2023; Ozguroglu et al., 2024).
Very recently, Zhu et al. (2024) explored the application of video diffusion models for referring
segmentation, but their approach exhibited limited generalization capabilities.

In this work, we introduce a novel approach to RVS that leverages large-scale video-language repre-
sentations learned by diffusion models. Our method, described in Section 3 and shown in Figure 3,
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“a drop of water rolling down the glass”

”the wave crashing in the ocean”

“the light column” “the green bottle of paint shattering 
from the impact of the ball”

“the smoke dissipating”

“the cracks in the glass”“the spinning column of water”

“the smoke kicked up by the car”

”the building in the middle falling down”

Figure 1: Sample results of our method, which can segment a wide range of concepts in video
that can be described through natural language by capitalizing on visual-language representations
learned by video diffusion models. REM generalizes with ease to challenging, dynamic concepts,
such as raindrops or shattering glass, as shown above. Video visualizations are available here.

enables spatio-temporal localization of a wide range of concepts (Ghorbani et al., 2019) in video that
can be described through natural language. A key factor behind our approach’s success is preserving
the rich representations learned by the generative model (see Figure 2). To achieve this, we retain
the original model architecture and fine-tune it on existing referring image- and video-segmentation
datasets, adjusting the output to generate object masks instead of Gaussian noise. As shown in
Section 5.1, our model demonstrates competitive performance against specialized state-of-the-art
models, as well as recent diffusion-based methods, on RVOS benchmarks. More significantly, it ex-
hibits a much stronger generalization to unseen object categories and non-object dynamic concepts.

To quantify this effect, we report results on the open-world object tracking benchmark -
BURST (Athar et al., 2023), as well as collect a new benchmark that focuses on dynamic pro-
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“Time-lapse of a blooming flower on a steam ”“Explode colorful smoke coming out”

Figure 2: Through Internet-scale pre-training, video diffusion models can generate realistic videos
capturing the entire diversity of the dynamic visual world (generated samples shown above). We
leverage their powerful visual-language representation for open-world referring video segmentation.

cess in Section 4. We define the latter as temporally evolving events, where the subjects undergo
continuous changes in state, shape, or appearance (see examples in Figure 1). Many of these con-
cepts are best captured through the combination of video and language, as language helps define
them, while temporal information is crucial for accurate localization. Our new benchmark, which
we call RVPS for Referring Video Process Segmentation, consists of 111 videos that are labeled
with referring expressions and masks at 24 fps and span 38 unique concepts. Our experiments in
Section 5.2 demonstrate that traditional RVOS approaches fail to generalize to this challenging sce-
nario, whereas our method effortlessly segments a wide spectrum of concepts, from light reflections
to objects dramatically changing appearance (see Figures 1 and 4).

Crucially, our approach strongly outperforms the very recent method of Zhu et al. (2024), which is
also based on a video-diffusion representation, by up to 28%. We investigate this in Section 5.3 and
experimentally demonstrate that preserving as much of the representation learned during generative
pre-training as possible is key for achieving the highest degree of generalization in referring video
segmentation. We will release the code, models, and data for reproducing our results.

2 RELATED WORK

Referring Video Segmentation (RVS) involves segmenting specific regions in a video based on
a natural language description (Gavrilyuk et al., 2018; Khoreva et al., 2019; Seo et al., 2020).
Most benchmarks for this task were developed by adding referring expression annotations to ex-
isting Video Object Segmentation (VOS) datasets, such as DAVIS’17 (Pont-Tuset et al., 2017) or
YouTube-VOS (Xu et al., 2018). Consequently, the role of language in these benchmarks is limited
to providing an interface for user-initialized object tracking (Wu et al., 2013; Perazzi et al., 2016).
While this specific task — Referring Video Object Segmentation (RVOS) — is valuable, it addresses
only a narrow subset of the possible interactions between language and the space-time continuum
of videos. Equally important is the ability of RVS methods to segment video concepts beyond com-
mon object categories. To address this gap, we introduce a new benchmark focused on segmenting
dynamic processes, which we term Referring Video Process Segmentation (RVPS).

Earlier RVOS approaches (Bellver et al., 2020; Ning et al., 2020; Hui et al., 2021) generally em-
ployed a bottom-up strategy: first, image-level methods (Rother et al., 2004; Ye et al., 2019; Carion
et al., 2020; Plummer et al., 2015) were applied to obtain frame-level masks, followed by spatio-
temporal reasoning, such as mask propagation (Seo et al., 2020), to refine the segmentation across
frames. More recently, with the success of cross-attention-based methods (Vaswani, 2017; Mein-
hardt et al., 2022; Zeng et al., 2022) in object segmentation and tracking, query-based architectures
have been introduced to RVOS, leading to significant improvements, with ReferFormer (Wu et al.,
2022a) and MUTR (Yan et al., 2024) being notable examples. The limited scale of paired video-
language data with segmentation annotations has always been a major limitation in RVOS, causing
most methods to train jointly on video and image samples (Kazemzadeh et al., 2014; Jhuang et al.,
2013). The latest approaches go even further and unify all object localization datasets and tasks in a
single framework to maximize the amount of training data (Yan et al., 2023; Wu et al., 2024; Cheng
et al., 2023). However, while these models excel in object tracking, they struggle to generalize to
more dynamic concepts. In contrast, we demonstrate that generative video-language pre-training on
Internet-scale data (Schuhmann et al., 2022; Bain et al., 2021) results in a universal (i.e. not limited
to one domain) mapping between the space of language and the ever-changing visual world.

