
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TL;DR: Too Long, Do Re-weighting for Efficient LLM
Reasoning Compression

Anonymous authors
Paper under double-blind review

Abstract

Large Language Models (LLMs) have recently achieved remarkable progress on
complex reasoning tasks by leveraging extended Chain-of-Thought (CoT) techniques.
These reasoning processes can be roughly categorized into System-1 (fast and
intuitive) and System-2 (slow and deliberate) paradigms. However, excessive
reliance on lengthy System-2-style reasoning during inference—often producing
extremely long outputs—has raised concerns about efficiency. In this work, we
propose a dynamic ratio-based training pipeline that does not rely on sophisticated
data annotations or interpolation between multiple models. We continuously
balance the weights between the model’s System-1 and System-2 data to eliminate
redundant reasoning processes while preserving the model’s reasoning capability.
We validate our approach across multiple base models, including Deepseek-R1-
Distilled Qwen models, as well as on a diverse set of benchmarks with varying
difficulty levels. Our method significantly reduces the number of output tokens by
nearly 40% while maintaining the accuracy of the reasoning. Our code and data
are at link: https://anonymous.4open.science/r/TLDR_Review-BBE5/.

1 Introduction

Recent efforts have developed reasoning-oriented Large Language Models (LLMs) capable of solving
complex tasks. These models progressed from System-1 to System-2 paradigms (Yu et al., 2024; Li
et al., 2025). System-1 implementations, such as GPT-4o (Team, 2024b), LLaMA-3 (Team, 2024a),
leverage rapid intuitive processing for immediate responses but struggle with complex reasoning tasks.
In contrast, System-2 architectures such as DeepSeek-R1 (Dee, 2025) are fine-tuned with extended
thinking chains to promote deliberate analysis through iterative self-assessment, error mitigation, and
verification, albeit facing challenges related to redundancy.

However, reasoning LLMs often over-deliberate even on simple problems Chen et al. (2025); Wang
et al. (2025), resulting in unnecessary exploration and planning that undermine their efficiency
and practicality. To mitigate this issue, two broad categories of approaches have been explored:
training-free methods (Xu et al., 2025b; Yao et al., 2025; Han et al., 2024) and training-based methods.
Some training-free methods regulate the internal states of the model during reasoning—e.g., through
prompts or confidence-based techniques to compress the model outputs. Alternatively, the mainstream,
exemplified by model merging (Wu et al., 2025b; Team et al., 2025) and steering (Chen et al.; Azizi
et al., 2025), involves intervening in the parameters or decoding process of the reasoning LLM to
produce concise solutions.

In contrast, training-based methods (Xia et al., 2025; Yang et al., 2025; Ma et al., 2025) primarily
focus on sampling and synthesizing relatively concise reasoning paths on specified problem sets
through various strategies (Xia et al., 2025; Yang et al., 2025; Ma et al., 2025). These methods
involve performing reinforcement learning (Meng et al., 2024; Hou et al., 2025b; Luo et al., 2025a;
Aggarwal & Welleck, 2025) or supervised fine-tuning (SFT) (Chen et al., 2025) on reasoning LLMs,
enabling the model to learn to generate more concise yet correct reasoning paths. Despite their
effectiveness of SFT, the training-based methods typically require careful collection of problems and
precise control of the data ratio for different lengths to achieve good results, leading to a complex
process of parameter tuning and data construction. For example, TOPS (Yang et al., 2025) requires
pre-processing steps to manually label SFT data to construct length-sensitive models, while CoT-Valve
(Ma et al., 2025) generates data by creating intermediate models through model interpolation for

1

https://anonymous.4open.science/r/TLDR_Review-BBE5/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0 16 32 48 64 80 96 112
Step

0.4

0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d
To

ke
n

Us
ag

e
(S

te
p

0
=

1.
0) Normalized Token Usage vs. Step, (Short: Long = 1:0)

GSM8K
MATH500
AIME
AMC2023
Original

0 16 32 48 64 80 96 112
Step

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

No
rm

al
ize

d
Ac

cu
ra

cy
 (S

te
p

0
=

1.
0) Normalized Accuracy vs. Step, (Short: Long = 1:0)

GSM8K
MATH500
AIME
AMC2023
Original

0 16 32 48 64 80 96 112
Step

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d
To

ke
n

Us
ag

e
(S

te
p

0
=

1.
0) Normalized Token Usage vs. Step, (Short: Long = 0.8:0.2)

GSM8K
MATH500
AIME
AMC2023
Original

0 16 32 48 64 80 96 112
Step

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

No
rm

al
ize

d
Ac

cu
ra

cy
 (S

te
p

0
=

1.
0) Normalized Accuracy vs. Step, (Short: Long = 0.8:0.2)

GSM8K
MATH500
AIME
AMC2023
Original

0 16 32 48 64 80 96 112
Step

0.6

0.7

0.8

0.9

1.0

1.1

No
rm

al
ize

d
To

ke
n

Us
ag

e
(S

te
p

0
=

1.
0) Normalized Token Usage vs. Step, (Short: Long = 0.8:0.2), Hard

GSM8K
MATH500
AIME
AMC2023
Original

0 16 32 48 64 80 96 112
Step

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

No
rm

al
ize

d
Ac

cu
ra

cy
 (S

te
p

0
=

1.
0) Normalized Accuracy vs. Step, (Short: Long = 0.8:0.2), Hard

GSM8K
MATH500
AIME
AMC2023
Original

Figure 1: Impact of Combining Short CoT and Long CoT in Fixed Ratios on Thinking Compression
Performance and Token Cost. We assessed the variation decay rate in output token length and
accuracy on datasets of various question difficulty, spanning from GSM8K to AIME. The Normalized
Token/Acc metric detail please refer to Eq. (18) and Eq. (19).

sampling. This construction process is often tedious (Yang et al., 2025), or challenging to maintain at
high quality (Ma et al., 2025). RL-based methods (Aggarwal & Welleck, 2025; Hou et al., 2025a)
yield more accurate and concise solutions by penalizing redundancy in System-2 reasoning, though
their efficiency gains come at the cost of expensive training.

To better understand the role of different CoT instruction data in long CoT compression, we re-examine
the impact of different CoT datasets on compressing long CoT models from two perspectives: problem
difficulty and the length of the chain of thought with takeaways in Figure 1. Our findings indicate that
two CoT subtypes have distinct effects: Long CoT on complex problems (System-2) and short CoT on
easy problems (System-1) drive divergent optimization in the model’s reasoning behavior. Increasing
System-1 data promotes more concise reasoning but may reduce accuracy, whereas more System-2
data preserves performance on complex tasks at the cost of lower compression efficiency.

We base our approach on an intuitive motivation: when a model is thinking too long, it should reweight
more intuitive reasoning paths to simplify the thinking process. Conversely, when the thinking is too
direct, it should incorporate more slow-thinking reasoning chains to encourage deeper contemplation.
We propose a dynamic Thinking Length Data Re-Weighting method (TlDr), which dynamically
balances the model’s complex reasoning using long CoT and efficient reasoning using short CoT data,
enabling the model to eliminate redundant cognitive processes. First, we construct System-1-style
short CoT data for GSM8K-like (Cobbe et al., 2021a) simple problems and System-2-style long CoT
data for s1-like (Muennighoff et al., 2025) complex problems. The model begins with an initial ratio
and performs reasoning compression using mixed data. After completing a compression cycle, the
model re-evaluates the expected benefits of System-1 CoT data and System-2 CoT data to achieve
improved performance. Specifically, and in line with intuition, System-1 CoT data can enhance
efficiency, so we use an efficiency metric to measure the expected benefit of System-1 data. System-2
CoT, in contrast, improves reasoning accuracy, and we use an accuracy metric to measure the benefit
of System-2 data for reasoning capability.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Compared to various methods requiring fine-tuning data with different reasoning lengths (Ma et al.,
2025; Yang et al., 2025), our approach enables dynamic ratio learning by utilizing the self-sampled
long CoT model and the short CoT data constructed by the original instruct/base model. As a dynamic
SFT approach, our method achieves shorter training time and higher efficiency than ThinkPrune and
L1, while also delivering superior performance. Through experiments on DeepSeek-Distill-7B/14B,
our model achieves excellent compression results on the DeepSeek Distilled Qwen-7B/14B model
models, with only a slight decrease in reasoning capability.

2 Related Work

2.1 Efficient System-2 Reasoning

Despite the strong generalization and reasoning abilities demonstrated by the system 2 reasoning
paradigm, the auto-regressive nature of LLMs imposes a significant reasoning burden (Chen et al.,
2025; Wang et al., 2025). To address this, various approaches have emerged to improve the reasoning
efficiency. These methods can be broadly categorized into two types. One category focuses on
building adaptive reasoning-budget. Within this, some training-free methods like CoD (Xu et al.,
2025b) and TALE-EP (Han et al., 2024) impose budget constraints to control overall reasoning cost.
Budget-sensitive models such as L1, TOPS, O1-Pruner, K1.5 (Aggarwal & Welleck, 2025; Yang
et al., 2025; Luo et al., 2025b; Team et al., 2025) add length penalties during the post-training. Some
work (Ma et al., 2025; Jiang et al., 2025; Yu et al., 2025) synthesizes diverse-length CoT data, while
TOPS (Yang et al., 2025) samples budget-sensitive versions using a data model, and C3oT (Kang et al.,
2024) compresses original LLM output. Although prior work—such as TOPS (Yang et al., 2025) and
CoT-Valve (Ma et al., 2025)—has devoted considerable effort to constructing datasets with various
CoT lengths to enable adaptive reasoning, few studies have compared how different reasoning-chain
lengths affect a model’s performance in terms of accuracy and inference length. We first constructed
the short CoT data using simple problems and recorded how, as training steps increased, this subset
contributed to token compression and accuracy retention across datasets of varying difficulty in math
benchmarks.

