
Published as a conference paper at ICLR 2021

ON THE ROLE OF PLANNING IN
MODEL-BASED DEEP REINFORCEMENT LEARNING

Jessica B. Hamrick∗, Abram L. Friesen, Feryal Behbahani, Arthur Guez, Fabio Viola,
Sims Witherspoon, Thomas Anthony, Lars Buesing, Petar Veličković, Théophane Weber∗
DeepMind, London, UK

ABSTRACT

Model-based planning is often thought to be necessary for deep, careful reason-
ing and generalization in artificial agents. While recent successes of model-based
reinforcement learning (MBRL) with deep function approximation have strength-
ened this hypothesis, the resulting diversity of model-based methods has also
made it difficult to track which components drive success and why. In this paper,
we seek to disentangle the contributions of recent methods by focusing on three
questions: (1) How does planning benefit MBRL agents? (2) Within planning,
what choices drive performance? (3) To what extent does planning improve gen-
eralization? To answer these questions, we study the performance of MuZero [58],
a state-of-the-art MBRL algorithm with strong connections and overlapping com-
ponents with many other MBRL algorithms. We perform a number of interven-
tions and ablations of MuZero across a wide range of environments, including
control tasks, Atari, and 9x9 Go. Our results suggest the following: (1) Planning
is most useful in the learning process, both for policy updates and for providing
a more useful data distribution. (2) Using shallow trees with simple Monte-Carlo
rollouts is as performant as more complex methods, except in the most difficult
reasoning tasks. (3) Planning alone is insufficient to drive strong generalization.
These results indicate where and how to utilize planning in reinforcement learning
settings, and highlight a number of open questions for future MBRL research.

Model-based reinforcement learning (MBRL) has seen much interest in recent years, with advances
yielding impressive gains over model-free methods in data efficiency [12, 15, 25, 76], zero- and
few-shot learning [16, 37, 60], and strategic thinking [3, 62, 63, 64, 58]. These methods combine
planning and learning in a variety of ways, with planning specifically referring to the process of
using a learned or given model of the world to construct imagined future trajectories or plans.

Some have suggested that models will play a key role in generally intelligent artificial agents [14,
50, 55, 56, 57, 67], with such arguments often appealing to model-based aspects of human cognition
as proof of their importance [24, 26, 28, 41]. While the recent successes of MBRL methods lend
evidence to this hypothesis, there is huge variance in the algorithmic choices made to support such
advances. For example, planning can be used to select actions at evaluation time [e.g., 12] and/or
for policy learning [e.g., 34]; models can be used within discrete search [e.g., 58] or gradient-based
planning [e.g., 25, 29]; and models can be given [e.g., 45] or learned [e.g., 12]. Worryingly, some
works even come to contradictory conclusions, such as that long rollouts can hurt performance due
to compounding model errors in some settings [e.g., 34], while performance continues to increase
with search depth in others [58]. Given the inconsistencies and non-overlapping choices across the
literature, it can be hard to get a clear picture of the full MBRL space. This in turn makes it difficult
for practitioners to decide which form of MBRL is best for a given problem (if any).

The aim of this paper is to assess the strengths and weaknesses of recent advances in MBRL to help
clarify the state of the field. We systematically study the role of planning and its algorithmic design
choices in a recent state-of-the-art MBRL algorithm, MuZero [58]. Beyond its strong performance,
MuZero’s use of multiple canonical MBRL components (e.g., search-based planning, a learned
model, value estimation, and policy optimization) make it a good candidate for building intuition
about the roles of these components and other methods that use them. Moreover, as discussed in the

∗Correspondence addressed to: {jhamrick,theophane}@google.com

1

Published as a conference paper at ICLR 2021

next section, MuZero has direct connections with many other MBRL methods, including Dyna [67],
MPC [11], and policy iteration [33].

To study the role of planning, we evaluate overall reward obtained by MuZero across a wide range
standard MBRL environments: the DeepMind Control Suite [70], Atari [8], Sokoban [51], Minipac-
man [22], and 9x9 Go [42]. Across these environments, we consider three questions. (1) For what
purposes is planning most useful? Our results show that planning—which can be used separately
for policy improvement, generating the distribution of experience to learn from, and acting at test-
time—is most useful in the learning process for computing learning targets and generating data. (2)
What design choices in the search procedure contribute most to the learning process? We show that
deep, precise planning is often unnecessary to achieve high reward in many domains, with two-step
planning exhibiting surprisingly strong performance even in Go. (3) Does planning assist in gener-
alization across variations of the environment—a common motivation for model-based reasoning?
We find that while planning can help make up for small amounts of distribution shift given a good
enough model, it is not capable of inducing strong zero-shot generalization on its own.

1 BACKGROUND AND RELATED WORK

Model-based reinforcement learning (MBRL) [9, 26, 47, 49, 74] involves both learning and plan-
ning. For our purposes, learning refers to deep learning of a model, policy, and/or value function.
Planning refers to using a learned or given model to construct trajectories or plans. In most MBRL
agents, learning and planning interact in complex ways, with better learning usually resulting in
better planning, and better planning resulting in better learning. Here, we are interested in under-
standing how differences in planning affect both the learning process and test-time behavior.

act

update

observe

plan

Figure 1: Model-based approximate
policy iteration. The agent updates its
policy using targets computed via plan-
ning and optionally acts via planning
during training, at test time, or both.

MBRL methods can be broadly classified into decision-
time planning, which use the model to select actions,
and background planning, which use the model to up-
date a policy [68]. For example, model-predictive control
(MPC) [11] is a classic decision-time planning method
that uses the model to optimize a sequence of actions
starting from the current environment state. Decision-
time planning methods often feature robustness to un-
certainty and fast adaptation to new scenarios [e.g., 76],
though may be insufficient in settings which require long-
term reasoning such as in sparse reward tasks or strategic
games like Go. Conversely, Dyna [67] is a classic back-
ground planning method which uses the the model to sim-
ulate data on which to train a policy via standard model-
free methods like Q-learning or policy gradient. Back-
ground planning methods often feature improved data ef-
ficiency over model-free methods [e.g., 34], but exhibit
the same drawbacks as model-free approaches such as
brittleness to out-of-distribution experience at test time.

A number of works have adopted hybrid approaches combining both decision-time and background
planning. For example, Guo et al. [23], Mordatch et al. [48] distill the results of a decision-time
planner into a policy. Silver et al. [61], Tesauro & Galperin [71] do the opposite, allowing a policy
to guide the behavior of a decision-time planner. Other works do both, incorporating the distillation
or imitation step into the learning loop by allowing the distilled policy from the previous iteration
to guide planning on the next iteration, illustrated by the “update” arrow in Figure 1. This results
in a form of approximate policy iteration which can be implemented both using single-step [40, 54]
or multi-step [17, 18] updates, the latter of which is also referred to as expert iteration [3] or dual
policy iteration [66]. Such algorithms have succeeded in board games [3, 4, 63, 64], discrete-action
MDPs [27, 51, 58] and continuous control [43, 45, 65].

In this paper, we focus our investigation on MuZero [58], a state-of-the-art member of the approx-
imate policy iteration family. MuZero is a useful testbed for our analysis not just because of its
strong performance, but also because it exhibits important connections to many other works in the
MBRL literature. For example, MuZero implements a form of approximate policy iteration [18] and

2

Published as a conference paper at ICLR 2021

has close ties to MPC in that it uses MPC as a subroutine for acting. There is also an interesting
connection to recent Dyna-style MBRL algorithms via regularized policy optimization: specifically,
these methods simulate data from the model and then update the policy on this data using TRPO
[34, 39, 46, 52]. Recent work by Grill et al. [20] showed that the MuZero policy update approximates
TRPO, making the learning algorithm implemented by these Dyna-style algorithms quite similar to
that implemented by MuZero. Finally, the use of value gradients [10, 19, 25, 29] leverages model
gradients to compute a policy gradient estimate; this estimate is similar (without regularization) to
the estimate that MCTS converges to when used as a policy iteration operator [20, 75]. Thus, our
results with MuZero have implications not just for its immediate family but to MBRL methods more
broadly.

In contrast to other work in MBRL, which focuses primarily on data efficiency [e.g., 34, 36] or
model learning [e.g., 12], our primary concern in this paper is in characterizing the role of planning
with respect to reward after a large but fixed number of learning steps, as well as to zero-shot
generalization performance (however, we have also found our results to hold when performing the
same experiments and measuring approximate regret). We note that MuZero can also be used in a
more data-efficient manner (“MuZero Reanalyze”) by using the search to re-compute targets on the
same data multiple times [58], but leave exploration of its behavior in this regime to future work.

Our analysis joins a number of other recent works that seek to better understand the landscape of
MBRL methods and the implications of their design choices. For example, Chua et al. [12] perform
a careful analysis of methods for uncertainty quantification in learned models. Other research has
investigated the effect of deep versus shallow planning [32, 35], the utility of parametric models in
Dyna over replay [73], and benchmark performance of a large number of popular MBRL algorithms
in continuous control tasks [74]. Our work is complementary to these prior works and focuses
instead on the different ways that planning may be used both during training and at evaluation.

2 PRELIMINARIES: OVERVIEW OF MUZERO

MuZero uses a learned policy and learned value, transition and reward models within Monte-Carlo
tree search (MCTS) [13, 38] both to select actions and to generate targets for policy learning (Fig-
ure 1). We provide a brief overview of MuZero here and refer readers to Appendix A and Schrit-
twieser et al. [58] for further details. Algorithm 1 and 2 present pseudocode for MuZero and MCTS,
respectively.

Model MuZero plans in a hidden state space using a learned model µθ parameterized by θ and
comprised of three functions. At timestep t, the encoder embeds past observations into a hidden
state, s0

t = hθ(o1, . . . , ot). Given a hidden state and an action in the original action space, the (de-
terministic) recurrent dynamics function predicts rewards and next states, rkθ,t, s

k
t = gθ(s

k−1
t , ak−1

t),
where k is the number of imagined steps into the future starting from a real observation at time t. In
addition, the prior (not used in the classic Bayesian sense of the term) predicts a policy and value
for a given hidden state, πkθ,t, v

k
θ,t = fθ(s

k
t), and is used to guide the tree search.

Search Beginning at the root node s0
t , each simulation traverses the search tree according to a search

policy until a previously unexplored action is reached. The search policy is a variation on the pUCT
rule [53, 38] that balances exploitation and exploration, and incorporates the prior to guide this (see
Equation 1 in Section A.3). After selecting an unexplored action a` at state s`t , the tree is expanded
by adding a new node with reward r`+1

θ,t , state s`+1
t , policy π`+1

θ,t , and value v`+1
θ,t predicted by the

model. The value and reward are used to form a bootstrapped estimate of the cumulative discounted
reward, which is backed up to the root, updating the estimated return Q and visit count N of each
node on the path. After B simulations, MCTS returns a value vMCTS

t (the average cumulative
discounted reward at the root) and policy πMCTS

t (a function of the normalized count of the actions
taken at the root during search).

Acting After search, an action is sampled from the MCTS policy, at ∼ πMCTS
t , and is executed in

the environment to obtain reward renv
t . Data from the search and environment are then added to a

replay buffer for use in learning: {ot, at, renv
t , πMCTS

t , vMCTS
t }.

Learning The model is jointly trained to predict the reward, policy, and value for each future
timestep k = 0 . . .K. The reward target is the observed environment reward, renv

t+k. The policy target

3

Published as a conference paper at ICLR 2021

is the MCTS-constructed policy πMCTS
t+k . The value target is the n-step bootstrapped discounted

return zt = renv
t+1 + γrenv

t+2 + · · · + γn−1renv
t+n + γnvMCTS

t+n . For reward, value, and policy losses
`r, `v, and `p, respectively, the overall loss is then `t(θ) =

∑K
k=0 `

r(rkθ,t, r
env
t+k) + `v(vkθ,t, zt+k) +

`p(πkθ,t, π
MCTS
t+k). Note that MuZero is not trained to predict future observations or hidden states: the

learning signal for the dynamics comes solely from predicting future rewards, values, and policies.
We do, however, perform additional experiments in Section D.2 in which we train MuZero to also
predict observations via an additional reconstruction loss; our results indicate that the observation-
based model is slightly more accurate but does not qualitatively change MuZero’s behavior.