Diffusion Models have become the de-facto standard for generative learning in computer vi-
sion (Sohl-Dickstein et al., 2015; Ho et al., 2020) and beyond (Chi et al., 2023). Among them,
the Denoising Diffusion Probabilistic Model (DDPM) (Ho et al., 2020) leverages neural network
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components to model the denoising process and builds a weighted variational bound for optimiza-
tion. Stable Diffusion (SD) (Rombach et al., 2022) shifts the denoising process into the latent space
of a pre-trained autoencoder (Kingma & Welling, 2013), allowing for model scaling. Expanding
from images to videos, diffusion models have seen success in text-to-video (T2V) generation (Wang
et al., 2023; Chen et al., 2023; 2024; Zheng et al., 2024; Blattmann et al., 2023). In addition to
the capacity to generate high-fidelity images based on text prompts, the T2V diffusion models im-
plicitly learn the mapping from linguistic descriptions to video regions, providing an opportunity
to repurpose them for RVOS. Among current T2V methods, ModelScope (Wang et al., 2023) and
VideoCrafter (Chen et al., 2023; 2024) stand out for their open-source implementations, forming the
backbone of our research.

Visual-language Pre-training for Perception: in addition to being highly effective in image and
video generation, diffusion models have been shown to learn a strong representation of the natural
image manifold. Several works have demonstrated that these representations can be re-purposed
for classical computer vision problems, including semantic segmentation (Xu et al., 2023; Zhao
et al., 2023; Zhang et al., 2023) and pixel-level correspondence (Tang et al., 2023), achieving an
impressive degree of generalization. Others have shown that image diffusing models learn powerful
representations of objects, enabling open-world novel view synthesis (Liu et al., 2023) and amodal
segmentation (Ozguroglu et al., 2024). Most recently, Zhu et al. (2024) also leverages pretrained
T2V models for RVOS however, our analysis shows that their approach fails to fully capitalize on
the universal visual-language mapping learned in generative pre-training. In this work, we explore
the application of video diffusion models to RVS, demonstrating how to maintain a high-level gen-
eralizability during fine-tuning.

In a separate line of work, visual-language representations learned with contrastive objectives (Bao
et al., 2022; Radford et al., 2021) have been adapted for referring image (Lai et al., 2024; Rasheed
et al., 2024; You et al., 2023; Xu et al., 2024) and video segmentation (Zhou et al., 2024). Although
these models tend to be more light-weight, their performance remains limited, compared to both
generative models, as well as classical referring segmentation approaches.

3 METHOD

3.1 LEARNING THE VISUAL-LANGUAGE MANIFOLD VIA VIDEO DENOISING

We build our REM upon T2V diffusion models (Wang et al., 2023; Chen et al., 2024; Zheng et al.,
2024), which were originally designed to synthesize high-fidelity videos conditioned on language
descriptions. To reduce the computational overhead, these models typically perform diffusion-
denoising in the latent space, following Rombach et al. (2022). Concretely, given a video sequence
x, a pretrained Variational Autoencoder (VAE) (Kingma & Welling, 2013) is used to project the
video from pixel space to latent space: E(x) = z; D(z) ≈ x, where E and D are the VAE encoder
and decoder, respectively.

Considering the clean latent z0 ∼ q(z0), where q(z0) is the posterior distribution of z0, video
diffusion models progressively add Gaussian noise to z0 during the diffusion process:

q(zt|zt−1) = N (zt;
√

1− βtzt−1, βtI), (1)
where βt is a variance schedule that controls the strength of the noise added in each timestep. The
denoising process reverses this process, aiming to reconstruct the original latent. The estimated
denoised latent at timestep t− 1 from zt is given by:

pθ(zt−1|zt) = N (zt−1;µθ(zt, t),Σθ(zt, t)), (2)
where µθ(zt, t) and Σθ(zt, t) are the parameters of the Gaussian distribution, which are the targets
of the diffusion model. The final denoising objective of video diffusion models is then:

LVDM := EE(x),ϵ∼N (0,1),t

[
∥ϵ− ϵθ (zt, ep, t)∥22

]
. (3)

Language conditioning is integrated into diffusion models via the denoising network, ϵθ(zt, ep, t).
Concretely, a text encoder, such as CLIP (Radford et al., 2021), is used to tokenize the input prompt
and generate the prompt embedding ep. For UNet-based architectures, ep interacts with the la-
tent representation through cross-attention modules, guiding the latent representations to generate
diverse and semantically aligned videos based on text descriptions.
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Figure 3: The model architecture of Refer Everything with Diffusion Models (REM). Like a video
diffusion model it is based on, our approach takes video frames with added noise and a language
expression as input. Our key insight is preserving as much of the diffusion representation intact as
possible by supervising segmentation masks in the latent space of the VAE.

3.2 FROM LANGUAGE-CONDITIONED DENOISING TO REFERRING VIDEO SEGMENTATION

Referring Video Segmentation (RVS) is the task of segmenting an entity across space and time in a
video based on a natural language expression. Formally, given a video sequence x ∈ RT×3×H×W

and a text expression p, the goal is to produce a binary mask m ∈ RT×H×W , where true values
indicate the presence of the referenced entity in each of the T frames. This task aligns naturally
with T2V diffusion models, as these models iteratively denoise latent representations during video
generation, establishing a strong mapping between the entities described in the text and their corre-
sponding regions in the video.

