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Abstract

This paper studies policy optimization algorithms for multi-agent reinforcement
learning. We begin by proposing an algorithm framework for two-player zero-sum
Markov Games in the full-information setting, where each iteration consists of a
policy update step at each state using a certain matrix game algorithm, and a value
update step with a certain learning rate. This framework unifies many existing and
new policy optimization algorithms. We show that the state-wise average policy of
this algorithm converges to an approximate Nash equilibrium (NE) of the game, as
long as the matrix game algorithms achieve low weighted regret at each state, with
respect to weights determined by the speed of the value updates. Next, we show that
this framework instantiated with the Optimistic Follow-The-Regularized-Leader
(OFTRL) algorithm at each state (and smooth value updates) can find an Õ(T−5/6)
approximate NE in T iterations, and a similar algorithm with slightly modified
value update rule achieves a faster Õ(T−1) convergence rate. These improve over
the current best Õ(T−1/2) rate of symmetric policy optimization type algorithms.
We also extend this algorithm to multi-player general-sum Markov Games and show
an Õ(T−3/4) convergence rate to Coarse Correlated Equilibria (CCE). Finally, we
provide a numerical example to verify our theory and investigate the importance of
smooth value updates, and find that using “eager” value updates instead (equivalent
to the independent natural policy gradient algorithm) may significantly slow down
the convergence, even on a simple game with H = 2 layers.

1 Introduction

Policy optimization, i.e. algorithms that learn to make sequential decisions by local search on
the agent’s policy directly, is a widely used class of algorithms in reinforcement learning [40, 44,
45]. Policy optimization algorithms are particularly advantageous in the multi-agent reinforcement
learning (MARL) setting (e.g. compared with value-based counterparts), due to their typically
lower representational cost and better scalability in both training and execution. A variety of policy
optimization algorithms such as Independent PPO [14], MAPPO [56], QMix [42] have been proposed
to solve real-world MARL problems [4, 39, 43]. These algorithms share a same high-level structure
with iterative value updates (for certain value estimates) and policy updates (often independently
with each agent) using information from the value estimates and/or true rewards.
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While policy optimization for MARL has been studied theoretically in a growing body of work,
there are still gaps between algorithms used in practice and provably-efficient algorithms studied in
theory—Algorithms in practice generally follow two natural design principles: symmetric updates
among all agents, and simultaneous learning of values and policies [59, 56]. By contrast, policy
optimization algorithms studied in theory often diverge from these principles and incorporate some
tweaks, such as (i) asymmetric updates, where one agent takes a much smaller learning rate than the
others (two time-scale) [11] or waits until the other agents learn an approximate best response [62];
and (ii) batch-like learning, where policies are optimized to sufficient precision with respect to the
current value estimate before the next value update [8]. There is so far a lacking of systematic studies
on the performance of the more vanilla policy optimization algorithms following the above two
principles, even under the setting where full-information feedback from the game is available.

Towards bridging these gaps, this paper studies policy optimization algorithms for Markov games,
with a focus on algorithms with symmetric updates and simultaneous learning of values and policies.
Our contributions can be summarized as follows:

• We propose an algorithm framework for two-player zero-sum Markov games in the full-
information setting (Section 3). This framework unifies many existing and new policy op-
timization algorithms such as Nash V-Learning, Gradient Descent/Ascent, as well as seemingly
disparate algorithms such as Nash Q-Learning (Section 3.2). We prove that the state-wise
average policy outputted by the above algorithm is an approximate Nash Equilibrium (NE), so
long as suitable per-state weighted regrets are bounded (Section 3.1). This generic result can be
instantiated in a modular fashion to derive convergence guarantees for the many examples above.

• We instantiate our framework to show that a new algorithm based on Optimistic Follow-The-
Regularized-Leader (OFTRL) and smooth value updates finds an Õ(T−5/6) approximate NE
in T iterations (Section 4). This improves over the current best rate of Õ(T−1/2) achieved by
symmetric policy optimization type algorithms. In addition, we also propose a slightly modified
OFTRL algorithm that further improves the rate to Õ(T−1), which matches with the known best
rate for all policy optimization type algorithm.

• We additionally extend the above OFTRL algorithm to multi-player general-sum Markov games
and show an Õ(T−3/4) convergence rate to Coarse Correlated Equilibria (CCE), which is
also the first rate faster than Õ(T−1/2) for policy optimization in general-sum Markov games
(Section 4.1).

• We perform simulations on a carefully constructed zero-sum Markov game with H = 2 layers to
verify our convergence guarantees. The numerical tests further suggest the importance of smooth
value updates: the Independent Natural Policy Gradient algorithm (as one instantiation of our
algorithm framework with “eager” value updates) appears to converge much slower (Section 5).

1.1 Related work

Two-player zero-sum MGs Markov games (MGs) [30] (also known as Stochastic Games [47])
is a widely studied model for multi-agent reinforcement learning. In the most basic setting of two-
player zero-sum MGs, algorithms for computing the NE have been extensively studied in both the
full-information setting [31, 20, 19] and the sample-based/online setting [6, 52, 22, 48, 58, 2, 55,
3, 33, 25, 21, 57, 10, 34]. Our algorithm framework incorporates (the full-information version of)
several algorithms in this line of work.