3 HYPOTHESES AND EXPERIMENTAL METHODS

Our investigation focuses on three key questions: (1) How does planning drive performance in
MuZero? (2) How do different design choices in the planner affect performance? (3) To what extent
does planning support generalization? To answer these questions, we manipulated a number of
different variables across our experiments (Figure 2, see also Section B.1): the maximum depth we
search within the tree (Dtree), the maximum depth we optimize the exploration-exploitation tradeoff
via pUCT (DUCT), the search budget (B), the model (learned or environment simulator), and the
planning algorithm itself (MCTS or breadth-first search).

(1) Overall contributions of planning Performance in many model-free RL algorithms is driven
by computing useful policy improvement targets. We hypothesized that, similarly, using the search
for policy improvement (as opposed to exploration or acting) is a primary driver of MuZero’s per-
formance, with the ability to compare the outcome of different actions via search enabling even
finer-grained and therefore more powerful credit assignment. To test this hypothesis, we imple-
mented several variants of MuZero which use search either for learning, for acting, or both. When
learning, we compute πMCTS either using full tree search (Dtree = ∞) or using only one step of
lookahead (Dtree = 1). When acting, we sample actions either from the policy prior πθ,t or from
πMCTS computed using Dtree =∞. These choices allow us to define the following variants (see ta-
ble in Figure 3): “One-Step”, which trains and uses the model in a one-step way to generate learning
targets, similar to having a Q-function; “Learn”, which uses the search only for learning; “Data”,
which uses the search only to select actions during training while using the model in a one-step way
to generate targets; “Learn+Data”, which uses the search both for learning and for action selection
during training; and “Learn+Data+Eval”, which corresponds to full MuZero. See Section B.2 for
more details about these variants.

UCT depth

Tree depth

Search budget

Figure 2: For nodes at depth d <
DUCT, we select actions according to
pUCT (Section 2), while for nodes at
depth DUCT ≤ d < Dtree, we select
actions by sampling from πθ,t. Nodes
at depth d = Dtree (and deeper) are not
expanded; instead, we stop the search
and backup using vθ,t. The search bud-
get B is equal to the number of nodes in
the tree aside from the root s0

t .

(2) Planning for learning One feature of MCTS is its
ability to perform “precise and sophisticated lookahead”
[58]. To what extent does this lookahead support learning
stronger policies? We hypothesized that more complex
planning like tree search—as opposed to simpler plan-
ning, like random shooting—and deeper search is most
helpful for learning in games like Go and Sokoban, but
less helpful for the other environments. To test this, we
manipulated the tree depth (Dtree), UCT depth (DUCT),
and search budget1 (B). Note that our aim with varying
DUCT is to evaluate the effect of simpler versus more
complex planning, rather than the effect of exploration.

(3) Generalization in planning Model-based reasoning
is often invoked as a way to support generalization and
flexible reasoning [e.g., 26, 41]. We similarly hypothe-
sized that given a good model, planning can help improve
zero-shot generalization. First, we evaluated the ability
of the individual model components to generalize to new
usage patterns. Specifically, we evaluated pre-trained
agents using: larger search budgets than seen during

1MuZero’s policy targets suffer from degeneracies at low visit counts [20, 27]; to account for this, we used
an MPO-style update [1] in the search budget experiments, similar to Grill et al. [20]. See Section B.3.

4

Published as a conference paper at ICLR 2021

training, either the learned model or the environment simulator, and either MCTS or breadth-first
search (see Section B.4). Second, we tested generalization to unseen scenarios by evaluating
pre-trained Minipacman agents of varying quality (assessed by the number of unique mazes seen
during training) on novel mazes drawn from the same or different distributions as in training.

4 RESULTS

We evaluated MuZero on eight tasks across five domains, selected to include popular MBRL envi-
ronments with a wide range of characteristics including episode length, reward sparsity, and varia-
tion of initial conditions. First, we included two Atari games [8] which are commonly thought to
require long-term coordinated behavior: Ms. Pacman and Hero. We additionally included Mini-
pacman [51], a toy version of Ms. Pacman which supports procedural generation of mazes. We
also included two strategic games that are thought to heavily rely on planning: Sokoban [22, 51]
and 9x9 Go [42]. Finally, because much work in MBRL focuses on continuous control [e.g., 74],
we also included three tasks from the DeepMind Control Suite [70]: Acrobot (Sparse Swingup),
Cheetah (Run), and Humanoid (Stand). We discretized the action space of the control tasks as in
Tang & Agrawal [69], Grill et al. [20]. Three of these environments also exhibit some amount of
stochasticity and partial observability: the movement of ghosts in Minipacman is stochastic; Go is a
two-player game and thus stochastic from the point of view of each player independently; and using
a limited number of observation frames in Atari makes it partially observable (e.g., it is not possible
to predict when the ghosts in Ms. Pacman will change from edible to dangerous). Further details of
all environments are available in Appendix C.

4.1 BASELINES

1S L D L+D L+D+E
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 R
ew

ar
d

Acrobot
Cheetah
Humanoid

Hero
Ms. PM
Mini PM

Sokoban
9x9 Go

Train Update Train Act Test Act

1S Dtree = 1 πθ,t πθ,t
L Dtree = ∞ πθ,t πθ,t
D Dtree = 1 Dtree = ∞ πθ,t

L+D Dtree = ∞ Dtree = ∞ πθ,t
L+D+E Dtree = ∞ Dtree = ∞ Dtree = ∞

Figure 3: Contributions of planning to perfor-
mance, where 0.0 is the performance attained by
a randomly initialized policy (Table 8), and 1.0
that obtained by full MuZero (Table 7). Grey bars
show medians across environments, and error bars
show 95% confidence intervals of the median.
1S=One-Step, L=Learn, D=Data, E=Eval. See
Figure 10 for environment error bars.

Before beginning our analysis, we tuned
MuZero for each domain and ran baseline ex-
periments with a search budget of B = 10 sim-
ulations in Minipacman, B = 25 in Sokoban,
B = 150 in 9x9 Go, and B = 50 in all
other environments. Additional hyperparame-
ters for each environment are available in Ap-
pendix C and learning curves in Section D.3;
unless otherwise specified, all further experi-
ments used the same hyperparameters as the
baselines. We obtained the following median
final scores, computed using the last 10% of
steps during training (median across ten seeds):
620.07 on Acrobot, 885.57 on Cheetah, 787.98
on Humanoid, 29916.97 on Hero, 45346.71 on
Ms. Pacman, 310.1 on Minipacman, 0.97 on
Sokoban (proportion solved), and 0.72 on 9x9
Go (proportion games won against Pachi 10k
[7], a bot with strong amateur play). These
baselines are all very strong, with the Atari and
Control Suite results being competitive with
state-of-the-art [22, 31, 58].

4.2 OVERALL CONTRIBUTIONS OF
PLANNING

We first compared vanilla MuZero to differ-
ent variants which use search in varying ways,
as described in Section 3. To facilitate com-
parisons across environments, we normalized
scores to lie between the performance attained
by a randomly initialized policy (Table 8) and the full version of MuZero (Table 7). Figure 3 shows
the results. Across environments, the “One-Step” variant has a median strength of 46.7% (N = 80).

5

Published as a conference paper at ICLR 2021

(a)

1 2 3 5
Dtree

0

1

2

N
or

m
. R

ew
ar

d

Control

1 2 3 5
Dtree

Games

1 2 3 5
Dtree

Strategy

(b)

1 2 3 6
DUCT

0

1

2

N
or

m
. R

ew
ar

d

1 2 3 6
DUCT

1 2 3 6
DUCT

Acrobot

Cheetah

Humanoid

Hero

Ms. PM

Mini PM

Sokoban

9x9 Go

(c)

2 3 5 10 20 50
Simulations

0

1

2

N
or

m
. R

ew
ar

d

2 3 5 10 20 50
Simulations

2 3 5 10 20 50
Simulations

Figure 4: Effect of design choices on the strength of the policy prior. All colored lines show median
normalized reward across ten seeds (except Go, which uses five seeds), with error bars indicating
min and max seeds. Rewards are normalized by the median scores in Table 9. All agents use search
for learning and acting during training only. (a) Reward as a function ofDtree. Here,DUCT = Dtree

and the number of simulations is the same as the baseline. (b) Reward as a function of DUCT. Here,
Dtree = ∞ and the number of simulations is the same as the baseline. (c) Reward as a function of
search budget during learning. Here,DUCT = 1 andDtree =∞ (except in Go, whereDUCT =∞).

Although this variant is not entirely model-free, it does remove much of the dependence on the
model, thus establishing a useful minimal-planning baseline to compare against. Using a deeper
search solely to compute policy updates (“Learn”) improves performance to 68.5% (N = 80). The
“Data” variant—where search is only used to select actions—similarly improves over “One-Step”
to 66.7% (N = 80). These results indicate both the utility in training a multi-step model, and that
search may also drive performance by enabling the agent to learn from a different state distribu-
tion resulting from better actions (echoing other recent work leveraging planning for exploration
[45, 60]). Allowing the agent to both learn and act via search during training (“Learn+Data”) fur-
ther improves performance to a median strength of 90.3% (N = 80). Finally, search at evaluation
(“Learn+Data+Eval”) brings the total up to 100%.

Using the search for learning, for acting during training, and for acting at test time appears to pro-
vide complementary benefits (see also Table 12). This confirms our hypothesis that an important
benefit of search is for policy learning, but also highlights that search can have positive impacts
in other ways, too. Indeed, while some environments benefit more from a model-based learning
signal (Cheetah, Sokoban, Go) others benefit more from model-based data (Hero, Minipacman, Hu-
manoid, Ms. Pacman, Acrobot). Combining these two uses enables MuZero to perform well across
most environments (though Hero and Minipacman exhibit their best performance with “Data”; this
effect is examined further in Section 4.3). Search at evaluation time only provides a small boost
in most environments, though it occasionally proves to be crucial, as in Acrobot and Go. Overall,
using search during training (“Learn+Data”) is the primary driver of MuZero’s performance over
the “One-Step” baseline, leveraging both better policy targets and an improved data distribution.

As discussed in Section 1, MuZero has important connections to a number of other approaches in
MBRL; consequently, our results here suggest implications for some of these other methods. For
example, the “Learn” variant of MuZero is similar to Dyna-style methods that perform policy up-
dates with TRPO [34, 39, 46, 52]. Given the improved performance of “Learn+Data” over “Learn”,
these methods may similarly benefit from also using planning to select actions, and not just for
learning. The “Data” variant of MuZero is similar in spirit to Dyna-2 [61]; our results suggest that
works which implement this approach [5, 6] may similarly benefit from incorporating planning into
policy and value updates. “Learn+Data+Eval” shows the contribution of MPC over “Learn+Data”,

6

Published as a conference paper at ICLR 2021

(a)

0

1

2

No
rm

. R
ew

ar
d Control Games Strategy

MCTS w/ Model Acrobot
Cheetah
Humanoid
Hero
Ms. PM
Mini PM
Sokoban

(b)

0

1

2

N
or

m
. R

ew
ar

d

MCTS w/ Simulator

(c)

0 5 25 125 625
Simulations

0

1

2

N
or

m
. R

ew
ar

d

0 5 25 125 625
Simulations

0 5 25 125 625
Simulations

BFS w/ Simulator

Figure 5: Effect of search at evaluation as a function of the number of simulations, normalized by the
median scores in Table 10. All colored lines show medians across seeds, with error bars indicating
min and max seeds. (a) MCTS with the learned model. (b) MCTS with the environment simulator.
(c) Breadth-first search (BFS) with the environment simulator. Results with the learned model are
similar and can be seen in Figure 11.

and combined with our results in Section 4.4, highlights the importance of guiding MPC with robust
policy priors and/or value functions. Of course, one major difference between MuZero and all these
other methods is that MuZero uses a value equivalent model which is not grounded in the original
observation space [21]. We therefore reran some of our experiments using a model that is trained
to reconstruct observations in order to measure any potential implications of this difference, but did
not find that such models change the overall pattern of results (see Section D.2 and Figure 13-14).

4.3 PLANNING FOR LEARNING

Tree depth Figure 4a shows the result of varying tree depth Dtree ∈ {1, 2, 3, 5,∞} while keeping
DUCT = Dtree and the search budget constant. Scores are normalized by the “Learn+Data” agent
from Section 4.2. Strikingly, Dtree does not make much of a difference in most environments.
Even in Sokoban and Go, we can recover reasonable performance using Dtree = 2, suggesting that
deep tree search may not be necessary for learning a strong policy prior, even in the most difficult
reasoning domains. Looking at individual effects within each domain, we find that deep trees have
a negative impact in Minipacman and an overall positive impact in Ms. Pacman, Acrobot, Sokoban,
and Go (see Table 13). While we did not detect a quantitative effect in the other environments,
qualitatively it appears as though very deep trees may cause worse performance in Hero.

