
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MULTI-AGENT GAME GENERATION AND EVALUATION
VIA AUDIO-VISUAL RECORDINGS

Anonymous authors
Paper under double-blind review

ABSTRACT

Generating novel video games is a challenging problem. Large Language Models
(LLMs) can generate games and animations, but lack automated evaluation met-
rics and struggle with complex content. To tackle these issues, we built a new
metric and multi-agent system. First, we propose AVR-Eval, a metric for multi-
media content where a model compares the Audio-Visual Recordings (AVRs) of
two contents and determines which one is better. We show that AVR-Eval properly
identifies good from broken or mismatched content. Second, we built AVR-Agent,
a multi-agent system to generate JavaScript code from a bank of multimedia assets
(audio, images, 3D models) and using AVR feedback. We show higher AVR-Eval
with AVR-Agent than one-shot prompt. However, while humans benefit from
high-quality assets and audio-visual feedback, they do not significantly increase
AVR-Eval for LLMs. This reveals a gap between humans and AI content creation.

Figure 1: Platformer game generation with Kimi-K2: single prompt vs AVR-Agent (10 iterations).

1 INTRODUCTION

Using AI to generate interactive multimedia content (such as video games and animations) is
challenging. By definition, multimedia uses a wide range of content modalities. For example,
a JavaScript or Flash game can contain images (with or without transparency), vector graphics,
videos, 3D models, music, sounds, fonts, code, and much more. Many of these modalities are not
naturally handled by current large pretrained models. Furthermore, the interactive aspect involves
human interaction through a mouse and keyboard. Currently, there are two main lines of direction
for generating interactive multimedia: 1) controllable audio and video generation, and 2) coding
assistants/agents.

The first approach, Controllable audio and video generation, focuses on replicating the audio-visual
output with controls. This approach is agnostic to the medium; it does not need access to the source
of the content (code or file). Recent progress has been made for video generation with audio (Google
DeepMind, 2025) and controllable video generation without audio (Menapace et al., 2021; Yang
et al., 2024; Valevski et al., 2024; Che et al., 2024; Yu et al., 2025; Kanervisto et al., 2025). We are
not aware of any method for controllable video with audio generation in the context of multimedia

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

content creation, such as video games. However, it is just a matter of time before this arises. While
generating video with audio can work well for animations, it is not ideal for video games given
their limited context length. For example, in a first-person view, looking behind and waiting long
enough before looking forward will cause the front scene to completely change due to lost memory.
Some works are working on the memory problem (Xiao et al., 2025; Wu et al., 2025), but this is a
very challenging, non-trivial problem. Furthermore, a games involve a polished experience with a
beginning and end, which is not currently the case with controllable video generation.

The second approach, coding assistants/agents, focuses on generating the code for, say, an HTML
page with a JavaScript video game or animation. Large Language Models (LLMs) have been used
to generate such code directly in one-shot or as AI assistants (Hu et al., 2024; Anjum et al., 2024;
Rosebud AI, 2024; X, 2025; Wang et al., 2025; Anysphere). However, one-shot generation is not
enough to build complex, fully fleshed-out content; it takes humans years of work and access to
artists’ assets in order to finish one good game. Instead of one-shot generation, AI assistants rely on
back-and-forth interactions between the LLM and a human, coming with their own assets to develop
their own video game. While powerful, it is not the AI making the game. There exist many fully
autonomous agent systems for coding (Hong et al., 2023; Chen et al., 2023; Tufano et al., 2024;
Wang et al., 2024); however, most of these methods are limited to text and potentially vision, but
not audio and not involving assets of various modalities.

Regarding the evaluation of interactive multimedia content. FVD (Unterthiner et al., 2019) can be
used to assess closeness in video to the true video distribution. However, this requires a real-world
dataset of such content, and handling audio is more complicated. In practice, we want to generate
new content for which there is no available dataset. For web content, the main approach is WebDev
Arena, a specific version of Chatbot Arena (Chiang et al., 2024), which compares side-by-side web
content implementations of the same prompt by two models. It relies on human evaluation; a human
decides which content is better. We would like a similar metric but fully automated, similar to coding
benchmarks with LLM-as-a-Judge (Zheng et al., 2023; Li et al., 2024).

In this work, we focus on the web coding agent direction. More specifically, our goal is fully au-
tonomous generation and evaluation of interactive multimedia content containing audio.

Our contributions:

1. We leverage Audio-Visual Recordings (AVR) to construct a relative evaluation metric
(choosing the best content out of 2 contents) for multimedia content (AVR-Eval) using
text and omni-modal models as judges.

2. We build a multi-agent framework for JavaScript multimedia content generation through a
bank of multimedia assets (images, audio, 3D models), audio-visual recording feedback,
and console logs (AVR-Agent).

3. We test AVR-Agent on a set of games and animations showing that current state-of-the-art
coding models benefit from AVR-Agent, but, contrary to humans, struggle at leveraging
multimedia assets and audio-visual feedback for benefit.

2 METHOD

2.1 EVALUATION METRIC BASED ON AUDIO-VISUAL RECORDINGS (AVR-EVAL)

To assess the quality of the generated games and animations, we use the following criteria:

• Description Fidelity: How well does the {content-type} match the following description?
Description: {content-description}

• Visual Design: How appealing are the graphics and animations? Are colors, shapes, and
layout harmonious?

• Audio Quality: How well does the audio (sound effects and music) align with the content
and enhance its quality?

• Behavior Correctness: Are there any broken behaviors?

For video games, the following criteria are added:

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• Gameplay Quality: How engaging and fun is the gameplay?

• AI Player Quality: How well does the AI play the game?

For animations, the following criteria are added:

• Smoothness: How smooth and fluid are the animations? Are key frames and timing pol-
ished?