Several prior works have applied diffusion models to segmentation tasks (Zhao et al., 2023; Xu et al.,
2023; Zhu et al., 2024), typically modifying the architecture to feed noisy latent representations and
text embeddings into the denoising UNet, extracting intermediate features for downstream tasks.
These approaches often employ task-specific decoders in a conventional discriminative learning
setup, effectively repurposing diffusion models as feature extractors. However, this extensive archi-
tectural modification results in divergence from the pretraining phase when fine-tuning on narrow-
domain datasets. This in turn causes the model to lose much of the general knowledge acquired
during pretraining, which is crucial for robust generalization.

In our approach, rather than using diffusion models solely as feature extractors, we preserve the
original architecture and specifically adapt it for the RVS task. This enables us to fully leverage
the extensive knowledge encoded in diffusion models while refining them to meet task-specific
requirements, without discarding critical information. As illustrated in Figure 3, REM re-purposes
the denoising network by shifting its objective from predicting noise to predicting mask latents. This
subtle yet powerful adaptation allows the model to retain its pretraining knowledge while enhancing
its ability to tackle video segmentation. The technical details of this adaptation are elaborated below.

3.3 REFER EVERYTHING WITH DIFFUSION MODELS

Instead of learning a mask decoder from scratch, we reuse the VAE from video diffusion models.
To adapt the target masks to the VAE, we broadcast the single-channel mask into three channels
by repeating the mask. For simplicity, we still denote this three-channel mask sequence as m. The
pretrained VAE can then map the mask sequence into the latent space: E(m) = zm and D(zm) ≈ m.
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Training and Optimization. Starting with the clean video latent z0, the first step remains the same
– applying noise to shift it into a noisy distribution, following Equation 1, as the denoising network
operates in the noisy latent space with the corresponding timestep embeddings as input. However,
since our objective has shifted from denoising to mask prediction, we prioritize using latents that
remain as clean as possible. Therefore, we always set the noisy timestep to its minimum value,
t = 0, which shifts z0 to z1. Next, we input the video latent z1, the prompt embedding ep, and the
timestep t = 0 into the denoising network ϵθ. We then supervise the predicted mask latents using an
L2 loss:

LREM = ||zm − ϵθ(z1, t0, ep)||2. (4)

Model Inference. During inference, we follow the same procedure, but decode directly from the
predicted mask latent to generate the three-channel mask predictions: m̂ = D(ϵθ(z1, t0, ep)). We
then compute the single-channel masks by averaging the three-channel masks pixel-wise, and apply
a constant threshold of 0.5 to binarize the masks.

4 BENCHMARK DESIGN AND COLLECTION

In this section, we discuss our approach to collecting a new benchmark that would expand the
focus of Referring Video Segmentation outside the domain of object tracking. As covering the
entire spectrum of concepts that can be spoken of in videos would be extremely costly, we seek to
identify a subset of the problem that requires joint modeling of language and temporal dynamics.
To this end, we choose to focus on dynamic processes, which we define as temporally evolving
events, where the subjects undergo continuous changes in state, shape, or appearance. Crucially, the
subjects in this context are not limited to objects, but include all concepts that are spatio-temporally
localizable in videos, such as light or fire. The key steps for collecting this new benchmark, which
we call Referring Video Process Segmentation (Ref-VPS), include selecting representative videos
and annotating them with referring expressions and segmentation masks.

4.1 VIDEO SELECTION

To source the videos for our benchmark we require a large, public and diverse database that is
queriable with natural language and allows re-distribution of content for research purposes. Based
on these requirements, we choose the TikTok social media platform which has over 1 billion active
users across the world and receives tens of millions of video uploads daily, capturing a wide range
of dynamic visual content. TikTok’s policies generally allow for free redistribution of content, with
individual users having the option to opt out.

To search for videos that capture dynamic processes, as defined above, we first identify a non-
exhaustive list of six broad and possibly overlapping concepts (e.g. ‘object transformations’, or
‘entities with dynamic boundaries’, full list together with definitions provided in Section A in the
appendix). Then, for each concept we ask ChatGPT (OpenAI, 2023) to provide a list of concrete
examples together with multiple text queries for search on TikTok (e.g., ‘a wax candle melting’ for
‘object transformations’), resulting in 120 individual concepts. We retrieve over a 1000 samples
based on these queries; however a majority of the queries did not yield suitable videos because of
the physical nature of the event (e.g. events like ‘soil erosion’ are not typically captured on TikTok
due to their long temporal span), or ambiguity of search query not lending itself to being accurately
captured on TikTok. After removing irrelevant videos, the retrieved set is reduced to 342 samples.