Policy optimization for zero-sum MGs Policy optimization for single-agent Markov Decision
Processes has been extensively in a recent line of work, e.g. [1, 5, 32, 46, 37, 35, 7, 15, 54] and
the many references therein. For two-player zero-sum MGs, the Nash V-Learning algorithm of Bai
et al. [3] (originally proposed for the sample-based online setting) can be viewed as an independent
policy optimization algorithm, and can be adapted to the full-information setting with Õ(T−1/2)
convergence rate. Daskalakis et al. [11] prove that the independent policy gradient algorithm with
an asymmetric two time-scale learning rate can learn the NE (for one player only) with polynomial
iteration/sample complexity. Zhao et al. [62] show that another asymmetric algorithm that simulates
a policy gradient/best response dynamics converges to NE with Õ(1/T ) rate. Cen et al. [8] use
a symmetric optimistic (extragradient) subroutine for matrix games to learn zero-sum MGs in a
layer-wise fashion (the matrix games at each state are learned to sufficient precision before the
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backup, more like a Value Iteration type algorithm), and also derive an Õ(1/T ) convergence rate.
The closest to our work is Wei et al. [53] which proves that Optimistic Gradient Descent/Ascent
(OGDA), combined with smooth value updates at all layers simultaneously, converges to an NE with
Õ(T−1/2) rate for both the average duality gap and the last iterate. The Õ(T−5/6) rate of our OFTRL
algorithm improves over [53] and is the first such faster rate for symmetric, policy optimization type
algorithms. The Õ(1/T ) rate of our modified OFTRL algorithm matches with rates in [62, 7], while
still maintaining symmetric update and simultaneous learning of values and policies.

Multi-player general-sum MGs A recent line of work shows that a generalization of the V-
learning algorithm to the multi-player general-sum setting can learn Coarse Correlated Equilibria
(CCE) [49, 24, 36] and Correlated Equilibria (CE) [49, 24]. The algorithmic designs in these works
are specially tailored to the sample-based setting, where the best possible rate is Õ(T−1/2).2 In
contrast, this paper considers the full-information setting and proposes new algorithms achieving the
faster Õ(T−3/4) for learning CCE in general-sum MGs. The complexity of computing or learning
a Markovian or stationary Markovian CCE has been studied in [13, 26]. Another recent line of
work considers learning NE in Markov Potential Games [60, 29, 49, 16, 61], which can be seen as a
cooperative-type subclass of general-sum MGs.

Optimistic algorithms in normal-form games Technically, our accelerated rates build on the
recent line of work on faster rates for optimistic no-regret algorithms in normal-form games [50,
41, 9, 12]. Specifically, our Õ(T−5/6) rate for two-player zero-sum MGs builds upon a first-order
smoothness analysis of [9], our improved Õ(T−1) rate in the same setting (achieved by the modified
OFTRL algorithm) leverages analysis of [41, 50] on bounding the summed regret over the two players,
and our Õ(T−3/4) rate for multi-player general-sum MGs follows from the RVU-property [50,
Definition 3]. Our incorporation of these techniques involves non-trivial new components such as
weighted first-order smoothness bounds and handling changing game rewards.

2 Preliminaries

We consider the tabular episodic (finite-horizon) two-player-zero-sum Markov games (MGs), which
can be denoted asM(H,S,A,B,P, r), where H is the horizon length; S is the state space with |S| =
S; A,B are the action space of the max-player and min-player respectively, with |A| = A, |B| = B;
P = {Ph}Hh=1 is the transition probabilities, where each Ph(s

′|s, a, b) gives the probability of
transition to state s′ from state-action (s, a, b); r = {rh}Hh=1 are the reward functions, such that
rh(s, a, b) is reward3 of the max-player and −rh(s, a, b) is the reward of the min-player at time step
h and state-action (s, a, b). In each episode, the MG starts with a deterministic initial state s1. Then at
each time step 1 ≤ h ≤ H , both players observes the state sh, the max-player takes an action ah ∈ A,
and the min-player takes an action bh ∈ B. Then, both players receive their rewards rh(sh, ah, bh)
and −rh(sh, ah, bh), respectively, and the system transits to the next state st+1 ∼ Ph(·|sh, ah, bh).
Policies & value functions A (Markov) policy µ of the max-player is a collection of policies
µ = {µh : S → ∆A}Hh=1, where each µh(·|sh) ∈ ∆A specifies the probability of taking action ah at
(h, sh). Similarly, a (Markov) policy ν of the min-player is defined as ν = {νh : S → ∆B}. For any
policy (µ, ν) (not necessarily Markov), we use V µ,ν

h : S → R and Qµ,ν
h : S ×A×B → R to denote

the value function and Q-function at time step h, respectively, i.e.