2.2 Data Re-weight of LLM Training

The quality and proportion of data are critical during both the pre-training and post-training phases.
In the pre-training stage, data quality and proportion are primarily managed through filtering
and reweighting. Pre-training data filtering, extensively studied to boost model performance and
training efficiency (Liu et al., 2024; Albalak et al., 2024), typically involves steps like language
filtering (Laurençon et al., 2023; Chowdhery et al., 2022), quality filtering (Raffel et al., 2023; Rae et al.,
2022), content filtering (Xu et al., 2021; Longpre et al., 2023), and deduplication (Hernandez et al.,
2022; Lee et al., 2022). While these methods significantly enhance corpus quality, their static nature
can hinder dynamic adjustments during training, potentially discarding valuable data (Muennighoff
et al., 2023) and introducing biases (Gururangan et al., 2022; Longpre et al., 2023; Dodge et al., 2021).
Similarly, in the post-training stage, an appropriate proportion of data with varying characteristics is
crucial for optimizing final performance. For example, DeepMath-103K generates a large volume
of data with evenly distributed difficulty for training (He et al., 2025), SRPO designs a dynamic
sampling approach to filter out samples that are consistently answered correctly, thereby improving
inference efficiency (Zhang et al., 2025). To the best of our knowledge, we are the first to introduce a
re-weighting mechanism into thinking compression. By employing simple strategies to construct
short and long CoT, we enable the model to dynamically compress its reasoning process.

3 Rethinking Short-Long CoT in Thinking Compression

In our experiments, we constructed short CoT and long CoT based on datasets of different difficulty
levels. To examine how problem difficulty influences the effectiveness of System-1 data and System-2
data, we selected two types of problems: (1) Simple problems, drawn from GSM8K, a benchmark of
math word problem solving and (2) Difficult problems, drawn from S1, a deliberately curated dataset
of difficult problems.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

t-1

t-1

Updating 𝛼

Acc↑
Len↑

Len

Acc

1 2 ... t-1 t0

Token Length

5000

10000
Accuracy

50%

100%

1 2 ... t-1 t0

Len

Acc

t

t

αSys1↑

αSys2↓

Sys1

Sys2

Data
Sys2

Model Modelt Model

Acc
Len

Sys1 Length

Sys2 Acc

Policy Acc

Policy Length

Policy Length at t

Policy Acc at t

Figure 2: Overview of TlDr. Starting with a System-2 model, we iteratively update it on both
Short-CoT and Long-CoT samples. Their ratios are adjusted every few steps based on the current
average model accuracy and token length from the validation set, repeating until convergence.

We find that short CoT thinking data for simple problems (System-1 data) can help compress
the token usage across questions of various difficulty levels. We leverage the short-cut solutions
obtained from simple questions in GSM8K to fine-tune the model and then observe the token
compression rates and accuracy drop rates across four datasets, ranging from simple to difficult:
GSM8K, MATH500, AMC, and AIME. As shown in Figure 1, directly fine-tuning the long CoT model
with short CoT data achieves good length compression for both simple and complex problems. We
were pleasantly surprised to see that this form of length compression generalizes well across questions
of all difficulty levels, and that it maintains strong performance on simple questions. However, this
approach comes at a cost, as it leads to a significant decrease in reasoning ability on difficult problems.
As this portion of the data is derived from intuitive CoT reasoning on simple problems, we denote it
as System-1 data. It seems that directly using short CoT fine-tuning can only encourage the reasoning
LLM to retain its System-1 reasoning abilities, while its ability for System-2 reasoning—slow and
cautious thinking for complex problems—is largely lost.

We find that long CoT thinking data for difficult problems (System-2 data) can help maintain
the model’s performance on challenging tasks. We sample with the s1 (Muennighoff et al., 2025)
like hard question prompt and then blend the System-2 data into the previous System-1 thinking
dataset at a fixed short CoT vs. long CoT ratio: 0.8:0.2. We then observe the token compression rates
and accuracy drop rates across four datasets.

It is worth noting that, by contrast, when we mix more long CoT data from simpler questions, the
model still experiences a significant drop in performance on difficult questions. Refer to the middle
and bottom parts of Figure 1, where we mix the long CoT sampled from challenging problems with
the short CoT from simple problems. As a baseline, we also mix long CoT and short CoT from simple
problems. The long CoT from difficult problems achieves lower accuracy drop rates across different
datasets while maintaining comparable token compression rates. We are unable to recover the original
performance simply by using long CoT data from simple questions through data replay. Similar to the
deliberate reasoning characteristic of the System-2 process on difficult problems, we refer to this part
of the data as System-2 data.

A key question we directly address is whether a direct mixing ratio of the two types of data
(System-1/2 data), can be employed for post-training the long CoT model, resulting in a solution
that eliminates redundancy without compromising performance. Based on these observations, we
propose a dynamic approach aimed at identifying the optimal Thinking Compression data.

4 System-1/2 Data Dynamic Re-weighting
4.1 System-1/2 Data Reweighting with Relaxed Optimization

We formalize the thinking compression problem as an optimization task to determine the optimal ratio
between System-1 and System-2 reasoning. We expect the model trained on mixed data to approach
the superior performance of System-1 and System-2 in specific evaluation metrics. For model LLM
and an input problem 𝑥, we define Token(𝑦) ∈ Z+,Accuracy(𝑦) ∈ as the token length and correctness

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Overall Pipeline of TLDR: Data Construction and Algorithm Execution
Require: Domain data Dsys-1,Dsys-2,Ddev; training steps 𝑇 ; batch size 𝑏; step size 𝜂; smoothing

parameter 𝑐 ∈ [0, 1] (e.g., 𝑐 = 10−4 in our implementation). The long CoT model 𝜃long to be
optimized and a reference 𝜃short.
Step 1: Estimate the ideal upper bounds of efficiency and performance.
Initialize proxy weights 𝜃0 from orginal long CoT model 𝜃l.
Initialize mixture weights 𝛼0 = (1/2, 1/2)
Compute 𝜙sys-1,bound and 𝜙sys-2,bound using Eq. (5) and Eq. (6) using 𝜃long and 𝜃short.
Step 2: Thinking Compression Post-Train with dynamic System-1/2 reasoning weights.
for 𝑡 = 1 to 𝑇 by 𝑇𝑑 do

Conduct SFT with the current System-1/2 data proportions and update proxy model weights
𝜃proxy using 𝐿 (𝜃proxy, 𝛼𝑡−1) (e.g., via Adam, Adafactor).

Compute benefit of fine-tuning with System-1 data: 𝜆sys-1 and System-2 data 𝜆sys-2. which
constitutes the approximate gradient of 𝛼𝑡

Update weights (entrywise exponential): 𝛼′𝑡 [𝑖] ← 𝛼𝑡−1 [𝑖] · exp(−𝜂 · 𝜆sys-i)
Smooth and Renormalize: 𝛼𝑡 [𝑖] ← 𝛼′𝑡 [𝑖]∑𝑘

𝑖=1 𝛼′𝑡 [𝑗]
.

end for

of LLM output text 𝑦. We represent the System-1/2 ability bound as 𝜙sys-𝑖,bound(𝑦), in the following
sections, we will abbreviate as 𝜙sys-𝑖,bound (𝑦)

min
𝜃, 𝛼∈ (0,1)

𝐿 (𝜃, 𝛼) =
2∑︁
𝑖=1

𝛼𝑖 · 𝛿𝑖 (1)

𝛿𝑖 = 𝜙sys-𝑖,bound − 𝜙sys-𝑖, 𝜃 (2)

of which, 𝜙sys−1, 𝜃 can be regarded as a metric for measuring the efficiency of the System-1 reasoning.
𝜙sys−2, 𝜃 can be regarded as an accuracy metric. In this way, the overall optimization objective is to
minimize the gap between the current model and the efficiency upper bound of System-1, as well as
the reasoning capability upper bound of System-2, in other words, optimizing the model parameters
to maximize both reasoning performance and efficiency.

𝜙sys−1, 𝜃 = −E𝑦∼LLM(𝑥) ,𝑥∈𝐷dev [Token(𝑦)] (3)
𝜙sys−2, 𝜃 = E𝑦∼LLM(𝑥) ,𝑥∈𝐷dev [Accuracy(𝑦)] (4)

Setup for System-1/2 Mixed Data. Since System-1 can provide fast and intuitive answers to simple
problems, we use the short CoT model to modulate the data for the System-1 model, and the training
set of basic elementary arithmetic problems from GSM8K is used as the problem dataset for System-1
data.. Meanwhile, as System-2 is designed to execute slow, logical reasoning for challenging problems,
we employ the long CoT model to sample solutions from S1 (Muennighoff et al., 2025) prompts
set, retaining only the correct responses. Finally, we obtain 𝐷sys-1 =<Simple Question, Short CoT>
instruction pairs. For the harder problems within the System-2 domain, we used the LongCoT model
for sampling, resulting in a large amount of 𝐷sys-2 =<Hard Question, Long CoT> instruction data.

4.2 System-1/2 Data-Reweighting Tuning.

Step 1: Estimate the ideal upper bounds of efficiency and performance. During training, we aim
to continuously adjust the ratio of System-1 and System-2 data in the post-training phase, ensuring
that the model retains the reasoning capabilities of the original long CoT model while achieving the
efficiency of the short CoT model. Therefore, we set the accuracy upper bound, 𝜙𝑠𝑦𝑠−2,bound, of the
model obtained through mixed training to match the accuracy of the original long CoT model, while
setting the token lower bound, 𝜙𝑠𝑦𝑠−1,bound, of the mixed model to correspond to the data lower bound
of the short CoT model we constructed. The 𝑦𝑠 is the short CoT response from System-1 model with
parameter 𝜃𝑠 and 𝑦𝑙 is the long CoT from the corresponding System-2 model parameterized by 𝜃𝑙 .