We then manually filter these videos based on the following criteria: (1) videos that do not feature
significant dynamic changes of the subject (e.g., mostly stationary clouds in the sky); (2) dynamic
processes that occur too rapidly to allow for the labeling of a sufficient number of non-empty frames
(e.g., flashes of lightning); (3) video with frequent shot changes, which make it impossible to extract
an interrupted clip capturing the event of interest. Additionally, for videos that represent compila-
tions of similar events, we split them into individual clips and treat each one independently. The
resulting dataset contains 111 video clips representing 38 dynamic process concepts. The entire
dataset is intended for 0-shot evaluation, so we do not define any additional splits. A representative
sample of the videos is shown in Figure 1.
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4.2 ANNOTATION COLLECTION AND EVALUATION

To label the videos selected above, we begin by adjusting the temporal boundaries of each clip to
focus on the event of interest and avoid shot changes. We also make sure that the event is captured
in its entirety whenever possible, including some context before and after it. The clips are then
exported at 24 FPS as image frames. If a video contains irrelevant frames, such as the TikTok logo
at the end, we crop the frames accordingly to remove the padding.

To collect referring expressions, we first manually identify the entity of interest in each clip. The se-
lected entity is then labeled with referring expressions by two independent annotators. Each annota-
tor provides two expressions for the target, resulting in a total of four expressions per clip, capturing
different ways to describe the same phenomenon. Following the standard protocol (Khoreva et al.,
2019; Seo et al., 2020), models are evaluated on all queries and the results are averaged.

Finally, we densely label the targets identified above with segmentation masks at 24 FPS. To this
end, we employ a semi-automatic pipeline, capitalizing on the recently introduced SAM2 (Ravi
et al., 2024) foundational model for interactive video segmentation. In particular, we provide posi-
tive and negative click annotation in the middle frame of a video first to ensure accurate boundary
segmentation. SAM2 then automatically segments the entity of interest in the frame, as well as prop-
agates the mask across the entire clip. We interactively improve segmentation quality by providing
additional clicks as needed. In the end, we manually refine the masks in frames where SAM2 fails
and label ambiguous regions as Ignore. A visualizations of Ref-VPS annotations together with addi-
tional statistics of our benchmark are included in the appendix. For evaluation, we follow Tokmakov
et al. (2023) and only report region similarity J as contour accuracy F is often not well defined for
the entities like smoke or light which are frequent in Ref-VPS. Pixels inside the Ignore regions are
not included in the metric calculation.

5 EXPERIMENTS

Datasets and Evaluation. We use the popular RVOS benchmarks Ref-YTB (Seo et al., 2020) and
Ref-DAVIS (Khoreva et al., 2019) for evaluating our model’s performance on object tracking. Ref-
YTB contains 3978 videos with 15k referring expressions and spans 94 common object categories.
Ref-DAVIS (Khoreva et al., 2019) contains 90 videos and is evaluated 0-shot (similarly to other
methods) using the official evaluation code. For Ref-YTB (Seo et al., 2020) we use their public
labels for training and the evaluation is done on the official challenge server. Following standard
practice, in addition to Ref-YTB, we use an image segmentation dataset Ref-COCO (Yu et al.,
2016) for training, which across all three versions has 320k image-text samples.

For evaluating generalization to rare objects and ‘Stuff’ categories, we use the BURST (Athar et al.,
2023) and VSPW (Miao et al., 2021) datasets respectively. For more details about these benchmarks
please refer to Section C.1 in the Appendix. Finally, we evaluate REM and the strongest baselines on
our newly introduced Ref-VPS benchmark that focuses on dynamic process segmentation (detailed
in Section 4), and contains 111 videos across 38 concepts. All these datasets are only used for
evaluation (i.e., the results are zero-shot).

For Ref-YTB (Seo et al., 2020) and Ref-DAVIS(Khoreva et al., 2019) we use the standard evalua-
tion metrics - Region Similarity (J ), Contour accuracy (F) and their mean (J&F). For all other
evaluations we use the Region Similarity (J ) metric.

5.1 REFERRING VIDEO OBJECT SEGMENTATION RESULTS

In this section we compare REM to the state of the art on the standard RVOS benchmarks. We report
results on the validation set of Ref-DAVIS (Khoreva et al., 2019) and the test set of Ref-YTB (Seo
et al., 2020) in Table 1. Our method outperforms the state of the art on all metrics on Ref-DAVIS and
is only second to UNINEXT (Yan et al., 2023) on Ref-YTB. Note that this approach is specifically
designed for object segmentation and utilizes more than 10 datasets with localization annotations
like bounding boxes and masks for training. In contrast, REM adopts an architecture of a video
generation model and is only fine-tuned on one image and one video segmentation dataset. Despite
this, our method is competitive with UNINEXT on standard RVOS benchmarks, and as we will
show next, outperforms it out-of-domain by up to 46% in terms of Region Similarity.
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Method Pretraining Data Mask/Box Supervision Ref-DAVIS Ref-YTB
J&F J F J&F J F

Referformer (Wu et al., 2022a) ImageNet + Kinetics + SSv2 Ref-COCO/+/g + Ref-YTB 61.1 58.1 64.1 62.9 61.3 64.6
MUTR (Yan et al., 2024) ImageNet + Kinetics + SSv2 Ref-YTB + AVS 68.0 64.8 71.3 68.4 66.4 70.4
VLMO-L (Zhou et al., 2024) Unknown Ref-COCO/+/g + Ref-YTB 70.2 66.3 74.1 67.6 65.3 69.8
UNINEXT (Yan et al., 2023) Object365 10+ Image/Video datasets 72.5 68.2 76.8 70.1 67.6 72.7
VDIT (Zhu et al., 2024) LAION5B+WebVid Ref-COCO/+/g + Ref-YTB 69.4 66.2 72.6 66.5 64.4 68.5
REM (Ours) LAION5B+WebVid Ref-COCO/+/g + Ref-YTB 72.6 69.9 75.29 68.4 67.05 69.73

Table 1: Comparison to the state of the art on the validation set of the Ref-DAVIS and the test set
of Ref-YTB benchmarks using the standard metrics. Our method performs on par with the strong
UNINEXT approach, despite not being specifically designed for object localization and having ac-
cess to only a fraction of the localization labels used by that method.