Exploration vs. exploitation depth Figure 4b shows the strength of the policy prior as a result of
manipulating the pUCT depth DUCT ∈ {1, 2, 3, 6,∞} while keeping Dtree = ∞ and the search
budget constant. Note that DUCT = 1 corresponds to only exploring with pUCT at the root node
and performing pure Monte-Carlo sampling thereafter. We find DUCT to have no effect in any
environment except 9x9 Go (Table 14); Anthony et al. [4] also found larger values of DUCT to
be important for Hex. Thus, exploration-exploitation deep within the search tree does not seem to
matter at all except in the most challenging settings.

Search budget Figure 4c shows the strength of the policy prior after training with different numbers
of simulations, with Dtree =∞ and DUCT = 1 (except in Go, where DUCT =∞), corresponding
to exploring different actions at the root node and then performing Monte-Carlo rollouts thereafter.
We opted for these values as they correspond to a simpler form of planning, and our previous exper-
iments showed that larger settings of DUCT made little difference. We find an overall strong effect
of the number of simulations on performance in all environments (Table 15). However, despite the
overall positive effect of the search budget, too many simulations have a detrimental effect in many

7

Published as a conference paper at ICLR 2021

0 5 25 125 625 3125
Simulations

0

1

O
ut

-o
f-D

is
tri

bu
tio

n

Model

0 5 25 125 625 3125
Simulations

Simulator

Train Scenes

5

10

100

Train Test

Figure 6: Generalization to out-of-distribution mazes in Minipacman. All points are medians across
seeds (normalized by the median scores in Table 10), with error bars showing min and max seeds.
Colors indicate agents trained on different numbers of unique mazes. The dotted lines indicate the
baseline. The maps on the right give examples of the types of mazes seen during train and test.
In-distribution generalization is shown in Figure 12 (Appendix) as the behavior is similar.

environments, replicating work showing that some amount of planning can be beneficial, but too
much can harm performance [e.g., 34]. Additionally, the results with Ms. Pacman suggest that two
simulations provide enough signal to learn well in some settings. It is possible that with further
tuning, other environments might also learn effectively with smaller search budgets.

4.4 GENERALIZATION IN PLANNING

Model generalization to new search budgets Figure 5a shows the results of evaluating the baseline
agents (Section 4.1) using up to 625 simulations. As before, we find a small but significant improve-
ment in performance of 7.4 percentage points between full MuZero and agents which do not use
search at all (t = −5.84, p < 0.001, N = 70). Both Acrobot and Sokoban exhibit slightly better
performance with more simulations, and although we did not perform experiments here with Go,
Schrittwieser et al. [58] did and found a positive impact. However, Minipacman exhibits worse per-
formance, and other environments show no overall effect (Table 16). The median reward obtained
across environments at 625 simulations is also less than the baseline by a median of 4.7 percentage
points (t = −5.71, p < 0.001, N = 70), possibly indicating an effect of compounding model errors.
This suggests that for identical training and testing environments, additional search may not always
be the best use of computation; we speculate that it might be more worthwhile simply to perform
additional Dyna-like training on already-observed data [see “MuZero Reanalyze”, 58].

Policy and value generalization with a better model Planning with the simulator yields somewhat
better results than planning with the learned model (Figure 5b), with all environments except Hero
exhibiting positive rank correlations with the number of simulations (Table 17). Ms. Pacman, in
particular, more than doubles in performance after 625 simulations2. However, across environments,
25, 125, and 625 simulations only increased performance over the baseline by a median of about 2
percentage points. Thus, planning with a better model may only produce small gains.

Model generalization to new planners We find dramatic differences between MCTS and BFS,
with BFS exhibiting a catastrophic drop in performance with any amount of search. This is true both
when using the learned model (Figure 11, Appendix) and the simulator (Figure 5c), in which case
the only learned component that is relied on is the value function. Consider the example of Sokoban,
where the branching factor is five; therefore, five steps of BFS search means that all actions at the
root node are expanded, and the action will be selected as the one with the highest value. Yet, the
performance of this agent is substantially worse than just relying on the policy prior. This suggests
a mismatch between the value function and the policy prior, where low-probability (off-policy)
actions are more likely to have high value errors, thus causing problems when expanded by BFS.
Moreover, this problem is not specific to BFS: in sparse reward environments, any planner (such as
random shooting) that relies on the value function without the policy prior will suffer from this effect.
This result highlights that in complex agent architectures involving multiple learned components,
compounding error in the transition model is not the only source of error to be concerned about.

2However, using the simulator leaks information about the unobserved environment state, such as when the
ghosts will stop being edible. Thus, these gains may overestimate what is achievable by a realistic model.

8

Published as a conference paper at ICLR 2021

Generalizing to new mazes We trained Minipacman agents on 5, 10, or 100 unique mazes and
then tested them on new mazes drawn either from the same distribution or a different distribution.
Figure 6 shows the out-of-distribution results and Figure 12 the in-distribution results. Using the
learned model, we see very slight gains in performance up to 125 simulations on both in-distribution
and out-of-distribution mazes, with a sharp drop-off in performance after that reflecting compound-
ing model errors in longer trajectories. The simulator allows for somewhat better performance, with
greater improvements for small numbers of train mazes (t = −10.43, p < 0.001, N = 360, see
also Table 18 and 19), indicating the ability of search to help with some amount of distribution shift
when using an accurate model. However, as can be seen in the figure, this performance plateaus at a
much lower value than what would be obtained by training the agent directly on the task. Moreover,
reward using the simulator begins to decrease at 3125 simulations compared to at 125 simulations
using the learned model (t = −5.59, p < 0.001, N1 = 20, N2 = 20), again indicating a sensitivity
to errors in the value function and policy prior. In fact, this is the same effect as can be seen in
Figure 5c; the only reason the drop-off in performance is less drastic than with BFS is because the
policy prior used by MCTS keeps the search more on-policy.

5 DISCUSSION

In this work, we explored the role of planning in MuZero [58] through a number of ablations and
modifications. We sought to answer three questions: (1) In what ways does planning contribute to fi-
nal performance? (2) What design choices within the planner contribute to stronger policy learning?
(3) How well does planning support zero-shot generalization? In most environments, we find that
(1) search is most useful in constructing targets for policy learning and for generating a more infor-
mative data distribution; (2) simpler and shallower planning is often as performant as more complex
planning; and (3) search at evaluation time only slightly improves zero-shot generalization, and
even then only if the model is highly accurate. Although all our experiments were performed with
MuZero, these results have implications for other MBRL algorithms due to the many connections
between MuZero and other approaches (Section 1).

A major takeaway from this work is that while search is useful for learning, simple and shallow
forms of planning may be sufficient. This has important implications in terms of computational
efficiency: the algorithm with DUCT = 1 can be implemented without trees and is thus far easier
to parallelize than MCTS, and the algorithm with Dtree = 1 can be implemented via model-free
techniques [e.g., 1], suggesting that MBRL may not be necessary at all for strong final performance
in some domains. Moreover, given that search seems to provide minimal improvements at evalua-
tion in many standard RL environments, it may be computationally prudent to avoid using search
altogether at test time.

The result that deep or complex planning is not always needed suggests that many popular environ-
ments used in MBRL may not be fully testing the ability of model-based agents (or RL agents in
general) to perform sophisticated reasoning. This may be true even for environments which seem
intuitively to require reasoning, such as Sokoban. Indeed, out of all our environments, only Acrobot
and 9x9 Go strongly benefited from search at evaluation time. We therefore emphasize that for work
which aims to build flexible and generalizable model-based agents, it is important to evaluate on a
diverse range of settings that stress different types of reasoning.

Our generalization experiments pose a further puzzle for research on model-based reasoning. Even
given a model with good generalization (e.g., the simulator), search in challenging environments is
ineffective without a strong value function or policy to guide it. Indeed, our experiments demonstrate
that if the value function and policy themselves do not generalize, then generalization to new settings
will also suffer. But, if the value function and policy do generalize, then it is unclear whether a model
is even needed for generalization. We suggest that identifying good inductive biases for policies
which capture something about the world dynamics [e.g., 6, 22], as well as learning appropriate
abstractions [30], may be as or more important than learning better models in driving generalization.

Overall, this work provides a new perspective on the contributions of search and planning in in-
tegrated MBRL agents like MuZero. We note that our analysis has been limited to single-task and
(mostly) fully-observable, deterministic environments, and see similar studies focusing on multi-task
and more strongly partially-observed and stochastic environments as important areas for future work.

9

Published as a conference paper at ICLR 2021

ACKNOWLEDGMENTS

We are grateful to Ivo Danihelka, Michal Valko, Jean-bastien Grill, Eszter Vértes, Matt Overlan, To-
bias Pfaff, David Silver, Nate Kushman, Yuval Tassa, Greg Farquhar, Loic Matthey, Andre Saraiva,
Florent Altché, and many others for helpful comments and feedback on this project.

REFERENCES

[1] Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and
Martin Riedmiller. Maximum a posteriori policy optimisation. In International Conference on
Learning Representations (ICLR), 2018.

[2] Alekh Agarwal, Nan Jiang, and Sham M Kakade. Reinforcement learning: Theory and algo-
rithms. Technical report, Technical Report, Department of Computer Science, University of
Washington, 2019.

[3] Thomas Anthony, Zheng Tian, and David Barber. Thinking fast and slow with deep learning
and tree search. In Advances in Neural Information Processing Systems, pp. 5360–5370, 2017.

[4] Thomas Anthony, Robert Nishihara, Philipp Moritz, Tim Salimans, and John Schulman. Policy
gradient search: Online planning and expert iteration without search trees. arXiv preprint
arXiv:1904.03646, 2019.

[5] Kamyar Azizzadenesheli, Brandon Yang, Weitang Liu, Zachary C Lipton, and Animashree
Anandkumar. Surprising negative results for generative adversarial tree search. arXiv preprint
arXiv:1806.05780, 2018.

[6] Victor Bapst, Alvaro Sanchez-Gonzalez, Carl Doersch, Kimberly L Stachenfeld, Pushmeet
Kohli, Peter W Battaglia, and Jessica B Hamrick. Structured agents for physical construction.
In International conference on machine learning (ICML), 2019.

[7] Petr Baudiš and Jean-loup Gailly. Pachi: State of the art open source go program. In Advances
in computer games, pp. 24–38. Springer, 2011.

[8] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

[9] Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M. Lucas, Peter I. Cowl-
ing, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon
Colton. A survey of Monte Carlo tree search methods. IEEE Transactions on Computational
Intelligence and AI in Games, 4(1):1–43, 2012.

[10] Arunkumar Byravan, Jost Tobias Springenberg, Abbas Abdolmaleki, Roland Hafner, Michael
Neunert, Thomas Lampe, Noah Siegel, Nicolas Heess, and Martin Riedmiller. Imagined value
gradients: Model-based policy optimization with tranferable latent dynamics models. In Con-
ference on Robot Learning, pp. 566–589, 2020.

[11] Eduardo F Camacho and Carlos Bordons Alba. Model predictive control. Springer Science &
Business Media, 2013.

[12] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. In Advances in Neural
Information Processing Systems, pp. 4754–4765, 2018.

[13] Rémi Coulom. Efficient selectivity and backup operators in Monte-Carlo tree search. In Inter-
national conference on computers and games, pp. 72–83. Springer, 2006.

[14] Peter Dayan, Geoffrey E Hinton, Radford M Neal, and Richard S Zemel. The helmholtz
machine. Neural computation, 7(5):889–904, 1995.

[15] Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach to
policy search. In International Conference on machine learning (ICML), pp. 465–472, 2011.

10

Published as a conference paper at ICLR 2021

[16] Frederik Ebert, Chelsea Finn, Sudeep Dasari, Annie Xie, Alex Lee, and Sergey Levine. Visual
foresight: Model-based deep reinforcement learning for vision-based robotic control. arXiv
preprint arXiv:1812.00568, 2018.

[17] Yonathan Efroni, Gal Dalal, Bruno Scherrer, and Shie Mannor. Multiple-step greedy policies in
approximate and online reinforcement learning. In Advances in Neural Information Processing
Systems, pp. 5238–5247, 2018.

