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ABSTRACT

Large Language Models (LLMs) have recently achieved remarkable progress on
complex reasoning tasks by leveraging extended Chain-of-Thought (CoT) techniques.
These reasoning processes can be roughly categorized into System-1 (fast and
intuitive) and System-2 (slow and deliberate) paradigms. However, excessive
reliance on lengthy System-2-style reasoning during inference—often producing
extremely long outputs—has raised concerns about efficiency. In this work, we
propose a dynamic ratio-based training pipeline that does not rely on sophisticated
data annotations or interpolation between multiple models. We continuously
balance the weights between the model’s System-1 and System-2 data to eliminate
redundant reasoning processes while preserving the model’s reasoning capability.
We validate our approach across multiple base models, including Deepseek-R1-
Distilled Qwen models, as well as on a diverse set of benchmarks with varying
difficulty levels. Our method significantly reduces the number of output tokens by
nearly 40% while maintaining the accuracy of the reasoning. Our code and data
are at link: https://anonymous.4open.science/r/TLDR_Review-BBE5/.

1 INTRODUCTION

Recent efforts have developed reasoning-oriented Large Language Models (LLMs) capable of solving
complex tasks. These models progressed from System-1 to System-2 paradigms (Yu et al., 2024; Li
et al., 2025). System-1 implementations, such as GPT-4o (Team, 2024b), LLaMA-3 (Team, 2024a),
leverage rapid intuitive processing for immediate responses but struggle with complex reasoning tasks.
In contrast, System-2 architectures such as DeepSeek-R1 (Dee, 2025) are fine-tuned with extended
thinking chains to promote deliberate analysis through iterative self-assessment, error mitigation, and
verification, albeit facing challenges related to redundancy.

However, reasoning LLMs often over-deliberate even on simple problems Chen et al. (2025); Wang
et al. (2025), resulting in unnecessary exploration and planning that undermine their efficiency
and practicality. To mitigate this issue, two broad categories of approaches have been explored:
training-free methods (Xu et al., 2025b; Yao et al., 2025; Han et al., 2024) and training-based methods.
Some training-free methods regulate the internal states of the model during reasoning—e. g., through
prompts or confidence-based techniques to compress the model outputs. Alternatively, the mainstream,
exemplified by model merging (Wu et al., 2025b; Team et al., 2025) and steering (Chen et al.; Azizi
et al., 2025), involves intervening in the parameters or decoding process of the reasoning LLM to
produce concise solutions.

In contrast, training-based methods (Xia et al., 2025; Yang et al., 2025; Ma et al., 2025) primarily
focus on sampling and synthesizing relatively concise reasoning paths on specified problem sets
through various strategies (Xia et al., 2025; Yang et al., 2025; Ma et al., 2025). These methods
involve performing reinforcement learning (Meng et al., 2024; Hou et al., 2025b; Luo et al., 2025a;
Aggarwal & Welleck, 2025) or supervised fine-tuning (SFT) (Chen et al., 2025) on reasoning LLMs,
enabling the model to learn to generate more concise yet correct reasoning paths. Despite their
effectiveness of SFT, the training-based methods typically require careful collection of problems and
precise control of the data ratio for different lengths to achieve good results, leading to a complex
process of parameter tuning and data construction. For example, TOPS (Yang et al., 2025) requires
pre-processing steps to manually label SFT data to construct length-sensitive models, while CoT-Valve
(Ma et al., 2025) generates data by creating intermediate models through model interpolation for
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Figure 1: Impact of Combining Short CoT and Long CoT in Fixed Ratios on Thinking Compression
Performance and Token Cost. We assessed the variation decay rate in output token length and
accuracy on datasets of various question difficulty, spanning from GSM8K to AIME. The Normalized
Token/Acc metric detail please refer to Eq. (18) and Eq. (19).

sampling. This construction process is often tedious (Yang et al., 2025), or challenging to maintain at
high quality (Ma et al., 2025). RL-based methods (Aggarwal & Welleck, 2025; Hou et al., 2025a)
yield more accurate and concise solutions by penalizing redundancy in System-2 reasoning, though
their efficiency gains come at the cost of expensive training.

To better understand the role of different CoT instruction data in long CoT compression, we re-examine
the impact of different CoT datasets on compressing long CoT models from two perspectives: problem
difficulty and the length of the chain of thought with takeaways in Figure 1. Our findings indicate that
two CoT subtypes have distinct effects: Long CoT on complex problems (System-2) and short CoT on
easy problems (System-1) drive divergent optimization in the model’s reasoning behavior. Increasing
System-1 data promotes more concise reasoning but may reduce accuracy, whereas more System-2
data preserves performance on complex tasks at the cost of lower compression efficiency.

