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ABSTRACT

It is commonly believed that in transfer learning including more pre-training
data translates into better performance. However, recent evidence suggests that
removing data from the source dataset can actually help too. In this work, we take
a closer look at the role of the source dataset’s composition in transfer learning
and present a framework for probing its impact on downstream performance. Our
framework gives rise to new capabilities such as pinpointing transfer learning
brittleness as well as detecting pathologies such as data-leakage and the presence
of misleading examples in the source dataset. In particular, we demonstrate that
removing detrimental datapoints identified by our framework indeed improves
transfer learning performance from ImageNet on a variety of target tasks.

1 INTRODUCTION

Transfer learning enables us to adapt a model trained on a source dataset to perform better on a
downstream farget task. This technique is employed in a range of machine learning applications
including radiology (Wang et al., 2017; Ke et al., 2021), autonomous driving (Kim & Park, 2017;
Du et al,, 2019), and satellite imagery analysis (Xie et al., 2016; Wang et al., 2019). Despite its
successes, however, it is still not clear what the drivers of performance gains brought by transfer
learning actually are.

So far, a dominant approach to studying these drivers focused on the role of the source model—i.e., the
model trained on the source dataset. The corresponding works involve investigating the source model’s
architecture (Ke et al., 2021), accuracy (Kornblith et al., 2019), adversarial vulnerability (Salman
et al., 2020; Utrera et al., 2020), and training procedure (Jang et al., 2019; Kumar et al., 2022). This
line of work makes it clear that the properties of the source model has a significant impact on transfer
learning. There is some evidence, however, that the source dataset might play an important role as
well (Huh et al., 2016; Ngiam et al., 2018; Kolesnikov et al., 2019). For example, several works
have shown that while increasing the size of the source dataset generally boosts transfer learning
performance, removing specific classes can help too (Huh et al., 2016; Ngiam et al., 2018; Kolesnikov
et al., 2019). All of this motivates a natural question:

How can we pinpoint the exact impact of the source dataset in transfer learning?

Our Contributions. In this paper, we present a framework for measuring and analyzing the impact
of the source dataset’s composition on transfer learning performance. To do this, our framework
provides us with the ability to investigate the counterfactual impact on downstream predictions
of including or excluding datapoints from the source dataset, drawing inspiration from classical
supervised learning techniques such as influence functions (Cook & Weisberg, 1982; Koh & Liang,
2017; Feldman & Zhang, 2020) and datamodels (Ilyas et al., 2022). Using our framework, we can:

* Pinpoint what parts of the source dataset are most utilized by the downstream task.

* Automatically extract granular subpopulations in the target dataset through projection of the
fine-grained labels of the source dataset.

 Surface pathologies such as source-target data leakage and mislabelled source datapoints.
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We also demonstrate how our framework can be used to find detrimental subsets of ImageNet (Deng
et al., 2009) that, when removed, give rise to better downstream performance on a variety of image
classification tasks.

2 A DATA-BASED FRAMEWORK FOR STUDYING TRANSFER LEARNING

In order to pinpoint the role of the source dataset in transfer learning, we need to understand how the
composition of that source dataset impacts the downstream model’s performance. To do so, we draw
inspiration from supervised machine learning approaches that study the impact of the training data on
the model’s subsequent predictions. In particular, these approaches capture this impact via studying
(and approximating) the counterfactual effect of excluding certain training datapoints. This paradigm
underlies a number of techniques, from influence functions (Cook & Weisberg, 1982; Koh & Liang,
2017; Feldman & Zhang, 2020), to datamodels (Ilyas et al., 2022), to data Shapley values (Kwon &
Zou, 2021; Karlas et al., 2022; Ghorbani & Zou, 2019).

Now, to adapt this paradigm to our setting, we study the counterfactual effect of excluding datapoints
from the source dataset on the downstream, target task predictions. In our framework, we will
focus on the inclusion or exclusion of entire classes in the source dataset, as opposed to individual
examples'. This is motivated by the fact that, intuitively, we expect these classes to be the ones that
embody whole concepts and thus drive the formation of (transferred) features. We therefore anticipate
the removal of entire classes to have a more measurable impact on the representation learned by the
source model (and consequently on the downstream model’s predictions).

Once we have chosen to focus on removal of entire source classes, we can design counterfactual
experiments to estimate their influences. A natural approach here, the leave-one-out method (Cook &
Weisberg, 1982; Koh & Liang, 2017), would involve removing each individual class from the source
dataset separately and then measuring the change in the downstream model’s predictions. However,
in the transfer learning setting, we suspect that removing a single class from the source dataset won’t
significantly change the downstream model’s performance. Thus, leave-one-out methodology may be
able to capture meaningful influences only in rare cases. This is especially so as many common source
datasets contain highly redundant classes. For example, ImageNet contains over 100 dog-breed
classes. The removal of a single dog-breed class might thus have a negligible impact on transfer
learning performance, but the removal of all of the dog classes might significantly change the features
learned by the downstream model. For these reasons, we adapt the subsampling (Feldman & Zhang,
2020; Ilyas et al., 2022) approach, which revolves around removing a random collection of source
classes at once.