• Creativity and Originality: How creative and interesting is the animation?

Given these criteria, we seek to obtain an evaluation metric that favors working content over i)
broken (e.g., title-screen only, black screen) and ii) mislabeled (e.g., fireworks animation when the
goal is a bouncing-ball animation) content. In addition, we would like the evaluation to favor better
content over worse content; this is quite subjective, but one way to push in that direction is to iii)
favor human-made over generated content.

To achieve that goal, AVR-Eval (Figure 2) compares two contents (A and B) to decide which is
better. An Audio-Visual Recording is made for each content. Then, we provide a multiround prompt
to an omni-modal model as follows: prompt1) describe content A (given video and audio), prompt2)
describe content B (given video and audio), and prompt3) given the criteria, determine which content
(A or B) is better? Then, a stronger text model is asked to review the omni-modal evaluation and
ultimately decide which content is truly the best based on the criteria. We use Qwen2.5-Omni-7B
(Xu et al., 2025) for the omni-modal model and Qwen3-32B (Yang et al., 2025) for the text model.

We provide an ablation (Table 1) showing that removing either the multiround (by directly com-
paring both content in a single prompt with two videos and two audios), relative comparison (by
evaluating one content at a time instead of the two together), or the review (by directly extracting
the best content from the omni-modal model response) worsen reliability against broken and misla-
beled contents. We attribute this to the following: 1) multiround: the descriptions may ground the
model reducing hallucinations and the model is probably undertrained on multiple videos and audios
within a single prompt, 2) relative: relative comparisons may ground the choice and the model is
likely untrained for evaluating video games, and 3) review: state-of-the-art methods for omni-modal
understanding (e.g., Qwen2.5-Omni-7B) are still not as good on reasoning and instruction following
as state-of-the-art text models.

For all experiments, we compare both sides: A vs B and B vs A with temperature 0. For i), we
compare 5 working animations (1 of each type; see Table 2) to 12 broken animations, for a total of
120 comparisons. For ii), we compare 5 working animations (1 of each type; see Table 2) to 8-10
animations of other (incorrect) types (e.g., working ”fireworks” content compared to ”bouncing-
ball” content, but the description is ”fireworks”), for a total of 92 comparisons. For iii), we compare
9 working generated platformer video games to 5 high-quality human-made platformer video games,
for a total of 90 comparisons. The generated games are AI-controlled, directly implemented in the
JavaScript code, and the human games are controlled by a human player.

We show that AVR-Eval rarely chooses broken (0.91%) or mislabeled JavaScript content (6.47%)
over working JavaScript content. It also prefers human-made high-quality content over generated
content 67.78% of the time. Currently, AVR uses Qwen2.5-Omni-7B; as better omni-modal models
become available, we expect AVR to improve in alignment with human preferences.

Table 1: Ablation for the AVR evaluation metric: Mean (standard deviation) win rate when compar-
ing working generated content versus broken, mislabeled, or human-made content.

% Win against
Evaluation metric Objective Subjective

Multiround Relative Review Broken ↑ Mislabeled ↑ Human-made ↓
AVR ✓ ✓ ✓ 99.09 (2.03) 93.53 (4.42) 32.22 (12.01)

✗ ✓ ✓ 90.00 (9.85) 80.02 (17.09) 28.89 (16.91)
✗ ✗ ✓ 90.91 (8.50) 81.39 (16.99) 28.89 (16.91)
✗ ✓ ✗ 9.09 (6.43) 3.25 (4.64) 73.33 (16.58)
✗ ✗ ✗ 9.09 (8.50) 6.25 (8.20) 77.78 (13.94)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Audio-Visual Recording Evaluation metric (AVR-Eval)

2.2 SIMPLE MULTIMEDIA GENERATION BENCHMARK

With AVR-Eval, we can compare different generated content to determine which generative method
is better. We leverage this metric to build a simple set of 5 video games and 5 animations to be
generated (Table 2). We make it very simple and open-handed to assess the creativity of the model.

Table 2: Easy-Moderate Benchmark. Simple animations (easy) and games (moderate difficulty).

Animations descriptions
Bouncing Ball - Ball physics with gravity
Rotating Cube - 3D transforms
Fireworks - Exploding particle bursts
Physics Pendulum - Swinging motion simulation
Solar System Orbit - Planetary motion simulation
video games descriptions
Action - 2D platformer
Action - Beat ’em up
Sports - Bowling
Casual - Solitaire
Casual - Incremental

2.3 MULTI-AGENT FRAMEWORK FOR AUDIO-VISUAL CONTENT GENERATION (AVR-AGENT)

Now that we have a validated evaluation metric and a simple benchmark, we can test different
generative models at the task of generating video games and animations. While some content can
be generated in 1-shot by extremely large (≥ 500B parameters) and powerful coding LLMs, the
reality is that smaller open-source LLMs (e.g., Qwen3-32B) will often generate broken content, and
complex content may take multiple iterations of improvements to succeed or reach a certain quality,
even with strong models. To leverage multiple improvement steps, multimedia assets, and Audio-

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Visual Feedback (AVR), we build our own custom agent framework specifically designed for the
creation of multimedia JavaScript content.

Figure 3: AVR-Agent: Multi-agent framework for audio-visual content generation

The AVR-Agent framework (Figure 3) uses two agents: a text-only coding model (we use many
different models, see the results section below) with an omni-modal model (Qwen2.5-Omni-7B).
We accumulated a bank of asset packs from itch.io and kenney.nl with permissive licenses. The asset
packs contain images, audio (music and sounds), 3D models (.glb) made specifically for video-game
creation. See Appendix C for the full list.