We base our approach on an intuitive motivation: when a model is thinking too long, it should reweight
more intuitive reasoning paths to simplify the thinking process. Conversely, when the thinking is too
direct, it should incorporate more slow-thinking reasoning chains to encourage deeper contemplation.
We propose a dynamic Thinking Length Data Re-Weighting method (TLDR), which dynamically
balances the model’s complex reasoning using long CoT and efficient reasoning using short CoT data,
enabling the model to eliminate redundant cognitive processes. First, we construct System-1-style
short CoT data for GSM8K-like (Cobbe et al., 2021a) simple problems and System-2-style long CoT
data for s1-like (Muennighoff et al., 2025) complex problems. The model begins with an initial ratio
and performs reasoning compression using mixed data. After completing a compression cycle, the
model re-evaluates the expected benefits of System-1 CoT data and System-2 CoT data to achieve
improved performance. Specifically, and in line with intuition, System-1 CoT data can enhance
efficiency, so we use an efficiency metric to measure the expected benefit of System-1 data. System-2
CoT, in contrast, improves reasoning accuracy, and we use an accuracy metric to measure the benefit
of System-2 data for reasoning capability.
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Compared to various methods requiring fine-tuning data with different reasoning lengths (Ma et al.,
2025; Yang et al., 2025), our approach enables dynamic ratio learning by utilizing the self-sampled
long CoT model and the short CoT data constructed by the original instruct/base model. As a dynamic
SFT approach, our method achieves shorter training time and higher efficiency than ThinkPrune and
L1, while also delivering superior performance. Through experiments on DeepSeek-Distill-7B/14B,
our model achieves excellent compression results on the DeepSeek Distilled Qwen-7B/14B model
models, with only a slight decrease in reasoning capability.

2  RELATED WORK

2.1 EFFICIENT SYSTEM-2 REASONING

Despite the strong generalization and reasoning abilities demonstrated by the system 2 reasoning
paradigm, the auto-regressive nature of LLMs imposes a significant reasoning burden (Chen et al.,
2025; Wang et al., 2025). To address this, various approaches have emerged to improve the reasoning
efficiency. These methods can be broadly categorized into two types. One category focuses on
building adaptive reasoning-budget. Within this, some training-free methods like CoD (Xu et al.,
2025b) and TALE-EP (Han et al., 2024) impose budget constraints to control overall reasoning cost.
Budget-sensitive models such as L1, TOPS, O1-Pruner, K1.5 (Aggarwal & Welleck, 2025; Yang
et al., 2025; Luo et al., 2025b; Team et al., 2025) add length penalties during the post-training. Some
work (Ma et al., 2025; Jiang et al., 2025; Yu et al., 2025) synthesizes diverse-length CoT data, while
TOPS (Yang et al., 2025) samples budget-sensitive versions using a data model, and C30T (Kang et al.,
2024) compresses original LLM output. Although prior work—such as TOPS (Yang et al., 2025) and
CoT-Valve (Ma et al., 2025)—has devoted considerable effort to constructing datasets with various
CoT lengths to enable adaptive reasoning, few studies have compared how different reasoning-chain
lengths affect a model’s performance in terms of accuracy and inference length. We first constructed
the short CoT data using simple problems and recorded how, as training steps increased, this subset
contributed to token compression and accuracy retention across datasets of varying difficulty in math
benchmarks.

2.2  DataA RE-WEIGHT oF LLM TRAINING

The quality and proportion of data are critical during both the pre-training and post-training phases.
In the pre-training stage, data quality and proportion are primarily managed through filtering
and reweighting. Pre-training data filtering, extensively studied to boost model performance and
training efficiency (Liu et al., 2024; Albalak et al., 2024), typically involves steps like language
filtering (Laurencon et al., 2023; Chowdhery et al., 2022), quality filtering (Raffel et al., 2023; Rae et al.,
2022), content filtering (Xu et al., 2021; Longpre et al., 2023), and deduplication (Hernandez et al.,
2022; Lee et al., 2022). While these methods significantly enhance corpus quality, their static nature
can hinder dynamic adjustments during training, potentially discarding valuable data (Muennighoft
et al., 2023) and introducing biases (Gururangan et al., 2022; Longpre et al., 2023; Dodge et al., 2021).
Similarly, in the post-training stage, an appropriate proportion of data with varying characteristics is
crucial for optimizing final performance. For example, DeepMath-103K generates a large volume
of data with evenly distributed difficulty for training (He et al., 2025), SRPO designs a dynamic
sampling approach to filter out samples that are consistently answered correctly, thereby improving
inference efficiency (Zhang et al., 2025). To the best of our knowledge, we are the first to introduce a
re-weighting mechanism into thinking compression. By employing simple strategies to construct
short and long CoT, we enable the model to dynamically compress its reasoning process.

3 RETHINKING SHORT-LONG COT N THINKING COMPRESSION

In our experiments, we constructed short CoT and long CoT based on datasets of different difficulty
levels. To examine how problem difficulty influences the effectiveness of System-1 data and System-2
data, we selected two types of problems: (1) Simple problems, drawn from GSM8K, a benchmark of
math word problem solving and (2) Difficult problems, drawn from S1, a deliberately curated dataset
of difficult problems.
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Figure 2: Overview of TLDRr. Starting with a System-2 model, we iteratively update it on both
Short-CoT and Long-CoT samples. Their ratios are adjusted every few steps based on the current
average model accuracy and token length from the validation set, repeating until convergence.

We find that short CoT thinking data for simple problems (System-1 data) can help compress
the token usage across questions of various difficulty levels. We leverage the short-cut solutions
obtained from simple questions in GSM8K to fine-tune the model and then observe the token
compression rates and accuracy drop rates across four datasets, ranging from simple to difficult:
GSMB8K, MATHS500, AMC, and AIME. As shown in Figure 1, directly fine-tuning the long CoT model
with short CoT data achieves good length compression for both simple and complex problems. We
were pleasantly surprised to see that this form of length compression generalizes well across questions
of all difficulty levels, and that it maintains strong performance on simple questions. However, this
approach comes at a cost, as it leads to a significant decrease in reasoning ability on difficult problems.
As this portion of the data is derived from intuitive CoT reasoning on simple problems, we denote it
as System-1 data. It seems that directly using short CoT fine-tuning can only encourage the reasoning
LLM to retain its System-1 reasoning abilities, while its ability for System-2 reasoning—slow and
cautious thinking for complex problems—is largely lost.