Computing transfer influences. In the light of the above, our methodology for computing the
influence of source classes on transfer learning performance involves training a large number of
models with random subsets of the source classes removed, and fine-tuning these models on the target
task. We then estimate the influence value of a source class C on a target example ¢ as the expected
difference in the transfer model’s performance on example ¢ when class C was either included in or
excluded from the source dataset:

IfllC — ] = Es [f(t:5) | C € S] —Es [f(t:S) | C ¢ S]. (1)

where f(t; S) is the softmax output’ of a model trained on a subset S of the source dataset. A positive
influence value indicates that including the source class C helps the model predict the target example ¢
correctly. On the other hand, a negative influence value suggests that the source class C actually hurts
the model’s performance on the target example ¢t. We outline the overall procedure in Algorithm 1,
and defer a detailed description of our approach to Appendix A.

A note on computational costs. In order to compute transfer influences, we need to train a large
number of source models, each on a fraction of the source dataset. Specifically, we pre-train 7,540
models on ImageNet, each on a randomly chosen 50% of the ImageNet dataset. This pre-training

'In Section 4.3, we adapt our framework to calculate more granular influences of individual source examples
too.

>We experiment with other outputs such as logits, margins, or correctness too. We discuss the corresponding
results in Appendix B.
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Algorithm 1 Estimation of source dataset class influences on transfer learning performance.

Require: Source dataset S = UK, Ci (with K classes), a target dataset 7 = (t1,t2, - ,tn),
training algorithm A4, subset ratio o, and number of models m
1: Sample m random subsets S, Sa, -+, .S, C S of size v - |S|:
2: fori € 1tomdo
3: Train model f; by running algorithm .4 on S;
4: end for
5. for k € 1to K do
6: for j € 1ton do
SOty fi(ts38:)1c, cs, Doieq fit55:) e, ¢ s,
7: InfliCy, — t;] = === kool =ie ket
[ k J] 21 1lecs; Ei:l leygs;
8: end for
9: end for
10: return Infl[C;, — ¢;], forall j € [n], k € [K]
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Figure 1: Most positive and negative ImageNet classes ordered based on their overall influence
on the CIFAR-10 dataset. The top source classes (e.g., tailed frog and sorrel horse) turn out to be
semantically relevant to the target classes (e.g., frog and horse).

step needs to be performed only once though: these same models can then be used to fine-tune on
each new target task. Overall, the whole process (training the source models and fine-tuning on target
datasets) takes less than 20 days using 8 V100 GPUs?.

Are so many models necessary? In Section A.5, we explore computing transfer influences with
smaller numbers of models. While using the full number of models provides the best results, training
a much smaller number of models (e.g., 1000 models, taking slightly over 2.5 days on 8§ V100 GPUs)
still provides meaningful transfer influences. Thus in practice, one can choose the number of source
models based on noise tolerance and computational budget. Further convergence results can be found
in Appendix A.S.

3 IDENTIFYING THE MOST INFLUENTIAL CLASSES OF THE SOURCE DATASET

In Section 2, we presented a framework for pinpointing the role of the source dataset in transfer
learning by estimating the influence of each source class on the target model’s predictions. Using
these influences, we can now take a look at the classes from the source dataset that have the largest
positive or negative impact on the overall transfer learning performance. We focus our analysis on the
fixed-weights transfer learning setting (and defer results for full model fine-tuning to Appendix E).

As one might expect, not all source classes have large influences. Figure 1 displays the most influential
classes of ImageNet with CIFAR-10 as the target task. Notably, the most positively influential source
classes turn out to be directly related to classes in the target task (e.g., the ImageNet label “tailed
frog” is an instance of the CIFAR class “frog”). This trend holds across all of the target datasets
and transfer learning settings we considered (see Appendix C). Interestingly, the source dataset also
contains classes that are overall negatively influential for the target task (e.g., “bookshop” and “‘jigsaw

3Details are in Appendix A.
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(a) CIFAR-10 results (b) Summary of 11 target tasks

Figure 2: Target task accuracies after removing the K most positively or negatively influential
ImageNet classes from the source dataset. Mean/std are reported over 10 runs. (a) Results with
CIFAR-10 as the target task after removing different numbers of classes from the source dataset. We
also include baselines of using the full ImageNet dataset and removing random classes. One can note
that, by removing negatively influential source classes, we can obtain a test accuracy that is 2.5%
larger than what using the entire ImageNet dataset would yield. Results for other target tasks can be
found in Appendix C. (b) Peak performances when removing the most negatively influential source
classes across a range of other target tasks. We compare against using the full ImageNet dataset or a
relevant subset of classes (hand-picked, see Appendix A for details).
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Figure 3: Most positive and negative influencing ImageNet classes for the CIFAR-10 class “bird”.
These are calculated by averaging the influence of each source class over all bird examples. We find
that the most positively influencing ImageNet classes (e.g., “ostrich” and “bustard”) are related to the
CIFAR-10 class “bird”. See Appendix E for results on other CIFAR-10 classes.

puzzle” classes). (In Section 4, we will take a closer look at the factors that can cause a source class
to be negatively influential for a target prediction.)

How important are the most influential source classes? We now remove each of the most influ-
ential classes from the source dataset to observe their actual impact on transfer learning performance
(Figure 2a). As expected, removing the most positively influential classes severely degrades transfer
learning performance as compared to removing random classes. This counterfactual experiment
confirms that these classes are indeed important to the performance of transfer learning. On the other
hand, removing the most negatively influential classes actually improves the overall transfer learning
performance beyond what using the entire ImageNet dataset provides (see Figure 2b).