V µ,ν
h (s) := Eµ,ν

[∑H
h=h′ rh′(sh′ , ah′ , bh′) | sh = s

]
, (1)

Qµ,ν
h (s, a, b) := Eµ,ν

[∑H
h=h′ rh′(sh′ , ah′ , bh′) | sh = s, ah = a, bh = b

]
. (2)

For notational simplicity, we use the following abbreviation: [PhV ](s, a, b) := Es′∼Ph(·|s,a,b)V (s′)
for any value function V . By definition of the value functions and Q-functions, we have the following
Bellman equations

Qµ,ν
h (s, a, b) =

(
rh + PhV

µ,ν
h+1

)
(s, a, b),

2Even if we specialize their algorithms to the full-information setting, the attained rates are no better than
Õ(T−1/2) because the bandit subroutines they deployed in V-learning converge no faster than Ω(T−1/2) even
in the simplest setting of full-information matrix games.

3This assumes deterministic rewards; our results can be generalized directly to the case of stochastic rewards.
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V µ,ν
h (s, a, b) = Ea∼µh(·|s),b∼νh(·|s)[Q

µ,ν
h (s, a, b)] = ⟨Qµ,ν

h (s, ·, ·), µ(·|s)× ν(·|s)⟩ .
The goal for the max-player is to maximize the value function, whereas the goal for the min-player is
to minimize the value function.

Best response & Nash equilibrium For any Markov policy µ of a max-player, there exists a best
response for the min-player, which can be taken as a Markov policy ν†(µ) such that V µ,ν†(µ)

h (s) =

infν V
µ,ν
h (s) for all (s, h) ∈ S × [H]. For simplicity we define V µ,†

h := V
µ,ν†(µ)
h . By symmetry, we

can also define µ†(ν) and V †,ν
h . It is known (e.g. [17]) that there exist Markov policies (µ⋆, ν⋆) that

perform optimally against best responses. These policies are also equivalent to Nash Equilibria (NEs)
of the game, where no player can gain by switching to a different policy unilaterally. It can also be
shown that any NE (µ⋆, ν⋆) satisfies the following minimax equation

supµ infν V
µ,ν
h (s) = V µ⋆,ν⋆

h (s) = infν supµ V
µ,ν
h (s).

Thus, while the NE policy (µ⋆, ν⋆) may not be unique, all of them share the same value functions,
which we denote as V ⋆

h := V µ⋆,ν⋆

h . The Q-function Q⋆
h can be defined similarly. In this paper, our

main goal is to find an approximate NE, which is formally defined below.
Definition 1 (ε-approximate Nash Equilibrium). For any ε ≥ 0, a policy (µ, ν) is an ε-approximate
Nash Equilibrium (ε-NE) if NEGap(µ, ν) := V †,ν

1 (s1)− V µ,†
1 (s1) ≤ ε.

Full-information setting We consider finding an approximate NE under the full-information
setting, where we can query the exact value of rh + PhVh+1 ∈ RS×A×B for any layer h ∈ [H] and
V function Vh+1 ∈ RS . Further, the majority of algorithms are policy optimization algorithms that
only query (rh + PhVh+1)νh ∈ RS×A and (rh + PhVh+1)

⊤µh ∈ RS×B for policies µh, νh. (See
Appendix I.1 for additional discussions.)
Additional notation For any (h, s) ∈ [H]× S and Q function Qh : S ×A× B → R, we define
shorthand [(µh)

⊤Qhνh](s) := ⟨Qh(s, ·, ·), µh(·|s)× νh(·|s)⟩ for any policy (µ, ν). Similarly, we
let [Qhνh](s, ·) := Eb∼νh(·|s)[Qh(s, ·, b)] ∈ RA, and [Q⊤

h µh](s, ·) := Ea∼µh(·|s)[Qh(s, a, ·)] ∈ RB .
We use A ∨B := max{A,B}.

3 An algorithm framework for zero-sum Markov games
We begin by presenting an algorithm framework that unifies many existing and new algorithms for
two-player zero-sum Markov Games, and its performance guarantee that could be specialized to yield
concrete convergence results for many specific algorithms.

Our algorithm framework, described in Algorithm 1, consists of two main components: the policy
update step computing policies (µt, νt), and the value update step computing the Q estimate Qt

h’s.

Policy update via matrix game algorithms In the policy update step (Line 5), for each (h, s),
the two players update policies (µt

h(·|s), νth(·|s)) at (h, s) using some matrix game algorithm
MatrixGameAlg which takes as input all past Q matrices and all past policies of both players.
The MatrixGameAlg offers a flexible interface that allows many choices such as the matrix NE
subroutine over the most recent Q matrix MatrixNE(Qt−1

h (s, ·, ·)), or any independent no-regret
algorithm (for both players), such as Follow-The-Regularized-Leader (FTRL) (10) or projected
Gradient Descent-Ascent (11) considered in the examples later.

Value update with learning rate {βt} For any (h, s, a, b), the value update step (Line 6) updates
Qt

h(s, a, b) by the newest value function rh + Ph[(µ
t
h+1)

⊤Qt
h+1ν

t
h+1] propagated from layer h+ 1,

using a sequence of learning rates {βt}t≥1 which we assume to be within [0, 1] (with β1 := 1). {βt}
controls the speed of the value update, with two important special cases:

(1) Eager value updates, where we set βt = 1 so that Qt
h performs policy evaluation of the current

policy (µt, νt), that is, Qt
h = Qµt,νt

h .