We find that long CoT thinking data for difficult problems (System-2 data) can help maintain
the model’s performance on challenging tasks. We sample with the s1 (Muennighoff et al., 2025)
like hard question prompt and then blend the System-2 data into the previous System-1 thinking
dataset at a fixed short CoT vs. long CoT ratio: 0.8:0.2. We then observe the token compression rates
and accuracy drop rates across four datasets.

It is worth noting that, by contrast, when we mix more long CoT data from simpler questions, the
model still experiences a significant drop in performance on difficult questions. Refer to the middle
and bottom parts of Figure 1, where we mix the long CoT sampled from challenging problems with
the short CoT from simple problems. As a baseline, we also mix long CoT and short CoT from simple
problems. The long CoT from difficult problems achieves lower accuracy drop rates across different
datasets while maintaining comparable token compression rates. We are unable to recover the original
performance simply by using long CoT data from simple questions through data replay. Similar to the
deliberate reasoning characteristic of the System-2 process on difficult problems, we refer to this part
of the data as System-2 data.

A key question we directly address is whether a direct mixing ratio of the two types of data
(System-1/2 data), can be employed for post-training the long CoT model, resulting in a solution
that eliminates redundancy without compromising performance. Based on these observations, we
propose a dynamic approach aimed at identifying the optimal Thinking Compression data.

4  SysteM-1/2 Data DyNaMic RE-WEIGHTING

4.1 System-1/2 Data REWEIGHTING WITH RELAXED OPTIMIZATION

We formalize the thinking compression problem as an optimization task to determine the optimal ratio
between System-1 and System-2 reasoning. We expect the model trained on mixed data to approach
the superior performance of System-1 and System-2 in specific evaluation metrics. For model LLM
and an input problem x, we define Token(y) € Z*, Accuracy(y) € as the token length and correctness
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Algorithm 1 Overall Pipeline of TLDR: Data Construction and Algorithm Execution

Require: Domain data Dgys.1, Dsys.2, Dyey; training steps T'; batch size b; step size n; smoothing
parameter ¢ € [0,1] (e.g., ¢ = 10~* in our implementation). The long CoT model 8yong to be
optimized and a reference Ogpory-

Estimate the ideal upper bounds of efficiency and performance.

Initialize proxy weights 6y from orginal long CoT model 6;.
Initialize mixture weights ap = (1/2,1/2)
Compute @gys-1,bound and Psys.2 bound Using Eq. (5) and Eq. (6) using jong and Gspor.
Step 2: Thinking Compression Post-Train with dynamic System-1/2 reasoning weights.
fort=1toT by T,; do

Conduct SFT with the current System-1/2 data proportions and update proxy model weights
BOproxy using L(Bproxy, @:—1) (e.g., via Adam, Adafactor).

Compute benefit of fine-tuning with System-1 data: Agy,.; and System-2 data Agys>. which
constitutes the approximate gradient of a;

Update weights (entrywise exponential): aj [i] « a;_1[i] - exp(—1 - Agysi)

Smooth and Renormalize: a,[i] « %

i=1 "t

end for

of LLM output text y. We represent the System-1/2 ability bound as @sys-i,bound (¥), in the following
sections, we will abbreviate as ¢gys.i bound ()

2
min L(6,a) = Y, 1
0, ac(0,1) (6, @) ;a’ ! D
6; = ¢sys—i,b0und - ¢sys—i,0 2)

of which, ¢sys—1,¢ can be regarded as a metric for measuring the efficiency of the System-1 reasoning.
¢sys—2,0 can be regarded as an accuracy metric. In this way, the overall optimization objective is to
minimize the gap between the current model and the efficiency upper bound of System-1, as well as
the reasoning capability upper bound of System-2, in other words, optimizing the model parameters
to maximize both reasoning performance and efficiency.

¢sys—l,9 = _Ey~LLM(x),xEDdeV [TOken(Y)] 3)
¢sys—2,9 = Ey~LLM(x),xEDdev [Accuracy(y)] (4)

Setup for System-1/2 Mixed Data. Since System-1 can provide fast and intuitive answers to simple
problems, we use the short CoT model to modulate the data for the System-1 model, and the training
set of basic elementary arithmetic problems from GSMS8K is used as the problem dataset for System-1
data.. Meanwhile, as System-2 is designed to execute slow, logical reasoning for challenging problems,
we employ the long CoT model to sample solutions from S1 (Muennighoff et al., 2025) prompts
set, retaining only the correct responses. Finally, we obtain Dyys.1 =<Simple Question, Short CoT>
instruction pairs. For the harder problems within the System-2 domain, we used the LongCoT model
for sampling, resulting in a large amount of Dys.» =<Hard Question, Long CoT> instruction data.