4 PROBING THE IMPACT OF THE SOURCE DATASET ON TRANSFER LEARNING

In Section 3, we developed a methodology for identifying source dataset classes that have the most
impact on transfer learning performance. Now, we demonstrate how this methodology can be extended
into a framework for probing and understanding transfer learning, including: (1) identifying granular
target subpopulations that correspond to source classes, (2) debugging transfer learning failures, and
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Figure 4: Projecting source labels onto the target datset. The CIFAR 10 images that were most

positively influenced by the ImageNet classes “ostrich”, “fire englne” “cab”, and “Japanese Spaniel.”
We find that these images look similar to the corresponding images in the source dataset.

(3) detecting data leakage between the source and target datasets. We focus our demonstration of these
capabilities on a commonly-used transfer learning setting: ImageNet to CIFAR-10 (experimental
details are in Appendix A).

4.1 CAPABILITY 1: EXTRACTING TARGET SUBPOPULATIONS BY PROJECTING SOURCE CLASS
LABELS

Imagine that we would like to find all the ostriches in the CIFAR-10 dataset. This is not an easy task
as CIFAR-10 only has “bird” as a label, and thus lacks sufficiently fine-grained annotations. Luckily,
however, ImageNet does contain an ostrich class! Our computed influences enable us to “project” this
ostrich class annotation (and, more broadly, the fine-grained label hierarchy of our source dataset) to
find this subpopulation of interest in the target dataset.

Indeed, our examination from Section 3 suggests that the most positively influencing source classes
are typically those that directly overlap with the target classes (see Figure 1). In particular, for our
example, “ostrich” is highly positively influential for the “bird” class (see Figure 3). To find ostriches
in the CIFAR-10 dataset, we thus need to simply surface the CIFAR-10 images which were most
positively influenced by the “ostrich” source class (see Figure 4).

It turns out that this type of projection approach can be applied more broadly. Even when the
source class is not a direct sub-type of a target class, the downstream model can still leverage salient



Under review as a conference paper at ICLR 2023

Starfish Rapeseed

| —
Tl

/
-

ImageNet
Images

| A
‘ . | |
A

Most
Positively
Influenced
CIFAR-10
Images

Most
Negatively
Influenced

CIFAR-10
Images

BE AR P

AN R

a
o
>

W& [EE &

Figure 5: The CIFAR-10 images that were most positively (or negatively) influenced by the ImageNet
classes “starfish” and “rapeseed.” CIFAR-10 images that are highly influenced by the “starfish” class
have similar shapes, while those influenced by “rapeseed” class have yellow-green colors.

features from this class — such as shape or color — to predict on the target dataset. For such classes,
projecting source labels can extract target subpopulations which share such features. To illustrate
this, in Figure 5, we display the CIFAR-10 images that are highly influenced by the classes “starfish”
and “rapeseed” (both of which do not directly appear in the CIFAR-10 dataset). For these classes, the
most influenced CIFAR-10 images share the same shape (“starfish™) or color (“rapeseed”) as their
ImageNet counterparts. More examples of such projections can be found in Appendix E.

4.2 CAPABILITY 2: DEBUGGING THE FAILURES OF A TRANSFERRED MODEL

Our framework enables us to also reason about the possible mistakes of the transferred model caused
by source dataset classes. For example, consider the CIFAR-10 image of a dog in Figure 6, which our
transfer learning model often mispredicts as a horse. Using our framework, we can demonstrate that
this image is strongly negatively influenced by the source class “sorrel horse.” Thus, our downstream
model may be misusing a feature introduced by this class. Indeed, once we remove “sorrel horse”
from the source dataset, our model predicts the correct label more frequently. (See Appendix E for
more examples, as well as a quantitative analysis of this experiment.)

4.3 CAPABILITY 3: DETECTING DATA LEAKAGE AND MISLEADING SOURCE EXAMPLES

Thus far, we have focused on how the classes in the source dataset influence the predictions of
the transferred model on target examples. In this section, we extend our analysis to the individual
datapoints of the source dataset. We do so by adapting our approach to measure the influence of
each individual source datapoint on each target datapoint. Further details on how these influences are
computed can be found in Appendix D.

Figure 7 displays the ImageNet training examples that have highly positive or negative influences on
CIFAR-10 test examples. We find that the source images that are highly positively influential are often
instances of data leakage between the source training set and the target test set. On the other hand,
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Figure 6: Pinpointing highly negatively influential source classes can help explain model mistakes.
Left: For two CIFAR-10 images, we plot the most negatively influential source classes. Right: Over
20 runs, the fraction of times that our downstream model predicts each label for the given CIFAR-10
image. When the most negatively influential class is removed, the model predicts the correct label
more frequently. More examples can be found in Appendix E.

the ImageNet images that are highly negatively influential are typically mislabeled, misleading, or
otherwise surprising. For example, the presence of the ImageNet image of a flying lawnmower hurts
the performance on a CIFAR-10 image of a regular (but similarly shaped) airplane (see Figure 7).

5 RELATED WORK

Transfer learning. Transfer learning is a technique commonly used in domains ranging from
medical imaging (Mormont et al., 2018; Ke et al., 2021), language modeling (Conneau & Kiela,
2018), to object detection (Ren et al., 2015; Dai et al., 2016; Girshick et al., 2014; Chen et al., 2017).
Therefore, there has been considerable interest in understanding the drivers of transfer learning’s
success. For example, by performing transfer learning on block-shuffled images, Neyshabur et al.
(2020) demonstrate that at least some of the benefits of transfer learning come from low-level image
statistics of source data. There is also an important line of work studying transfer learning by
investigating the relationship between different properties of the source model and performance on
the target task (Ke et al., 2021; Kornblith et al., 2019; Salman et al., 2020; Utrera et al., 2020).