[18] Yonathan Efroni, Mohammad Ghavamzadeh, and Shie Mannor. Multi-step greedy and approx-
imate real time dynamic programming. arXiv preprint arXiv:1909.04236, 2019.

[19] Michael Fairbank. Reinforcement learning by value gradients. arXiv preprint
arXiv:0803.3539, 2008.

[20] Jean-Bastien Grill, Florent Altché, Yunhao Tang, Thomas Hubert, Michal Valko, Ioannis
Antonoglou, and Rémi Munos. Monte-Carlo tree search as regularized policy optimization.
In International conference on machine learning (ICML), 2020.

[21] Christopher Grimm, André Barreto, Satinder Singh, and David Silver. The value equivalence
principle for model-based reinforcement learning. Advances in Neural Information Processing
Systems, 33, 2020.

[22] Arthur Guez, Mehdi Mirza, Karol Gregor, Rishabh Kabra, Sébastien Racanière, Théophane
Weber, David Raposo, Adam Santoro, Laurent Orseau, Tom Eccles, Greg Wayne, David Silver,
and Timothy Lillicrap. An investigation of model-free planning. In International conference
on machine learning (ICML), 2019.

[23] X. Guo, S. Singh, H. Lee, R. L. Lewis, and X. Wang. Deep Learning for Real-Time Atari Game
Play Using Offline Monte-Carlo Rree Search Planning. In Advances in Neural Information
Processing Systems, pp. 3338–3346, 2014.

[24] David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In
Advances in Neural Information Processing Systems, 2018.

[25] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control:
Learning behaviors by latent imagination. In International Conference on Learning Represen-
tations (ICLR), 2020.

[26] Jessica B Hamrick. Analogues of mental simulation and imagination in deep learning. Current
Opinion in Behavioral Sciences, 29:8–16, 2019.

[27] Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Tobias Pfaff, Theophane Weber,
Lars Buesing, and Peter W. Battaglia. Combining Q-learning and search with amortized value
estimates. In International Conference on Learning Representations (ICLR), 2020.

[28] Demis Hassabis, Dharshan Kumaran, Christopher Summerfield, and Matthew Botvinick.
Neuroscience-inspired artificial intelligence. Neuron, 95(2):245–258, 2017.

[29] Nicolas Heess, Gregory Wayne, David Silver, Timothy Lillicrap, Tom Erez, and Yuval Tassa.
Learning continuous control policies by stochastic value gradients. In Advances in Neural
Information Processing Systems, pp. 2944–2952, 2015.

[30] Mark K. Ho, David Abel, Thomas L. Griffiths, and Michael L. Littman. The value of abstrac-
tion. Current Opinion in Behavioral Sciences, 29:111–116, October 2019.

[31] Matt Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron, Feryal Behbahani,
Tamara Norman, Abbas Abdolmaleki, Albin Cassirer, Fan Yang, Kate Baumli, et al. Acme: A
research framework for distributed reinforcement learning. arXiv preprint arXiv:2006.00979,
2020.

[32] G Zacharias Holland, Erin J Talvitie, and Michael Bowling. The effect of planning shape on
dyna-style planning in high-dimensional state spaces. arXiv preprint arXiv:1806.01825, 2018.

[33] Ronald A Howard. Dynamic programming and markov processes. 1960.

11

Published as a conference paper at ICLR 2021

[34] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model:
Model-based policy optimization. In Advances in Neural Information Processing Systems, pp.
12519–12530, 2019.

[35] Nan Jiang, Alex Kulesza, Satinder Singh, and Richard Lewis. The dependence of effective
planning horizon on model accuracy. In Proceedings of the 2015 International Conference on
Autonomous Agents and Multiagent Systems, pp. 1181–1189, 2015.

[36] Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Kon-
rad Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mo-
hiuddin, Ryan Sepassi, George Tucker, and Henryk Michalewski. Model based reinforcement
learning for atari. In International Conference on Learning Representations (ICLR), 2020.

[37] Ken Kansky, Tom Silver, David A Mély, Mohamed Eldawy, Miguel Lázaro-Gredilla, Xinghua
Lou, Nimrod Dorfman, Szymon Sidor, Scott Phoenix, and Dileep George. Schema networks:
Zero-shot transfer with a generative causal model of intuitive physics. In International confer-
ence on machine learning (ICML), 2017.

[38] Levente Kocsis and Csaba Szepesvári. Bandit based Monte-Carlo planning. In European
conference on machine learning, pp. 282–293. Springer, 2006.

[39] Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-ensemble
trust-region policy optimization. In International Conference on Learning Representations
(ICLR), 2018.

[40] Michail G Lagoudakis and Ronald Parr. Reinforcement learning as classification: Leveraging
modern classifiers. In International Conference on Machine Learning (ICML), pp. 424–431,
2003.

[41] Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building
machines that learn and think like people. Behavioral and brain sciences, 40, 2017.

[42] Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinicius Zambaldi, Satyaki Upad-
hyay, Julien Pérolat, Sriram Srinivasan, Finbarr Timbers, Karl Tuyls, Shayegan Omidshafiei,
Daniel Hennes, Dustin Morrill, Paul Muller, Timo Ewalds, Ryan Faulkner, János Kramár,
Bart De Vylder, Brennan Saeta, James Bradbury, David Ding, Sebastian Borgeaud, Matthew
Lai, Julian Schrittwieser, Thomas Anthony, Edward Hughes, Ivo Danihelka, and Jonah Ryan-
Davis. OpenSpiel: A framework for reinforcement learning in games. CoRR, abs/1908.09453,
2019.

[43] Sergey Levine and Pieter Abbeel. Learning neural network policies with guided policy search
under unknown dynamics. In Advances in Neural Information Processing Systems, pp. 1071–
1079, 2014.

[44] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.
In International Conference on Learning Representations (ICLR), 2016.

[45] Kendall Lowrey, Aravind Rajeswaran, Sham Kakade, Emanuel Todorov, and Igor Mordatch.
Plan online, learn offline: Efficient learning and exploration via model-based control. In Inter-
national Conference on Learning Representations (ICLR), 2019.

[46] Yuping Luo, Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell, and Tengyu Ma. Algo-
rithmic framework for model-based deep reinforcement learning with theoretical guarantees.
In International Conference on Learning Representations (ICLR), 2019.

[47] Thomas M Moerland, Joost Broekens, and Catholijn M Jonker. Model-based reinforcement
learning: A survey. arXiv preprint arXiv:2006.16712, 2020.

[48] Igor Mordatch, Kendall Lowrey, Galen Andrew, Zoran Popovic, and Emanuel V Todorov.
Interactive control of diverse complex characters with neural networks. In Advances in Neural
Information Processing Systems, pp. 3132–3140, 2015.

12

Published as a conference paper at ICLR 2021

[49] Rémi Munos. From bandits to Monte-Carlo tree search: The optimistic principle applied to
optimization and planning. Foundations and Trends in Machine Learning, 7(1):1–130, 2014.

[50] Duy Nguyen-Tuong and Jan Peters. Model learning for robot control: a survey. Cognitive
processing, 12(4):319–340, 2011.

[51] Sébastien Racanière, Théophane Weber, David Reichert, Lars Buesing, Arthur Guez,
Danilo Jimenez Rezende, Adria Puigdomenech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li,
et al. Imagination-augmented agents for deep reinforcement learning. In Advances in neural
information processing systems, pp. 5690–5701, 2017.

[52] Aravind Rajeswaran, Igor Mordatch, and Vikash Kumar. A game theoretic framework for
model based reinforcement learning. In International conference on machine learning (ICML),
2020.

[53] Christopher D Rosin. Multi-armed bandits with episode context. Annals of Mathematics and
Artificial Intelligence, 61(3):203–230, 2011.

[54] Bruno Scherrer. Approximate policy iteration schemes: a comparison. In International Con-
ference on Machine Learning, pp. 1314–1322, 2014.

[55] Jürgen Schmidhuber. Making the world differentiable: On using self-supervised fully recurrent
n eu al networks for dynamic reinforcement learning and planning in non-stationary environm
nts. 1990.

[56] Jürgen Schmidhuber. Curious model-building control systems. In Proc. international joint
conference on neural networks, pp. 1458–1463, 1991.

[57] Jürgen Schmidhuber. On learning to think: Algorithmic information theory for novel combina-
tions of reinforcement learning controllers and recurrent neural world models. arXiv preprint
arXiv:1511.09249, 2015.

[58] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Si-
mon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering
atari, go, chess and shogi by planning with a learned model. arXiv preprint arXiv:1911.08265,
2019.

[59] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust re-
gion policy optimization. In International conference on machine learning (ICML), pp. 1889–
1897, 2015.

[60] Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak
Pathak. Planning to explore via self-supervised world models. In International conference on
machine learning (ICML), 2020.

[61] David Silver, Richard S Sutton, and Martin Müller. Sample-based learning and search with
permanent and transient memories. In Proceedings of the 25th international conference on
Machine learning, pp. 968–975, 2008.

[62] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanc-
tot, et al. Mastering the game of go with deep neural networks and tree search. nature, 529
(7587):484–489, 2016.

[63] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game
of go without human knowledge. nature, 550(7676):354–359, 2017.

[64] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general rein-
forcement learning algorithm that masters chess, shogi, and go through self-play. Science, 362
(6419):1140–1144, 2018.

13

Published as a conference paper at ICLR 2021

[65] Jost Tobias Springenberg, Nicolas Heess, Daniel Mankowitz, Josh Merel, Arunkumar Byravan,
Abbas Abdolmaleki, Jackie Kay, Jonas Degrave, Julian Schrittwieser, Yuval Tassa, et al. Local
search for policy iteration in continuous control. arXiv preprint arXiv:2010.05545, 2020.

[66] Wen Sun, Geoffrey J Gordon, Byron Boots, and J Bagnell. Dual policy iteration. In Advances
in Neural Information Processing Systems, pp. 7059–7069, 2018.

[67] Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM
Sigart Bulletin, 2(4):160–163, 1991.

[68] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[69] Yunhao Tang and Shipra Agrawal. Discretizing continuous action space for on-policy opti-
mization. In Proceedings of the AAAI Conference on Artificial Intelligence, 2019.

[70] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David
Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite.
arXiv preprint arXiv:1801.00690, 2018.

[71] Gerald Tesauro and Gregory R Galperin. On-line policy improvement using Monte-Carlo
search. In Advances in Neural Information Processing Systems, pp. 1068–1074, 1997.

[72] Manan Tomar, Lior Shani, Yonathan Efroni, and Mohammad Ghavamzadeh. Mirror descent
policy optimization. arXiv preprint arXiv:2005.09814, 2020.

[73] Hado P van Hasselt, Matteo Hessel, and John Aslanides. When to use parametric models in
reinforcement learning? In Advances in Neural Information Processing Systems, pp. 14322–
14333, 2019.

[74] Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming Wen, Eric Langlois, Shun-
shi Zhang, Guodong Zhang, Pieter Abbeel, and Jimmy Ba. Benchmarking model-based rein-
forcement learning. arXiv preprint arXiv:1907.02057, 2019.

[75] Théophane Weber, Nicolas Heess, Lars Buesing, and David Silver. Credit assignment tech-
niques in stochastic computation graphs. arXiv preprint arXiv:1901.01761, 2019.

[76] Michael C Yip and David B Camarillo. Model-less feedback control of continuum manipula-
tors in constrained environments. IEEE Transactions on Robotics, 30(4):880–889, 2014.

14

Published as a conference paper at ICLR 2021

A MUZERO ALGORITHM DETAILS

A.1 MUZERO PSEUDOCODE

Pseudocode for MuZero [58] is presented in Algorithm 1. Following initialization of the weights
and the empty circular replay buffer D, a learner and a number of actors execute in parallel, reading
from and sending data to the replay buffer. In our experiments, the actors update their copies of the
parameters θ after every 500 learner steps. Our setup and description follow that of Schrittwieser
et al. [58].