4.2  SysTEM-1/2 DATA-REWEIGHTING TUNING.

Step 1: Estimate the ideal upper bounds of efficiency and performance. During training, we aim
to continuously adjust the ratio of System-1 and System-2 data in the post-training phase, ensuring
that the model retains the reasoning capabilities of the original long CoT model while achieving the
efficiency of the short Col' model. Therefore, we set the accuracy upper bound, ¢ys_2 bound, Of the
model obtained through mixed training to match the accuracy of the original long CoT model, while
setting the token lower bound, @ys—1,bound, Of the mixed model to correspond to the data lower bound
of the short CoT model we constructed. The y; is the short CoT response from System-1 model with
parameter 6 and y; is the long CoT from the corresponding System-2 model parameterized by 6;.

¢sys—1,b0und = ¢sys—1,sh0rt = ¢sys—1,9s = _Edcv [TOken(ys)] (5)

¢sys—2, bound = ¢sys—2,long = ¢sys—2,91 = I,Edev [ACCUT&CY()’I)] (6)
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Step 2: Thinking Compression Post-Train with dynamic System-1/2 reasoning weights Initially,
we assign an equal data ratio @ to System-1 and System-2 data. Then, after every T; SFT training
steps, to optimally optimize the objectives expressed by Eq. (5) and Eq. (6), we recompute the
weights of System-1 and System-2 data. Specifically, we compute the gains of System-1 and System-2
data using Eq. (12) and Eq. (13), together with the previously derived upper bounds. We then solve
this optimization problem using the Exponential Gradient method, with detailed derivations provided
in Appendix B. Based on the solution, we determine the updated data allocation weights for the
following T steps.

¢sys—1, bound — ¢sys—l,6)
Asys1 = Max ( Y0 @)
¢sys—l,0,- - ¢sys—l,01
¢Sys—2, bound — ¢sys—2,6’proxy
Agys-2 = max ( , 0 (8)
¢sys—2,9[ - ¢sys—2,95

Subsequently we determine the updated data allocation weights for the following 7 steps and continue
SFT proxy model. This process repeats continuously, as illustrated in Algorithm 1.

We dynamically evaluate the utility of System-1 and System-2 reasoning data’s values during training,
and, guided by the performance on an validation dataset, adjust the sampling ratio between the two
data types in real time to optimize training effectiveness to optimize the parameter 6oxy. After a
sufficiently large number of training steps, we select from the checkpoints that do not show degraded
reasoning performance on the validation set, choosing the one with the lowest average output length.

In Figure 2, we present a concrete example of weight adjustment. After re-evaluating performance
on the validation set, we readjusted the proportions of System-1 and System-2 data based on the
models’ output length and accuracy on the validation set. The reweighted data was then used for SFT,
resulting in a model that produces fewer outputs while maintaining the original model’s accuracy.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets and Metrics. Following prior efforts, we evaluate TLDR on several widely-used benchmarks
that span a broad range of difficulty levels, including ASDiv (Miao et al., 2021), GSM8K (Cobbe
etal., 2021b), MATH-500 (Hendrycks et al., 2021b), AIME2024 (AI-MO, 2024a), and AMC (AI-MO,
2024b) in Table 1. To ensure the stability of the evaluation, we performed multiple samplings for each
dataset and took the average accuracy. For GSM8K, MATH-500, and MinervaMath, we sampled
each question 4 times and took the average accuracy of the 4 solutions. For AIME24 and AMC23, we
sampled each problem 8 times and took the average accuracy of the 8 solutions. The token count was
calculated using the corresponding tokenizer of the language model of Skythought' library.

Baselines. We compared two types of baselines:

Training-free Methods. A direct and representative category of such approaches is the prompt-based
methods paradigm. We compared our approach with the well-known prompt-based baselines in the
community, including TALE-EP (Han et al., 2024), which requires the prompt to be as simple as
possible, and ConciseCoT (Lee et al., 2025), which demands the use of the most concise CoT steps
during step-by-step reasoning. Another widely adopted paradigm is the family of model-merging
based methods, which leverages the rich knowledge from short CoT Instruct and the long CoT
model for model fusion, aiming to achieve the shortest yet most effective reasoning process. We
compared this approach with the Avg. Merging method used in Kimi-1.5 (Team et al., 2025; Wu
et al., 2025a) and some advanced merging method, like Task-Arithmetic-Merging, Ties-Merging,
Ties-Dare-Merging, discussed in Long2Short Technical Report (Wu et al., 2025a). We also compared
with methods like Seal (Chen et al.), which extract hidden states, construct steer vectors, and use it to
perform thought control during LLM decoding.

Training-based Methods In addition to prior work such as CoT-Valve and TOPS that constructs SFT
datasets with diverse reasoning lengths, we also include approaches that incorporate alternative