The works that are the most relevant to ours are those which studied how modifying the source
dataset can affect the downstream performance. For example, Kolesnikov et al. (2019) showed that
pre-training with an enormous source dataset (approximately 300 million) of noisily labeled images
can outperform pre-training with ImageNet. Azizpour et al. (2015); Huh et al. (2016) investigated the
importance of the number of classes and the number of images per class in transfer learning. Finally,
Ngiam et al. (2018) demonstrated that more pre-training data does not always help, and transfer
learning can be sensitive to the choice of pre-training data. They also presented a framework for
reweighting the source datapoints in order to boost transfer learning performance.

Influence functions and datamodels. Influence functions are well-studied statistical tools that
have been recently applied in machine learning settings (Hampel et al., 2011; Cook & Weisberg, 1982;
Koh & Liang, 2017). For a given model, influence functions analyze the effect of a training input on
the model’s predictions by estimating the expected change in performance when this training input
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Figure 7: ImageNet training images with highest positive (left) or negative (right) example-wise
(average) influences on CIFAR-10 test images. We find that ImageNet images that are highly
positively influential often correspond to data leakage, while ImageNet images that are highly
negatively influential are often either mislabeled, ambiguous, or otherwise misleading. For example,
the presence of a flying lawnmower in the ImageNet dataset hurts the downstream performance on a
similarly shaped airplane (boxed).

is added or removed. In order to apply this tool in machine learning, Koh & Liang (2017) propose
estimating the influence functions using the Hessian of the loss function. A recent line of work
estimates this quantity more efficiently by training on different subsets of the training set (Feldman &
Zhang, 2020). In a similar vein, Ghorbani & Zou (2019) proposed running a Monte Carlo search
to estimate the effect of every training input via Shapley values. More recently, Ilyas et al. (2022)
proposed datamodeling framework as an alternative way to estimate the effect of a training input
on the models’ prediction. Datamodels are represented using parametric functions (typically, linear
functions) that aim to map a subset of the training set to the model’s output.

6 CONCLUSIONS

In this work, we presented a new framework for examining the impact of the source dataset in transfer
learning. Specifically, our approach estimates the influence of a source class (or datapoint) that
captures how including that class (or datapoint) in the source dataset impacts the downstream model’s
predictions. Leveraging these estimates, we demonstrate that we can improve the transfer learning
performance on a range of downstream tasks by identifying and removing detrimental datapoints
from the source dataset. Furthermore, our framework enables us to identify granular subpopulations
in the target dataset by projecting fine-grained labels from the source dataset, better understand model
failures on the downstream task and detect potential data-leakages from the source to the downstream
dataset. We believe our framework provides a new perspective on transfer learning: one that enables
us to perform a fine-grained analysis of the impact of the source dataset.
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A EXPERIMENTAL SETUP

A.1 IMAGENET MODELS

In this paper, we train a large number of models on various subsets of ImageNet in order to estimate
the influence of each class of ImageNet on the model’s transfer performance for multiple downstream
tasks. We focus on the ResNet-18 architecture from PyTorch’s official implementation found here
https://pytorch.org/vision/stable/models.html®.

Training details. We fix the training procedure for all of our models. Specifically, we train our
models from scratch using SGD to minimize the standard cross-entropy multi-class classification
loss. We use a batch size of 1024, momentum of 0.9, and weight decay of 5 x 10~%. The models
are trained for 16 epochs using a Cyclic learning rate schedule with an initial learning rate of 0.5
and learning rate peak epoch of 2. We use standard data-augmentation: RandomResizedCrop and
RandomHorizontalFlip during training, and RandomResizedCrop during testing. Our implementation
and configuration files are attached to the submission.

A.2 IMAGENET TRANSFER TO CLASSIFICATION DATASETS

Dataset Classes Train Size Test Size
Birdsnap (Berg et al., 2014) 500 32,677 8,171
Caltech-101 (Fei-Fei et al., 2004) 101 3,030 5,647
Caltech-256 (Griffin et al., 2007) 257 15,420 15,187
CIFAR-10 (Krizhevsky, 2009) 10 50,000 10,000
CIFAR-100 (Krizhevsky, 2009) 100 50,000 10,000
FGVC Aircraft (Maji et al., 2013) 100 6,667 3,333
Food-101 (Bossard et al., 2014) 101 75,750 25,250
Oxford 102 Flowers (Nilsback & Zisserman, 2008) 102 2,040 6,149
Oxford-IIIT Pets (Parkhi et al., 2012) 37 3,680 3,669
SUN397 (Xiao et al., 2010) 397 19,850 19,850
Stanford Cars (Krause et al., 2013) 196 8,144 8,041

Table 1: Image classification datasets used in this paper.

Datasets. We consider the transfer image classification tasks that are used in (Salman et al., 2020;
Kornblith et al., 2019), which vary in size and number of classes. See Table 1 for the details of these
datasets. We consider two transfer learning settings for each dataset: fixed-feature and full-network
transfer learning.