Method MUTR UNINEXT VDIT REM (Ours)
VSPW 10.5 10.1 12.7 15.2
BURST 27.9 30.2 30.9 40.4

Table 2: J Comparison to the state of the art
on the ‘Stuff’ categories in the val set of VSPW
and on the joint val and test sets of BURST. Our
approach demonstrates much stronger generaliza-
tion, notably, outperforming VDIT which is based
on the same diffusion backbone.

Method MUTR UNINEXT VDIT REM (Ours)
Ref-VPS (J ) 24.07 26.25 35.27 48.96

Table 3: Comparison to the state of the art
on our new Ref-VPS benchmark. REM shows
much stronger generalization to challenging,
dynamic concepts in this dataset compared
to the baselines by effectively capitalizing on
Internet-scale visual-language pre-training.

Another notable observation is that REM also outperforms VDIT (Zhu et al., 2024), which is built on
top of the same video diffusion backbone of Wang et al. (2023), on both datasets. This result demon-
strates the effectiveness of our approach preserving the visual-language representations learned on
the Internet data, which will become even more evident in out-of-domain evaluation.

5.2 OUT-OF-DOMAIN GENERALIZATION

Before analyzing referring video segmentation methods on our new Ref-VPS benchmark, we report
a preliminary generalization study on existing open-world tracking BURST dataset (Athar et al.,
2023) as well as on the ‘Stuff’ categories (Caesar et al., 2018) from VSPW (Miao et al., 2021) in
Table 2. BURST is an open-world video object segmentation benchmark featuring larger object
diversity that the standard RVOS benchmarks, whereas VSPW tests the ability to generalize to non-
object categories. We report results on the validation set of VSPW and combined validation and test
sets of BURST and compare to the top performing methods from Table 1 that have public models.
All the evaluations reported in this section are zero-shot.

Firstly, we observe that on both out-of-domain challenges our method outperforms all the baselines
by significant margins. The improvements are especially noticeable on BURST, demonstrating that
our method successfully preserve the strong object representation learned by Internet-scale pre-
training of the diffusion backbone. In contrast, VDIT looses this generalization capacity during
fine-tuning and only performs on par with UNINEXT. On the ‘Stuff’ categories all the methods do
relatively poorly, reflecting the challenge of generalizing to more amorphous ‘Stuff’. Here VDIT
maintains a lead over entirely object-centric UNINEXT but REM still outperforms both baselines.

Finally we compare REM to the top-performing RVS baselines on our new Ref-VPS benchmark in
Table 3. Here the differences between the methods are a lot more pronounced on this benchmark
compared to other datasets, highlighting the value of our benchmark in assessing video-language
understanding capabilities of neural representations. Our approach outperforms all baselines by up
to 28% in Region Similarity, and notably surpasses the top RVOS method, UNINEXT, by 46%.
While generative pre-training enhances VDIT’s generalization ability over UNINEXT, it struggles
to preserve its representations as effectively as our method.

A qualitative comparison of REM with VDIT and UNINEXT on Ref-VPS is provided in Figure 4.
We can see that both baselines exhibit object-centric bias, as in the examples with the lizard skin in
row 1 and blue smoke in row 5. While VDIT show better generalization to non-object concepts (e.g.
in row 2), it often simply segments the dominant region in the video (see the last row in Figure 4). In
contrast, REM shows both good coverage of the rare concepts and high precision with respect to the
language prompt. See more examples of highly dynamic sequences in Section B.1 in the appendix.
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Ours UNINEXTVDIT

“the skin 
being 
pulled”

“the 
rainbow”

“the smoke 
blowing 
from the 
car”

“the blue 
smoke like 
patterns 
in the 
bowl”

“the 
shifting 
white fog”

“the wave”

Figure 4: Qualitative results of REM and state of the art baselines on our Ref-VPS benchmark. Our
method demonstrates both superior coverage of rare, dynamic concepts and higher segmentation
precision. Video comparisons are available here.

5.3 ABLATION ANALYSIS

In this section, we analyze our proposed approach of transferring generative representations to the
task of RVS. We report results on one representative RVOS benchmark (Ref-YTB) and on our new
Ref-VPS. Note that for efficiency we fine-tune all the models on a subset of image and video data
(12000 samples) so the results are lower than those reported in the previous section.