Thttps://github.com/NovaSky-AI/SkyThought
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Model Accuracy Generation Length A.CR.
ASDiv GSM8K MATH AIME AMC Minerva Avg. ASDiv GSM8K MATH AIME AMC Minerva
DS-Qwen-7B Models
R1-Distill-Qwen 86.8  89.4 86.8 429 815 460 722 769 554 2861 6820 4510 3347 -
TALE-EP 804  89.1 84.3 400 80.0 423 69.3 509 450 1994 6520 3892 2242 22.3%
ConciseCoT 86.0  89.5 86.2 417 79.6 460 715 532 457 2330 6587 4245 3347 12.7%
Avg. Merging 928  70.1 58.6 0.05 39.6 29.8 484 622 8552 8540 8501 8542 8544 3.2%
Task-Arithmetic-Merging 833 846 746 200 635 39.6 610 321 383 907 2500 1311 794  61.3%
Ties-Merging 744 69.7 59.8 13.6 425 232 472 1114 2475 4086 6767 5195 4306 0.1%
Ties-Dare-Merging 759 723 654 146 456 243 49.6 1036 2073 2934 5483 3698 2938 8.3%
Seal 86.8 894 894 433 778 478 724 591 773 2661 6871 4740 3413  5.1%
Overthink 86.6  89.6 872 387 79.6 452 71.1 773 555 2898 6766 4558 3407  0.1%
ThinkPrune 90.6  92.1 91.0 433 862 456 748 653 587 2379 6207 3739 2762 12.6%
CoT-Valve” 594 884 842 412 806 419 659 140 514 2144 6397 4278 2172 26.8%
TLDr 930 877 874 412 831 41.0 723 147 253 1556 6368 3386 1451 44.9%
A +6.2  -1.7 +0.6 -1.7 +1.6 -50 +0.1 -622 -301 -1305 -452 -1124 -1896 -
DS-Qwen-14B Models

R1-Distill-Qwen 80.5 925 864 434 79.6 482 717 476 679 2951 6701 4584 3270 -
TALE-EP 775 924 854 492 803 500 725 369 555 2248 6551 4179 2731 15.4%
ConciseCoT 740 924 85.6 516 823 471 722 369 555 2066 6267 3878 2605 18.8%
Avg. Merging 948 903 73.0 108 550 441 613 167 366 5158 6364 5668 1084  30.5%
Task-Arithmetic-Merging 86.5  86.5 742 133 553 360 58.6 238 368 870 2813 1411 1050 60.2%
Ties-Merging 796 913 826 254 725 371 648 242 542 1919 5913 3158 1850 31.8%
Ties-Dare-Merging 80.7 918 84.8 254 753 349 654 274 467 1870 5747 3182 1877 33.0%
Overthink 793 923 88.0 45.8 828 456 723 451 679 2893 6700 4464 3715  1.6%
ThinkPrune 80.6 937 89.0 508 887 507 756 379 563 2177 5778 3327 2234 22.8%
CoT-Valve® 729 920 87.0 450 835 478 714 204 576 2652 6686 4392 2833 16.7%
TLDr T 880 909 " 86.6 433 838 487 735 158 240 2092 6403 3839 2177 358%
A +8.0 -1.6 +0.2  -0.1 +42 +05 +2.1 -318 439  -859 -298 -745 -1093 -

Table 1: Performance comparison of TLDr with baselines. The accuracy is measured by sampling
multiple responses from the LLMs and taking the average to reduce variance. * denotes the CoI-Valve
result that we reproduced using the official dataset. A refers to TLDR in comparison with Original.
Math’ and Minerva’ refer to MATH500 and MinervaMath datasets, respectively. A.C.R. means the
token compression ratio computed by Eq. 16. In the table, represents prompt-based methods;
highlights Merging-based methods; red indicates SFT-based and RL-based methods.

Model Accuracy Generation Length
GSM8K MATH AIME AMC Avg. GSM8K MATH AIME AMC Avg.
7B Models
Original Model 89.4 86.8 429 815 752 554 2861 6820 4510 3686
Compression by SFT on Static Dataset
-Direct-Mixture 87.1 84.8 39.7 73.1  71.2 236 1221 5322 2560 2335
-MixChain-Z-GSMSK* 88.4 84.2 412 80.6 73.6 514 2144 6397 4278 3333
-TOPS 85.9 89.4 433 718 741 336 2145 4378 7024 3471
Compression by Simple Data Schedule
-Large->Small Curriculum 86.9 83.0 39.5 76.8 71.5 231 1335 5684 2841 2523
-Small->Large Curriculum 84.0 82.0 412 80.0 71.8 266 1766 6729 3968 3182
-Random Re-weight 84.0 81.0 37.5 79.6  70.5 246 1416 5828 2925 2604
Ours
-TLDR 87.7 87.4 41.2 83.1 749 253 1556 6368 3386 2891

Table 2: Performance comparison after removing the MinervaMath column. Accuracy is measured
using multiple sampling runs to reduce variance. & denotes CoT-Valve (Ma et al., 2025) and
TOPS (Yang et al., 2025) reproduced results.

reward-based methods. ThinkPrune (Hou et al., 2025a) uses progressive compression of RL training
length to improve the effectiveness of context utilization during exploration. SimPOgportes: Was
introduced in Overthink (Chen et al., 2025) to adjust the effectiveness of the RL algorithm by
length-guided RL training.

Main Results As shown in Table |, We observe that Prompt-based methods exhibit relatively
high instability and comparatively low compression ratios. Merging-based methods, on the other
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Training Method Training Time (GPU hours) Avg. Acc A.CR

TLDRr ~88.1 72.3 44.9%

" -CoTValve ~ 2406 659  26.8%
-LI ~640.3 - -
-ThinkPrune ~704.1 74.8 22.8%

Table 3: Training time comparison (measured in GPU days) between TLDRr and the other baseline
method. GPU hours are measured using A100 GPUs. We compared with L1, ThinkPrune, and
CoTI-Valve.

hand, are prone to significant performance drops and fail to achieve effective thinking compression
across datasets of varying difficulty. Moreover, for certain base models, they cannot compress tokens
effectively, leading to weight collapse. Training-free based methods like Seal (Chen et al.), which
use control thinking by steering, can maintain relatively good performance across multiple datasets.
However, they may be limited by the representational capacity of hidden state vectors, making
it difficult to generalize to broader mathematical datasets, and their effectiveness in compressing
reasoning is somewhat constrained.. Compared to the training-based algorithms in ThinkPrune and
OverThink, TLDR demonstrates a higher average compression ratio A.C.R. This advantage is quite
notable, especially on datasets such as ADSiv and GSMS8K, which suffer overthinking issues.