Fixed-feature transfer. For this setting, we freeze the layers of the ImageNet source model®, except
for the last layer, which we replace with a random initialized linear layer whose output matches the
number of classes in the transfer dataset. We now train only this new layer for using SGD, with a
batch size of 1024 using cyclic learning rate.

Full-network transfer. For this setting, we do not freeze any of the layers of the ImageNet source
model, and all the model weights are updated. We follow the exact same hyperparameters as the
fixed-feature setting.

A.3 COMPUTE AND TRAINING TIME.

We leveraged the FFCV data-loading library for fast training of the ImageNet models (Leclerc et al.,
2022)%. Our experiments were run on two GPU clusters: an A100 and a V100 cluster.

*Our framework is agnostic to the choice of the model’s architecture.

3For all of our experiments, we do not freeze the batch norm statistics. We only freeze the weights of the
model, similar to Salman et al. (2020).

SUsing FECYV, we can train a model on the ImageNet dataset in around 1 hour, and reach ~63% accuracy
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Training ImageNet models and influence calculation. We trained 7,540 ImageNet models on
random subsets of ImageNet, each containing half of ImageNet classes. On a single V100, training
a single model takes around 30 minutes. After training these ImageNet models, we compute the
influence of each class as outlined in Algorithm 1. Computing the influences is fast, and takes few
seconds on a single V100 GPU.

A.4 HANDPICKED BASELINE DETAILS

In our counterfactual experiments in Section 3, we automatically selected, via our framework, the most
influential subsets of ImageNet classes for various downstream tasks. We then removed the classes
that are detrimental to the transfer performance, and measured the transfer accuracy improvement
after removing these classes. The results are summarized in Table 2b.

What happens if we hand-pick the source dataset classes that are relevant to the target
dataset? Indeed, Ngiam et al. (2018) found that hand-picking the source dataset classes can
sometimes boost transfer performance. We validate this approach for our setting using the WordNet
hierarchy (Miller, 1995). Specifically, for each class from the target task, we look up all the ImageNet
classes that are either children or parents of this target class. The set of all such ImageNet classes
are used as the handpicked most influential classes. Following this manual selection, we train an
ImageNet model on these classes, then apply transfer learning to get the baseline performance that
we report in Table 2b.

A.5 CONVERGENCE ANALYSIS

We compute our class influence values using 7,540 source models, each of which were trained using
500 randomly chosen ImageNet classes. How many models do we actually need to compute our
transfer influences?

Counterfactual Experiment To first analyze this question, we re-run our counterfactual experi-
ment in Section 3 when using a smaller number of models to compute transfer influences (Figure 8).
While using the full number of models performs the best, we get meaningful transfer influences when
computing with both 4000 and 1000 models. In both cases, removing the most negatively influential
classes boosts transfer learning performance over using the entire source dataset, while removing the
most positively influential classes drops transfer learning performance over the random baseline.
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Figure 8: We replicate the counterfactual experiment in Section 3 Figure 2a using 1000 and 4000
source models for computing the transfer influences.

Bootstrap Analysis In order to analyze the convergence of the transfer influences, we track the
standard deviation of the influence values after bootstrap resampling.
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We consider the ImageNet — CIFAR-10 transfer setting with fixed-feature fine-tuning. Given N
models, we randomly sample, with replacement, N models to recompute our transfer influences.
Specifically, we evaluate the overall transfer influences (i.e., the influence value of each ImageNet
class averaged over all target examples). We perform this resampling 500 times, and measure the
standard deviation of the computed overall transfer influence value for each class over these 500
resamples.

Below, we plot this standard deviation (averaged over the 1000 classes) for various number of models
N. We find that the standard deviation goes down as more models are used, indicating that our
estimate of the influence values has less variance. This metric roughly plateaus by the time we are
using 7000 models.
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Figure 9: Standard deviation of the overall influence values (averaged over classes) after bootstrap
resampling for various numbers of models.
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B VARIANTS OF COMPUTING INFLUENCES

B.1 VARIATIONS OF TARGETS FOR COMPUTING TRANSFER INFLUENCES

In our paper, we used the softmax output of the groundtruth class as the target for our influence
calculation. What happens if we use a different target? We compare using the following types of
targets.

* Softmax Logits: the softmax output of the groundtruth class
* Is Correct: the binary value of whether the image was predicted correctly

» Raw Margins: the difference in raw output between the correct class and the most confidently
predicted incorrect class

* Softmax Margins: the same as raw margins, but use the output after softmax
In Figure 10, we replicate the counterfactual experiment from the main paper in Figure 2b using these

different targets. Specifically (over 2 runs), we rank the overall influence of the ImageNet classes on
CIFAR-10 for fixed-feature transfer. We then remove the classes in order most most or least influence.

85.0 Method

82.5 —— Softmax Logits
> . —— Is Correct
2 80.0 —— Raw Margins
5 —— Softmax Margins
S 772 —— Full ImageNet
i 75.0 Random Subsets
§ Order
° 72:5 —— Most Negative

AN\ .

£70.0 \, ---- Most Positive
i

[e)]
~
(6,

65.0
0 200 400 600 800 1000
Excluding K ImageNet Classes

Figure 10: Target task accuracies after removing the most positively or negatively influential ImageNet
classes from the source dataset with various influence targets.

We find that our method is not particularly sensitive to the individual target used. We found that using
the softmax logits provided the highest benefit when removing negative influencers, and thus used
that target for the reset of our experiments.