(2) Smooth (incremental) value updates, where we choose βt → 0 as t→∞. In this case, the Qt
h

moves slower (resembling a critic in Actor-Critic like algorithms), and becomes a weighted
average of all past updates. A standard choice that is frequently used is from [23] (and many
subsequent work),

βt = αt := (H + 1)/(H + t). (3)
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Algorithm 1 Algorithm framework for two-player zero-sum Markov Games

1: Require: Learning rate {βt}t≥1 ⊂ [0, 1] (with β1 = 1); Algorithm MatrixGameAlg.
2: Initialize: Q0

h(s, a, b)← H − h+ 1 for all (h, s, a, b) ∈ [H]× S ×A× B.
3: for t = 1, . . . , T do
4: for h = H, . . . , 1 do
5: Policy update: Update policies for all s ∈ S:

(µt
h(·|s), νth(·|s))← MatrixGameAlg

({
Qi

h(s, ·, ·)
}t−1

i=1
,
{
µi
h(·|s)

}t−1

i=1
,
{
νih(·|s)

}t−1

i=1

)
.

6: Value update: Update Q-value for all (s, a, b) ∈ S ×A× B:

Qt
h(s, a, b)← (1− βt)Q

t−1
h (s, a, b) + βt

(
rh + Ph[(µ

t
h+1)

⊤Qt
h+1ν

t
h+1]

)
(s, a, b). (4)

7: Output: State-wise average policy (µ̂T , ν̂T ), with βt
T defined in (6):

µ̂T
h (·|s)←

∑T
t=1 β

t
Tµ

t
h(·|s), ν̂Th (·|s)←

∑T
t=1 β

t
T ν

t
h(·|s) for all (h, s) ∈ [H]× S. (5)

For any {βt}, the update (4) implies that

Qt
h(s, a, b) =

∑t
i=1 β

i
t

([
rh + Ph[

(
µi
h+1

)⊤
Qi

h+1ν
i
h+1]

]
(s, a, b)

)
,

where βi
t’s are a group of weights summing to one (

∑t
i=1 β

i
t = 1) defined as

βt
t = βt; βi

t =
∏t

j=i+1(1− βj)βi, for i ∈ [t− 1]. (6)

Note that with smooth value updates (βt < 1), Qt
h is not necessarily the Q-function of any policy.

Upon finishing, the algorithm outputs the state-wise average policy (µ̂T , ν̂T ) defined in (5), where
each µ̂T

h (·|s) is the weighted average of µt
h(·|s) using weights {βt

T }
T
t=1 (and similarly for ν̂T ), which

we remark can be implemented efficiently using moving averages (cf. Appendix C.1).

Symmetric & simultaneous learning, (de)centralization We remark that Algorithm 1 by defini-
tion performs simultaneous learning (of policies and values) at all layers, and also yields symmetric
(policy) updates if MatrixGameAlg is a symmetric algorithm with respect to µ and ν. Also, although
Algorithm 1 appears to be a centralized algorithm as it maintains Q values in (4), this does not
preclude possibilities that the algorithm can be executed in a decentralized fashion. This can happen
e.g. when the Q-update (4) can be rewritten as an equivalent V-update (cf. Example 1 & 2).

3.1 Theoretical guarantee

We are now ready to state the main theoretical guarantee of Algorithm 1, which states that the
(µ̂T , ν̂T ) is an approximate NE, as long as the algorithm achieves low per-state weighted regrets w.r.t.
weights {βi

t}ti=1, defined as

regth,µ(s) := maxµ†∈∆A

∑t
i=1 β

i
t

〈
µ† − µi

h(·|s),
[
Qi

hν
i
h

]
(s, ·)

〉
,

regth,ν(s) := maxν†∈∆B

∑t
i=1 β

i
t

〈
νih(·|s)− ν†,

[
(Qi

h)
⊤µi

h

]
(s, ·)

〉
,

regth := maxs∈S max{regth,µ(s), regth,ν(s)}.
(7)

Theorem 2 (Main guarantee of Algorithm 1). Suppose that the per-state regrets can be upper-
bounded as regth ≤ regth for all (h, t) ∈ [H]× [T ], where regth is non-increasing in t: regth ≥ regt+1

h

for all t ≥ 1. Then, the output policy (µ̂T , ν̂T ) of Algorithm 1 satisfies

NEGap(µ̂T , ν̂T ) ≤ C

[
H max

h∈[H]
regTh +H2cHβ log T · 1

T

T∑
t=1

max
h∈[H]

regth

]
(8)

for all T ≥ 2 and some absolute constant C > 0, where cβ is a constant depending on {βt}t≥1:

cβ := supj≥1

∑∞
t=j β

j
t ≥ 1. (9)

Specifically, cβ =
(
1 + 1

H

)
if βt = αt =

H+1
H+t , and cβ = 1 if βt = 1.
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Bound (8) is typically dominated by the second term on the right hand side, suggesting that the
NEGap can be bounded by the average weighted regret Õ

(
1
T

∑T
t=1 maxh reg

t
h

)
, if cHβ = O(1).