𝜙sys-1, bound = 𝜙sys-1,short = 𝜙sys-1, 𝜃𝑠 = −Êdev [Token(𝑦𝑠)] (5)
𝜙sys-2, bound = 𝜙sys-2,long = 𝜙sys-2, 𝜃𝑙 = Êdev [Accuracy(𝑦𝑙)] (6)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Step 2: Thinking Compression Post-Train with dynamic System-1/2 reasoning weights Initially,
we assign an equal data ratio 𝛼0 to System-1 and System-2 data. Then, after every 𝑇𝑑 SFT training
steps, to optimally optimize the objectives expressed by Eq. (5) and Eq. (6), we recompute the
weights of System-1 and System-2 data. Specifically, we compute the gains of System-1 and System-2
data using Eq. (12) and Eq. (13), together with the previously derived upper bounds. We then solve
this optimization problem using the Exponential Gradient method, with detailed derivations provided
in Appendix B. Based on the solution, we determine the updated data allocation weights for the
following 𝑇𝑑 steps.

𝜆sys-1 = max
(
𝜙sys-1, bound − 𝜙sys-1, 𝜃proxy

𝜙sys-1, 𝜃𝑠 − 𝜙sys-1, 𝜃𝑙
, 0

)
(7)

𝜆sys-2 = max
(
𝜙sys-2, bound − 𝜙sys-2, 𝜃proxy

𝜙sys-2, 𝜃𝑙 − 𝜙sys-2, 𝜃𝑠
, 0

)
(8)

Subsequently we determine the updated data allocation weights for the following 𝑇𝑑 steps and continue
SFT proxy model. This process repeats continuously, as illustrated in Algorithm 1.

We dynamically evaluate the utility of System-1 and System-2 reasoning data’s values during training,
and, guided by the performance on an validation dataset, adjust the sampling ratio between the two
data types in real time to optimize training effectiveness to optimize the parameter 𝜃proxy. After a
sufficiently large number of training steps, we select from the checkpoints that do not show degraded
reasoning performance on the validation set, choosing the one with the lowest average output length.

In Figure 2, we present a concrete example of weight adjustment. After re-evaluating performance
on the validation set, we readjusted the proportions of System-1 and System-2 data based on the
models’ output length and accuracy on the validation set. The reweighted data was then used for SFT,
resulting in a model that produces fewer outputs while maintaining the original model’s accuracy.

5 Experiments

5.1 Experimental Setup

Datasets and Metrics. Following prior efforts, we evaluate TlDr on several widely-used benchmarks
that span a broad range of difficulty levels, including ASDiv (Miao et al., 2021), GSM8K (Cobbe
et al., 2021b), MATH-500 (Hendrycks et al., 2021b), AIME2024 (AI-MO, 2024a), and AMC (AI-MO,
2024b) in Table 1. To ensure the stability of the evaluation, we performed multiple samplings for each
dataset and took the average accuracy. For GSM8K, MATH-500, and MinervaMath, we sampled
each question 4 times and took the average accuracy of the 4 solutions. For AIME24 and AMC23, we
sampled each problem 8 times and took the average accuracy of the 8 solutions. The token count was
calculated using the corresponding tokenizer of the language model of Skythought1 library.

Baselines. We compared two types of baselines:

Training-free Methods. A direct and representative category of such approaches is the prompt-based
methods paradigm. We compared our approach with the well-known prompt-based baselines in the
community, including TALE-EP (Han et al., 2024), which requires the prompt to be as simple as
possible, and ConciseCoT (Lee et al., 2025), which demands the use of the most concise CoT steps
during step-by-step reasoning. Another widely adopted paradigm is the family of model-merging
based methods, which leverages the rich knowledge from short CoT Instruct and the long CoT
model for model fusion, aiming to achieve the shortest yet most effective reasoning process. We
compared this approach with the Avg. Merging method used in Kimi-1.5 (Team et al., 2025; Wu
et al., 2025a) and some advanced merging method, like Task-Arithmetic-Merging, Ties-Merging,
Ties-Dare-Merging, discussed in Long2Short Technical Report (Wu et al., 2025a). We also compared
with methods like Seal (Chen et al.), which extract hidden states, construct steer vectors, and use it to
perform thought control during LLM decoding.

Training-based Methods In addition to prior work such as CoT-Valve and TOPS that constructs SFT
datasets with diverse reasoning lengths, we also include approaches that incorporate alternative

1https://github.com/NovaSky-AI/SkyThought

6

https://github.com/NovaSky-AI/SkyThought

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Model Accuracy Generation Length A.C.R.
ASDiv GSM8K MATH AIME AMC Minerva Avg. ASDiv GSM8K MATH AIME AMC Minerva

DS-Qwen-7B Models
R1-Distill-Qwen 86.8 89.4 86.8 42.9 81.5 46.0 72.2 769 554 2861 6820 4510 3347 –
TALE-EP 80.4 89.1 84.3 40.0 80.0 42.3 69.3 509 450 1994 6520 3892 2242 22.3%
ConciseCoT 86.0 89.5 86.2 41.7 79.6 46.0 71.5 532 457 2330 6587 4245 3347 12.7%
Avg. Merging 92.8 70.1 58.6 0.05 39.6 29.8 48.4 622 8552 8540 8501 8542 8544 3.2%
Task-Arithmetic-Merging 83.3 84.6 74.6 20.0 63.5 39.6 61.0 321 383 907 2500 1311 794 61.3%
Ties-Merging 74.4 69.7 59.8 13.6 42.5 23.2 47.2 1114 2475 4086 6767 5195 4306 0.1%
Ties-Dare-Merging 75.9 72.3 65.4 14.6 45.6 24.3 49.6 1036 2073 2934 5483 3698 2938 8.3%
Seal 86.8 89.4 89.4 43.3 77.8 47.8 72.4 591 773 2661 6871 4740 3413 5.1%
Overthink 86.6 89.6 87.2 38.7 79.6 45.2 71.1 773 555 2898 6766 4558 3407 0.1%
ThinkPrune 90.6 92.1 91.0 43.3 86.2 45.6 74.8 653 587 2379 6207 3739 2762 12.6%
CoT-Valve∗ 59.4 88.4 84.2 41.2 80.6 41.9 65.9 140 514 2144 6397 4278 2172 26.8%
TlDr 93.0 87.7 87.4 41.2 83.1 41.0 72.3 147 253 1556 6368 3386 1451 44.9%
Δ +6.2 -1.7 +0.6 -1.7 +1.6 -5.0 +0.1 -622 -301 -1305 -452 -1124 -1896 –

DS-Qwen-14B Models
R1-Distill-Qwen 80.5 92.5 86.4 43.4 79.6 48.2 71.7 476 679 2951 6701 4584 3270 –
TALE-EP 77.5 92.4 85.4 49.2 80.3 50.0 72.5 369 555 2248 6551 4179 2731 15.4%
ConciseCoT 74.0 92.4 85.6 51.6 82.3 47.1 72.2 369 555 2066 6267 3878 2605 18.8%
Avg. Merging 94.8 90.3 73.0 10.8 55.0 44.1 61.3 167 366 5158 6364 5668 1084 30.5%
Task-Arithmetic-Merging 86.5 86.5 74.2 13.3 55.3 36.0 58.6 238 368 870 2813 1411 1050 60.2%
Ties-Merging 79.6 91.3 82.6 25.4 72.5 37.1 64.8 242 542 1919 5913 3158 1850 31.8%
Ties-Dare-Merging 80.7 91.8 84.8 25.4 75.3 34.9 65.4 274 467 1870 5747 3182 1877 33.0%
Overthink 79.3 92.3 88.0 45.8 82.8 45.6 72.3 451 679 2893 6700 4464 3715 1.6%
ThinkPrune 80.6 93.7 89.0 50.8 88.7 50.7 75.6 379 563 2177 5778 3327 2234 22.8%
CoT-Valve& 72.9 92.0 87.0 45.0 83.5 47.8 71.4 204 576 2652 6686 4392 2833 16.7%
TlDr 88.0 90.9 86.6 43.3 83.8 48.7 73.5 158 240 2092 6403 3839 2177 35.8%
Δ +8.0 -1.6 +0.2 -0.1 +4.2 +0.5 +2.1 -318 -439 -859 -298 -745 -1093 –

Table 1: Performance comparison of TlDr with baselines. The accuracy is measured by sampling
multiple responses from the LLMs and taking the average to reduce variance. * denotes the CoT-Valve
result that we reproduced using the official dataset. Δ refers to TlDr in comparison with Original.
Math′ and Minerva′ refer to MATH500 and MinervaMath datasets, respectively. A.C.R. means the
token compression ratio computed by Eq. 16. In the table, yellow represents prompt-based methods;
green highlights Merging-based methods; red indicates SFT-based and RL-based methods.

Model Accuracy Generation Length
GSM8K MATH AIME AMC Avg. GSM8K MATH AIME AMC Avg.

7B Models
Original Model 89.4 86.8 42.9 81.5 75.2 554 2861 6820 4510 3686

Compression by SFT on Static Dataset
-Direct-Mixture 87.1 84.8 39.7 73.1 71.2 236 1221 5322 2560 2335
-MixChain-Z-GSM8K& 88.4 84.2 41.2 80.6 73.6 514 2144 6397 4278 3333
-TOPS 85.9 89.4 43.3 77.8 74.1 336 2145 4378 7024 3471

Compression by Simple Data Schedule
-Large->Small Curriculum 86.9 83.0 39.5 76.8 71.5 231 1335 5684 2841 2523
-Small->Large Curriculum 84.0 82.0 41.2 80.0 71.8 266 1766 6729 3968 3182
-Random Re-weight 84.0 81.0 37.5 79.6 70.5 246 1416 5828 2925 2604

Ours
-TlDr 87.7 87.4 41.2 83.1 74.9 253 1556 6368 3386 2891

Table 2: Performance comparison after removing the MinervaMath column. Accuracy is measured
using multiple sampling runs to reduce variance. & denotes CoT-Valve (Ma et al., 2025) and
TOPS (Yang et al., 2025) reproduced results.

reward-based methods. ThinkPrune (Hou et al., 2025a) uses progressive compression of RL training
length to improve the effectiveness of context utilization during exploration. 𝑆𝑖𝑚𝑃𝑂𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 was
introduced in Overthink (Chen et al., 2025) to adjust the effectiveness of the RL algorithm by
length-guided RL training.