Datamodels vs. Influences. Datamodels (Ilyas et al., 2022) is another method that, similar to
influences, seeks to compute the importance of a training point on a test set prediction. Specifically,
instead of computing the difference in the expected accuracy of the model when a training point is
removed, the method fits a linear model that, given a binary vector that denotes the composition of
the training dataset, predicts the raw margin (i.e., the difference in raw output between the correct
class and the most confidently predicted incorrect class). The importance of each training point is
then the coefficient of the linear model for that particular example.

We adapt this method to our framework by training a linear model with ridge regression to predict the
softmax output of the transfer model on the target images given a binary vector that denotes which
source classes were included in the source dataset. However, we find that datamodels were more
effective for computing example-based values (see Appendix D).

In Figure 11, we compare using influence values (as described in the main paper) to using these
adapted datamodels. Specifically (over 5 runs), we rank the overall importance of the ImageNet
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classes on CIFAR-10 for fixed-feature transfer using influences or datamodels. We then remove the
classes in order most most or least influence. We find that our framework is not sensitive to the choice
of datamodels or influences. However, influences performed marginally better in this counterfactual
experiment, so we used influences for all other experiments in this paper.
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Figure 11: Target task accuracies after removing the most positively or negatively influential ImageNet
classes from the source dataset using datamodels or influences.
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C FULL COUNTERFACTUAL EXPERIMENT

In this section, we display the full results for the counterfactual experiment in the main paper (Figure
2b). Specifically, for each target task, we display the target task accuracies after removing the most
positive (top) and negative (bottom) influencers from the dataset over 10 runs. We find that our results
hold across datasets.
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C.1 PERFORMING COUNTERFACTUAL EXPERIMENTS WITH A VALIDATION SET

In this section, we replicate the experiment in Figure 2a of the main paper. Here, we split the original
CIFAR-10 test set into half, where the first half is the validation set and the second is the test set.

We compute our overall class influences on the validation set, and evaluate the accuracy of removing
the top and bottom source classes on the held out test set. The results match Figure 2a. Thus, the
transfer influences generalize beyond the specific target examples used to compute the influences.
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D ADAPTING OUR FRAMEWORK TO COMPUTE THE EFFECT OF EVERY
SOURCE DATAPOINT ON TRANSFER LEARNING

We have presented in the main paper how to compute the influences of every class in the source
dataset on the predictions of the model on the target dataset. In that setup, we demonstrated multiple
capabilities of our framework, such as improving overall transfer performance, detecting particular
subpopulations in the target dataset, etc. Given the wide range of capabilities class-based influences
provide, one natural question that arises: Can we compute the influence of every source datapoint
on the predictions of the model on the target dataset? Furthermore, what do these influences tell us
about the transfer learning process?

Mathematically, the computation of example-based influences (i.e., the influence of every source
datapoint) is very similar to the computation of class-based influences. Specifically, to compute
example-based influences, we start by training a large number of models on different subsets of the
source datapoints (as opposed to source classes for class-based influences). Next, we estimate the
influence value of a source datapoint s on a target example ¢ as the expected difference in the transfer
model’s performance on example ¢ when datapoint s was either included or excluded from the source
dataset:

Infi[s — ] = Eg [f(:5) | s € S] — Es [f(:S) | s & 8] 2)

where f(¢;S) is the softmax output of a model trained on a subset S of the source dataset. Similar to
class-based influences, a positive (resp. negative) influence value indicates that including the source
datapoint s improves (resp. hurts) the model’s performance on the target example ¢.

While example-based influences provide some insights about the transfer process, we found that—in
this regime—datamodels (Ilyas et al., 2022) provide cleaner results and better insights. Generally,
influences and datamodels measure similar properties: the effect of the source datapoints on the
target datapoints. For a particular target datapoint ¢, we measure the effect of every source datapoint
s with datamodels by solving a regression problem. Specifically, we train a large number of models
on different subsets of the source dataset. For every model f;, we record 1) a binary mask 1g,
that indicates which source datapoints were included in the subset S; of the source dataset, and
2) the transfer performance f;(¢;S;) of the model f; on the target datapoint ¢ after fine-tuning on
the target dataset. Following the training and the fine-tuning stages, we fit a linear model g,, that
predicts the transfer performance f(t; S) from a random subset S of the source dataset as follows:
f(#8) = gu(ls) = w' 1s. Given this framework, w = (w1, wa, ..., wy,) measures the effect of
every source datapoint s on the target datapoint t’. We present the overall procedure in Algorithm 2.

Algorithm 2 Example-based datamodels estimation for transfer learning.