Theorem 2 serves as a modular tool for analyzing a broad class of algorithms: As long as this average
regret is sublinear in T (including—but not limited to—choosing MatrixGameAlg as uncoupled
no-regret algorithms), the output policy will be an approximate NE. We emphasize though that this
result is not yet end-to-end, as each regth is a weighted regret w.r.t. the particular set of weights{
βi
t

}t
i=1

, minimizing which may require careful algorithm designs and/or case-by-case analyses. We
provide some concrete examples in Section 3.2 to demonstrate the usefulness of Theorem 2.

We remark that the state-wise average policy considered in Theorem 2 is an average policy that
is also Markovian by definition, which is different from existing work which considers either the
(Markovian) last iterate [53] or non-Markovian average policies (e.g. [3]). However, this guarantee
relies on full-information feedback (so that per-state regret bounds are available), and it remains an
open question how such guarantees could be generalized to sample-based settings.

Proof overview The proof of Theorem 2 follows by (1) bounding NEGap(µ̂T , ν̂T ) in terms of per-
state regrets w.r.t. the Nash value functions Q⋆

h’s by performance difference arguments (Lemma C.1);
(2) recursively bounding the value estimation error δth := ∥Qt

h −Q⋆
h∥∞ (Lemma C.2) which yields

the constant cβ ; and (3) combining the above to translate the regret from Q⋆
h’s to Qt

h’s (which we
assume to be bounded by regth) and obtain the theorem. The full proof can be found in Appendix C.

3.2 Examples

We now demonstrate the generality of Algorithm 1 and Theorem 2 by showing that they subsume
many existing algorithms (and yield new algorithms) for two-player-zero-sum Markov games, and
provide new guarantees with the particular output policy (5).

Example 1 (Nash V-Learning [3], full-information version): The full algorithm (Algorithm 5)
can be found in Appendix D.1. The algorithm is a special case of Algorithm 1 with βt = αt =
(H + 1)/(H + t), and MatrixGameAlg chosen as the weighted FTRL algorithm

µt
h(a|s)∝a exp

(
η

wt−1

t−1∑
i=1

wi

[
Qi

hν
i
h

]
(s, a)

)
, νth(b|s)∝b exp

(
− η

wt−1

t−1∑
i=1

wi

[(
Qi

h

)⊤
µi
h

]
(s, b)

)
,

(10)
where wt := αt

t/α
1
t . Combining Theorem 2 with the standard regret bound of weighted FTRL, this

algorithm achieves NEGap(µ̂T , ν̂T ) ≤ Õ(H7/2/
√
T ) choosing η ≍ 1/

√
T (Proposition D.2).

Additionally, although the original Nash V-learning algorithm [3] updates the V values (which makes
the algorithm implementable in a decentralized fashion) instead of the Q values used in Algorithm 1,
these two forms are actually equivalent in the full-information setting (Proposition D.1). ♢

Compared with the Õ(
√
H5Smax{A,B}/T ) guarantee of (the non-Markovian output policy of)

Nash V-Learning in the sample-based online setting [3, 51, 24], our rate achieves better (logarithmic)
S,A,B dependence due to our full-information setting, and worse H dependence which happens
as our output policy is the (Markovian) state-wise average policies, whose guarantee (Theorem 2)
follows from a different analysis.

Example 2 (GDA-Critic): This algorithm is a special case of Algorithm 1 with βt = αt =
(H + 1)/(H + t), and MatrixGameAlg as projected gradient descent/ascent (GDA), i.e.,

µt
h(·|s)←P∆A

(
µt−1
h (·|s)+η

[
Qt−1

h νt−1h

]
(s)
)
, νth(·|s)←P∆B

(
νt−1h (·|s)−η(

[
Qt−1

h )⊤µt−1
h

]
(s)
)
. (11)

Similar as Nash V-Learning, GDA-Critic also admits an equivalent form with V value updates (full
description in Algorithm 6). As GDA achieves weighted regret bounds with any monotone weights
including

{
αi
t

}t
i=1

(Lemma B.1), we can invoke Theorem 2 to show that this algorithm achieves
NEGap(µ̂T , ν̂T ) ≤ Õ(H7/2(A ∨B)1/2/

√
T ) if we choose η ≍ 1/

√
T (Proposition D.4).

The GDA-critic algorithm is also similar to the OGDA-MG algorithm of Wei et al. [53], except that
we use the (non-optimistic) vanilla version of GDA. To our best knowledge, the above algorithm and
guarantee are not known. We remark that even ignoring difference between GDA and OGDA, the
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above guarantee cannot be obtained by direct adaptation of the results of [53] which focus on either
the average duality gap and/or last-iterate convergence. ♢

Besides the above examples, Algorithm 1 also incorporates the following algorithms which are
typically not categorized as policy optimization algorithms (see Appendix I.2 for a discussion of the
categorization).