In the first stage, the coding model selects which assets to use to produce the desired content given
the original description. We give it a maximum of 50 samples from 5 sample packs. In theory, one
could use Retrieval-Augmented Generation (RAG) to select content, but to our knowledge, there
is no RAG adapted to work with any multimedia content (images, audio without speech, and 3D
objects). Our approach is to simply select the 5 packs based on their names and content (the number
of each file type in the pack). Then, in each pack, we provide the names and details of the assets
(BPM and duration for audio; dimensions for images; animation names for 3D models), and the
coding agent must choose its samples. The end result is a small directory tree showing the 50 assets
the model will have access to.

In the second stage, the coding model is asked to generate the content based on the original de-
scription, chosen assets, general guidelines, and evaluation criteria. In practice, we found the initial
content to have enormous influence on the future evolution of the content, and since smaller models
(Qwen3-32B) can often generate broken or bad content, we found it helpful to generate k candidate

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

initial contents and leverage the AVR-Eval metric to determine the best-out-of-k initial candidate to
keep. T

In the third stage, we improve the content over multiple steps. At each step, the content is rendered in
a browser, and an Audio-Visual Recording (AVR) is made. The console logs (containing errors and
warnings) are extracted during rendering, and the AVR is fed to the omni-modal model to produce
AVR Feedback by asking the model to i) describe the content, and ii) provide subjective feedback
about the content based on the evaluation criteria. Then, the coding model is asked to improve
the content given the base information (the original description, chosen assets, criteria, guidelines),
current code, AVR Feedback, and console logs.

By default, due to autoplay policies (Google, 2017), audio is disabled in web browsers and interac-
tion (clicking) is necessary to enable audio. Thus, in the guidelines, we asked the model to make a
start button with a specific ID, and we had the browser automatically interact with the button.

To handle games, for the Audio-Visual Recordings (AVR) to be meaningful, we cannot just start the
content since the player is human-controlled and will not move automatically. To handle this, we
added as a guideline that the agent must implement AI automated controls by default (and that they
can be disabled by pressing F4 for human control).

Given this setup, we show below that we improve on the generated content (compared to one-shot)
generation.

3 EXPERIMENTS

3.1 SETUP

We test our multi-agent framework on the 5 games and animations of the Benchmark (see Table 2)
with 9 coding models consisting of 2 closed-source models: Gemini-2.5-Flash, Grok-3-Mini, 3 large
open-source models Kimi-K2-1T (Moonshot AI, 2025), Qwen3-Coder-480B, DeepSeek-v3-0324-
671B, and 4 small models: Devstral-Small-2505-24B (Mistral AI, 2025), Qwen3-32B (Yang et al.,
2025), Qwen2.5-Coder-32B (Hui et al., 2024), DeepSeek-Coder-V2-Lite-16B (Guo et al., 2024).

For closed-source and large open-source models, we use 10 improvement iterations or 5 improve-
ment iterations with best-of-5 initial contents, given the API cost. For other models, which run on
our hardware (4 GPUs), we use 20 improvement iterations or 10 improvement iterations and best-
of-10 initial contents. Note that if there is any console log error at the end, we allow up to 2 extra
improvement steps to resolve the error in order to prevent an error made at the last improvement step
from affecting the final content. We always use Qwen-Omni-7B (Xu et al., 2025) as the omni-modal
model.

We run 3 different sets of experiments to compare the performance a) for the same model across
different settings, b) between initial and final content, and c) for the same setting across different
models.

a) We seek to determine how well the coding agent can leverage the assets, the audio-visual feed-
back, and the Best-of-k initial content (Table 3). To do so, we compare the final content with or
without i) audio-visual feedback, ii) assets1, and iii) Best-of-k for the initial content generation.
Thus, 8 methods are compared to 8-1=7 methods with two orderings (A vs B and B vs A) for a
total of 14 comparisons across each method per content. In total, there are 10*9*8*(8-1)*2=10080
comparisons (Dataset a).

b) We seek to determine the benefits of the agent framework. To do so, we compare the initial
content to the final content after improvement steps (Table 4). Since we use two orderings (A vs B
and B vs A), there are 2 comparisons per method and content. In total, there are 10*9*8*2=1440
comparisons (Dataset b).

c) We seek to determine which coding model is the best (Table 5). To do so, we compare models
against each other for the same setting. Thus, 9 models are compared to 9-1=8 models with two
orderings (A vs B and B vs A) for a total of 8 comparisons per method and contents. In total, there
are 10*9*8*8*2=11520 comparisons (Dataset c).

1Note that audio can still be generated without assets through Tone.js by making synthetic sounds.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) Predicting the win rate of generated content against
different settings (with and without feedback, assets,
best-of-k initial contents) based on n = 10080 sam-
ples. Best-of-k significantly increase win rate against
other settings.

(b) Predicting the win rate of generated content of fi-
nal generated content against initial (one-shot) content
based on n = 1440 samples. Best-of-k and Devstral-
Small-2505 have significantly higher win rate, while
animations, Animations have significantly lower win
rate rate against initial content.

(c) Predicting the win rate of generated content against
different models based on n = 11520 samples.
Qwen3-Coder has significantly higher win rate against
other models.

Figure 4: Logistic regression on relative evaluations between different contents with AVR-Eval

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Using the three datasets formed from those experiments, we fit logistic regression models to predict
the probability of winning conditional on the following one-hot features: with assets, with feedback,
with Best-of-k initial content, animations (relative to games as baseline), model used (relative to
Kimi-K2 as baseline).

3.2 RESULTS

Logistic regression results are shown in Figure 4. We also provide results in raw form through the
percentage win rate per setting and model in Tables 3, 4, and 5 of Appendix A.