Algorithm 1 MuZero [58]

1: Initialize model µθ and dataset D
2: function ACTOR
3: while true do
4: o← initialize episode
5: while episode not finished do
6: s← hθ(. . . , o)
7: πMCTS, vMCTS ← MCTS(s, µθ) . Alternative: Monte-Carlo rollouts, BFS, etc.
8: a ∼ πMCTS . Alternative: sample action from πθ
9: renv, o′ ← execute a in environment

10: Add o, a, renv, o′, πMCTS, vMCTS to D
11: o← o′

12: end while
13: end while
14: end function
15: function LEARNER
16: while True do
17: Sample batch of trajectories B from D
18: `← compute loss (Equation 8) on B
19: Update θ with gradient descent on `
20: end while
21: end function

A.2 MODEL DETAILS

In MuZero, the model µθ is trained to directly predict three quantities for each future timestep
k = 1 . . .K. These are the policy πkθ,t ≈ πMCTS(at+k|o1, . . . , ot, at, . . . , at+k−1), the value
function vkθ,t ≈ E

[
renv
t+k+1 + γrenv

t+k+2 + . . . |o1, . . . , ot, at, . . . , at+k−1

]
, and the immediate reward

rkθ,t ≈ renv
t+k, where πMCTS is the policy used to select actions in the environment, renv is the ob-

served reward, and γ is the environment discount factor.

A.3 MCTS DETAILS

Pseudocode for MCTS is presented in Algorithm 2. MuZero uses the pUCT rule [53] for the search
policy. The pUCT rule maximizes an upper confidence bound [38] to balance exploration and ex-
ploitation during search. Specifically, the pUCT rule selects action

ak = arg max
a

[
Q(s, a) + πθ(s, a) ·

√∑
bN(s, b)

1 +N(s, a)
·
(
c1 + log

(∑
bN(s, b) + c2 + 1

c2

))]
,

(1)

where N is the number of times a has been selected during search, Q is the average cumulative
discounted reward of a, and c1, c2 are constants that control the relative influence of Q and πθ.
Following Schrittwieser et al. [58], we set c1 = 1.25 and c2 = 19652 in our experiments. At the
root node alone, a small amount of Dirichlet noise is added to the policy prior πθ to encourage
additional exploration at the root.

15

Published as a conference paper at ICLR 2021

Algorithm 2 MCTS in MuZero

1: function MCTS(root state s0, model µθ, number of simulations B)
2: initialize edge statistics {(N(s0, a), Q(s0, a))}a to 0
3: for k = 1 . . . B do
4: rl, sl, vl ← SEARCHANDEXPAND(s0)
5: BACKUP(rl, sl, vl)
6: end for
7: return πMCTS and vMCTS (Equation 6 and 7)
8: end function

9: function SEARCHANDEXPAND(s)
10: while true do
11: a← PUCT(s) . choose action according to pUCT
12: r′, s′ ← TRANSITION(s, a) . use cached values if possible
13: if N(s, a) = 0 then
14: add node s′ as child of s on edge a
15: initialize edge statistics {(N(s′, a′), Q(s′, a′))}a′ to 0
16: compute πθ, vθ ← fθ(s

′)
17: return r′, s′, vθ
18: end if
19: s← s′

20: end while
21: end function

22: function BACKUP(r′, s′, v′)
23: for each edge on the path from s′ to the root s0 do
24: update statistics N,Q with Equation 3 and 4
25: end for
26: end function

Within the search tree, each node has an associated hidden state s. For each action a from s there
is an edge (s, a) on which the number of visits N(s, a) and the current value estimate Q(s, a) are
stored. When a new node with state s is created in the expansion step, the statistics for each edge are
initialized as {N(s, a) = 0, Q(s, a) = 0}. The estimated policy prior πθ(s, a), reward rθ, and state
transition are also stored after being computed on expansion since they are deterministic and can be
cached. Thus, the model only needs to be evaluated once per simulation when the new leaf is added.

When backing up after expansion, the statistics on all of the edges from the leaf to the root are
updated. Specifically, for k = l . . . 0, a bootstrapped l − k-step cumulative discounted reward
estimate

Gk =

`−1−k∑
τ=0

γτrk+1+τ
θ + γ`−kv`θ, (2)

is computed. The statistics for each edge (sk, ak) for k = 0 . . . l − 1 in the simulation path are
updated as

Q(sk, ak) =
N(sk, ak) ·Q(sk, ak) +Gk

N(sk, ak) + 1
(3)

N(sk, ak) = N(sk, ak) + 1. (4)

To keep Q estimates bounded within [0, 1], the Q estimates are first normalized as Q̄ ∈ [0, 1] before
passing them to the pUCT rule. The normalized estimates are computed as

Q̄(sk, ak) =
Q(sk, ak)−Qmin

Qmax −Qmin
, (5)

where Qmin = min(s,a)∈TreeQ(s, a) and Qmax = max(s,a)∈TreeQ(s, a) are the minimum and
maximum Q values observed in the search tree so far.

16

Published as a conference paper at ICLR 2021

After all simulations are complete, the policy πMCTS returned by MCTS is the visit count distribu-
tion at the root s0 parameterized by a temperature T

πMCTS(a) =
N(s0, a)1/T∑
bN(s0, b)1/T

. (6)

During training, the temperature is set as a function of the number of learner update steps. Specifi-
cally, the temperature is set to 1 and then decayed by a factor of 0.95 after every 5000 steps.

The value vMCTS returned by MCTS is the average discounted return over all simulations

vMCTS =
∑
a

(
N(s0, a)∑
bN(s0, b)

)
Q(s0, a). (7)

A.4 TRAINING DETAILS

The MCTS policy is used to select an action at ∼ πMCTS
t , which is then executed in the environment

and a reward renv
t observed. The model is jointly trained to match targets constructed from the

observed rewards and the MCTS policy and value for each future timestep k. The policy targets are
simply the MCTS policies, while the value targets are the n-step bootstrapped discounted returns
zt = renv

t+1 + γrenv
t+2 + · · ·+ γn−1renv

t+n + γnvMCTS
t+n . For reward, value, and policy losses `r, `v, and

`p, respectively, the overall loss is then

`t(θ) =

K∑
k=0

`r(rkθ,t, r
env
t+k) + `v(vkθ,t, zt+k) + `p(πkθ,t, π

MCTS
t+k) + c||θ||2, (8)

where c||θ||2 is an L2 regularization term. For the rewards, values, and policies, a cross-entropy loss
is used for each of `r, `v, and `p.

B FURTHER IMPLEMENTATION DETAILS

B.1 DEPTH-LIMITED MCTS

The depth-limited MCTS algorithm is implemented by replacing the regular MCTS search and ex-
pand subroutines with a modified subroutine as follows. The backup subroutine remains unchanged.

Algorithm 3 Search and expand subroutine for depth-limited MCTS.

1: function SEARCHANDEXPAND(root state s0, max UCT depth DUCT, max tree depth Dtree)
2: k ← 0
3: while k < Dtree and sk is not a leaf do . Search for leaf node
4: a← SELECTACTION(sk, k,DUCT)
5: sk+1 ← TRANSITION(sk, a)
6: k ← k + 1
7: end while
8: if k < Dtree then . Expand unless maximum depth is reached
9: a← SELECTACTION(sk, k,DUCT)

10: sk+1 ← TRANSITION(sk, a)
11: Add sk+1 to tree
12: end if
13: return sk+1

14: end function
15: function SELECTACTION(s, k,DUCT) . The search policy
16: if k < DUCT then
17: a← PUCT(s) . Choose action according to pUCT
18: else
19: a ∼ πθ(·|s) . Sample from prior
20: end if
21: return a
22: end function

17

Published as a conference paper at ICLR 2021

We initially tried varying Dtree and DUCT together on Ms. Pacman and Minipacman. However, as
we did not see any effect, we varied these variables separately for the remainder of our experiments
in order to limit computation.

We did not run any experiments with DUCT = 0, which corresponds to pure Monte-Carlo search.
This is because this variant introduces a confound: with DUCT = 0, the visit counts are no longer
informative and unsuitable for use as policy learning targets. To testDUCT = 0 would therefore also
require modifying the learning target. Future work could test this by using the same MPO update
described in the next section.

Additionally, we note that depth-limited MCTS will converge to the BFS solution (Section B.4) in
the limit of infinite simulations. For finite simulations, depth-limited MCTS interpolates between
the policy prior and the BFS policy.

B.2 MUZERO VARIANTS

As described in Section 3, we implemented the following variants of MuZero:

• One-Step. This variant uses Dtree = 1 for learning, and acts by sampling from the policy
prior. We also only train the model to predict one time step into the future (in all other
variants, we train it to predict five time steps into the future). This variant is therefore as
close as possible to a model-free version of MuZero, and could in principle be implemented
solely with a Q-function.

• Learn. This variant uses Dtree = ∞ for learning, and acts by sampling from the policy
prior. It therefore gets the benefits of a deep tree search for learning, but not for acting.

• Data. This variant uses Dtree = 1 for learning, acts during training by sampling from
πMCTS (computed using Dtree = ∞), and acts at test time from the policy prior. This
allows us to measure the impact of deep search on the distribution of data experienced
during learning.

• Learn+Data. This variant using Dtree = ∞ both for learning and for acting during train-
ing; actions at test time are sampled from the policy prior. This variant thus benefits from
search in two ways during learning, but uses no search at test time.

• Learn+Data+Eval. This variant is equivalent to the original version of MuZero, using
search (with Dtree =∞) for learning and for all action selection.

Another way to test the impact of search on learning and the data distribution would be to add a
secondary model-free loss function to MuZero, making it easier to fully ablate the model-based loss
function in the One-Step and Data variants. While we leave this exploration to future work, we
mention that Hamrick et al. [27] investigated another member of the approximate policy iteration
family which relies solely on Q-functions and which combines a model-free loss with a model-based
loss. Thus, they were able to test the effect of a purely model-free variant, as well as a “Data”-like
variant, both of which underperformed the full version of their model.

B.3 REGULARIZED POLICY UPDATES (MPO) WITH MCTS

Past work has demonstrated that MuZero’s policy targets suffer from degeneracies at low visit counts
[27, 20]. To account for this, we modified the policy targets to use an MPO-style update [1] rather
than the visit count distribution, similar to [20]: πMPO

t+k ∝ πkθ,t · exp
(
qMCTS/τ

)
. Here, qMCTS are

the Q-values at the root node of the search tree; τ = 0.1 is a temperature parameter; and we use
πMPO
t+k in place of πMCTS

t+k in Equation 8. Note that the Q-values for unvisited actions are set to zero;
while it is in general a poor estimate for the true Q-function, we found this choice to outperform
setting the Q-function for unvisited actions to the value function. This is likely because unvisited
actions are unlikely under the prior and perhaps ought not be reinforced unless good estimates
are obtained through exploration. However, this choice leads to a biased MPO update; how to
unbias it will be a topic of further research. Similarly, we chose the MPO update for its ease of
implementation, but it is likely other forms of regularized policy gradient (e.g. TRPO [59], or more
generally natural or mirror policy optimization [72, 2]) would result in quantitively similar findings.
We also did not tune τ for different environments; it is likely that properly tuning it could further
improve performance of the agent at small search budgets.

18

Published as a conference paper at ICLR 2021

B.4 BREADTH-FIRST SEARCH

In our generalization experiments, we replaced the MCTS search with a breadth-first search algo-
rithm. BFS explores all children at a particular depth of the tree in an arbitrary order before pro-
gressing deeper in the tree. Our implementation of BFS does not use the policy prior. Additionally,
when performing backups, we compute the maximum over all values seen rather than averaging.
Final actions are selected based on the highest Q-value after search, rather than highest visit count.
Thus, this implementation of BFS is (1) maximally exploratory and (2) relies mostly on the value
estimates vθ,t (especially when the simulator is used instead of the learned model).

C ENVIRONMENT AND ARCHITECTURE DETAILS

We evaluate on the following environments.

• Minipacman: a toy version of Ms. Pacman with ghosts that move stochastically. We
modified the version introduced by [22] such that the maze is procedurally generated on
each episode. See Section C.1 for details.

• Hero (Atari): a sparse reward, visually complex video game. The goal is to navigate
a character through a mine, clearing cave-ins, destroying enemies, and rescuing trapped
miners.

• Ms. Pacman (Atari): a fast-paced, visually complex video game. The goal is to control
Pacman to eat all the “food” in a maze, while avoiding being eaten by ghosts.

• Acrobot Sparse Swingup (Control Suite): a low-dimensional, yet challenging control task
with sparse rewards. The task is to balance upright an under-actuated double pendulum.

• Cheetah Run (Control Suite): a six-dimensional control task, where the goal is to control
the joints of a “cheetah” character to make it run forward in a 2D plane.

• Humanoid Stand (Control Suite): a 21-dimensional control task, where the goal is to
control the joints of a humanoid character to make it stand up.