Example 3 (Nash Q-Learning [20, 3], full-information version): This algorithm is a special case of
Algorithm 1 with βt = αt = (H + 1)/(H + t) and MatrixGameAlg as the matrix Nash subroutine

(µt
h(·|s), νth(·|s))← MatrixNE(Qt−1

h (s, ·, ·)) := arg

(
min
µ∈∆A

max
ν∈∆B

µ⊤Qt−1
h (s, ·, ·)ν

)
.

(Full description in Algorithm 7.) Although MatrixNE(Qt−1
h (s, ·, ·)) is not by default a no-regret

algorithm, using the fact that
∥∥Qt

h −Qt−1
h

∥∥
∞ is small (due to the small αt) we can show that it is

close to a (hypothetical) “Be-The-Leader” style algorithm that computes the matrix NE of the current
Q matrix Qt

h which achieves ≤ 0 regret (Lemma D.3). Combining this with Theorem 2 shows that
this algorithm achieves NEGap(µ̂T , ν̂T ) ≤ Õ(H4/T ) (Proposition D.5). ♢

Example 4 (Nash Policy Iteration (Nash-PI)): This classical algorithm (Algorithm 8) performs
iterative policy evaluation and policy improvement (also similar to Nash Value Iteration [47, 2, 33]):

(µt+1
h (·|s), νt+1

h (·|s))← MatrixNE(Qµt,νt

h (s, ·, ·)). (12)

This is also a special case of Algorithm 1 with βt = 1 and MatrixGameAlg set as MatrixNE. It is a
standard result that this algorithm converges exactly (achieving zero NE gap) in H steps, and this
fact can be obtained using our framework as well (Proposition D.6). ♢

4 Fast convergence of optimistic FTRL

In this section, we instantiate Algorithm 1 by choosing MatrixGameAlg as the Optimistic Follow-
The-Regularized-Leader (OFTRL) algorithm. OFTRL is also an uncoupled no-regret algorithm
that is known to enjoy faster convergence than standard FTRL under additional loss smoothness
assumptions [41, 50, 9, 12]. We show that, using OFTRL, Algorithm 1 enjoys faster convergence
than the Õ(1/

√
T ) rate of using FTRL or GDA (cf. Example 1 & 2).

Concretely, we use the following weighted OFTRL algorithm at each (h, s, t):

µt
h(a|s) ∝a exp

(
(η/wt) ·

[∑t−1
i=1 wi(Q

i
hν

i
h)(s, a) + wt−1(Q

t−1
h νt−1

h )(s, a)
])

,

νth(b|s) ∝b exp
(
−(η/wt) ·

[∑t−1
i=1 wi((Q

i
h)

⊤µi
h)(s, b) + wt−1((Q

t−1
h )⊤µt−1

h )(s, b)
])

,
(13)

where wt is the same weights as defined in Example 1, and we choose βt = αt = (H + 1)/(H + t).
Theorem 3 (Fast convergence of OFTRL in zero-sum Markov Games). Suppose Algorithm 1 is
instantiated with βt = αt = (H +1)/(H + t) and MatrixGameAlg to be the OFTRL algorithm (13)
with any η ≤ 1/H (full description in Algorithm 9). Then the per-state regret can be bounded as
follows for some absolute constant C > 0:

regth ≤ regth := C

[
H2 log(A ∨B)

ηt
+ η5H6

]
for all (h, t) ∈ [H]× [T ]. (14)

Further, choosing η = poly(H, log(A ∨B), log T ) · T−1/6, the output (state-wise average) policy
(µ̂T , ν̂T ) achieves approximate NE guarantee

NEGap(µ̂T , ν̂T ) ≤ O
(
poly(H, log(A ∨B), log T ) · T−5/6

)
. (15)

To our best knowledge, the Õ(T−5/6) rate asserted in Theorem 3 is the first rate faster than the
standard Õ(1/

√
T ) for symmetric, policy optimization type algorithms in two-player zero-sum

Markov games. The closest existing result to this is of Wei et al. [53], who analyze the OGDA
algorithm with smooth value updates and show a Õ(1/

√
T ) convergence of both the average NEGap
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and the NEGap of the last-iterate. However, these only imply at most a Õ(1/
√
T ) rate for the

average policies, and not our faster rate4. Cen et al. [8], Zhao et al. [62] show Õ(1/T ) convergence
of algorithms with optimistic gradient-based policy updates, which are however very different styles
of algorithms that either performs layer-wise learning (the matrix games at each state are learned
to sufficient precision before the backup) similar as Value Iteration (the matrix games at each state
are learned to sufficient precision before the backup) [8], or uses strongly asymmetric updates that
simulate a policy gradient-best response dynamics [62]. By contrast, our Algorithm 9 (as well as its
modified version in Algorithm 10 with Õ(T−1) rate) runs symmetric no-regret dynamics for both
players, simultaneously at all layers.

Proof overview The proof of Theorem 3 (deferred to Appendix E) builds upon the recent line of
work on fast convergence of optimistic algorithms [41, 50, 9], in particular the work of Chen and
Peng [9] which shows an Õ(T−5/6) convergence rate of OFTRL for two-player normal-form games.
Our regret bound (14) generalizes this result non-trivially by additionally handling (1) The weighted
regret, which requires bounding the weighted stability of the OFTRL iterates by a new analysis of
the potential functions (Lemma B.4), and (2) The errors induced by changing game matrices, as
Qt

h(s, ·, ·) changes over t. Plugging (14) into Theorem 2 yields the policy guarantee (15).