Generative pre-training. We begin by evaluating the effect of the generative pre-training strategy in
Table 4. Firstly, we design a frame-level baseline which fine-tunes StableDiffusion (Blattmann et al.,
2023) on every frame individually (row 1 in the table). While this variant has no temporal modeling
capacity, its architecture is similar to UNINEXT (Yan et al., 2023) - the state-of-the-art approach
for RVOS. Interestingly, it strongly under-performs compared to our best video-based variant not
only on our Ref-VPS but also on the object-centric Ref-YTB benchmark. These results demonstrate
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Backbone Decoder Ref-YTB Ref-VPS
(J&F) J

Stable Diffusion 2.1

Frozen VAE

59.38 28.36
VideoCrafter-1 59.10 27.15
VideoCrafter-2 65.00 35.66
ModelScope T2V 64.57 37.80
ModelScope T2V CNN 60.47 25.09
ModelScope T2V MLP 59.35 31.75

Table 4: Analysis of the effects of gen-
erative pre-training and discriminate fine-
tuning strategies on Ref-YTB and Ref-
VPS. The key to success of REM is cap-
italizing on Internet-scale image and video
pre-training and preserving as much of this
representation as possible.

that, despite the fact that images are the dominant data source in generative pre-training, fine-tuning
StableDiffusion for video generation is crucial for learning an effective representation for tracking.

Next, we compare several strategies for learning video diffusion models. We begin by studying
two variants of the VideoCrafter model (Chen et al., 2023; 2024) (denoted as VideoCrafter-1 and
VideoCrafter-2 in Table 4). They are both trained on 600M images from LAION (Schuhmann et al.,
2022) and 10-20M Internet videos. However, VideoCrafter-2 is further tuned to increase the quality
of the generated samples. Our findings indicate that this fine-tuning step leads to significant perfor-
mance gains across both benchmarks. This suggests that improving the quality of video generation
models can directly translate to enhanced performance in our video segmentation framework.

Finally, we evaluate ModelScope (Wang et al., 2023), which is trained on larger LAION 2B and
a comparable amount of video samples (last row in Table 4). This model delivers performance
comparable to the best version of VideoCrafter on the Ref-YTB benchmark, while demonstrating
superior generalization to more challenging concepts in Ref-VPS. These results further highlight that
both large-scale pre-training on image data as well as learning to model video-language interactions
are crucial components for robust RVS representation learning.

Fine-tuning strategy. We now ablate the effectiveness of our design decision to re-use a frozen
VAE decoder for mask prediction, rather than replacing it with a dedicated mask prediction module,
as was done in some of the prior work (Zhao et al., 2023; Zhu et al., 2024). To this end, we replace
the VAE with a CNN mask decoder adopted from (Zhao et al., 2023), as well as with an MLP
adopted from SegFormer (Xie et al., 2021), and train it jointly with the rest of the model (last
two row in Table 4). Removing the pre-trained VAE decoder has a moderate negative effect on
performance on Ref-YTB, but, notably, destroys the model’s ability to generalize our challenging
Ref-VPS benchmark. This result underscores the main message of our paper - preserving as much
of the representation learned during generative pre-training is key for achieving generalization in
referring video segmentation.

6 DISCUSSION

In this paper, we proposed REM, a framework that capitalizes on Internet-scale video-language
representations learned by diffusion models to segment a wide range of concepts in video that can
be described through natural language. Our key insight is that changing as little as possible in
the representation is key to preserving its universal mapping between language and visual concepts
during fine-tuning. To illustrate the benefits of our approach, we have also collected Ref-VPS -
a new benchmark for referring segmentation of dynamic processes in videos, which significantly
expands the scope of existing RVOS datasets. Our extensive experimental evaluation demonstrates
that, despite only being trained on object masks, REM successfully generalizes to highly dynamic
concepts in Ref-VPS, outperforming all prior work by up to 28% .

Despite REM’s impressive generalization abilities, the problem of RVS is far from being solved. In
Figure D in the Appendix we visualize a few failure cases of our method. REM still exhibits some
object-centric bias and struggles with extremely fast processes. Exploring ways to preserve even
more of the representation learned during generative pre-training, e.g. via low-rank adaptation (Hu
et al., 2022) of the visual backbone, is a very promising direction to address some of these issues.
In addition, note that REM should be seen as a generic framework where the backbone of Wang
et al. (2023) can be easily replaced with a more advanced representation, tracing the progress of
language-conditioned video generative models.
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CODE OF ETHICS

There is no obvious negative societal impact from our work. The potential negative impact is likely
the same as other research on large-scale generative models with the legal concern on the training
data.

REPRODUCIBILITY STATEMENT

We provide extensive descriptions of the implementation details in the appendix. Also, we will
release the code upon acceptance.
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Clips 111
Frames 14452
Concepts 38
Avg len. (s) 5.47
Ann FPS 24
Min-resolution 712× 576
Max-resolution 1024× 576

Table A: Statistics of our Ref-VPS benchmark.

Figure A: Distribution of sample lengths in Ref-VPS

A DATASET DETAILS

A.1 DATASET COLLECTION

We use the following categories of dynamic processes to collect videos for our Ref-VPS benchmark:

• Temporal object changes: Concepts involving changes over time (e.g., object deformation,
melting)

• Motion Patterns: Concepts involving movement and displacement of non-object regions
(e.g., water ripples, flickering flames)

• Dynamic environmental changes: Changes in the environment that affect spatial regions
over time (e.g. clouds moving across the sky, waves rising )

• Interaction Sequences: Concepts involving interactions between objects (e.g., bullet hitting
glass, object collisions)

• Pattern evolution: Concepts where patterns or textures evolve or change dynamically
(changing patterns of smoke dispersion, fluctuating light levels)

The distribution of our sample lengths can be seen in Figure A. Most of our samples are around 2.5
to 5 secs in length but can go up to 17 seconds. A comprehensive list of key statistics can be found
in Table. A.