To demonstrate the advantages of our dynamic re-weighting method, we carefully designed several
types of baselines: (1) Static method using static compression SFT data with carefully crafted
techniques to control reasoning length; MixChain-Z-GSM8K and TOPS are two Long2Short datasets
proposed by CoT-Valve and TOPS in Table 2. Compared to carefully constructed thinking compression
SFT datasets, such as CoT-Valve and TOPS, our method achieves superior compression performance.
(2) Dynamic methods leveraging curriculum learning to find the optimal balance of System-1 and
System-2 data, linearly adjusting their sampling probabilities over training steps; and (3) Re-weighting
System-1/2 data randomly to explore better System-1/2 data ratios. In Table 2, We introduced
other dynamic data balancing methods, such as curriculum learning, to construct the optimal mix
of System-1 and System-2 data. For Large->Small Curriculum, as the number of training steps
increases, the proportion of System-1 data is linearly decreased and the proportion of System-2 data is
increased every fixed steps. Small —-Large Curriculum follows the opposite strategy. In addition, we
introduce Random Re-weight as another baseline. Every fixed steps, the sampling ratio of System-1
and System-2 data is reset to a random proportion.

We compare our approach with ThinkPrune, L1, and CoT-Valve, three different training-based methods.
ThinkPrune and L1 use RL to guide sample generation within a set length or quota, requiring very
long RL steps to reach the desired objectives, which leads to high training costs. The results in Table
3 show that TLDR, benefiting from the relatively fast training process of SFT and employing dynamic
reweighting, achieves faster training compared to CoI-Valve, which which requires extensively using
model interpolation to generate a large number of CoIs with diverse lengths. It is worth noting that
methods represented by ThinkPrune perform RL while truncating the context length, encouraging the
model to produce correct solutions within this limited context. However, this method requires many
training steps to optimize its performance.

5.2  ABLATION OF DIFFERENT SYSTEM-1/2 SOURCE

We also discovered that incorporating higher-difficulty CoT data into a short-long mixed dataset could
effectively eliminate redundancies in CoT for their compressed version. However, direct mixing could
lead to performance degradation. After introducing a dynamic ratio method, we found that flexibly
adjusting the ratio could effectively maintain performance in Table 4. We categorized the sources
of questions in the thinking compression data into three difficulty levels: easy, medium, and hard.
easy questions are from GSM8K, medium questions are from the training set of MATH500, and hard
questions are from the s1 prompt questions.

Short CoT Compression Generalization Analysis of Easy-to-Hard. We tested the construction of
System-1 data, examining the composition of data from different thinking compression sources. Our
experiments found that constructing data based on low-difficulty problems could significantly reduce
the token count of high-difficulty problems while maintaining performance. We found that using
lower-difficulty problems to construct thinking compression data for redundancy removal can further
generalize to higher-difficulty problems.
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baseline ConciseCot CoT-Valve TLDR(ours)

Exploratory Word Exploratory Word Exploratory Word

Checking
Words

Reflective
Words

Checking
Words

Reflective
Words

Reflective
‘Words

Checking
‘Words

(a) GSMSK (b) AIME (c) MATH500

Figure 3: Frequency comparison of different keywords. The figure illustrates the distribution of
exploratory, checking, and reflective keywords across datasets. Exploratory Keywords: wait, Reflective
Word: but, Checking Words: make sure/confirm/verify/check, TLDR significantly reduces the presence
of such words, reflecting its ability to produce streamlined and efficient reasoning steps.

Model Accuracy Generation Length
GSMS8K MATH AIME AMC Avg. GSM8K MATH AIME AMC Avg.
DeepSeek-R1-Distill-Qwen-7B System-1 Short CoT Ablation
Original Model 89.4 86.8 429 81.5 60.1 554 2861 6820 4510 2949
-TLDr-Easy 87.7 87.4 41.2 83.1 599 253 1556 6368 3386 2313
-TLDRr-Medium 88.2 86.2 41.5 313 61.8 318 2083 6604 3945 3238
-TLDr-Hard 83.6 80.2 30.0 653 64.8 495 2970 6874 4947 3822
DeepSeek-R1-Distill-Qwen-7B System-2 Long CoT Ablation
Original Model 89.4 86.8 429 81.5 60.1 554 2861 6820 4510 2949
-TLDr-Easy 83.9 86.8 42.5 834 742 446 2639 6580 4047 3428
-TLDRr-Medium 91.6 87.6 40.4 815 753 542 2761 6553 4116 2950
-TLDr-Hard 87.7 87.4 412 83.1 7438 253 1556 6368 3386 2828

Table 4: An ablation study on the difficulty levels of ShortCoT and LongCoT was conducted during the
construction of the short CoT and long CoT dataset. The accuracy is measured by sampling multiple
responses from the LLMs and taking the average to reduce variance.  denotes the CoT-Valve (Ma
et al., 2025) result that we reproduced using the officially dataset. MATH means MATHS500 dataset.