In a), using Best-of-k initial contents significantly increases the win rate against other settings,
showing that it is beneficial. Furthermore, the settings with the best win rate for each model always
contained Best-of-k initial contents (see Table 3). However, there was no significant effect from
including assets or feedback.

In b), using Best-of-k initial contents and Devstral-Small-2505 significantly improves win rate
against initial content, while animations are significantly detrimental (since animations are easier,
there is less benefit from improvement steps). We also fit a logistic regression with no features (bias-
only) and find that the base probability of the final content winning over initial content is 0.647, 95%
CI [0.622, 0.671], which means that AVR-Agent has a significant positive effect over one-shot gen-
eration. In concordance with this finding, we found that 79.2% of the settings with AVR-Agent had
a higher win rate than one-shot generation, and 100% of the best settings with AVR-Agent (from
Table 3) had higher win rate than one-shot generation (see Table 4).

In c), Qwen3-Coder-480B has a significantly higher win rate against other models, followed closely
by Kimi-K2-T1. We observed similar findings (Qwen3-Coder-480B and Kimi-K2-T1 having higher
win rates) in Table 3. We provide screenshots of the generated games by Kimi-K2-T1 in Section E.

Overall, this shows that AVR-agent significantly improves the quality of the content over one-shot
generation, and choosing the best-out-of-k initial content is generally better than extending genera-
tion with k additional iterations. However, performance does not generally improve from providing
high-quality human-made assets, and adding audio-visual feedback from an omni-modal model to
the coding model. Furthermore, Qwen3-Coder and Kimi-K2 are the strongest coding models in the
list of models we tested.

4 CONCLUSION

We proposed AVR-Eval, an evaluation metric for multimedia content through Audio-Visual Record-
ing (AVR). AVR-Eval compares two implementations of the same content. Through AVR-Eval, new
coding models will be able to evaluate and improve their models against other existing models in an
automated fashion without requiring human evaluation.

While coding models can sometimes produce good JavaScript content in one shot, they are not
always perfect. To tackle this issue, we built a multi-agent framework for HTML JavaScript mul-
timedia content generation (AVR-Agent) by leveraging AVR for choosing the best initial content,
console logs, audio-visual feedback, and a bank of multimedia assets (images, audio, 3D models).

We tested AVR-Agent on a small set of 5 games and 5 animations using AVR-Eval as a metric.
AVR-Agent was beneficial over one-shot generation, and choosing the best initial content out of k
candidates was better than training with k additional iterations. However, the coding agent did not
benefit from using assets and receiving audio-visual feedback. Thus, while humans significantly
benefit from having pre-made high-quality assets and require audio-visual feedback to debug and
improve games, it appears that current coding models do not leverage those effectively. This shows
a gap between humans and machines.

Regarding the lack of benefit of assets, we suspect that current models are trained to work without
separate assets or using placeholders; hence, they are not trained to leverage real assets. To use assets
properly, it would help if the coding model could process them directly as images and audio in the
input prompt. Regarding the lack of benefit from the omni-modal feedback, it could be that text
feedback is insufficient, or again, an artifact of their pretraining not relying on it. Once omni-modal
models are strong enough for coding, we expect them to be able to leverage multimedia assets and

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

audio-visual feedback for improved performance (see Section D). Sadly, the current state-of-the-art
Qwen-2.5-Omni-7B model is incapable of coding at a reasonable performance; we found it unable
to generate any working content, hence why we did not use it for coding.

Note that AVR-Eval is not yet perfect (e.g., it chooses broken content 0.91% of the time over working
content), and it has not been directly tested on human preference. We expect future omni-modal
models to improve on these aspects since AVR-Eval can be used with any omni-modal model that
can process audio (including music and sounds; many models only handle speech), videos, and text.

Overall, AVR-Eval and AVR-Agent are a first step toward automated game design, but to truly
achieve impressive feats of game design using these techniques, we need strong omni-modal models
that can code well.

Note that models that could not fit within our hardware (4 GPUs) were only tested with few iterations
(either 5 initial and 5 improvements or 1 initial and 10 improvements) due to the API cost, and we
did not test the more expensive state-of-the-art closed-source models. Everything was paid out-
of-pocket, hence the limitations in how much we could test. We tested smaller models that could
fit within our 4 available GPUs. However, even when they are considered state-of-the-art, smaller
models (e.g., Qwen3-32B) tend to produce broken games. This shows that we still have a long way
to go for reliable small pretrained models on coding tasks.

We would like to acknowledge the art content made by domi.wav (Dominic Sandefur), David KBD,
TomMusic (Thomas Devlin), Yogi (Tronimal), OmegaPixelArt, doranarasi, and Kenney that was
used in the asset bank. See Appendix C for more details.

ETHICS STATEMENT

Generating images, videos, and video games with AI is controversial, as it generally produces worse
content and removes work from artists. This work is focused on assessing the current model’s ability
to generate video games, but we acknowledge that the use of AI for such cases can cause harm to
real-world artists and could cause a deluge of low-quality AI-generated games.

In this paper, we used a bank of human-made multimedia assets (images, videos, sounds, music).
We made sure to credit every artist in both the paper (see Appendix C) and the code. We also made
sure to only use assets with open licenses that do not prohibit their artistic content from being used
for AI-generated content.

REPRODUCIBILITY STATEMENT

The links to all the data (multimedia assets) are provided in the appendix and in the code. The code
to reproduce all experiments is provided. However, reproducing this work for closed-source models
requires spending money on API credits.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Asad Anjum, Yuting Li, Noelle Law, Megan Charity, and Julian Togelius. The ink splotch effect:
A case study on chatgpt as a co-creative game designer. In Proceedings of the 19th International
Conference on the Foundations of Digital Games, pp. 1–15, 2024.

Anysphere. Cursor agent. https://docs.cursor.com/chat/agent. [Online; accessed
2025-07-02].