Modified OFTRL algorithm with Õ(T−1) rate We further slightly modify Algorithm 9 to design
a new OFTRL style algorithm with Õ(T−1) convergence rate (Algorithm 10 and Theorem F.1),
which improves over the Õ(T−5/6) of Theorem 3 and matches the known best convergence rate for
policy optimization type algorithms in two-player zero-sum Markov games. Algorithm 10 still uses
OFTRL in its policy update step, and the main difference from Algorithm 9 is in its value update step:
Rather than maintaining a single Qt

h, the two players now each maintain their own value estimate
Q

t

h, Qt

h
which are still updated in an incremental fashion similar to (though not strictly speaking an

instantiation of) the update rule (4) in our main algorithm framework. Details of the algorithm as
well as the proofs are deferred to Appendix F.

4.1 Extension to multi-player general-sum Markov games

Our fast convergence result can be extended to the more general setting of multi-player general-sum
Markov games. Concretely, we consider general-sum Markov games with m ≥ 2 players, S states,
H steps, where the i-th player has action space Ai with Amax := maxi∈[m] |Ai| and her own reward
function. The goal is to find a correlated policy over all players that is an approximate Coarse
Correlated Equilibrium (CCE) of the game (see Appendix G.1 for the detailed setup).

We show that the OFTRL algorithm works for general-sum Markov games as well, with a fast
Õ(T−3/4) convergence to CCE. The formal statement and proof is in Theorem G.1 & Appendix G.4.

Theorem 4 (Fast convergence of OFTRL in general-sum Markov Games; Informal version of Theo-
rem G.1). For m-player general-sum Markov Games, running the OFTRL algorithm (Algorithm 12)
for T rounds, the output (correlated) policy π̂ is an ε-approximate CCE, where

ε ≤ O
(
poly(H, logAmax, log T ) · (m− 1)1/2 · T−3/4

)
.

A baseline result for this problem would be Õ(T−1/2), which may be obtained directly by adapting
existing proofs of the V-Learning algorithm [49, 24] to the full-information setting. Our Theorem 4
shows that a faster Õ(T−3/4) rate is available by using the OFTRL algorithm, which to our best
knowledge is the first such result for policy optimization in general-sum Markov games. We also
remark that the output policy π̂ above is not a state-wise average policy as in the zero-sum setting,
but rather a mixture policy that is in general non-Markov (cf. Algorithm 13), which is similar as
(and slightly simpler than) the “certified policies” used in existing work [3, 49, 24]. The proof of
Theorem 4 builds upon the RVU property of OFTRL [50] and additionally handles changing game
rewards, similar as in Theorem 3. A proof sketch and comparison with the Õ(T−5/6) analysis of the
zero-sum case can be found in Appendix G.2.

4See also [18] for another example where last-iterates are provably slower than averages.
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5 Simulations

We perform numerical studies on the various policy optimization algorithms. Our goal is two-fold:
(1) Verify the convergence guarantees in our theorems and examples; (2) Test some other important
special cases of Algorithm 1 that may not yet admit a provable guarantee.

To this end, we consider three algorithms covered by the framework in Algorithm 1:

1. FTRL (Nash V-Learning) with smooth value updates βt = αt (Example 1 & Algorithm 5). Here
the output policy (µ̂T , ν̂T ) are the state-wise averages with weights

{
αi
T

}T
i=1

, and achieves
NEGap(µ̂T , ν̂T ) ≲ T−1/2 if we choose η ≍ T−1/2 (Proposition D.2).

2. OFTRL with smooth value updates βt = αt (Algorithm 9). Here the output policy (µ̂T , ν̂T )

are the state-wise averages with weights
{
αi
T

}T
i=1

, and achieves NEGap(µ̂T , ν̂T ) ≲ T−5/6 if
we choose η ≍ T−1/6 (Theorem 3). We also consider the more aggressive choice η = 1.

3. INPG (Independent Natural Policy Gradients). This algorithm is an instantiation of Algo-
rithm 1 (cf. Appendix H.3 for formal justifications) with eager value updates (βt = 1), and
MatrixGameAlg chosen as standard unweighted FTRL (a.k.a. Hedge) for all (h, s, t):

µt
h(a|s) ∝a µt−1

h (a|s) exp
(
η
[
Qt−1

h νt−1
h

]
(s)
)
, νth(b|s) ∝b ν

t−1
h (b|s) exp

(
−η
[(
Qt−1

h

)⊤
µt−1
h

]
(s)
)
.

For this algorithm, we choose two standard learning rates: η = 1, and η = T−1/2, and use the
vanilla (state-wise) average as the output policies (since the last-iterate is known to be cyclic):

µ̂T
h (·|s) = 1

T

∑T
t=1 µ

t
h(·|s), ν̂Th (·|s) = 1

T

∑T
t=1 ν

t
h(·|s) for all (h, s) ∈ [H]× S.