Require: source dataset S = Ulel s; (with L datapoints), a target dataset 7 = (t1,ta, - ,tn),
training algorithm A, subset ratio a,, number of models m
1: Sample m random subsets S, S, -+ , Sy C S of size a - |S|:
2: fori € 1tomdo
3: Train model f; by running algorithm .4 on S;
4: end for
5: Fine-tune f; on the training target dataset
6: for j € 1tondo
7: Collect datamodels training set D; = {(1s,, fi(t;,S:))},
8: Compute w; by fitting LASSO on D;
9: end for
10: return w; V j € [n]

"To estimate the datamodels, we train 71,828 models on different subsets of the source dataset.
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E OMITTED RESULTS

E.1 PER-CLASS INFLUENCERS

We display for the ImageNet — CIFAR-10 the top (most positive) and bottom (most negative)
influencing classes for each CIFAR-10 class. This is the equivalent to the plot in Figure 3 in the main

paper.
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Figure 23: Top and bottom influencing ImageNet classes for all CIFAR-10 classes.
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Figure 24: Top and bottom influencing I

mageNet classes for all CIFAR-10 classes.
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E.2 MORE EXAMPLES OF EXTRACTED SUBPOPULATIONS FROM THE TARGET DATASET

Here, we depict more examples of extracting subpopulations from the target dataset (as in Figure 4 of
the main paper).
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Figure 25: For each ImageNet class, we show the CIFAR-10 examples which were most positively
influenced by that ImageNet class.
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E.3 MORE EXAMPLES OF TRANSFER OF SHAPE AND TEXTURE FEATURE

We depict more examples of ImageNet influencers which transfer shape or texture features (as in
Figure 5).
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Figure 26: For each ImageNet class, we show the CIFAR-10 examples which were most highly
influenced by that ImageNet class.
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E.4 MORE EXAMPLES OF DEBUGGING MISTAKES OF TRANSFER MODEL USING INFLUENCERS

We display more examples of how our influences can be used to debug the mistakes of the transfer
model, as presented in Figure 6 in the main paper. We find that, in most cases (Figure 27a, 27b,
27¢), removing the top negative influencer improves the model’s performance on the particular image.
There are a few examples where removing the top negative influencer hurts the model’s performance
on the image (Figure 27d).
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Figure 27: More examples of debugging transfer mistakes through our framework (c.f. Figure 6 in
the main paper). For each CIFAR-10 image (left), we plot their most negative influencers (middle).
On the right, we plot for each image the fraction (over 20 runs) of times that our transfer model
predicts each class with and without the most negative influencer. While in most cases (a, b, c) we
find that removing the most negative influencer helps the model predict the image correctly, in some
cases removing the negative influencer does not outweigh the impact of removing images from the
source dataset (d).
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Quantitative analysis. How often does removing the most negative influencer actually improve
the prediction on an image? For each of the following 14 classes, we run 20 runs of the ImageNet —
CIFAR-10 fixed transfer pipeline while excluding that single class from the source dataset: [“sorrel

CLINT3 CLINT3

horse”, “limousine”, “minivan”, “fireboat”, “ocean liner”, “Arabian camel”, “Persian cat”, “ostrich”,
“gondola”, “pool table”, “starfish”, “rapeseed”, “tailed frog”, “trailer truck’’]. We compare against
running the pipeline with 20 runs of the entire ImageNet dataset. Then, we look at individual CIFAR-
10 images which were highly negatively influenced by one of these ImageNet classes, and check
whether the images were predicted correctly more or less often when the top negative influencers

were removed from the source dataset.

Of the 30 most negatively influenced ImageNet class/CIFAR-10 image pairs, 26 of them had the most
negative ImageNet influencer in the above classes. Of those, 61.5% were predicted correctly more
often when the negatively influential ImageNet class was removed, 34.6% were predicted incorrectly
more often, and 3.9% were predicted correctly the same number of times.

We then examine the top 8 most influenced CIFAR-10 images for each of the above 14 ImageNet
classes. Of those 112 images, 53% were predicted correctly more often when the image was removed,
34% were predicted incorrectly more often, and 14% were predicted correctly the same number of
times.

We thus find that, for the most influenced CIFAR-10 images, removing the top negative influencer
usually improves that specific image’s prediction (even though we are removing training data from
the source dataset).
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E.5 DO INFLUENCES TRANSFER?

E.5.1 TRANSFER ACROSS DATASETS

In this section, we seek to understand how much task-specific information is in the transfer influences
that we compute. To do so, we use the transfer influences computed for CIFAR-10 in order to perform
the counterfactual experiments for other datasets. We find that while using the CIFAR-10 influence
values for other target datasets is more meaningful than random, they do not provide the same boost
in performance when removing bottom influencers as using the task-specific influences. We thus
conclude that the influence values computed by our framework are relatively task-specific.
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Figure 28: We repeat the counterfactual experiments (c.f. Figure 2b from the main paper) but using
the influence values computed for CIFAR-10 on other target datasets.
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E.5.2 TRANSFER ACROSS ARCHITECTURES

How well do our transfer influences work across architectures? Recall that we computed our transfer
influences using a ResNet-18. We now repeat the counterfactual experiment from Figure 2b, using the
ResNet-18 influences to remove classes from the source dataset when training a ResNet-50. We find
that these influences transfer relatively well: we can thus use a smaller architecture when computing
transfer influences in lieu of a larger model.
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Figure 29: We repeat the counterfactual experiments (c.f. Figure 2b from the main paper) but use our
influence values computed using a ResNet-18 on a ResNet-50.

We now perform the same experiment with vision transformers (ViT) (Dosovitskiy et al., 2021), which
use self-attention instead of convolutions (and thus behave differently than standard CNNs (Mahmood
et al., 2021; Jain et al., 2022)). Specifically, we evaluate our transfer influences on ViT-T and ViT-S
(otherwise using the same hyperparameters as the ResNet-18). The ResNet-18 influences are still
meaningful for the vision transformers, as removing the top classes degrades accuracy far more than
the bottom classes. However, the ResNet-18 influences do not generalize as well to the ViTs as they
did for the ResNet-50, as expected. In this setting, it may be more effective to use a small vision
transformer (e.g., ViT-T) when computing the transfer influences.