• Sokoban: a difficult puzzle game that involves pushing boxes onto targets and in which
incorrect moves can be unrecoverable [51].

• 9x9 Go: an easier version of Go than the full 19x19 game, provided by [42]. Evaluation is
reported against Pachi [7], with 104 evaluations per move (strong amateur play).

We now provide specific details on the network architectures and hyperparameters used for each
environment. Unless specified and for layers where it is appropriate, all layers in the networks use
padding ‘SAME’ and stride 1, and convolutions are 2-D with 3× 3 kernels. All networks consist of
an encoder hθ, a recurrently-applied dynamics function gθ, and a prior function fθ.

For most environments, the encoder hθ is a resnet composed of a number of segments. Each segment
consists of a convolution, a layer norm, a number of residual blocks, and a ReLU. Each residual
block contains a layer norm, a ReLU, a convolution, a layer norm, a ReLU, and a final convolution.
The input of the residual block is then added to the output of its final convolution.

For most environments, the dynamics network has the same structure as the encoder, with a different
number of segments and residual blocks.

Finally, the prior function predicts three quantities and is composed of three separate networks: a
policy head, a value head, and a reward head. The policy, value, and reward heads each consist of a
1× 1 convolution followed by a number of linear layers, with a ReLU between each pair of layers.

The hyperparameters in Table 1 are shared across all environments except Go.

C.1 MINIPACMAN

Minipacman is a toy version of Ms. Pacman. Unlike the Atari game, Minipacman also exhibits a
small amount of stochasticity in that the ghosts move using an epsilon-greedy policy towards the
agent.

19

Published as a conference paper at ICLR 2021

Table 1: Shared hyperparameters

Hyperparameters Value

Dirichlet alpha 0.3
Exploration fraction 0.25
Exploration temperature 1.0
Temperature decay schedule 5× 103

Temperature decay rate 0.95
Replay capacity 5× 105

Min replay 105

Sequence length 5

C.1.1 MAZES

For Minipacman, we altered the environment to support the use of both procedurally generated
mazes (“in-distribution” mazes) and the standard maze (“out-of-distribution” mazes), both of size
15x19. Figure 6 shows example mazes of both types. In all experiments except generalization, we
trained agents on an unlimited number of the “in-distribution” mazes, and tested on other mazes also
drawn from this set. For the generalization experiments, we trained agents on a fixed set of either 5,
10, or 100 “in-distribution” mazes. Then, at evaluation time, we either tested on mazes drawn from
the full in-distribution set or from the out-of-distribution set.

To generate the procedural mazes, we first used Prim’s algorithm to generate corridors. To make the
maze more navigable, we then randomly removed walls with a probability of p = 0.3. The number
of initial ghosts was sampled as g0 ∼ 1 + Poisson(1) and this number increased by g∆ ∼ 0.25 +
U(0, 1) ghosts per level, such that the total number of ghosts at level l was gl = bg0 + (l − 1)g∆c.
The number of pills was always set to 4. The default Minipacman maze was hand crafted to be
similar to the Ms. Pacman maze. In the default maze, there is always one initial ghost (g0 = 1) and
this number increases by 1 every two levels (g∆ = 0.5). We similarly set the number of pills to 4. In
all mazes, the initial locations of the ghosts, pills, and Pacman is randomly chosen at the beginning
of every episode.

C.1.2 NETWORK ARCHITECTURE

For Minipacman, the encoder has 2 segments, each with 64 channels and 2 residual blocks. The
dynamics function has 1 segment with 5 residual blocks, all with 64 channels. The policy head has
a convolution with 4 channels and one linear layer with a channel per action (in Minipacman, this
is 5). The value head has a convolution with 32 channels and two linear layers with 64 and 601
channels. The reward network has the same structure as the value head.

All Minipacman experiments were run using 400 CPU-based actors and 1 NVIDIA V100 for the
learner.

Table 2: Hyperparameters for Minipacman

Hyperparameters Value

Learning rate 10−3

Discount factor 0.97
Batch size 512
n-step return length 10
Replay samples per insert ratio 0.25
Learner steps 2× 105

Policy loss weight 1.
Value loss weight 0.3
Num simulations 10
Max steps per episode 600

20

Published as a conference paper at ICLR 2021

C.2 ATARI

Figure 7: (Left) Hero, (Right) Ms.Pacman

The Atari Learning Environment [8] is a challenging benchmark of 57 classic Atari 2600 games
played from pixel observations. We evaluate on Ms. Pacman and Hero. Each observation consists of
the 4 previous frames and action repeats is 4. Note that, as MuZero does not incorporate recurrence,
this limited number of frames makes some aspects of the the environment partially observable (such
as when the ghosts turn from being edible to inedible).

For Atari, the encoder consists of 4 segments with (64, 128, 128, 128) channels, each with 2 residual
blocks, followed by 1 segment with 5 residual blocks with 128 channels. The dynamics network has
1 segment with 5 residual blocks with 128 channels. The heads are the same as in Minipacman.

All Atari experiments were run using 1024 CPU-based actors and 4 NVIDIA V100s for the learner.

Table 3: Hyperparameters for Atari

Hyperparameters Value

Learning rate 10−3

Discount factor 0.995
Batch size 2048
n-step return length 10
Replay samples per insert ratio 0.25
Learner steps 1.5× 105

Policy loss weight 1.
Value loss weight 0.3
Num simulations 50

C.3 CONTROL SUITE

Figure 8: Control Suite environment: Left Acrobot Middle Cheetah Right Humanoid.

The DeepMind Control Suite [70] is a widely used benchmark for control tasks in MuJoCo. We
select 3 high-dimensional environments Cheetah (Run), Acrobot (Swing-up Sparse) and Humanoid
(Stand). We use the raw state observation as input and follow the same procedure as [20, 69] to
discretize the continuous action space. Each action dimension is discretized into 5 bins evenly
spaced between [−1, 1].

For Control Suite environments, we use a model based on that of [44]. The encoder consists of
a linear layer with 300 channels, a layer norm, a tanh, a linear layer with 200 channels, and an

21

Published as a conference paper at ICLR 2021

exponential linear unit (ELU). The dynamics function is simply a linear layer with 200 channels
followed by an ELU. The weights in the encoder and dynamics function are initialized uniformly.
The policy head is a factored policy head composed of a linear layer with # dimensions × # bins
channels. The factored policy head independently chooses an action for each dimension. The value
and reward heads are both composed of a linear layer with 64 channels followed by a ReLU and
then a linear layer with 2001 channels.

All Control Suite experiments were run using 1024 CPU-based actors and 2 second-generation (v2)
Tensor Processing Units (TPUs) for the learner.

Table 4: Hyperparameters for control suite.

Hyperparameters Cheetah (Run) Acrobot (Swing-up Sparse) Humanoid (Stand)

Learning rate 5× 10−4 2.5× 10−4 2.5× 10−4

Discount factor 0.995 0.995 0.995
Batch size 1024 1024 1024
n-step return length 50 50 30
Replay samples per insert ratio 25. 2. 15.
Learner steps 5× 106 5× 106 5× 106

Policy loss weight 1. 1. 1.
Value loss weight 0.5 0.5 0.5
Num simulations 50 50 50

C.4 SOKOBAN

Figure 9: Sokoban environment.

Sokoban [51] is a classic puzzle problem, where the agent’s task is to push a number of boxes onto
target locations. In this environment many moves are irreversible as the boxes can only be pushed
forward and hence the puzzle can become unsolvable if wrong moves are made.

For Sokoban, the encoder is the same as that used for Minipacman with an additional 256-channel
1 × 1 convolutional layer at the end. Instead of a resnet, for the dynamics network for Sokoban
we used a DRC(3, 1) convolutional LSTM [22]. For the heads, we use the same network as in
Minipacman except that the convolutional layers in the policy, value, and reward heads have 32, 32,
and 16 channels, respectively.

All Sokoban experiments were run using 2048 CPU-based actors and 4 NVIDIA V100s for the
learner.

C.5 9X9 GO

9x9 Go is a smaller version of the full 19x19 game. While the board is fully observed, the actions
of the other player cannot be fully predicted, thus making the game stochastic from each players’
perspective.

For the Go experiments, we used a different implementation of the MuZero algorithm due to easier
interfacing with the Go environment. The main difference between the implementation used for
other environments and the one for Go is the data pipeline. In the first implementation, actors and

22

Published as a conference paper at ICLR 2021

Table 5: Hyperparameters for Sokoban

Hyperparameters Value

Learning rate 10−3

Discount factor 0.99
Batch size 2048
n-step return length 10
Replay samples per insert ratio 0.4
Learner steps 3× 105

Policy loss weight 1.
Value loss weight 0.3
Num simulations 25

learner communicate asynchronously through a replay buffer. In the one used for Go, there is no re-
play buffer; instead, actors add their data to a queue which the learner then consumes. Additionally,
while the implementation of MuZero used in the other experiments trained the value function using
n-step returns, zt = renv

t+1 + γrenv
t+2 + · · ·+ γn−1renv

t+n + γnvMCTS
t+n (see Section 2), the one used here

uses lambda returns, zλt = (1− λ)
∑∞
n=1 λ

n−1zt:t+n.

The two player aspect of the game is handled entirely by having a single player playing both moves,
but using a discount of −1. The input to the agent is the last two states of the Go board and one
color plane, where each state is encoded relative to color of the player with 3 planes, own stones,
opponent’s stones and empty stones.

The encoder consists of a single convolution layer with 128 channels, followed by 6 residual 3 × 3
convolutional blocks with 128 channels (each block consists of two convolutional layers with a skip
connection). The network is size-preserving so hidden states are of size 9x9. The transition model
takes as input the last hidden state and the action encoded as a one-hot plane, and also consists in
6 residual convolutional blocks with 128 channels. The representation model consists in one 1 × 1
convolutional layer with 2 channels, followed by an MLP with a single layer of 256 units.

Table 6: Hyperparameters for Go

Hyperparameters Value

Learning rate 4× 10−4

Discount factor −1
Batch size 16
λ 0.99
Learner steps 105

Policy loss weight 1.0
Value loss weight 0.25
Num simulations 150
Dirichlet alpha 0.25
Exploration fraction 0.4

D ADDITIONAL RESULTS AND ANALYSIS

D.1 EXTENSIONS TO FIGURES IN MAIN PAPER

Figure 10 shows the same information as Figure 3 (contributions of search to performance) but split
into separate groups and with error bars shown. Figure 11 shows the same information as Figure 5
(effect of search at evaluation as a function of the number of simulations) but using breadth-first
search with a learned model. Figure 12 shows the same information as Figure 6 (effect of search
on generalization to new mazes) but for the in-distribution mazes instead of the out-of-distribution

23

Published as a conference paper at ICLR 2021

mazes. Figure 22 presents learning curves for Go for different values of DUCT and numbers of
simulations.

1S L D L+D L+D+E

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 R
ew

ar
d

Control

1S L D L+D L+D+E

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Games

1S L D L+D L+D+E

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Strategy

Contributions of Search

Acrobot
Cheetah
Humanoid
Hero
Ms. PM
Mini PM
Sokoban
9x9 Go

Figure 10: Contributions of the use of planning to performance. A breakdown containing the same
information as Figure 3 with error bars showing the maximum and minimum seeds.

0 5 25 125 625
Simulations

0

1

2

N
or

m
. R

ew
ar

d Control

0 5 25 125 625
Simulations

Games

0 5 25 125 625
Simulations

Strategy
BFS w/ Model

Acrobot

Cheetah

Humanoid

Hero

Ms. PM

Mini PM

Sokoban

Figure 11: Effect of search at evaluation as a function of the number of simulations for breadth-first
search (BFS) with the learned model. All colored lines show medians across seeds, with error bars
indicating min and max seeds.

0 5 25 125 625 3125
Simulations

0

1

In
-D

is
tri

bu
tio

n

Model

0 5 25 125 625 3125
Simulations

Simulator

Train Scenes

5

10

100

Train Test

Figure 12: Effect of search on generalization to new in-distribution mazes in Minipacman. All
points are medians across seeds, with error bars showing min and max seeds. Colors indicate agents
trained on different numbers of unique mazes. The dotted lines indicate equivalent performance to
the baseline. The maps on the right give examples of the types of mazes seen during train and test.