The main motivation for considering INPG is that it is a natural generalization of both the widely-
studied NPG algorithm for single-agent RL, and the standard Hedge algorithm for zero-sum matrix
games. In both cases the algorithm admits favorable convergence guarantees: NPG converges with
rate O(T−1) [1, 27, 38, 7] (in both last iterate and averaging) using η = O(1); Hedge converges
with rate O(T−1/2) in zero-sum matrix games (e.g. [41]) using η ≍ T−1/2. However, to our best
knowledge, the convergence of INPG for zero-sum Markov games is unclear, and it is commented
by Wei et al. [53, Section 5] that eager value updates (βt = 1) could cause the value function of the
(h+ 1)th layer to oscillate, which make learning unstable or even biased within the h-th layer.

A two-layer numerical example We design a simple zero-sum Markov game with two layers and
small state/action spaces (H = 2, S = 4, A = 2; see Appendix H.1 for the detailed description).
The main feature of this game is that the reward in the first layer is much lower magnitude than that
of the second layer (the scale is roughly |r1(s, ·, ·)| ≈ 0.1|r2(s, ·, ·)|), which may exaggerate the
aforementioned unstable effect. We also choose a careful initialization (µ1, ν1) which is non-uniform
(and modify the FTRL / OFTRL algorithms to start at this initialization, cf. Appendix H.1) but
with all entries bounded in [0.15, 0.85]. We test all three algorithms above on this game, with this
initialization, T ∈ {103, 3× 103, 104, . . . , 107}, and η chosen correspondingly as described above.

Results Figure 1a plots the NEGap of the final output policies, one for each {algorithm, (T, η)}.
Observe that FTRL converges with rate roughly T−.570 ≲ T−1/2, and OFTRL with η = T−1/6

converges with rate T−.835 ≈ T−5/6, both corroborating our theory. Further, OFTRL with η = 1
appears to converge with rate T−1; showing this may be an interesting open theoretical question.

On the other hand, the INPG algorithm appears to be much slower: The η = 1 version does not seem
to converge, whereas the convergence of η = T−1/2 version is not clear but at least substantially
slower than T−1/2 (T−.308 given by the linear fit) .

To further understand the behavior of INPG, we visualize its layer-wise NEGap’s for h ∈ {1, 2} (on
our example), defined as the NEGap of the h-th layer’s policies with respect to Q⋆

h:

NEGap-Layer-h(µ, ν) := maxs

(
maxµ†

h

[
(µ†

h)
⊤Q⋆

hνh

]
(s)−minν†

h

[
µ⊤
hQ

⋆
hν

†
h

]
(s)
)
, h=1, 2.

Note that NEGap-Layer-1 is a lower bound of NEGap(µ, ν) (cf. Appendix H.3) and thus needs to be
minimized by any convergent algorithm. By contrast, on our example, NEGap-Layer-2 is concerned
with the last layer only, and can be minimized by any algorithm that works on matrix games.
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(a) Overall NEGap
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Figure 1: (a) NEGap of the final output policies (y-axis) against total # iterations T (x-axis) on the two-layer
example (cf. Appendix H.1) in log-log scale. Each dot represents a different run with its own (T, η). The
scalings of the form ∼ T−α are obtained via best linear fits in the log space. (b,c) Layer-wise NEGaps (y-axis,
log-scale) against iteration count t (x-axis) for {INPG, FTRL} on a single run with T = 107 and η = T−1/2.

Figure 1b & 1c plot the layer-wise NEGap’s of INPG against FTRL, on the single run with T = 107

and η = T−1/2. As expected, the NEGap-Layer-2 converges nicely for both algorithms with
similar rates (Figure 1b) albeit the oscillation of INPG, whereas their behavior on NEGap-Layer-1 is
drastically different: FTRL still converges, whereas INPG seems to be oscillating around a non-zero
bias (Figure 1c). This suggests that INPG may indeed be suffer from a non-vanishing bias in the first
layer caused by the second layer’s learning dynamics. (See Appendix H.2 for additional illustrations.)
It would be an interesting open question to investigate the convergence of INPG theoretically.

6 Conclusion

This paper provides a unified framework for analyzing a large class of policy optimization algorithms
for two-player zero-sum Markov games. Using our framework, we prove new fast convergence
rates for the OFTRL algorithm with smooth value updates: Õ(T−5/6) for learning Nash Equilibria
two-player zero-sum Markov games, which can be further accelerated to (T−1) by slightly modifying
the framework; and Õ(T−3/4) for learning Coarse Correlated Equilibria in multi-player general-sum
Markov games. We further demonstrate the importance of smooth value updates on a simple numerical
example. We believe our work opens up many other interesting directions, such as whether improved
rates (e.g. Õ(T−1)) are available for the unmodified OFTRL algorithm, or further investigation
of policy optimization algorithms with eager value updates (such as Independent Natural Policy
Gradients). Finally, a limitation of this work is its focus on the full-information setting, and it is an
important open question how to generalize our analyses to the sample-based setting.
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