Main Results As shown in Table 1, We observe that Prompt-based methods exhibit relatively
high instability and comparatively low compression ratios. Merging-based methods, on the other

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Training Method Training Time (GPU hours) Avg. Acc A.C.R
-TlDr ~88.1 72.3 44.9%
-CoT-Valve ~240.6 65.9 26.8%
-L1 ~640.3 – –
-ThinkPrune ~704.1 74.8 22.8%

Table 3: Training time comparison (measured in GPU days) between TlDr and the other baseline
method. GPU hours are measured using A100 GPUs. We compared with L1, ThinkPrune, and
CoT-Valve.

hand, are prone to significant performance drops and fail to achieve effective thinking compression
across datasets of varying difficulty. Moreover, for certain base models, they cannot compress tokens
effectively, leading to weight collapse. Training-free based methods like Seal (Chen et al.), which
use control thinking by steering, can maintain relatively good performance across multiple datasets.
However, they may be limited by the representational capacity of hidden state vectors, making
it difficult to generalize to broader mathematical datasets, and their effectiveness in compressing
reasoning is somewhat constrained.. Compared to the training-based algorithms in ThinkPrune and
OverThink, TLDR demonstrates a higher average compression ratio A.C.R. This advantage is quite
notable, especially on datasets such as ADSiv and GSM8K, which suffer overthinking issues.

To demonstrate the advantages of our dynamic re-weighting method, we carefully designed several
types of baselines: (1) Static method using static compression SFT data with carefully crafted
techniques to control reasoning length; MixChain-Z-GSM8K and TOPS are two Long2Short datasets
proposed by CoT-Valve and TOPS in Table 2. Compared to carefully constructed thinking compression
SFT datasets, such as CoT-Valve and TOPS, our method achieves superior compression performance.
(2) Dynamic methods leveraging curriculum learning to find the optimal balance of System-1 and
System-2 data, linearly adjusting their sampling probabilities over training steps; and (3) Re-weighting
System-1/2 data randomly to explore better System-1/2 data ratios. In Table 2, We introduced
other dynamic data balancing methods, such as curriculum learning, to construct the optimal mix
of System-1 and System-2 data. For Large->Small Curriculum, as the number of training steps
increases, the proportion of System-1 data is linearly decreased and the proportion of System-2 data is
increased every fixed steps. Small→Large Curriculum follows the opposite strategy. In addition, we
introduce Random Re-weight as another baseline. Every fixed steps, the sampling ratio of System-1
and System-2 data is reset to a random proportion.

We compare our approach with ThinkPrune, L1, and CoT-Valve, three different training-based methods.
ThinkPrune and L1 use RL to guide sample generation within a set length or quota, requiring very
long RL steps to reach the desired objectives, which leads to high training costs. The results in Table
3 show that TLDR, benefiting from the relatively fast training process of SFT and employing dynamic
reweighting, achieves faster training compared to CoT-Valve, which which requires extensively using
model interpolation to generate a large number of CoTs with diverse lengths. It is worth noting that
methods represented by ThinkPrune perform RL while truncating the context length, encouraging the
model to produce correct solutions within this limited context. However, this method requires many
training steps to optimize its performance.

5.2 Ablation of Different System-1/2 Source

We also discovered that incorporating higher-difficulty CoT data into a short-long mixed dataset could
effectively eliminate redundancies in CoT for their compressed version. However, direct mixing could
lead to performance degradation. After introducing a dynamic ratio method, we found that flexibly
adjusting the ratio could effectively maintain performance in Table 4. We categorized the sources
of questions in the thinking compression data into three difficulty levels: easy, medium, and hard.
easy questions are from GSM8K, medium questions are from the training set of MATH500, and hard
questions are from the s1 prompt questions.

Short CoT Compression Generalization Analysis of Easy-to-Hard. We tested the construction of
System-1 data, examining the composition of data from different thinking compression sources. Our
experiments found that constructing data based on low-difficulty problems could significantly reduce
the token count of high-difficulty problems while maintaining performance. We found that using
lower-difficulty problems to construct thinking compression data for redundancy removal can further
generalize to higher-difficulty problems.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Reflective
Words

Checking
Words

Exploratory Word

1 1.5

baseline ConciseCot CoT-Valve TLDR(ours)

Reflective
Words

Checking
Words

Exploratory Word

10 20 30 40

Reflective
Words

Checking
Words

Exploratory Word

2 4 6 80.5

(a) GSM8K (b) AIME (c) MATH500

Figure 3: Frequency comparison of different keywords. The figure illustrates the distribution of
exploratory, checking, and reflective keywords across datasets. Exploratory Keywords: wait, Reflective
Word: but, Checking Words: make sure/confirm/verify/check, TlDr significantly reduces the presence
of such words, reflecting its ability to produce streamlined and efficient reasoning steps.

Model Accuracy Generation Length
GSM8K MATH AIME AMC Avg. GSM8K MATH AIME AMC Avg.

DeepSeek-R1-Distill-Qwen-7B System-1 Short CoT Ablation
Original Model 89.4 86.8 42.9 81.5 60.1 554 2861 6820 4510 2949
-TlDr-Easy 87.7 87.4 41.2 83.1 59.9 253 1556 6368 3386 2313
-TlDr-Medium 88.2 86.2 41.5 31.3 61.8 318 2083 6604 3945 3238
-TlDr-Hard 83.6 80.2 30.0 65.3 64.8 495 2970 6874 4947 3822

DeepSeek-R1-Distill-Qwen-7B System-2 Long CoT Ablation
Original Model 89.4 86.8 42.9 81.5 60.1 554 2861 6820 4510 2949
-TlDr-Easy 83.9 86.8 42.5 83.4 74.2 446 2639 6580 4047 3428
-TlDr-Medium 91.6 87.6 40.4 81.5 75.3 542 2761 6553 4116 2950
-TlDr-Hard 87.7 87.4 41.2 83.1 74.8 253 1556 6368 3386 2828

Table 4: An ablation study on the difficulty levels of ShortCoT and LongCoT was conducted during the
construction of the short CoT and long CoT dataset. The accuracy is measured by sampling multiple
responses from the LLMs and taking the average to reduce variance. & denotes the CoT-Valve (Ma
et al., 2025) result that we reproduced using the officially dataset. MATH means MATH500 dataset.

Long CoT Performance Generalization Analysis of Hard-to-Easy. We also conducted an analysis
of the following aspects: during the sampling of long CoT, we utilized data from three distinct
sources—easy, medium, hard prompt. Our findings reveal that only by constructing long CoT using
hard problems and dynamically adjusting their proportions during training can we recover the original
performance associated with long CoT. This strategy effectively mitigates the risk of forgetting in
reasoning capabilities during continual learning.

5.3 Comparison with Token Budgeted-Aware Model

We compared our redundancy reduction method with both quota-controlled models and reasoning
models under the same token budget, in order to evaluate the effectiveness of our approach relative to
explicit quota-based control in Table 5. The results show that our method achieves higher reasoning
accuracy than both the L1 (Aggarwal & Welleck, 2025) baselines under the same token quota.
Furthermore, our approach demonstrates more efficient utilization of context length and does not
require explicitly specifying a reasoning quota, offering a more flexible and adaptive inference
mechanism. TlDr demonstrates stronger compression efficiency on simple problems.

5.4 Analysis of Thinking Patterns: Reflections & Solutions

We compared our method with other thinking compression methods in terms of their impact on
changes in cognitive patterns (Xu et al., 2025a) of the solution in Figure 3. We performed fine-grained
statistical analysis on the results across different datasets. Our analysis demonstrates that our approach

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Model Accuracy Generation Length
GSM8K MATH AIME AMC Avg. GSM8K MATH AIME AMC Avg.

DeepSeek-R1-Distill-Qwen-7B
Original Model 89.4 86.8 42.9 81.5 75.2 554 2861 6820 4510 3686
-TlDr 87.7 87.4 41.2 83.1 74.8 253 1556 6368 3386 2891
-L1-same 86.4 88.6 42.2 84.6 75.4 301 2301 5875 3784 3056
-L1-lower 86.4 87.6 45.1 84.6 75.9 312 1831 5675 3807 2906
-L1-higher 86.1 88.4 45.5 83.3 75.8 292 2589 6007 3746 3158

Table 5: Performance comparison of TlDr with budget-aware baseline, L1 (Aggarwal & Welleck,
2025). The accuracy is measured by sampling multiple responses from the LLMs and to reduce
variance. The terms same, lower, and higher refer to setting the budget to match our results, 20%
lower, and 20% higher, respectively. MATH means MATH500 dataset.

Model Leetcode MBPP HumanEval Average
Pass@1 / Tokens Pass@1 / Tokens Pass@1 / Tokens Pass@1 / Tokens

DS-7B 33.3 / 7088 61.4 / 1739 67.6 / 2692 54.1 / 3839
DS-7B-TLDR 34.4 / 6793 64.3 / 1234 73.1 / 2536 57.3 / 3521
Δ +1.1 / -295 +2.9 / -505 +5.5 / -156 +3.2 / -318

Model ARC HellaSwag CommonsenseQA Average
Acc / Tokens Acc / Tokens Acc / Tokens Acc / Tokens

DS-7B 66.1 / 416 46.0 / 168.4 58.8 / 515 56.97 / 366.5
TLDR 68.1 / 488 47.5 / 180.1 59.5 / 495 58.37 / 387.7
Δ +2.0 / +72 +1.5 / +11.7 +0.7 / -20 +1.40 / +21.2

Table 6: Performance comparison between R1-Distill-Qwen-7B(DS-7B) and TLDR across three
coding and commonse QA benchmarks. Pass@1 accuracy is reported alongside the average number
of tokens generated.

effectively compresses the internal redundancy and reflects the properties of the solution patterns.
TlDr effectively reduces the reliance on such macro reasoning patterns in benchmarks like GSM8K
and MATH500, thereby avoiding excessive allocation of computational budget. Notably, for more
challenging problems, the model still retains a significant degree of complex reasoning behavior to
preserve its System-2 reasoning capabilities, we provide additional case studies in the Appendix J.