~
w
=}

> 2725
@ 70.0 3
e e
3 3700
£67.5 g
@ 3
67.5
2 65.0 ©
= I
& S65.0
g 265.
@ 62.5 \©
—— Most Negative 62.5 —— Most Negative
60.0 ymam Most Positive —— Most Positive
—— Full ImageNet —— Full ImageNet
575 60.0
0 200 400 600 800 100 200 300 400 500 600 700 800 900
Excluding K ImageNet Classes Excluding K ImageNet Classes
ViT-T ViT-S

Figure 30: We repeat the counterfactual experiments (c.f. Figure 2b from the main paper) but use our
influence values computed using a ResNet-18 on a ViT-T and ViT-S.
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F FURTHER CONVERGENCE ANALYSIS

In this section, we analyze the sample complexity of our influence estimation in more detail. In
particular, our goal is to understand how the quality of influence estimates improves with the number
of models trained. We also look at the impact of different choices of model outputs.

Instead of directly measuring our downstream objective (transfer accuracy on target dataset after
removing the most influential classes), which is expensive, we design two proxy metrics to gauge the
convergence of our estimates:

Rank correlation. As Ilyas et al. (2022) shows, we can associate influences with a particular linear
regression problem: given features 1s,, an indicator vector of the subset of classes in the source
dataset, predict the labels f(¢;S;), the model’s output after it is finetuned on target dataset 7. In
fact, we can interpret influences as weights corresponding to these binary features for presence of
each class. That is, the influence vector w; = {Infl[C; — t]}; defines a linear function that, given a
subset of classes that the source model is trained on, predicts the corresponding model’s output when
trained on that subset. Here, we focus on analyzing average model accuracy, so in fact we consider
the aggregate output » . f(¢;S;) and the corresponding aggregated influences w = {Infl[C;]},.

Given this view, we can measure the quality of the influence estimates by measuring their performance
on the above regression problem on a held-out® set of examples {S;, >, f(¢;S;)}. In order to make
different choices of model outputs (logit, confidence, etc.) comparable, we measure performance
with spearman rank correlation between the ground truth model outputs and the predictions of the
linear model (whose weights are given by the influences).

We measure this correlation while varying both the number of trained models used in the influence
estimation and the choice of the model output, and the results are shown in Figure 31.
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Figure 31: Measuring improvement in influence estimates using the rank correlation metric. The
rank correlation here measures how well influence estimates perform in the underlying regression
problem of predicting target accuracy from the subset of classes included in the training set. We
evaluate on a held-out set of subsets independent from those used to estimate influences. Across all
datasets, correlation improves significantly with more trained models.

SWe split the 7,540 models into a training set of 6,000 and a validation set of the remainder.
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Figure 32: Measuring improvement in influence estimates using the False Discovery Rate heuristic.
Using a procedure (loosely) based on the Knockoffs framework, we estimate the proportion of false
discoveries within the top 100 features ranked by esteimated influences. Across all datasets, FDR
decreases generally with more trained models.

False discovery rate. Above we considered a measure based on predictive performance. Here,
we focus on a more parameter-centric notion of False Discovery Rate (FDR). Intuitively, FDR here
quantifies the following: how often are the top influencers actually just due to noise?

The Knockoffs (Candes et al., 2018) framework allows one to perform feature selection and also
estimate the FDR. At a high level, it consists of two steps: First, one constructs “knockoft” versions of
the original features which are distributed “indistinguishably” (more formally, exchangable) from the
original features, and at the same time are independent of the response by design. Second, one applies
an estimation algorithm of choice (e.g., OLS or LASSO) to the augmented data consisting of both the
original and the knockoff features. Then, the relative frequency at which a variable X; has higher
statistical signal than its knockoff counterpart X; indicates how likely the algorithm chooses true
features, and this can be used to estimate the FDR (intuitively, if X; is independent of the response y,
X is indistinguishable from its knockoff X; and both are equally likely to have higher score).

We adapt this framework here (particularly, the verion known as model-X knockoffs) as follows:

1. Sample an independent knockoff matrix X consisting of 1,000 binary features from the same
distribution as the original mask matrix X (namely, each instance has 500 active features).”

2. Estimate influences for both original and knockoff features using the difference-in-means
estimator.

3. Consider the top £ = 100 features by positive influence, and count the proportion of features
that are knockoff. This yields an estimate of FDR among the top 100 features. An FDR of
0.5 indicates chance-level detection.'?

Technically, this procedure is not exactly valid in the original FDR framework as X; and X, are exchangable
due to depenencies in the features. Nonetheless, it is accurate up to some approximation.

This is different from the usual manner of controlling the FDR, but we look at this alternative metric for
simplicity.
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As with the previous metric, we measure the above FDR for each target dataset while varying the
number of trained models and the target output type (Figure 32).

Discussion. We observe the following from the above analyses using our two statistics:

* There are significant gains (higher correlation and lower FDR) with increasing number of
trained models.

* But neither metric appears to have plateaued with 6,000 models, so this indicates that we can
improve the accuracy of our influence estimates with more trained models, which may in
turn improve the max improvement in transfer accuracies (Section 3), among other results.

 The choice of the target type does not appear to have a significant or consistent impact across
different datasets, which is also consistent with the results of our counterfactual experiments
(Appendix B.1).
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