Haoxuan Che, Xuanhua He, Quande Liu, Cheng Jin, and Hao Chen. Gamegen-x: Interactive open-
world game video generation. arXiv preprint arXiv:2411.00769, 2024.

Dake Chen, Hanbin Wang, Yunhao Huo, Yuzhao Li, and Haoyang Zhang. Gamegpt: Multi-agent
collaborative framework for game development. arXiv preprint arXiv:2310.08067, 2023.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li,
Dacheng Li, Banghua Zhu, Hao Zhang, Michael Jordan, Joseph E Gonzalez, et al. Chatbot
arena: An open platform for evaluating llms by human preference. In Forty-first International
Conference on Machine Learning, 2024.

Google. Autoplay policy in chrome. https://developer.chrome.com/blog/
autoplay/, 2017. [Online; 2017-09-13].

Google DeepMind. Veo: a text-to-video generation system. Technical report, Google
DeepMind, 2025. URL https://storage.googleapis.com/deepmind-media/
Model-Cards/Veo-3-Model-Card.pdf. Veo 3 Technical Report.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–
the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-
agent collaborative framework. arXiv preprint arXiv:2308.00352, 3(4):6, 2023.

Chengpeng Hu, Yunlong Zhao, and Jialin Liu. Game generation via large language models. In 2024
IEEE Conference on Games (CoG), pp. 1–4. IEEE, 2024.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Anssi Kanervisto, Dave Bignell, Linda Yilin Wen, Martin Grayson, Raluca Georgescu, Sergio Val-
carcel Macua, Shan Zheng Tan, Tabish Rashid, Tim Pearce, Yuhan Cao, et al. World and human
action models towards gameplay ideation. Nature, 638(8051):656–663, 2025.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu, Joseph E Gon-
zalez, and Ion Stoica. From crowdsourced data to high-quality benchmarks: Arena-hard and
benchbuilder pipeline. arXiv preprint arXiv:2406.11939, 2024.

Willi Menapace, Stephane Lathuiliere, Sergey Tulyakov, Aliaksandr Siarohin, and Elisa Ricci.
Playable video generation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 10061–10070, 2021.

Mistral AI. Devstral. https://mistral.ai/news/devstral, 2025. [Online; accessed
2025-07-25].

Moonshot AI. Kimi k2: Open agentic intelligence. https://moonshotai.github.io/
Kimi-K2/, 2025. [Online; accessed 2025-07-21].

Rosebud AI. AI Game Creator — AI-Powered Game Dev Platform, 2024. URL https://lab.
rosebud.ai/ai-game-creator.

Michele Tufano, Anisha Agarwal, Jinu Jang, Roshanak Zilouchian Moghaddam, and Neel Sundare-
san. Autodev: Automated ai-driven development. arXiv preprint arXiv:2403.08299, 2024.

10

https://docs.cursor.com/chat/agent
https://developer.chrome.com/blog/autoplay/
https://developer.chrome.com/blog/autoplay/
https://storage.googleapis.com/deepmind-media/Model-Cards/Veo-3-Model-Card.pdf
https://storage.googleapis.com/deepmind-media/Model-Cards/Veo-3-Model-Card.pdf
https://mistral.ai/news/devstral
https://moonshotai.github.io/Kimi-K2/
https://moonshotai.github.io/Kimi-K2/
https://lab.rosebud.ai/ai-game-creator
https://lab.rosebud.ai/ai-game-creator


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Thomas Unterthiner, Sjoerd Van Steenkiste, Karol Kurach, Raphaël Marinier, Marcin Michalski,
and Sylvain Gelly. Fvd: A new metric for video generation. 2019.

Dani Valevski, Yaniv Leviathan, Moab Arar, and Shlomi Fruchter. Diffusion models are real-time
game engines. arXiv preprint arXiv:2408.14837, 2024.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345, 2024.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open platform for AI soft-
ware developers as generalist agents. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=OJd3ayDDoF.

Tong Wu, Shuai Yang, Ryan Po, Yinghao Xu, Ziwei Liu, Dahua Lin, and Gordon Wetzstein. Video
world models with long-term spatial memory. arXiv preprint arXiv:2506.05284, 2025.

X. Grok 3 Beta — The Age of Reasoning Agents — xAI, 2025. URL https://x.ai/news/
grok-3.

Zeqi Xiao, Yushi Lan, Yifan Zhou, Wenqi Ouyang, Shuai Yang, Yanhong Zeng, and Xin-
gang Pan. Worldmem: Long-term consistent world simulation with memory. arXiv preprint
arXiv:2504.12369, 2025.

Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai, Keqin Chen, Jialin Wang, Yang
Fan, Kai Dang, et al. Qwen2. 5-omni technical report. arXiv preprint arXiv:2503.20215, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Mingyu Yang, Junyou Li, Zhongbin Fang, Sheng Chen, Yangbin Yu, Qiang Fu, Wei Yang, and
Deheng Ye. Playable game generation. arXiv preprint arXiv:2412.00887, 2024.

Jiwen Yu, Yiran Qin, Xintao Wang, Pengfei Wan, Di Zhang, and Xihui Liu. Gamefactory: Creating
new games with generative interactive videos. arXiv preprint arXiv:2501.08325, 2025.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in neural information processing systems, 36:46595–46623, 2023.

11

https://openreview.net/forum?id=OJd3ayDDoF
https://x.ai/news/grok-3
https://x.ai/news/grok-3


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A ADDITIONAL RESULTS

In the manuscript, we analyzed the results through logistic regression models to predict the win
rates. Here we show the win rates per setting. This gives a more direct overview of the results. We
report the mean and standard deviation over the 5+5=10 contents.