Long CoT Performance Generalization Analysis of Hard-to-Easy. We also conducted an analysis
of the following aspects: during the sampling of long CoT, we utilized data from three distinct
sources—easy, medium, hard prompt. Our findings reveal that only by constructing long CoT using
hard problems and dynamically adjusting their proportions during training can we recover the original
performance associated with long CoT. This strategy effectively mitigates the risk of forgetting in
reasoning capabilities during continual learning.

5.3 CompARISON WITH TOKEN BUDGETED-AWARE MODEL

We compared our redundancy reduction method with both quota-controlled models and reasoning
models under the same token budget, in order to evaluate the effectiveness of our approach relative to
explicit quota-based control in Table 5. The results show that our method achieves higher reasoning
accuracy than both the L1 (Aggarwal & Welleck, 2025) baselines under the same token quota.
Furthermore, our approach demonstrates more efficient utilization of context length and does not
require explicitly specifying a reasoning quota, offering a more flexible and adaptive inference
mechanism. TLDr demonstrates stronger compression efficiency on simple problems.

5.4 ANALYSIS OF THINKING PATTERNS: REFLECTIONS & SOLUTIONS

We compared our method with other thinking compression methods in terms of their impact on
changes in cognitive patterns (Xu et al., 2025a) of the solution in Figure 3. We performed fine-grained
statistical analysis on the results across different datasets. Our analysis demonstrates that our approach
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Accuracy Generation Length
GSMS8K MATH AIME AMC Avg. GSM8K MATH AIME AMC Avg.
DeepSeek-R1-Distill-Qwen-7B
Original Model 89.4 86.8 429 815 752 554 2861 6820 4510 3686

Model

-TLDr 87.7 87.4 412 83.1 748 253 1556 6368 3386 2891
-L1-same 86.4 88.6 422 846 754 301 2301 5875 3784 3056
-L1-lower 86.4 87.6 45.1 84.6 759 312 1831 5675 3807 2906
-L1-higher 86.1 88.4 455 833 7538 292 2589 6007 3746 3158

Table 5: Performance comparison of TLDR with budget-aware baseline, L1 (Aggarwal & Welleck,
2025). The accuracy is measured by sampling multiple responses from the LLMs and to reduce
variance. The terms same, lower, and higher refer to setting the budget to match our results, 20%
lower, and 20% higher, respectively. MATH means MATHS00 dataset.

Model Leetcode MBPP HumanEval Average
Pass@1 / Tokens Pass@1/Tokens Pass@1/Tokens Pass@]1 /Tokens

DS-7B 33.3/7088 61.4/1739 67.6 /2692 54.1/3839
DS-7B-TLDR 34.4/6793 64.3/1234 73.1/2536 57.3/3521
A +1.1/-295 +2.9/-505 +5.5/-156 +3.2/-318

Model ARC HellaSwag  CommonsenseQA Average

Acc / Tokens  Acc / Tokens Acc / Tokens Acc / Tokens

DS-7B 66.1/416 46.0/168.4 58.8/515 56.97 /366.5

TLDR 68.1 /488 47.5/180.1 59.5/495 58.37/387.7

A +2.0/+72 +1.5/+11.7 +0.7/-20 +1.40/+21.2

Table 6: Performance comparison between RI-Distill-Qwen-7B(DS-7B) and TLDR across three
coding and commonse QA benchmarks. Pass@ 1 accuracy is reported alongside the average number
of tokens generated.

effectively compresses the internal redundancy and reflects the properties of the solution patterns.
TLDRr effectively reduces the reliance on such macro reasoning patterns in benchmarks like GSM8K
and MATHS500, thereby avoiding excessive allocation of computational budget. Notably, for more
challenging problems, the model still retains a significant degree of complex reasoning behavior to
preserve its System-2 reasoning capabilities, we provide additional case studies in the Appendix J.

5.5 DiscussioN AND ANALYSIS ON THE NON-MATH DoMAIN BENCHMARK

Our training primarily relies on simple and challenging math problems from Math. We also aim to ana-
lyze and observe the model’s generalization capabilities in non-math domains, including performance
on CommonSenseQA and code reasoning tasks. Therefore, we selected HellaSwag (Zellers et al.,
2019), CommonSenseQA (Talmor et al., 2019), and ARC (Clark et al., 2018) as three non-math domain
datasets, and HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021), and LeetCode (Guo et al.,
2024) as three code-domain datasets. Since most questions in CommonSenseQA are multiple-choice
and the original long CoT model’s responses tend to be brief, we also incorporated some non-math
subjects from MMLU (Hendrycks et al., 2021a) for comparison for reference in Appendix I.

6 CONCLUSION

This paper introduces TLDR, an innovative method designed to compress the reasoning processes of
LLMs without sacrificing accuracy. By dynamically re-weighting the influence of System 1 (concise
reasoning) and System 2 (detailed reasoning) data during the training process, TLDRr allows LLMs
to eliminate unnecessary steps for simpler problems while still engaging in deep contemplation
for complex tasks. TLDR avoids the laborious data collection and hyperparameter tuning typically
required by other compression methods, offering a more practical solution for developing LLMs that
are both efficient and accurate.
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A Usk orF LARGE LANGUAGE MODELS

During manuscript preparation, a large language model (LLM) was occasionally employed as an
auxiliary assistant to refine language expression, such as improving sentence fluency and enhancing
readability. The model was not involved in generating original research contributions: it did not
participate in formulating research questions, designing methodologies, conducting experiments,
analyzing results, or drafting substantive scientific content. All core intellectual work, including
the development of ideas, execution of experiments, and interpretation of findings, was carried out
independently by the authors. Any linguistic suggestions offered by the LLM were critically reviewed
and selectively incorporated, ensuring that accuracy, originality, and scholarly integrity were fully
maintained. The authors alone bear responsibility for the research content and conclusions, and the
LLM is not listed as a contributor or author.