A.2 ANNOTATION VISUALIZATIONS

We show a sample of Ref-VPS segmentation mask annotations Figure B. Our annotations are accu-
rate, with the entire extent of the wave labeled in the third row, and the entire icicle in the second
row. Rows 1 and 4 illustrate handling of ambiguous scenarios, where only the confident regions
of the glowing water and of the light column are labeled as target, and the ambiguous regions are
labeled as Ignore (shown in gray). Pixels inside the Ignore regions are not included in the metric
calculation. This approach ensures that the metrics focus on evaluating the most reliable regions of
the masks, avoiding arbitrary penalties for ambiguous boundaries.
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“the light column”

”the wave crashing 
in the ocean”

“the bubble being popped”

“the ice forming”

“the luminescence 
in the water”

Original GroundTruth

Figure B: Samples from our Ref-VPS dataset. Ground-truth masks are shown in red and the Ignore
regions are shown in gray. Pixels inside the Ignore regions are not included in the metric calculation.
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UNINEXT

VDIT

Ours

“the man without a shirt” “the boy wearing blue shirt”

“the man with red cape” “the man with white hair”

Ours

UNINEXT

VDIT

Figure C: Qualitative comparison of REM with state-of-the-art baselines on dynamic and challeng-
ing fight scenes. The incorrectly labeled frames are outlined in red. Our method is way better at
handling frequent occlusions and POV changes. For better illustration of the differences, please
watch the full videos here.

B ADDITIONAL EXPERIMENTAL EVALUATIONS

B.1 EVALUATION ON CHALLENGING FIGHT SCENES

Fight sequences in movies, television and animated shows pose a unique set of challenges. Typically
fight scenes are characterized by objects/characters undergoing severe and frequent occlusions and
leaving the frame entirely, coupled with frequent pose changes of the camera. This leads to drastic
changes in the appearance of the object and requires high levels of temporal and semantic con-
sistency to accurately track, re-identify, and segment the referred entity. Our diffusion fine-tuning
method excels in this domain of super challenging samples as illustrated in Figure C. We can clearly
see that UNINEXT and VDIT both fail whenever there is a large occlusion causing the referred en-
tity to become invisible. Even though VDIT uses Video diffusion features, their method is unable to
leverage the temporal consistency learned during Video Diffusion pre-training as well our method.
For a more illustrative comparison, we highly recommend you watch the full videos linked in the
caption of Figure C.

B.2 FAILURE CASES

A few representative failure cases of REM on Ref-VPS are shown in Figure D. Our method suf-
fers from object-centric bias in the most challenging scenarios and struggles with extremely fast
processes.
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“the light reflecting off the bald head” “the light reflected in the water”

“the lightning strike” “the veins on the arm”

Figure D: Some failure cases of our REM on Ref-VPS. The model still exhibits some object-centric
bias and struggles with extremely dynamic entities like the lightning.

B.3 CONCEPT COVERAGE PLOT ON BURST

In case of generalization to object concepts on BURST, our method outperforms the next best by at
least 9.5 %. In Figure E we show that our method has a much better coverage of different object
concepts compared to other methods. We are especially better in the long-tail region of object
concepts as illustrated in the figure.

B.4 TEMPORAL CONSISTENCY EVALUATION

Accurately evaluating the temporal consistency of video segmentation methods is notoriously chal-
lenging, because it is hard to distinguish between predicted mask changes that are due to the
method’s inconsistency and the changes that are due to the true target deformations. Notably, the
temporal consistency metric proposed in the original DAVIS dataset (Pont-Tuset et al., 2017) was
only applied to videos with no significant object deformations and no occlusions and was eventually
phased out by the dataset’s authors.

Recognizing these limitations, we implemented a straightforward consistency metric by computing
the average difference of IoU between the model’s prediction and the ground truth mask in consec-
utive frames. Formally,

Temp. Con. =
1

N

N∑
n=1

[
1

Tn

Tn∑
t=1

(IoU(Predt+1, GTt+1)− IoU(Predt, GTt)

]
, (5)
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VDIT  30.9

UNINEXT  30.2

MUTR  27.9

Ours  40.4

Figure E: Class-wise J scores demonstrating concept coverage on BURST. As indicated by the ar-
rows, we are much better in the long-tail region compared to other methods.

Method Ref-VPS Ref-DAVIS
J Temp. Con. J Temp. Con.

MUTR 24.1 2.9 64.8 3.4
UNINEXT 26.3 5.2 68.2 5.2
VDIT 35.3 4.7 66.2 3.1
REM (Ours) 49.0 2.8 69.9 2.1

Table B: Temporal Consistency comparison to
the state of the art on Ref-VPS and Ref-DAVIS.
Our approach demonstrates the best temporal
consistency on both object-centric and non-
object-centric datasets.

where N is the number of samples and Tn is the number of frames in the nth sample. Lower numbers
indicate better temporal consistency on this metric, and it is easy to see that simply outputting empty
masks would result in the perfect consistency score of 0. Hence, as with any temporal consistency
metric, it should always be considered jointly with a prediction accuracy metric.