Table 3: Mean (standard deviation) win rate of generated content against different settings (with and
without feedback, assets, best-of-k initial contents) over 5 games and 5 animations.

% Win against other settings
Without assets With assets

Without feedback With feedback Without feedback With feedback
∅ Init-best ∅ Init-best ∅ Init-best ∅ Init-best

Qwen3-Coder-480B
47.9 (21.0) 47.1 (25.7) 39.3 (18.5) 55.7 (16.1) 44.3 (27.3) 52.9 (21.3) 52.1 (17.8) 60.0 (14.8)

Kimi-K2-1T
35.7 (17.5) 49.3 (26.4) 36.4 (22.2) 52.1 (23.8) 58.6 (19.3) 65.0 (17.6) 60.7 (19.1) 42.1 (21.7)

Gemini-2.5-Flash (Closed-source)
60.0 (21.6) 51.4 (14.2) 62.1 (19.9) 55.7 (13.4) 26.4 (22.3) 64.3 (17.5) 37.9 (32.1) 41.4 (23.3)

Grok-3-Mini (Closed-source)
50.0 (16.1) 62.9 (26.7) 51.4 (25.6) 52.9 (36.6) 23.6 (23.8) 48.6 (24.9) 37.1 (27.3) 73.6 (16.5)

DeepSeek-v3-0324-671B
52.1 (17.8) 69.3 (27.4) 46.4 (24.3) 54.3 (19.1) 40.0 (23.6) 58.6 (27.5) 26.4 (22.8) 52.1 (26.9)

Devstral-Small-2505-24B
42.9 (26.5) 39.3 (28.0) 45.0 (21.8) 66.4 (21.0) 47.9 (23.8) 45.7 (31.4) 50.0 (22.3) 62.9 (24.0)

Qwen3-32B
41.4 (28.9) 64.3 (23.8) 47.1 (30.9) 59.3 (31.2) 56.4 (24.2) 42.9 (27.1) 37.1 (29.3) 51.4 (25.8)

Qwen2.5-Coder-32B
56.4 (26.8) 63.6 (27.7) 49.3 (28.7) 50.0 (25.4) 42.9 (30.7) 40.7 (28.0) 38.6 (22.9) 58.6 (24.2)

DeepSeek-Coder-V2-Lite-16B
47.9 (19.9) 48.6 (31.9) 41.4 (33.1) 57.1 (31.0) 55.0 (24.1) 40.7 (29.4) 48.6 (27.7) 60.0 (34.5)
% of times where Init-best is better than ∅: 27/36=75% overall; 9/9=100% in the best settings
% of times where With assets is better than Without assets: 16/36=44.4% overall; 5/9=55.5% in the best settings
% of times where With feedback is better than Without feedback: 21/36=58.3% overall; 3/9=33.3% in the best settings

Table 4: Mean (standard deviation) win rate of final generated content against initial (one-shot)
content over 5 games and 5 animations at different settings. A win rate above 50% indicates a
benefit from the multi-agent framework over one-shot generation.

% Win against initial (one-shot) content
Without assets With assets

Without feedback With feedback Without feedback With feedback
∅ Init-best ∅ Init-best ∅ Init-best ∅ Init-best

Qwen3-Coder-480B
75.0 (42.5) 40.0 (45.9) 50.0 (40.8) 65.0 (33.7) 70.0 (42.2) 50.0 (52.7) 75.0 (35.4) 70.0 (35.0)

Kimi-K2-1T
75.0 (26.4) 85.0 (24.2) 50.0 (40.8) 75.0 (42.5) 60.0 (31.6) 85.0 (33.7) 85.0 (24.2) 50.0 (47.1)

Gemini-2.5-Flash (Closed-source)
70.0 (35.0) 70.0 (35.0) 75.0 (35.4) 45.0 (36.9) 50.0 (40.8) 80.0 (35.0) 40.0 (39.4) 65.0 (33.7)

Grok-3-Mini (Closed-source)
60.0 (39.4) 85.0 (33.7) 70.0 (35.0) 60.0 (39.4) 55.0 (43.8) 70.0 (42.2) 40.0 (45.9) 70.0 (35)

DeepSeek-v3-0324-671B
60.0 (39.4) 55.0 (43.8) 70.0 (35.0) 65.0 (24.2) 55.0 (43.8) 55.0 (43.8) 45.0 (43.8) 65.0 (41.2)

Devstral-Small-2505-24B
55.0 (43.8) 75.0 (42.5) 75.0 (35.4) 75.0 (42.5) 70.0 (35.0) 75.0 (42.5) 75.0 (26.4) 85.0 (24.2)

Qwen3-32B
65.0 (41.2) 70.0 (35.0) 70.0 (35.0) 60.0 (45.9) 50.0 (40.8) 35.0 (41.2) 50.0 (47.1) 70.0 (25.8)

Qwen2.5-Coder-32B
65.0 (41.2) 85.0 (24.2) 70.0 (42.2) 80.0 (35.0) 55.0 (43.8) 60.0 (39.4) 70.0 (35.0) 80.0 (35.0)

DeepSeek-Coder-V2-Lite-16B
60.0 (45.9) 60.0 (45.9) 50.0 (40.8) 85.0 (24.2) 50.0 (40.8) 70.0 (42.2) 40.0 (39.4) 85.0 (24.2)
% of times where win rate ¿ 50%: 57/72=79.2% overall; 9/9=100% in the best settings of Table 3

Results In Table 4, we find that AVR-Agent generally improves the quality of the content over
one-shot generation (79.5% of the time better overall and 100% with the best settings). Further-

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 5: Mean (standard deviation) win rate of generated content against other models over 5 games
and 5 animations at different settings. Highest win rate within a column indicates the best model.