5.5 Discussion and Analysis on the Non-Math Domain Benchmark

Our training primarily relies on simple and challenging math problems from Math. We also aim to ana-
lyze and observe the model’s generalization capabilities in non-math domains, including performance
on CommonSenseQA and code reasoning tasks. Therefore, we selected HellaSwag (Zellers et al.,
2019), CommonSenseQA (Talmor et al., 2019), and ARC (Clark et al., 2018) as three non-math domain
datasets, and HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021), and LeetCode (Guo et al.,
2024) as three code-domain datasets. Since most questions in CommonSenseQA are multiple-choice
and the original long CoT model’s responses tend to be brief, we also incorporated some non-math
subjects from MMLU (Hendrycks et al., 2021a) for comparison for reference in Appendix I.

6 Conclusion

This paper introduces TlDr, an innovative method designed to compress the reasoning processes of
LLMs without sacrificing accuracy. By dynamically re-weighting the influence of System 1 (concise
reasoning) and System 2 (detailed reasoning) data during the training process, TlDr allows LLMs
to eliminate unnecessary steps for simpler problems while still engaging in deep contemplation
for complex tasks. TlDr avoids the laborious data collection and hyperparameter tuning typically
required by other compression methods, offering a more practical solution for developing LLMs that
are both efficient and accurate.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

References
Deepseek-r1 team, 2025. URL https://arxiv.org/abs/2501.12948.

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning. arXiv preprint arXiv:2503.04697, 2025.

AI-MO. Aime 2024, 2024a. URL https://huggingface.co/datasets/AI-MO/
aimo-validation-aime.

AI-MO. Amc 2023, 2024b. URL https://huggingface.co/datasets/AI-MO/
aimo-validation-amc.

Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne Longpre, Nathan Lambert, Xinyi Wang,
Niklas Muennighoff, Bairu Hou, Liangming Pan, Haewon Jeong, Colin Raffel, Shiyu Chang,
Tatsunori Hashimoto, and William Yang Wang. A survey on data selection for language models,
2024.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021. URL https://arxiv.org/abs/2108.07732.

Seyedarmin Azizi, Erfan Baghaei Potraghloo, and Massoud Pedram. Activation steering for chain-of-
thought compression. arXiv preprint arXiv:2507.04742, 2025.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Runjin Chen, Zhenyu Zhang, Junyuan Hong, Souvik Kundu, and Zhangyang Wang. Seal: Steerable rea-
soning calibration of large language models for free, 2025a. URL https://arxiv. org/abs/2504.07986.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi
Liu, Mengfei Zhou, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu.
Do not think that much for 2+3=? on the overthinking of o1-like llms, 2025. URL https:
//arxiv.org/abs/2412.21187.

Jeffrey Cheng and Benjamin Van Durme. Compressed chain of thought: Efficient reasoning through
dense representations. arXiv preprint arXiv:2412.13171, 2024.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways, 2022.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021a. URL https://arxiv.org/
abs/2110.14168.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021b.

11

https://arxiv.org/abs/2501.12948
https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://huggingface.co/datasets/AI-MO/ aimo-validation-amc
https://huggingface.co/datasets/AI-MO/ aimo-validation-amc
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jesse Dodge, Maarten Sap, Ana Marasović, William Agnew, Gabriel Ilharco, Dirk Groeneveld,
Margaret Mitchell, and Matt Gardner. Documenting large webtext corpora: A case study on the
colossal clean crawled corpus, 2021.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder:
When the large language model meets programming – the rise of code intelligence, 2024. URL
https://arxiv.org/abs/2401.14196.

Suchin Gururangan, Dallas Card, Sarah Dreier, Emily Gade, Leroy Wang, Zeyu Wang, Luke
Zettlemoyer, and Noah A. Smith. Whose language counts as high quality? measuring language
ideologies in text data selection. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.),
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp.
2562–2580, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.emnlp-main.165. URL https://aclanthology.org/2022.
emnlp-main.165.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen. Token-
budget-aware llm reasoning. arXiv preprint arXiv:2412.18547, 2024.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024.

Zhiwei He, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xingyu Chen, Yue Wang, Linfeng Song, Dian Yu,
Zhenwen Liang, Wenxuan Wang, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong
Yu. Deepmath-103k: A large-scale, challenging, decontaminated, and verifiable mathematical
dataset for advancing reasoning, 2025. URL https://arxiv.org/abs/2504.11456.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding, 2021a. URL https:
//arxiv.org/abs/2009.03300.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021b.

Danny Hernandez, Tom Brown, Tom Conerly, Nova DasSarma, Dawn Drain, Sheer El-Showk, Nelson
Elhage, Zac Hatfield-Dodds, Tom Henighan, Tristan Hume, Scott Johnston, Ben Mann, Chris Olah,
Catherine Olsson, Dario Amodei, Nicholas Joseph, Jared Kaplan, and Sam McCandlish. Scaling
laws and interpretability of learning from repeated data, 2022.

Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning, 2025a. URL
https://arxiv.org/abs/2504.01296.

Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning, 2025b. URL
https://arxiv.org/abs/2504.01296.

Yuxuan Jiang, Dawei Li, and Frank Ferraro. Drp: Distilled reasoning pruning with skill-aware step
decomposition for efficient large reasoning models. arXiv preprint arXiv:2505.13975, 2025.

Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou. C3ot: Generating shorter chain-of-thought
without compromising effectiveness. arXiv preprint arXiv:2412.11664, 2024.

Hugo Laurençon, Lucile Saulnier, Thomas Wang, Christopher Akiki, Albert Villanova del Moral,
Teven Le Scao, Leandro Von Werra, Chenghao Mou, Eduardo González Ponferrada, Huu Nguyen,
et al. The bigscience roots corpus: A 1.6tb composite multilingual dataset, 2023.

Ayeong Lee, Ethan Che, and Tianyi Peng. How well do llms compress their own chain-of-thought? a
token complexity approach, 2025. URL https://arxiv.org/abs/2503.01141.

12

https://arxiv.org/abs/2401.14196
https://aclanthology.org/2022.emnlp-main.165
https://aclanthology.org/2022.emnlp-main.165
https://arxiv.org/abs/2504.11456
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2504.01296
https://arxiv.org/abs/2504.01296
https://arxiv.org/abs/2503.01141

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-
Burch, and Nicholas Carlini. Deduplicating training data makes language models better, 2022.

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao,
Haotian Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, Yingying Zhang, Fei Yin, Jiahua Dong,
Zhiwei Li, Bao-Long Bi, Ling-Rui Mei, Junfeng Fang, Zhijiang Guo, Le Song, and Cheng-Lin
Liu. From system 1 to system 2: A survey of reasoning large language models, 2025. URL
https://arxiv.org/abs/2502.17419.

Yang Liu, Jiahuan Cao, Chongyu Liu, Kai Ding, and Lianwen Jin. Datasets for large language models:
A comprehensive survey, 2024.

Shayne Longpre, Gregory Yauney, Emily Reif, Katherine Lee, Adam Roberts, Barret Zoph, Denny
Zhou, Jason Wei, Kevin Robinson, David Mimno, and Daphne Ippolito. A pretrainer’s guide to
training data: Measuring the effects of data age, domain coverage, quality, & toxicity, 2023.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
and Dacheng Tao. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning pruning,
2025a. URL https://arxiv.org/abs/2501.12570.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
and Dacheng Tao. O1-Pruner: Length-Harmonizing Fine-Tuning for O1-Like Reasoning Pruning.
arXiv preprint arXiv:2501.12570, 2025b.

Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan Fang, and Xinchao Wang. Cot-valve: Length-
compressible chain-of-thought tuning, 2025. URL https://arxiv.org/abs/2502.09601.

Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a
reference-free reward, 2024. URL https://arxiv.org/abs/2405.14734.

Shen-Yun Miao, Chao-Chun Liang, and Keh-Yih Su. A diverse corpus for evaluating and developing
english math word problem solvers. arXiv preprint arXiv:2106.15772, 2021.

Niklas Muennighoff, Alexander M. Rush, Boaz Barak, Teven Le Scao, Aleksandra Piktus, Nouamane
Tazi, Sampo Pyysalo, Thomas Wolf, and Colin Raffel. Scaling data-constrained language models,
2023.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling, 2025. URL https://arxiv.org/abs/2501.19393.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training gopher, 2022.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer, 2023.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge, 2019. URL https://arxiv.org/abs/
1811.00937.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling Reinforcement Learning with
LLMs. arXiv preprint arXiv:2501.12599, 2025.

LLama-3 Team. The llama 3 herd of models, 2024a. URL https://arxiv.org/abs/2407.21783.

OpenAI GPT-4 Team. Gpt-4 technical report, 2024b. URL https://arxiv.org/abs/2303.08774.

Yue Wang, Qiuzhi Liu, Jiahao Xu, Tian Liang, Xingyu Chen, Zhiwei He, Linfeng Song, Dian Yu, Juntao
Li, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. Thoughts are all over the
place: On the underthinking of o1-like llms, 2025. URL https://arxiv.org/abs/2501.18585.

13

https://arxiv.org/abs/2502.17419
https://arxiv.org/abs/2501.12570
https://arxiv.org/abs/2502.09601
https://arxiv.org/abs/2405.14734
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/1811.00937
https://arxiv.org/abs/1811.00937
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2501.18585

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Han Wu, Yuxuan Yao, Shuqi Liu, Zehua Liu, Xiaojin Fu, Xiongwei Han, Xing Li, Hui-Ling Zhen,
Tao Zhong, and Mingxuan Yuan. Unlocking efficient long-to-short llm reasoning with model
merging, 2025a. URL https://arxiv.org/abs/2503.20641.

Han Wu, Yuxuan Yao, Shuqi Liu, Zehua Liu, Xiaojin Fu, Xiongwei Han, Xing Li, Hui-Ling Zhen,
Tao Zhong, and Mingxuan Yuan. Unlocking efficient long-to-short llm reasoning with model
merging, 2025b. URL https://arxiv.org/abs/2503.20641.