D.2 MUZERO WITH OBSERVATION-RECONSTRUCTION LOSS

As discussed above, planning in MuZero is performed entirely in a hidden space. This hidden
space has no direct semantic association with the environment state as its sole purpose is to en-
able prediction of future rewards, policies, and values. This is in contrast, however, to much other
work on model-based reinforcement learning, for which the model explicitly predicts environment
states or observations. To investigate the effect of tying the model to the environment, we added
an observation-reconstruction loss to our MuZero implementation and re-ran a subset of the experi-
ments from Section 4.2 using this loss.

24

Published as a conference paper at ICLR 2021

D.2.1 OVERALL CONTRIBUTIONS OF PLANNING WITH RECONSTRUCTION LOSS

For two pixel-based environments (Minipacman and Sokoban), we added a binary cross-entropy loss
between the true pixel observations and predicted future observations. Similarly, for the three state-
based environments (Acrobot, Cheetah, and Humanoid), we added an L2 loss between the true state
observations and the predicted future states. We evaluated the effect of the reconstruction losses
on these environments, for each of the “Learn,” “Learn+Data,” and “Learn+Data+Eval“ MuZero
variants of Section 4.2. Final performance results are shown in Figure 13 and learning curves are
shown in Figure 14.

L

L+
D

L+
D+

E

0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d
Re

wa
rd

Control

L

L+
D

L+
D+

E

0.00

0.25

0.50

0.75

1.00

Games
L

L+
D

L+
D+

E
0.00

0.25

0.50

0.75

1.00

Strategy

Effect of Reconstruction Loss by Search Method

Acrobot
Acrobot+obs
Cheetah
Cheetah+obs
Humanoid
Humanoid+obs
Mini PM
Mini PM+obs
Sokoban
Sokoban+obs

Figure 13: Contributions of planning to the performance of the “Learn (L)”, “Learn+Data
(L+D)”, and “Learn+Data+Eval (L+D+E)“ variants when training with and without an observation-
reconstruction loss. Variants trained with the reconstruction loss are denoted “+obs” in the legend.
Variants without the reconstruction loss are the same as those shown in Figure 10.

As shown by these figures, the performance of MuZero is relatively unchanged when using a recon-
struction loss. The two main effects of the reconstruction loss, as shown by these figures, are (1) that
learning consistently takes off faster when using the reconstruction loss (except in Humanoid) and
(2) that the reconstruction loss allows the “Learn” variant of Acrobot to obtain reward. This latter
point indicates that the model learned by “Learn” without the reconstruction loss is impoverished in
a way that causes compounding errors with forward credit assignment, as discussed in van Hasselt
et al. [73]. Overall, our results indicate that learning a model in observation space does not funda-
mentally alter the role of planning in MuZero but it does improve the fidelity of the model, which
can benefit planning. Given the connections between MuZero and MBRL in general, we postulate
that this conclusion holds true for other MBRL methods as well.

25

Published as a conference paper at ICLR 2021

0 1 2 3 4 5
Learner Steps 1e6

0

200

400

600

Re
wa

rd

Acrobot

L
L+obs
L+D
L+D+obs
L+D+E
L+D+E+obs

0 1 2 3 4 5
Learner Steps 1e6

0

200

400

600

800

Re
wa

rd

Cheetah

L
L+obs
L+D
L+D+obs
L+D+E
L+D+E+obs

0 1 2 3 4 5
Learner Steps 1e6

0

200

400

600

800

Re
wa

rd

Humanoid

L
L+obs
L+D
L+D+obs
L+D+E
L+D+E+obs

0.0 0.5 1.0 1.5 2.0
Learner Steps 1e5

0

100

200

300

Re
wa

rd

Mini PM

L
L+obs
L+D
L+D+obs
L+D+E
L+D+E+obs

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Learner Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Re
wa

rd

Sokoban

L
L+obs
L+D
L+D+obs
L+D+E
L+D+E+obs

Figure 14: Learning curves for the “Learn (L)”, “Learn+Data (L+D)”, and “Learn+Data+Eval
(L+D+E)“ variants when training with and without an observation-reconstruction loss. Variants
trained with the reconstruction loss are denoted “+obs” in the legend. The variants without the
reconstruction loss are the same as those shown in Section D.3.

D.2.2 OBSERVATION-RECONSTRUCTION LOSS IMPLEMENTATION DETAILS

To implement the reconstruction loss, we added a reconstruction function ôkθ,t = ρθ(s
k
t) to the model

µθ that takes in the hidden state st and generates a predicted observation ôkθ,t for the kth imagined
step after timestep t. The predicted observation is then fed into an additional term `ρ(ôkt , ot+k) in

26

Published as a conference paper at ICLR 2021

the MuZero loss (Equation 8). The parameters and architectures were lightly tuned on a subset of
these environments.

For the pixel-based environments (i.e., Minipacman and Sokoban), ρθ is a simple 3-layer convolu-
tional network with 3×3 kernels, 128 channels per layer, and ReLU activations feeding into a linear
layer with 3 channels and a sigmoid activation. The loss `ρ is the binary cross-entropy loss.

Similarly, for the state-based environments (i.e., Acrobot, Cheetah, and Humanoid), ρθ is a simple
feed-forward network with 3 linear layers of size [200, 100, |O|] and ELU activations, where |O| is
the size of the state vector. The output of this is fed into `ρ, which is an L2 loss.

D.3 BASELINE LEARNING CURVES

Figures 15, 16 17, 18, 19, 20, 21, 22 show the learning curves for each environment for each exper-
iment in the main body. In all plots, shaded regions indicate minimum and maximum seeds, while
lines show the median across seeds.

0 1 2 3 4 5
Learner Steps 1e6

0

200

400

600

R
ew

ar
d

Acrobot

1S
L
D
L+D
L+D+E

0 1 2 3 4 5
Learner Steps 1e6

0

50

100

150

200

250

300

R
ew

ar
d

Acrobot

Dtree
1
2
3
5

0 1 2 3 4 5
Learner Steps 1e6

0

50

100

150

200

250

300

R
ew

ar
d

Acrobot

DUCT
1
2
3
6

0 1 2 3 4 5
Learner Steps 1e6

0

100

200

300

R
ew

ar
d

Acrobot

B
2
3
5
10
20
50

Figure 15: Learning curves for Acrobot.

27

Published as a conference paper at ICLR 2021

0 1 2 3 4 5
Learner Steps 1e6

0

200

400

600

800

R
ew

ar
d

Cheetah

1S
L
D
L+D
L+D+E

0 1 2 3 4 5
Learner Steps 1e6

0

200

400

600

800

R
ew

ar
d

Cheetah

Dtree
1
2
3
5

0 1 2 3 4 5
Learner Steps 1e6

0

200

400

600

800

R
ew

ar
d

Cheetah

DUCT
1
2
3
6

0 1 2 3 4 5
Learner Steps 1e6

0

200

400

600

800

R
ew

ar
d

Cheetah

B
2
3
5
10
20
50

Figure 16: Learning curves for Cheetah.

0 1 2 3 4 5
Learner Steps 1e6

0

200

400

600

800

R
ew

ar
d

Humanoid

1S
L
D
L+D
L+D+E

0 1 2 3 4 5
Learner Steps 1e6

0

200

400

600

800

R
ew

ar
d

Humanoid

Dtree
1
2
3
5

0 1 2 3 4 5
Learner Steps 1e6

0

200

400

600

800

R
ew

ar
d

Humanoid

DUCT
1
2
3
6

0 1 2 3 4 5
Learner Steps 1e6

0

200

400

600

800

R
ew

ar
d

Humanoid

B
2
3
5
10
20
50

Figure 17: Learning curves for Humanoid.

28

Published as a conference paper at ICLR 2021

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Learner Steps 1e5

0

10000

20000

30000

R
ew

ar
d

Hero

1S
L
D
L+D
L+D+E

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Learner Steps 1e5

0

10000

20000

30000

40000

50000

R
ew

ar
d

Hero

Dtree
1
2
3
5

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Learner Steps 1e5

0

10000

20000

30000

40000

R
ew

ar
d

Hero

DUCT
1
2
3
6

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Learner Steps 1e5

0

10000

20000

30000

R
ew

ar
d

Hero

B
2
3
5
10
20
50

Figure 18: Learning curves for Hero.

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Learner Steps 1e5

0

10000

20000

30000

40000

50000

R
ew

ar
d

Ms. PM

1S
L
D
L+D
L+D+E

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Learner Steps 1e5

0

10000

20000

30000

40000

50000

R
ew

ar
d

Ms. PM

Dtree
1
2
3
5

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Learner Steps 1e5

0

10000

20000

30000

40000

50000

R
ew

ar
d

Ms. PM

DUCT
1
2
3
6

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Learner Steps 1e5

0

10000

20000

30000

R
ew

ar
d

Ms. PM

B
2
3
5
10
20
50

Figure 19: Learning curves for Ms. Pacman.

29

Published as a conference paper at ICLR 2021

0.0 0.5 1.0 1.5 2.0
Learner Steps 1e5

0

100

200

300

R
ew

ar
d

Mini PM

1S
L
D
L+D
L+D+E

0.0 0.5 1.0 1.5 2.0
Learner Steps 1e5

0

100

200

300

R
ew

ar
d

Mini PM

Dtree
1
2
3
5

0.0 0.5 1.0 1.5 2.0
Learner Steps 1e5

0

50

100

150

200

250

300

R
ew

ar
d

Mini PM

DUCT
1
2
3
6

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Learner Steps 1e5

0

100

200

300

R
ew

ar
d

Mini PM

B
2
3
5
10
20
50

Figure 20: Learning curves for Minipacman.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Learner Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

R
ew

ar
d

Sokoban

1S
L
D
L+D
L+D+E

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Learner Steps 1e5

0.0

0.2

0.4

0.6

0.8

R
ew

ar
d

Sokoban

Dtree
1
2
3
5

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Learner Steps 1e5

0.0

0.2

0.4

0.6

0.8

R
ew

ar
d

Sokoban

DUCT
1
2
3
6

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Learner Steps 1e5

0.0

0.2

0.4

0.6

0.8

R
ew

ar
d

Sokoban

B
2
3
5
10
20
50

Figure 21: Learning curves for Sokoban.

30

Published as a conference paper at ICLR 2021

0.0 0.2 0.4 0.6 0.8 1.0
Learner Steps 1e5

0.0

0.2

0.4

0.6

0.8

R
ew

ar
d

9x9 Go

1S
L
D
L+D
L+D+E

0.0 0.2 0.4 0.6 0.8 1.0
Learner Steps 1e5

0.0

0.1

0.2

0.3

0.4

R
ew

ar
d

9x9 Go

Dtree
1
2
3
5

0.0 0.2 0.4 0.6 0.8 1.0
learner_steps 1e5

0.0

0.1

0.2

0.3

0.4

m
ed

ia
n

UCT depth

K1
1.0
2.0
3.0
5.0
6.0
10.0
20.0
50.0
99999999.0

0.0 0.2 0.4 0.6 0.8 1.0
learner_steps 1e5

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

m
ed

ia
n

Search Budget

n_sims
2
3
5
10
20
50
100

Figure 22: Learning curves for Go, including extra experiments on search budget and DUCT.

D.4 BASELINE VALUES

Table 7: Values obtained by the baseline vanilla MuZero agent (corresponding to the
“Learn+Data+Eval” agent in Figure 3), computed from the average of the last 10% of scores seen
during training. Shown are the median across ten seeds, as well as the worst and best seeds. Median
values are used to normalize the results in Figure 3.

Median Worst Seed Best Seed
Acrobot 620.07 590.66 632.83
Cheetah 885.57 868.04 904.64
Humanoid 787.98 712.33 863.27
Hero 29916.97 16104.65 37180.81
Ms. Pacman 45346.71 41840.45 50584.15
Minipacman 310.1 304.31 318.58
Sokoban 0.97 0.96 0.98
9x9 Go 0.72 0.7 0.77

Table 8: Values obtained by MuZero at the very start of training (i.e., with a randomly initialized
policy). Values are computed from the average of the first 1% of scores seen during training. Shown
are the median across ten seeds, as well as the worst and best seeds. Median values are used to
normalize the results in Figure 3.

Median Worst Seed Best Seed
Acrobot 0.54 0.17 1.26
Cheetah 6.48 2.6 42.54
Humanoid 5.36 3.22 9.92
Hero 7.98 0.0 364.96
Ms. Pacman 247.93 169.99 315.68
Minipacman 6.8 3.71 10.4
Sokoban 0.0 0.0 0.0
9x9 Go 0.0 0.0 0.06

31

Published as a conference paper at ICLR 2021

Table 9: Values obtained by a version of MuZero that uses no search at evaluation time (correspond-
ing to the “Learn+Data” agent in Figure 3). Shown are the median across ten seeds, as well as the
worst and best seeds. Median values are used to normalize the results in Figure 4.