% Win against other models
Without assets With assets

Without feedback With feedback Without feedback With feedback
∅ Init-best ∅ Init-best ∅ Init-best ∅ Init-best

Qwen3-Coder-480B
75.0 (16.7) 83.1 (15.3) 71.2 (24.0) 84.4 (12.2) 77.5 (11.5) 70.6 (24.1) 81.2 (12.5) 81.2 (13.2)

Kimi-K2-1T
75.0 (16.7) 65.6 (13.9) 60.0 (27.4) 75.0 (13.2) 82.5 (14.1) 81.2 (11.0) 81.9 (11.2) 68.1 (18.5)

Gemini-2.5-Flash (Closed-source)
65.6 (23.8) 70.0 (13.8) 73.8 (23.2) 64.4 (15.9) 46.9 (27.7) 73.8 (10.5) 56.9 (28.5) 59.4 (22.7)

Grok-3-Mini (Closed-source)
40.0 (23.2) 43.1 (20.9) 40.6 (20.0) 36.2 (28.1) 28.7 (22.1) 40.0 (25.5) 40.6 (28.9) 59.4 (15.4)

DeepSeek-v3-0324-671B
65.6 (21.1) 66.9 (23.2) 69.4 (10.0) 61.9 (13.0) 62.5 (16.1) 66.2 (25.2) 48.8 (23.0) 55.0 (29.9)

Devstral-Small-2505-24B
29.4 (16.7) 26.2 (18.8) 35.6 (19.8) 30.0 (15.8) 43.1 (17) 35.6 (16.7) 42.5 (16.6) 38.8 (20.2)

Qwen3-32B
33.1 (28.4) 42.5 (17.6) 37.5 (18.9) 44.4 (27.9) 44.4 (26.8) 32.5 (20.4) 36.2 (28.7) 35.0 (18.0)

Qwen2.5-Coder-32B
47.5 (19.6) 43.8 (19.1) 44.4 (28.9) 33.8 (22.1) 42.5 (29.0) 33.8 (21.9) 40.6 (18.0) 38.1 (29.8)

DeepSeek-Coder-V2-Lite-16B
18.8 (16.4) 8.8 (7.9) 17.5 (18.1) 20.0 (16.1) 21.2 (20.0) 16.2 (19.6) 21.2 (22.5) 14.4 (14.7)

more, in Table 4, we find that choosing the best-out-of-k initial content is generally better than
extending generation with k additional iterations (75% of the time better overall and 100% with the
best settings).

However, in Table 4, we observe that performance does not generally improve from pre-selecting
assets from a bank of high-quality human-made assets and providing them to the coding model
(44.4% of the time better overall, but 55.5% with the best settings). Similarly, performance did
not generally improve from adding audio-visual feedback from an omni-modal model to the coding
model (58.3% of the time better overall and 33.3% with the best settings).

Regarding the different models, we found Qwen3-Coder-480B and Kimi-K2-1T to be generally
better than other models.

These results concord with the results of the logistic regression analyses from Figure 4.

B AVR-AGENT GUIDELINES

In AVR-Agent, the agents receive the following guidelines.

The base instructions are:

• Be contained in a single HTML file.
• You can use HTML5 Canvas and any javascript library via CDN (e.g., Phaser, Three.js,

PixiJS, Babylon.js, Matter.js).
• Assume that the user does not have a GPU; the code should run well on CPUs.
• Have clear, well-commented code with meaningful variable names.
• Implement smooth animations for all moving elements.
• Include a title screen with a large button that has id=’start-button’. Pressing ’enter’ or

clicking the button should press the button and start the {content-type}. Ensure that audio
only starts after pressing the start button.

• DO NOT use alerts (e.g., alert(”Game Over!”))

The video-game specific instructions are:

• Include AI to control the player by default; it should play the game in a smart way.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

• Allow switching to human control when F4 is pressed.
• Include game state management and responsive control.
• No broken behaviors (softlock, hardlock, hitbox bugs, clipping, AI breakdown, etc.).
• Use clear, visually distinct elements for game objects.
• Ensure visual feedback for player actions and game events.
• Use appropriate colors and visual effects to enhance gameplay.
• Maintain consistent visual style throughout the game.
• Include background music that fits the theme and mood of the game.
• Add sound effects for key game events (jumps, collisions, item collection).
• Implement audio controls (mute/unmute) with the ’M’ key”.
• Ensure audio volume is balanced and not overwhelming.

The animation specific instructions are:

• Include interesting visual elements and transitions.
• Focus on aesthetic appeal.
• Respect physical laws if relevant to the requested animation.
• No broken behaviors (jank, broken keyframes, hitbox bugs, clipping, etc.).
• Create visually appealing elements with attention to detail.
• Implement appropriate visual effects to enhance the animation.
• Ensure consistent visual style throughout the animation.
• Use color and composition effectively to convey mood and theme.
• Include background music that complements the animation’s mood and pace.
• Add sound effects for key animation events and transitions.
• Implement audio controls (mute/unmute) with the ’M’ key”.
• Synchronize audio timing with visual elements.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C AVR-AGENT ASSETS

The AVR-Agent uses a bank of asset packs with permissive licenses. They are described in Table 6.