Heming Xia, Yongqi Li, Chak Tou Leong, Wenjie Wang, and Wenjie Li. Tokenskip: Controllable
chain-of-thought compression in llms. arXiv preprint arXiv:2502.12067, 2025.

Albert Xu, Eshaan Pathak, Eric Wallace, Suchin Gururangan, Maarten Sap, and Dan Klein. Detoxifying
language models risks marginalizing minority voices, 2021.

Haotian Xu, Xing Wu, Weinong Wang, Zhongzhi Li, Da Zheng, Boyuan Chen, Yi Hu, Shijia
Kang, Jiaming Ji, Yingying Zhang, et al. RedStar: Does Scaling Long-CoT Data Unlock Better
Slow-Reasoning Systems? arXiv preprint arXiv:2501.11284, 2025a.

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by writing
less. arXiv preprint arXiv:2502.18600, 2025b.

Wenkai Yang, Shuming Ma, Yankai Lin, and Furu Wei. Towards thinking-optimal scaling of test-time
compute for llm reasoning, 2025. URL https://arxiv.org/abs/2502.18080.

Yuxuan Yao, Shuqi Liu, Zehua Liu, Qintong Li, Mingyang Liu, Xiongwei Han, Zhijiang Guo, Han
Wu, and Linqi Song. Activation-guided consensus merging for large language models. arXiv
preprint arXiv:2505.14009, 2025.

Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov. Distilling system 2 into system 1, 2024. URL
https://arxiv.org/abs/2407.06023.

Yiyao Yu, Yuxiang Zhang, Dongdong Zhang, Xiao Liang, Hengyuan Zhang, Xingxing Zhang, Ziyi
Yang, Mahmoud Khademi, Hany Awadalla, Junjie Wang, et al. Chain-of-reasoning: Towards
unified mathematical reasoning in large language models via a multi-paradigm perspective. arXiv
preprint arXiv:2501.11110, 2025.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence?, 2019. URL https://arxiv.org/abs/1905.07830.

Xiaojiang Zhang, Jinghui Wang, Zifei Cheng, Wenhao Zhuang, Zheng Lin, Minglei Zhang, Shaojie
Wang, Yinghan Cui, Chao Wang, Junyi Peng, Shimiao Jiang, Shiqi Kuang, Shouyu Yin, Chaohang
Wen, Haotian Zhang, Bin Chen, and Bing Yu. Srpo: A cross-domain implementation of large-scale
reinforcement learning on llm, 2025. URL https://arxiv.org/abs/2504.14286.

14

https://arxiv.org/abs/2503.20641
https://arxiv.org/abs/2503.20641
https://arxiv.org/abs/2502.18080
https://arxiv.org/abs/2407.06023
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/2504.14286

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Appendix Contents for TLDR

A Use of Large Language Models 16

B Gradient Derivation for Exponentiated Update of 𝛼𝑖 16

C Metrics 17
C.1 Compression Rate . 17

C.2 Normalized Metric . 17

D Data Construction Detail 17

E Evaluation Detail 17
E.1 Evaluation Framework . 17

E.2 Evaluation Dataset Detail . 18

F Baseline Reproduce Details 18

G Training Details 18

H More Related Work 19

I More Non-Math STEM Reason Benchmark in MMLU 20

J Case Study 20

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A Use of Large Language Models

During manuscript preparation, a large language model (LLM) was occasionally employed as an
auxiliary assistant to refine language expression, such as improving sentence fluency and enhancing
readability. The model was not involved in generating original research contributions: it did not
participate in formulating research questions, designing methodologies, conducting experiments,
analyzing results, or drafting substantive scientific content. All core intellectual work, including
the development of ideas, execution of experiments, and interpretation of findings, was carried out
independently by the authors. Any linguistic suggestions offered by the LLM were critically reviewed
and selectively incorporated, ensuring that accuracy, originality, and scholarly integrity were fully
maintained. The authors alone bear responsibility for the research content and conclusions, and the
LLM is not listed as a contributor or author.

B Gradient Derivation for Exponentiated Update of 𝛼𝑖

Gradient-based Weight Updates of TLDR. We consider the loss function:

𝐿 (𝜃, 𝛼) =
2∑︁
𝑖=1

𝛼𝑖 · 𝛿𝑖 , 𝛿𝑖 = 𝜙sys-i,bound − 𝜙sys-i, 𝜃 . (9)

Assuming 𝜃 is fixed, 𝛿𝑖 can be treated as a constant. Thus, 𝐿 is linear in 𝛼𝑖 . 𝛼𝑖 is required to be
non-negative, and 𝛼1 + 𝛼2 = 1.

Exponentiated Gradient (EG) Method. The Exponentiated Gradient algorithm2 is a standard
technique in online convex optimization for updating probability-like weights under a convex loss
function. Given a loss function 𝐿 (𝛼), the EG update is defined as:

𝛼𝑡+1 [𝑖] ← 𝛼𝑡 [𝑖] exp(−𝜂 𝜕𝐿

𝜕𝛼𝑖

), (10)

where 𝜂 > 0 is a learning rate. EG ensures that 𝛼𝑖 > 0, and after normalization, the weights form
a valid probability distribution. It’s particularly useful when weights represent probabilities or
allocation ratios, as it avoids the need for explicit projection steps. Besides, it automatically maintains
non-negativity and can be normalized to satisfy

∑
𝑖 𝛼𝑖 = 1

Exponentiated Gradient Update The exponentiated gradient (EG) update for 𝛼𝑖 is given by:

𝛼𝑡+1 [𝑖] ← 𝛼′𝑡 [𝑖] = 𝛼𝑡 [𝑖] exp(−𝜂 𝜕𝐿

𝜕𝛼𝑖

) = 𝛼𝑡 [𝑖] exp(−𝜂𝛿𝑖), (11)

where 𝜂 is the learning rate. This update increases the weight of components with smaller loss and
decreases the weight of components with larger loss.

Due to potential variance or sampling errors in the validation set, we normalize 𝛿𝑖 and apply a
thresholding operation to obtain a more stable estimate:

𝜆𝑖 = max
(

𝛿𝑖

scale𝑖
, 0
)
,

where scale𝑖 is a normalization factor (the maximum of 𝛿𝑖), and 𝜆𝑖 represents the normalized and
non-negative estimate. The we get the result of

𝜆sys-1 = max
(
𝜙sys-1, bound − 𝜙sys-1, 𝜃proxy

𝜙sys-1, 𝜃𝑠 − 𝜙sys-1, 𝜃𝑙
, 0

)
(12)

𝜆sys-2 = max
(
𝜙sys-2, bound − 𝜙sys-2, 𝜃proxy

𝜙sys-2, 𝜃𝑙 − 𝜙sys-2, 𝜃𝑠
, 0

)
(13)

2https://homes.cs.washington.edu/~sham/courses/stat928/lectures/lecture22.pdf

16

https://homes.cs.washington.edu/~sham/courses/stat928/lectures/lecture22.pdf

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Normalization (considering
∑

𝑖 𝛼𝑖 = 1 is desired) To ensure that the weights remain a valid
distribution, we normalize after the update:

𝛼𝑡+1 [𝑖] ←
𝛼′𝑡 [𝑖]∑
𝑗 𝛼
′
𝑡 [𝑗]

=
𝛼𝑡 [𝑖] exp(−𝜂𝛿𝑖)∑
𝑗 𝛼𝑡 [𝑗] exp(−𝜂𝛿 𝑗)

. (14)

Thus, formally, this is equivalent to treating 𝜆𝑖 as a non-negative gradient signal and applying it in the
exponentiated gradient update:

𝛼𝑡+1 [𝑖] = 𝛼𝑡 [𝑖] ·
exp(−𝜂 · 𝜆𝑖)∑

𝑗 𝛼𝑡 [𝑗] exp(−𝜂𝜆 𝑗)
, (15)

where 𝜂 is the learning rate.

C Metrics

C.1 Compression Rate

We provide more details on the compression rate in the main table, where the compression rate is
defined as:

C.R. = Compression Rate = 𝑚𝑎𝑥(
#tokensoriginal − #tokenscurrent

#tokensoriginal
, 0) (16)

A.C.R. =
1

𝑁benchmark

𝑁benchmark∑︁
𝑖=0

C.R. (17)

C.2 Normalized Metric

We report two normalized metrics to facilitate fair comparisons: Normalized Accuracy and Normalized
Token Length. They are defined as follows:

Normalized Accuracy =
#Acccurrent
#Accoriginal

(18)

Normalized Token =
#Tokencurrent
#Tokenoriginal

(19)

D Data Construction Detail

For long CoT, we use the prompt from dataset s1.1 (Muennighoff et al., 2025). Each sample is
generated 8 times using the original model. For short CoT, to avoid inconsistencies in the system
prompt format, we adopt the short CoT construction method from AdaR1 (?). We annotate 10
randomly selected questions from GSM8K using the instruct model, then fine-tune the long CoT
model to overfit on them. For the GSM8K training set, we sample and retain only the examples with
correct answers.

E Evaluation Detail

We use the DeepSeek-R1-Distill model and apply a temperature setting of 0.7, which is the primary
recommendation in QwQ-Preview, for evaluating all models. All datasets are restricted to an 8K
context window for output generation. Meanwhile, considering the relatively small sizes of the AMC
and AIME datasets, we sample 8 responses per question and compute the average.

E.1 Evaluation Framework

We use skythought-eval3 as the framework, which supports accelerating long CoT reasoning
evaluation with vLLM. The version of vLLM we use is 0.6.3.

3https://github.com/NovaSky-AI/SkyThought

17

https://github.com/NovaSky-AI/SkyThought

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

E.2 Evaluation Dataset Detail

We provide an overview of all datasets used in the following sections.

• ASDiv: A diverse simple English math word problem corpus for evaluating the capability
of various MWP solvers. It contains 2,305 MWPs that cover more text patterns and most
problem types taught in elementary school.

• GSM8K: A high-quality benchmark comprising 8,500 human-written grade school math
word problems that require multi-step reasoning and basic arithmetic, each labeled with
a natural language solution and verified answer. The 1,319-question test set emphasizes
sequential reasoning and is primarily solvable by upper-grade elementary school students.