Median Worst Seed Best Seed
Acrobot 202.66 139.01 290.64
Cheetah 839.59 591.52 896.61
Humanoid 692.05 426.25 799.85
Hero 29970.25 14059.2 37245.22
Ms. Pacman 41959.6 33780.17 49255.98
Minipacman 300.25 297.61 302.36
Sokoban 0.85 0.77 0.88
9x9 Go 0.4 0.34 0.44

Table 10: Values obtained by a baseline vanilla MuZero agent, evaluated offline from a checkpoint
saved at the very end of training. For each seed, values are the average over 50 (control tasks and
Atari) or 1000 episodes (Minipacman and Sokoban). These values are used to normalize the results
in Figure 5 and Figure 6. Note that for Minipacman, the scores reported here are for agents that were
both trained and tested on either the in-distribution mazes or the out-of-distribution mazes. Shown
are the median across ten seeds, as well as the worst and best seeds.

Median Worst Seed Best Seed
Acrobot 558.18 366.84 625.72
Cheetah 896.56 806.24 905.91
Humanoid 790.8 704.95 867.8
Hero 32545.4 19350.8 37234.2
Ms. Pacman 45145.0 42776.6 54206.4
Minipacman (In-Distribution) 319.81 312.87 331.37
Minipacman (Out-of-Distribution) 498.68 494.05 504.19
Sokoban 0.96 0.94 0.97

32

Published as a conference paper at ICLR 2021

D.5 OVERALL CONTRIBUTIONS OF PLANNING

Table 11: Values in Figure 3. Each column shows scores where 0 corresponds to the reward obtained
by a randomly initialized agent (Table 8) and 100 corresponds to full MuZero (“Learn+Data+Eval”,
Table 7).

Learn Data Learn+Data
Acrobot -0.1 27.7 32.6
Cheetah 88.8 75.7 94.8
Humanoid 77.3 86.2 87.7
Hero 91.9 109.4 100.3
Ms. Pacman 46.0 57.7 92.5
Minipacman 67.6 104.9 96.8
Sokoban 69.4 0.0 88.1
9x9 Go 48.8 34.5 55.5

Median 68.5 66.7 90.3

Table 12: Effect of the different contributions of search, modeled as Reward ∼ Environment
+ TrainUpdate * TrainAct + TestAct over N = 400 data points, using the levels for
each variable as defined in the table in Figure 3. This ANOVA indicates that both the environment,
model-based learning, model-based acting during training, and model-based acting during testing
are all significant predictors of reward. We did not detect an interaction between model-based learn-
ing and model-based acting during learning.

Variable Statistic Strength of Evidence
Environment F (7, 388) = 70.95, p < 0.001 ***
TrainUpdate F (1, 388) = 175.93, p < 0.001 ***
TrainAct F (1, 388) = 146.73, p < 0.001 ***
TestAct F (1, 388) = 59.32, p < 0.001 ***
TrainUpdate:TrainAct F (1, 388) = 1.15, p = 0.28

TrainUpdate (MB - MF) t = 4.42, p < 0.001, N1 = 240, N2 = 160 ***
TrainAct (MB - MF) t = 5.11, p < 0.001, N1 = 240, N2 = 160 ***
TestAct (MB - MF) t = 6.83, p < 0.001, N1 = 80, N2 = 320 ***

D.6 PLANNING FOR LEARNING

33

Published as a conference paper at ICLR 2021

Table 13: Effect of tree depth, Dtree, modeled as Reward ∼ Environment * log(Dtree) over
N = 375 data points. Where Dtree = ∞, we used the value for the maximum possible depth
(i.e. the search budget). Top: this ANOVA indicates that both the environment and tree depth
are significant predictors of reward, and that there is an interaction between environment and tree
depth. Bottom: individual Spearman rank correlations between reward and log(Dtree) for each
environment. p-values are adjusted for multiple comparisons using the Bonferroni correction.

Variable Statistic Strength of Evidence
Environment F (7, 359) = 25.23, p < 0.001 ***
log(Dtree) F (1, 359) = 22.95, p < 0.001 ***
Environment:log(Dtree) F (7, 359) = 12.99, p < 0.001 ***

Acrobot ρ = 0.55, p < 0.001, N = 50 ***
Cheetah ρ = −0.14, p = 1.00, N = 50
Humanoid ρ = −0.01, p = 1.00, N = 50
Hero ρ = −0.27, p = 0.49, N = 50
Ms. Pacman ρ = 0.52, p < 0.001, N = 50 ***
Minipacman ρ = −0.88, p < 0.001, N = 50 ***
Sokoban ρ = 0.59, p < 0.001, N = 50 ***
9x9 Go ρ = 0.96, p < 0.001, N = 25 ***

Table 14: Effect of exploration vs. exploitation depth, DUCT, modeled as Reward ∼
Environment * log(DUCT) over N = 375 data points. Where DUCT = ∞, we used the
value for the maximum possible depth (i.e. the search budget). Top: this ANOVA indicates that
neither the environment nor exploration vs. exploitation depth are significant predictors of reward.
Bottom: individual Spearman rank correlations between reward and log(DUCT) for each environ-
ment. p-values are adjusted for multiple comparisons using the Bonferroni correction. The main
effects are primarily driven by Go.

Variable Statistic Strength of Evidence
Environment F (7, 359) = 71.96, p < 0.001 ***
log(DUCT) F (1, 359) = 13.06, p < 0.001 ***
Environment:log(DUCT) F (7, 359) = 15.55, p < 0.001 ***

Acrobot ρ = 0.15, p = 1.00, N = 50
Cheetah ρ = −0.25, p = 0.65, N = 50
Humanoid ρ = −0.05, p = 1.00, N = 50
Hero ρ = −0.00, p = 1.00, N = 50
Ms. Pacman ρ = −0.26, p = 0.56, N = 50
Minipacman ρ = −0.06, p = 1.00, N = 50
Sokoban ρ = −0.02, p = 1.00, N = 50
9x9 Go ρ = 0.52, p = 0.06, N = 25 .

34

Published as a conference paper at ICLR 2021

Table 15: Effect of the training search budget, B, on the strength of the policy prior, modeled
as Reward ∼ Environment * log(B) + log(B)2 over N = 450 data points. Top: this
ANOVA indicates that the environment and budget are significant predictors of reward, and that
there is a second-order effect of the search budget, indicating that performance goes down with too
many simulations. Additionally, there is an interaction between environment and budget. Bottom:
individual Spearman rank correlations between reward and log(B) for each environment. p-values
are adjusted for multiple comparisons using the Bonferroni correction. Note that the correlation for
Go does not include values for B > 50 (and thus is largely flat, since Go does not learn for small
values of B).

Variable Statistic Strength of Evidence
Environment F (7, 433) = 45.45, p < 0.001 ***
log(B) F (1, 433) = 593.90, p < 0.001 ***
log(B)2 F (1, 433) = 121.70, p < 0.001 ***
Environment:log(B) F (7, 433) = 11.64, p < 0.001 ***

Acrobot ρ = 0.76, p < 0.001, N = 60 ***
Cheetah ρ = 0.76, p < 0.001, N = 60 ***
Humanoid ρ = 0.88, p < 0.001, N = 60 ***
Hero ρ = 0.75, p < 0.001, N = 60 ***
Ms. Pacman ρ = 0.61, p < 0.001, N = 60 ***
Minipacman ρ = 0.70, p < 0.001, N = 60 ***
Sokoban ρ = 0.87, p < 0.001, N = 60 ***
9x9 Go ρ = 0.48, p = 0.05, N = 30 .

35

Published as a conference paper at ICLR 2021

D.7 PLANNING FOR GENERALIZATION

Table 16: Effect the evaluation search budget, B, on generalization reward when using the learned
model with MCTS, modeled as Reward ∼ Environment * log(B) over N = 350 data
points. Top: this ANOVA indicates that the environment and budget are significant predictors of
reward, and that there is an interaction between environment and budget. Bottom: individual Spear-
man rank correlations between reward and log(B) for each environment. p-values are adjusted for
multiple comparisons using the Bonferroni correction.

Variable Statistic Strength of Evidence
Environment F (6, 336) = 13.03, p < 0.001 ***
log(B) F (1, 336) = 9.31, p = 0.002 **
Environment:log(B) F (6, 336) = 31.50, p < 0.001 ***

Acrobot ρ = 0.77, p < 0.001, N = 50 ***
Cheetah ρ = 0.25, p = 0.58, N = 50
Humanoid ρ = 0.32, p = 0.17, N = 50
Hero ρ = −0.12, p = 1.00, N = 50
Ms. Pacman ρ = −0.23, p = 0.73, N = 50
Minipacman ρ = −0.39, p = 0.03, N = 50 *
Sokoban ρ = 0.72, p < 0.001, N = 50 ***

Table 17: Effect the evaluation search budget, B, on generalization reward when using the simulator
with MCTS, modeled as Reward ∼ Environment * log(B) over N = 350 data points. Top:
this ANOVA indicates that the environment and budget are significant predictors of reward, and
that there is an interaction between environment and budget. Bottom: individual Spearman rank
correlations between reward and log(B) for each environment. p-values are adjusted for multiple
comparisons using the Bonferroni correction.

Variable Statistic Strength of Evidence
Environment F (6, 336) = 87.02, p < 0.001 ***
log(B) F (1, 336) = 271.62, p < 0.001 ***
Environment:log(B) F (6, 336) = 89.38, p < 0.001 ***

Acrobot ρ = 0.82, p < 0.001, N = 50 ***
Cheetah ρ = 0.76, p < 0.001, N = 50 ***
Humanoid ρ = 0.48, p = 0.003, N = 50 **
Hero ρ = 0.08, p = 1.00, N = 50
Ms. Pacman ρ = 0.97, p < 0.001, N = 50 ***
Minipacman ρ = 0.46, p = 0.005, N = 50 **
Sokoban ρ = 0.95, p < 0.001, N = 50 ***

Table 18: Rank correlations between the search budget,B, and generalization reward in Minipacman
for different types of mazes and models. p-values are adjusted for multiple comparisons using the
Bonferroni correction.

Scene Type Model Type Correlation Strength of Evidence
In-distribution Learned model ρ = −0.54, p < 0.001, N = 180 ***
Out-of-distribution Learned model ρ = −0.54, p < 0.001, N = 180 ***
In-distribution Simulator ρ = 0.25, p = 0.002, N = 180 **
Out-of-distribution Simulator ρ = 0.33, p < 0.001, N = 180 ***

36

Published as a conference paper at ICLR 2021

Table 19: Effect the evaluation search budget (B), the number of unique training mazes (M), and
test level on generalization reward in Minipacman when using the simulator with MCTS, modeled
as Reward ∼ log(M) * log(B) + Test Level over N = 360 data points. This ANOVA
indicates that the both the number of training mazes and the search budget are significant predictors
of reward, and that there is an interaction between them.

Variable Statistic Strength of Evidence
Test Level F (1, 355) = 11.23, p < 0.001 ***
log(M) F (1, 355) = 660.98, p < 0.001 ***
log(B) F (1, 355) = 204.29, p < 0.001 ***
log(B):log(M) F (1, 355) = 108.80, p < 0.001 ***

37

	Background and Related Work
	Preliminaries: Overview of MuZero
	Hypotheses and Experimental Methods
	Results
	Baselines
	Overall Contributions of Planning
	Planning for Learning
	Generalization in Planning

	Discussion
	MuZero Algorithm Details
	MuZero pseudocode
	Model details
	MCTS details
	Training details

	Further Implementation Details
	Depth-limited MCTS
	MuZero Variants
	Regularized policy updates (MPO) with MCTS
	Breadth-first search

	Environment and Architecture Details
	Minipacman
	Mazes
	Network architecture

	Atari
	Control Suite
	Sokoban
	9x9 Go

	Additional Results and Analysis
	Extensions to figures in main paper
	MuZero with observation-reconstruction loss
	Overall contributions of planning with reconstruction loss
	Observation-reconstruction loss implementation details

	Baseline learning curves
	Baseline values
	Overall contributions of planning
	Planning for learning
	Planning for generalization