Table 6: List of asset packs used is the AVR-Agent

Asset pack Author License
8 Bit RPG Adventure and Fantasy Music Pack domi.wav (Dominic Sandefur) None
belmont-chronicles-metroidvania-music-pack David KBD CC By 4.0

cosmic-journey-space-themed-music-pack David KBD CC By 4.0
eternity-metal-scfi-music-pack David KBD CC By 4.0

Free-Fantasy-SFX-Pack-By-TomMusic TomMusic (Thomas Devlin) No resale, redistribution
Free-Game-Boy-Music-Pack Yogi (Tronimal) None

gameboy-sfx-pack OmegaPixelArt None
hexapuppies-synthwave-music-pack David KBD CC By 4.0
interstellar-edm-metal-music-pack David KBD CC By 4.0
pink-bloom-synthwave-music-pack David KBD CC By 4.0

SHMUP-MIDI-Pack ogg&m4a doranarasi No resale, redistribution, NFT
Kenney assets Kenney CC0

Regarding the Kenney assets, we use the following asset packs: kenney-boardgame-pack, kenney-
car-kit, kenney-casino-audio, kenney-castle-kit, kenney-city-kit-commercial-20, kenney-city-kit-
roads, kenney-city-kit-suburban-20, kenney-cursor-pack, kenney-digital-audio, kenney-fish-pack-
2, kenney-food-kit, kenney-holiday-kit, kenney-impact-sounds, kenney-interface-sounds, kenney-
jumper-pack, kenney-letter-tiles, kenney-mini-arcade, kenney-mini-arena, kenney-mini-characters,
kenney-mini-dungeon, kenney-minigolf-kit, kenney-music-jingles, kenney-new-platformer-pack-
1.0, kenney-pirate-kit, kenney-pirate-pack, kenney-pixel-vehicle-pack, kenney-planets, kenney-
platformer-kit, kenney-playing-cards-pack, kenney-puzzle-pack, kenney-puzzle-pack-2, kenney-
racing-pack, kenney-rpg-audio, kenney-sci-fi-sounds, kenney-scribble-dungeons, kenney-scribble-
platformer, kenney-shooting-gallery, kenney-simple-space, kenney-sketch-town-expansion, kenney-
space-shooter-extension, kenney-space-station-kit, kenney-sports-pack, kenney-tanks, kenney-
toon-characters-1, kenney-top-down-tanks-redux, kenney-tower-defense, kenney-tower-defense-kit,
kenney-toy-brick-pack, kenney-toy-car-kit, kenney-ui-audio, kenney-ui-pack, kenney-voiceover-
pack, kenney-voiceover-pack-fighter, kenney-voxel-pack, kenney-watercraft-pack, kenneymedals,
kenney-background-elements, kenney-background-elements-redux, kenney-blaster-kit, kenney-
block-pack, kenney-blocky-characters-20, kenney-board-game-icons.

15

https://domiwav.itch.io/8-bit-rpg-adventure-and-fantasy-music-pack-pixel-adventures-vol-1
https://davidkbd.itch.io/belmont-chronicles-metroidvania-music-pack
https://davidkbd.itch.io/cosmic-journey-space-themed-music-pack
https://davidkbd.itch.io/eternity-metal-scfi-music-pack
https://tommusic.itch.io/free-fantasy-200-sfx-pack
https://yogi-tronimal.itch.io/free-game-boy-music-pack
https://omegapixelart.itch.io/gameboy-sfx-pack
https://davidkbd.itch.io/hexapuppies-synthwave-music-pack
https://davidkbd.itch.io/interstellar-edm-metal-music-pack
https://davidkbd.itch.io/pink-bloom-synthwave-music-pack
https://doranarasi.itch.io/shmup-midi-pack
https://kenney.nl/assets


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D AVR-AGENT 2.0 (FOR AN OMNI-MODEL AGENT CAPABLE OF CODING)

We currently rely on AVR text feedback after processing by an omni-modal agent. This is needed
because the coding agent cannot process Audio Visual Recording (AVR) directly. Current omni-
modal models are not strong enough for coding, so they cannot be used as such. In the future, there
will be omni-modal models with strong coding capabilities that will be able to directly process the
AVR. We show in Figure 5 what the AVR-Agent would look like in this case. The current code
already implements this feature, which will be useful in the future.

Figure 5: AVR-Agent 2.0: Omni-agent framework for audio-visual content generation

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

E COMPARING AVR-AGENT ON DIFFERENT GAMES AND SETTINGS

We show examples of inital content vs AVR-Agent for game generation with Kimi-K2.

Figure 6: Platformer game generation with Kimi-K2: single prompt vs AVR-Agent (10 iterations)
using assets and feedback.

Figure 7: Platformer game generation with Kimi-K2: single prompt vs AVR-Agent (10 iterations)
without assets or feedback.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 8: Beat ’em up game generation with Kimi-K2: single prompt vs AVR-Agent (10 iterations)
using assets and feedback.

Figure 9: Beat ’em up game generation with Kimi-K2: single prompt vs AVR-Agent (10 iterations)
without assets or feedback.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 10: Bowling game generation with Kimi-K2: single prompt vs AVR-Agent (10 iterations)
using assets and feedback.

Figure 11: Bowling game generation with Kimi-K2: single prompt vs AVR-Agent (10 iterations)
without assets or feedback.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 12: Solitaire game generation with Kimi-K2: single prompt vs AVR-Agent (10 iterations)
using assets and feedback.

Figure 13: Solitaire game generation with Kimi-K2: single prompt vs AVR-Agent (10 iterations)
without assets or feedback.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 14: Incremental game generation with Kimi-K2: single prompt vs AVR-Agent (10 iterations)
using assets and feedback.

Figure 15: Incremental game generation with Kimi-K2: single prompt vs AVR-Agent (10 iterations)
without assets or feedback.

21


	Introduction
	Method
	Evaluation metric based on Audio-Visual Recordings (AVR-Eval)
	Simple multimedia generation benchmark
	Multi-agent framework for audio-visual content generation (AVR-Agent)

	Experiments
	Setup
	Results

	Conclusion
	Additional results
	AVR-Agent Guidelines
	AVR-Agent Assets
	AVR-Agent 2.0 (for an omni-model agent capable of coding)
	Comparing AVR-Agent on different games and settings