• MATH500: A challenging benchmark of 500 high school competition-level problems
spanning seven subjects, including Algebra, Geometry, Number Theory, and Precalculus.
Each problem is presented in natural language with LaTeX-formatted notation, offering a
strong measure of mathematical reasoning and generalization across diverse topics.

• AIME2024: A dataset containing 30 problems from the 2024 American Invitational
Mathematics Examination (AIME), a prestigious high school mathematics competition for
top-performing students. Each problem is designed to require deep mathematical insight,
multi-step reasoning, and precise problem-solving skills.

• AMC: The AMC dataset consists of all 83 problems from AMC12 2022 and AMC12 2023,
extracted from the AoPS wiki page. We used a subset of this data containing 40 problems.

• MinervaMath: MinervaMath is a high-difficulty math problem dataset containing 272
challenging problems.

F Baseline Reproduce Details

ConciseCoT & TALE-EP. For the prompt-based baseline, we list the prompts used in Prompt 4.
OverThink. For the MATH12K dataset, we sample each problem 8 times. The shortest correct
sample is selected as the chosen sample, and the longest sample is selected as the rejected sample.
The model is trained for 1 epoch.
ThinkPruner. In our reproduction, we use the competition-level training data provided in the original
paper and train the model for 10 epochs with a learning rate of 1e-6. The maximum response length
is set to 4096 tokens. We follow their early stopping strategy to select the optimal checkpoint for
evaluation.
CoT-Valve. Since CoT-Valve does not report performance on all datasets, we reproduced the results
using the public datasets released by CoT-Valve. We followed the training settings officially reported in
the paper, using LoRA=2 to fine-tune all models. The dataset version used is Mix-Chain-Z-GSM8K.
All models were fine-tuned for 5 epochs on 8 GPUs with 80GB of memory each.
L1. In L1 reproduction on the 7B System-2 model, we utilize the L1-Exact reward function and limit
the token length to between 100 and 4,096 tokens, while setting the token difference penalization
parameter 𝛼 to 0.0003, as described in the paper. We follow their original prompt by appending
"Think for 𝑛𝑡𝑜𝑘𝑒𝑛 tokens" to the end of the question. In inference, the token budget is set to the same
number as the average tokens from our method across the evaluated benchmarks.

G Training Details

Due to the need to evaluate accuracy and token count on a validation set every n steps, our validation
set consists of 512 questions sampled from past questions in AIME-1983 to AIME-2023. The original
ratio for shortcot and longcot is set to 0.5:0.5, with an evaluation interval of every 32 steps. The
model is allowed to train for a total of 𝑇=500 steps, and the learning rate is set as a constant at
1e-5. For the 7B and 14B models, we conducted training on two 8-GPU (80GB) machines, with
one 8-GPU machine performing vllm inference and the other performing training. Every n steps,
parameter synchronization is executed using vllm’s parameter sync function. We ultimately select the
checkpoint with the shortest token length among those whose accuracy on the validation set is no less
than 30% of that achieved by the original long CoT.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Evaluation Prompt on Dataset

=== EVALUATION PROMPT FOR GSM8K ===
<|begin_of_sentence|>Please reason step by step, and put your final answer within ’boxed’.
<|User|>query<|Assistant|>Given the following problem, reason and give a final answer to the problem.
Problem: {question}
Your response should end with T̈he final answer is [answer]ẅhere [answer] is the response to the
problem. <think>

=== EVALUATION PROMPT FOR MATH500 ===
<|begin_of_sentence|>Please reason step by step, and put your final answer within ’
boxed’. <|User|>{query}<|Assistant|>Return your final response within ’boxed’. {problem}. <think>

=== EVALUATION PROMPT FOR AIME24 ===
<|begin_of_sentence|>Please reason step by step, and put your final answer within ’
boxed’. <|User|>query<|Assistant|>Return your final response within ’
boxed’. {problem}. <think>

=== EVALUATION PROMPT FOR AMC ===
<|begin_of_sentence|>Please reason step by step, and put your final answer within ’boxed’.
<|User|>query<|Assistant|>Return your final response within ’boxed’. {problem}. <think>

=== EVALUATION PROMPT FOR MINERVAMATH ===
<|begin_of_sentence|>Please reason step by step, and put your final answer within ’boxed’.
<|User|>query<|Assistant|>Return your final response within ’boxed’. problem. <think>

Figure 4: Evaluation Prompt for GSM8K, MATH500, AIME24, AMC, MinervaMath

Average Accuracy (%)

A
v
e
ra

g
e

T

o
k

en
 C

o
m

p
re

ss
io

n
 R

a
ti

o

65 6967 71 73

40%

30%

20%

10%

0% Original Model

ConciseCoT

Overthink

TLDR 7B (Ours)

TALE-EP

CoT-Valve

75

DeepSeek-R1-Distill-Qwen-Math-7B

DeepSeek-R1-Distill-Qwen-14B

TLDR 14B (Ours)

50%

Figure 5: Comparison of TLDR and baseline models in terms of average accuracy and token compression ratio
on 6 math benchmarks, including GSM8K, MATH, AIME24, and three others. Higher values on both axes
indicate better performance.

H More Related Work

Another category concentrates on building efficient representations. TokenSkip (Xia et al., 2025)
selects data based on token importance for compressed reasoning and more concise thought chains.
COCONUT (Hao et al., 2024) explores more efficient reasoning in the latent space. ICoT-KD (Cheng
& Van Durme, 2024) and CCoT (Cheng & Van Durme, 2024) attempt to build more efficient reasoning

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Subject Accuracy Tokens
DS-7B TLDR-7B Δ Tokens Tokens Δ

College Chemistry 54.0 60.0 +6.0 3086.03 2489.37 -596.66
Electrical Engineering 72.4 65.5 -6.9 1553.04 968.78 -584.26
Conceptual Physics 87.2 78.3 -8.9 1110.13 806.51 -303.62
College Computer Science 79.0 70.0 -9.0 2732.12 1871.20 -860.92

Table 7: Accuracy and token usage comparison between DeepSeek-Distill-Qwen-7B(DS-7B) and
TLDR-7B across four subjects. Δ indicates the difference (TLDR-7B - DS-7B), with positive accuracy
gains in green and token reductions in green.

strategies in the hidden space, while Token Assorted combines hidden space and text-based reasoning
to balance interpretability and efficiency.

I More Non-Math STEM Reason Benchmark in MMLU

We also included additional non-mathematics STEM benchmarks in Table 7 to evaluate whether models
trained primarily on mathematical reasoning can generalize to other STEM domains. Specifically,
we assessed sub-tasks in MMLU, including college-level chemistry, conceptual physics, computer
science, and electrical engineering. Our observations indicate that the model is capable of reducing the
number of generated tokens in these tasks as well. For non-mathematical reasoning tasks, TLDR-7B
exhibits a modest reduction in token count, likely attributable to the relative scarcity of training data
in these domains.

J Case Study

To better understand the behavioral differences between baseline and TLDR strategies, we conduct a
qualitative analysis using the DeepSeek-R1-Distill-Qwen-7B model. Case studies are drawn from
three representative math datasets: GSM8K, AIME, and MATH500. As shown in Figures 6–8, the
baseline model tends to generate verbose reasoning paths with redundant or speculative content.
In contrast, TLDR produces significantly more concise outputs while maintaining correctness and
logical structure. These examples demonstrate TLDR’s ability to suppress unnecessary reasoning
tokens—such as exploratory or reflective phrases—leading to more efficient and focused reasoning
processes.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Question:
Michael is traveling on the interstate at an average speed of 50km/hr (taking into account all the necessary stops
for gas, relaxation, etc.). If he goes on like this for 3 days, and the distance between Alaska and Texas is 6000 km,
what percentage of this distance has he covered?

Generated Answer For GSM8K

TLDR(248 tokens)

Let's break down the problem step by step.
1. Calculate the total distance Michael will
travel: Michael is traveling at an average speed
of 50 km/hr for 3 days. To find the total
distance, we multiply the speed by the number
of days: Total distance = 50km/hr × 3 days =
150km.

Step 1: 82 tokens

So, Michael has covered 2.5% of the distance
between Alaska and Texas.

Step 3: 16 tokens

Baseline (842 tokens)

Okay, let me try to figure out how much of the
distance from Alaska to Texas Michael has covered.
So, Michael is driving at an average speed of 50 km
per hour, and he's doing this for 3 days. The total
distance between Alaska and Texas is 6000 km. I need
to find out what percentage of that 6000 km he's
covered.\n\nFirst, I think I should calculate the total
distance Michael has driven in those 3 days. To do that,
I need to know how many hours he's been driving
each day. Hmm, the problem says he's taking into
account all stops for gas, relaxation, etc., so I guess
he's driving non-stop each day.

Step 1: 114 tokens

But wait, how many hours is that? Oh, the problem
doesn't specify the number of hours he drives each day.
That's a bit confusing. Maybe I'm supposed to assume
a certain number of hours per day? Or perhaps the 50
km/h speed is his average speed including stops, so I
can still use it to find the total distance.\n\nWait,
maybe I can just calculate the total distance based on
his average speed and the time. But without knowing
the exact number of hours, I can't do that.

......
Alternatively, maybe the problem meant 3 hours each
day, but that's unclear. Wait, perhaps the problem is in
a different context, like driving across multiple states
for 3 days, but without knowing the daily driving time,
it's hard to say.

Step 13: 40 tokens

2. Calculate the percentage of the distance
between Alaska and Texas that Michael has
covered: The distance between Alaska and
Texas is 6000 km. To find the percentage of
this distance that Michael has covered, we use
the formula:
Percentage = Distance covered

Total distance
× 100

Substituting the values:

Percentage =
150

6000
× 100 = 2.5

Step 2: 150 tokens

Step 2: 87 tokens

Maybe I should proceed with the initial assumption of
24 hours per day, even though it's unrealistic, and
provide that answer.\n\nSo, final calculation: 50 km/h
* 72 h = 3600 km. 3600/6000 = 0.6 =>
60%.\n</think>\n\nThe final answer is 60%.