We report region similarity and temporal consistency on Ref-VPS and Ref-DAVIS (the two datasets
that extract frames at 24 fps) in Table B. The results demonstrate the superior temporal consistency
of REM on both object-centric and non-object-centric datasets. Notably, UNINEXT - the state-of-
the-art RVOS approach, shows the worst temporal consistency out of all methods. MUTR achieves a
strong temporal consistency score on Ref-VPS precisely because it often outputs empty predictions,
as can be seen from its low region similarity score.

B.5 COMPARISONS ON AMBIGUOUS OR OVERLAPPING SCENARIOS

To understand how well our method handles ambiguous scenarios in Ref-VPS, we add a visual
comparison between REM and VDIT, the strongest baseline on this benchmark, in Figure F. It is
clear to see that, although for many of these samples, no perfect prediction exists, the outputs of
our model are both more accurate in the confident regions and more consistent. For example, in
the first row, our method only segments the clearly visible regions of lava once it is hit by a wave,
whereas VDIT segments the entire wave as well. In the second row, REM consistently segments all
the glowing water, whereas VDIT only covers a few patches.
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“the luminescence in the water”

“the smoke blown out”

“the lava flowing” VDIT REM (Ours)

REM (Ours)

REM (Ours)

VDIT

VDIT

Figure F: Comparison on ambiguous or overlapping scenarios in Ref-VPS between VDIT and REM
(Ours). While no single perfect prediction exists for these samples, our method is both more precise
and more consistent.

B.6 COMPUTATIONAL COST

We report the inference speed and the memory consumption of REM alongside the primary baselines
from our paper, using their public implementations in Table C. These values are estimated under the
following protocol: inference was performed on 32-frame clips from Ref-DAVIS on a single A100
GPU with averages computed over 80 runs. As shown, the inference costs of REM align with those
of other state-of-the-art approaches.

For training, REM takes 174 hours on 4 A100 GPUs. Other methods do not report their training
costs, so we have estimated them ourselves (excluding i/o time) given the same computational bud-
get, and report the results together with the memory consumption per GPU in Table D. Our costs
are on par with most prior works. Notably, UNINEXT – the state-of-the-art RVOS approach, takes
6.3 times longer to train than REM, since it utilizes more than 10 datasets with object supervision
to achieve top object segmentation results. In contrast, REM effectively capitalizes on Internet-
scale pre-training, allowing it to achieve competitive performance with UNINEXT on the traditional
RVOS dataset and significantly outperform it out-of-domain. All at a fraction of the training cost.
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Method Memory (GB) Speed (FPS)
MUTR 34.1 13.6
UNINEXT 9.7 3.3
VDIT 72.8 7.1
REM (Ours) 41.8 7.1

Table C: Inference costs of REM and top RVS
methods on Ref-DAVIS. Both the memory re-
quirements and the runtime of REM are on par
with other models in the literature.

Method Memory (GB) Total Runtime (hr)
MUTR 30.4 134
UNINEXT 30.2 1906
VDIT 68.5 260
REM (Ours) 61.8 174

Table D: Training costs of REM and top RVS
methods. Our costs are on par with prior work
and are notably significantly lower compared to
UNINEXT – the state-of-the-art RVOS approach.

Method Mask/Box annotations Ref-Davis Ref-YTB
(J&F) (J&F)

Referformer RefCOCO/g/+, Ref-Youtube-VOS 61.1 62.9
MUTR Ref-Youtube-VOS, AVS 68.0 68.4
VLMO-L RefCOCO/g/+, Ref-Youtube-VOS 70.2 67.6
UNINEXT Objects365, COCO, RefCOCO/g/+, GOT-

10K, LaSOT, TrackingNet, Youtube-VOS,
BDD100K, VIS19, OVIS, Ref-Youtube-
VOS

72.5 70.1

VDIT RefCOCO/g/+, Ref-Youtube-VOS 69.4 66.5
REM (Ours) RefCOCO/g/+, Ref-Youtube-VOS 72.6 68.4

Table E: Comprehensive list of bounding/mask supervision used by all methods.

C IMPLEMENTATION DETAILS

C.1 EVALUATION BENCHMARKS

Neither BURST (Athar et al., 2023) nor VSPW (Miao et al., 2021) contains referral text for the
segmented entities. Since we want to strictly evaluate the entity recognition capacity of the models,
we automatically generate referral expressions using only the category of the masked entity as ”the
<class>” (e.g. ”the hat”). For VSPW we evaluate the validation set which has 66 different stuff
categories. In the case of BURST, the validation and test sets contain object categories that the other
split does not. So here we evaluate the combined validation and test set which contains 454 classes
and a total of 2049 sequences.

C.2 TRAINING DETAILS

We train our model using 4 NVIDIA 80GB A100 GPUs. We use ModelScope T2V (Wang et al.,
2023) as our base video diffusion architecture and set the input noise level to 0. In the first stage,
we fine-tune only the spatial weights using image-text samples from Ref-COCO (Yu et al., 2016)
for 1 epoch and then fine-tune all weights for 40 epoch using Ref-YTB (Seo et al., 2020) video-
text samples and 12k samples from Ref-COCO jointly. In the second stage, the image samples
from Ref-COCO are converted to pseudo videos through augmentations following Referformer (Wu
et al., 2022b). We freeze the CLIP text encoder and the VAE encoder and decoder during training
and only fine-tune the U-Net. We use a low learning rate of 1e-6 in both stages and the AdamW
optimizer (Loshchilov et al., 2019). The number of frames T is set to 8 during training and 72 during
evaluation.
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