Step 14: 49 tokens

Figure 6: Comparison of Reasoning process on GSM8K: Baseline vs. TLDR.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Question:
Let B be the set of rectangular boxes with surface area 54 and volume 23. Let r be the radius of the smallest
sphere that can contain each of the rectangular boxes that are elements of B. The value of �2can be written
as �

�
, where p and q are relatively prime positive integers. Find p + q

Generated Answer For AIME

TLDR(5960 tokens)

Observe that the \"worst\" possible box is one
of the maximum possible length. \nBy
symmetry, the height and the width are the
same in this antioptimal box. (If the height and
width weren't the same, the extra difference
between them could be used to make the
length longer.) Thus, let the width and height
be of length a and the length be L.
\nWe're given that the volume is 23; thus,
$a^2L=23$.

Step 1: 84 tokens

To find the maximum m for $x^3-mx^2+27x-
23=0$\nrewrite m as function of x and
calculate derivatives to get maximum value,
\\[m(x) =-x + 27x^{-1} - 23x^{-2}\\]\n\\[m'(x)
= -1 - 27x^{-2} -46x^{-3} = 0\\]\n\\[x^3 -
27x+46=0\\]\n\\[(x-2)(x^2+2x-23)=0\\]\nwhen
x = 2, \\[m= 2 + \\frac{27}{2} - \\frac{23}{4}
= \\frac{39}{4}\\]\nthe rest is similar to
solution 3.

Step 8: 60 tokens

......

Baseline (7482 tokens)

Observe that the \"worst\" possible box is one of the
maximum possible length. \nBy symmetry, the height
and the width are the same in this antioptimal box. (If
the height and width weren't the same, the extra
difference between them could be used to make the
length longer.) Thus, let the width and height be of
length a and the length be L. \nWe're given that
the volume is 23; thus, $a^2L=23$.

Step 1: 87 tokens

We're also given that the surface area is
$54=2\\cdot27$; thus, $a^2+2aL=27$. \nFrom the
first equation, we can get $L=\\dfrac{23}{a^2}$. We
do a bunch of algebra:
\n\\begin{align*}\nL&=\\dfrac{23}{a^2}
27&=a^2+2aL
\\\\\n&=a^2+2a\\left(\\dfrac{23}{a^2}\\right)
\\\\\n&=a^2+\\dfrac{46}a \\\\\n27a&=a^3+46
\\\\\na^3-27a+46&=0. \\\\\n\\end{align*}\nWe can
use the Rational Root Theorem and test a few values.
It turns out that $a=2$ works. We use synthetic
division to divide by $a-2$:
\n[Asdf.png](https://artofproblemsolving.com/wiki/in
dex.php/File:Asdf.png)\nAs we expect, the remainder
is 0, and we are left with the polynomial $x^2+2x-
23$.

We're also given that the surface area is
$54=2\\cdot27$; thus, $a^2+2aL=27$. \nFrom
the first equation, we can get
$L=\\dfrac{23}{a^2}$. We do a bunch of
algebra:
\n\\begin{align*}\nL&=\\dfrac{23}{a^2}
\\\\\n27&=a^2+2aL
\\\\\n&=a^2+2a\\left(\\dfrac{23}{a^2}\\right)
\\\\\n&=a^2+\\dfrac{46}a \\\\\n27a&=a^3+46
\\\\\na^3-27a+46&=0. \\\\\n\\end{align*}\nWe
can use the Rational Root Theorem and test a
few values. It turns out that $a=2$ works. We
use synthetic division to divide by $a-2$:
\n[Asdf.png](https://artofproblemsolving.com
/wiki/index.php/File:Asdf.png)\nAs we expect,
the remainder is 0, and we are left with the
polynomial $x^2+2x-23$.

Step 2: 155 tokensStep 2: 168 tokens

To find the maximum m for $x^3-mx^2+27x-
23=0$\nrewrite m as function of x and calculate
derivatives to get maximum value, \\[m(x) =-x +
27x^{-1} - 23x^{-2}\\]\n\\[m'(x) = -1 - 27x^{-2} -
46x^{-3} = 0\\]\n\\[x^3 -27x+46=0\\]\n\\[(x-
2)(x^2+2x-23)=0\\]\nwhen x = 2, \\[m= 2 +
\\frac{27}{2} - \\frac{23}{4} =
\\frac{39}{4}\\]\nthe rest is similar to solution
3\n~[luckuso](https://artofproblemsolving.comhttps:/
/artofproblemsolving.com/wiki/index.php/User:Cyan
tist)

Step 27: 168 tokens

Figure 7: Comparison of Reasoning process on AIME: Baseline vs. TLDR.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Question:
The set of points (x,y,z) that satisfy\n\\[2x = 3y = -z\\]is a line.\n\nThe set of points (x,y,z) that satisfy\n\\[6x
= -y = -4z\\]is another line.\n\nFind the angle between these lines, in degrees.

Generated Answer For MATH500

TLDR(204 tokens)

To find the angle between the two lines, we
first need to determine their direction vectors.
For the first line, given by \\(2x = 3y = -z\\),
we can express it in parametric form. Let \\(2x
= 3y = -z = t\\).

Step 1: 44 tokens

Let \\(6x = -y = -4z = s\\). Then, we
have:\n\n\\[\nx = \\frac{s}{6}, \\quad y = -s,
\\quad z = \\frac{s}{-4}\n\\]\n\nThus, the
direction vector \\(\\mathbf{w}\\) of the
second line is \\(\\left(\\frac{1}{6}, -1, -
\\frac{1}{4}\\right)\\)

Step 3: 37 tokens

Baseline (1165 tokens)

Okay, so I've got this problem where there are two
lines defined by sets of equations, and I need to find
the angle between them. Hmm, let me see. The first
line is given by the equations 2x = 3y = -z, and the
second line is 6x = -y = -4z. I remember that to find
the angle between two lines, I need to find the angle
between their direction vectors. So, first step is
probably to figure out the direction vectors of each
line.\n\nLet me think about the first line: 2x = 3y = -z.
I think that when an equation like this is given, it's
setting all these expressions equal to some parameter,
maybe t.

Step 1: 138 tokens

So, I can write each variable in terms of t. Let me try
that. Let's let 2x = 3y = -z = t. Then, x would be t/2, y
would be t/3, and z would be -t. So, the parametric
equations for the first line would be x = t/2, y = t/3, z
= -t. \n\nNow, the direction vector of a line given in
parametric form is the coefficients of the parameter t.
So, looking at x = (1/2)t, y = (1/3)t, z = (-1)t, the
direction vector for the first line is (1/2, 1/3, -1).
Hmm, that seems a bit messy with fractions. Maybe I
can scale it up to make it simpler. If I multiply each
component by 6, which is the least common multiple
of denominators 2 and 3, I get (3, 2, -6). So, the
direction vector for the first line is (3, 2, -6). That
makes things easier.\n\nAlright, moving on to the
second line: 6x = -y = -4z. Similarly, I can set all of
these equal to another parameter, maybe s. So, 6x = -
y = -4z = s.

......

Then, we have:\n\n\\[\nx = \\frac{t}{2}, \\quad
y = \\frac{t}{3}, \\quad z = -t\n\\]\n\nThus, the
direction vector \\(\\mathbf{v}\\) of the first
line is \\(\\left(\\frac{1}{2}, \\frac{1}{3}, -
1\\right)\\).\n\nFor the second line, given by
\\(6x = -y = -4z\\) , we can express i t in
parametric form as well.

Step 2: 52 tokens

Step 2: 237 tokens

3. Calculate the dot product of the direction vectors
\\((3, 2, -6)\\) and \\((2, -12, -3)\\):\n - \\(u \\cdot v =
3 \\cdot 2 + 2 \\cdot (-12) + (-6) \\cdot (-3) = 6 - 24 +
18 = 0\\).\n\nSince the dot product is zero, the vectors
are perpendicular, meaning the angle between the
lines is 90 degrees.\n\n\\[\n\\boxed{90}

Step 10: 68 tokens

Next, we use the dot product formula to find
the angle between the two direction vectors.
The dot product \\(\\mathbf{v} \\cdot
\\mathbf{w}\\) is calculated as
follows:\n\n\\[\n\\mathbf{v} \\cdot \\mathbf{w}
=\\left(\\frac{1}{2}\\right)\\left(\\frac{1}{6}\\r
ight) + \\left(\\frac{1}{3}\\right)(-1) + (-
1)\\left(-\\frac{1}{4}\\right) = \\frac{1}{12} -
\\frac{1}{3} + \\frac{1}{4}\n\\]

Step 4: 45 tokens

Simplifying the expression: [\n\\frac{1}{12} -
\\frac{4}{12} + \\frac{3}{12} = \\frac{0}{12}
= 0\n\\]\n\nSince the dot product is zero, the
vectors are perpendicular, and thus the angle
between the lines is \\(90^\\circ\\).

Step 5: 26 tokens

Figure 8: Comparison of Reasoning process on MATH500: Baseline vs. TLDR.

23

	Introduction
	Related Work
	Efficient System-2 Reasoning
	Data Re-weight of LLM Training

	Rethinking Short-Long CoT in Thinking Compression
	System-1/2 Data Dynamic Re-weighting
	System-1/2 Data Reweighting with Relaxed Optimization
	System-1/2 Data-Reweighting Tuning.

	Experiments
	Experimental Setup
	Ablation of Different System-1/2 Source
	Comparison with Token Budgeted-Aware Model
	Analysis of Thinking Patterns: Reflections & Solutions
	Discussion and Analysis on the Non-Math Domain Benchmark

	Conclusion
	Use of Large Language Models
	Gradient Derivation for Exponentiated Update of i
	Metrics
	Compression Rate
	Normalized Metric

	Data Construction Detail
	Evaluation Detail
	Evaluation Framework
	Evaluation Dataset Detail

	Baseline Reproduce Details
	Training Details
	More Related Work
	More Non-Math STEM Reason Benchmark in MMLU
	Case Study