B  GRADIENT DERIVATION FOR EXPONENTIATED UPDATE OF «;

Gradient-based Weight Updates of TLDR. We consider the loss function:

2
L(6,a)= Z a-6;, 0;= ¢sys—i,bound - ¢sys—i,(-)~ 9)

i=1

Assuming 6 is fixed, §; can be treated as a constant. Thus, L is linear in «;. «; is required to be
non-negative, and @ + ap = 1.

Exponentiated Gradient (EG) Method. The Exponentiated Gradient algorithm” is a standard
technique in online convex optimization for updating probability-like weights under a convex loss
function. Given a loss function L(«), the EG update is defined as:

oL
@41 [i] — a;[i] exp(—ng), (10)

where 7 > 0 is a learning rate. EG ensures that a; > 0, and after normalization, the weights form
a valid probability distribution. It’s particularly useful when weights represent probabilities or
allocation ratios, as it avoids the need for explicit projection steps. Besides, it automatically maintains
non-negativity and can be normalized to satisfy }; @; = 1

Exponentiated Gradient Update The exponentiated gradient (EG) update for «; is given by:
. . . oL .
@ [i] — o li] = ar[i] exp(=n =) = a¢[i] exp(-ndy). (11)
L

where 7 is the learning rate. This update increases the weight of components with smaller loss and
decreases the weight of components with larger loss.

Due to potential variance or sampling errors in the validation set, we normalize §; and apply a
thresholding operation to obtain a more stable estimate:

6.
A; = max (—',O) ,
scale;

where scale; is a normalization factor (the maximum of §;), and A; represents the normalized and
non-negative estimate. The we get the result of

¢sys—1, bound — ¢sys—1,0

Agys-1 = Max ( 0 (12)
¢SYS-1,9s - ¢sys—1,91
¢sys-2, bound — ¢sys-2,6)

Aepe2 = max ( ) (13)
¢sys-2,01 - ¢sys-2,6),-

Zhttps://homes.cs.washington.edu/~sham/courses/stat928/lectures/lecture22.pdf
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Normalization (considering > ; @; = 1 is desired) To ensure that the weights remain a valid
distribution, we normalize after the update:

o _wlil _alilexp(-ndi)
Zja;[j] Zja't[j] CXP(_TI(Sj).

Thus, formally, this is equivalent to treating A; as a non-negative gradient signal and applying it in the
exponentiated gradient update:

@i (14)

exp(-n- )
Zjajlexp(-na;)’

a1 [i] = a;[i] (15)

where 77 is the learning rate.

C METRICS

C.1 CoMmpPRESSION RATE

We provide more details on the compression rate in the main table, where the compression rate is
defined as:
#tokenSoriginal — #tOKeNScyrrent

C.R. = Compression Rate = max( ,0) (16)
P #tOkenSoriginal
1 Nbenchmark
ACR =—— > CR (17)
benchmark i=0

C.2 NORMALIZED METRIC

We report two normalized metrics to facilitate fair comparisons: Normalized Accuracy and Normalized
Token Length. They are defined as follows:

#A
Normalized Accuracy = TACCeument (18)
#Accoriginal
#Tok
Normalized Token = - <lcurrent (19)
#TOkenoriginal

D Data CoNsTRUCTION DETAIL

For long CoT, we use the prompt from dataset s1.1 (Muennighoff et al., 2025). Each sample is
generated 8 times using the original model. For short CoT, to avoid inconsistencies in the system
prompt format, we adopt the short CoT construction method from AdaR1 (?). We annotate 10
randomly selected questions from GSM8K using the instruct model, then fine-tune the long CoT
model to overfit on them. For the GSMS8K training set, we sample and retain only the examples with
correct answers.

E EvarLuaTioN DETAIL

We use the DeepSeek-R1-Distill model and apply a temperature setting of 0.7, which is the primary
recommendation in QwQ-Preview, for evaluating all models. All datasets are restricted to an 8K
context window for output generation. Meanwhile, considering the relatively small sizes of the AMC
and AIME datasets, we sample 8 responses per question and compute the average.

E.1 EvaLuaTiON FRAMEWORK

We use skythought-eval® as the framework, which supports accelerating long CoT reasoning
evaluation with vLLM. The version of vLLM we use is 0.6.3.

3https://github.com/NovaSky-AI/SkyThought
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E.2 EvaLuATION DATASET DETAIL
We provide an overview of all datasets used in the following sections.

* ASDiv: A diverse simple English math word problem corpus for evaluating the capability
of various MWP solvers. It contains 2,305 MWPs that cover more text patterns and most
problem types taught in elementary school.

* GSMSK: A high-quality benchmark comprising 8,500 human-written grade school math
word problems that require multi-step reasoning and basic arithmetic, each labeled with
a natural language solution and verified answer. The 1,319-question test set emphasizes
sequential reasoning and is primarily solvable by upper-grade elementary school students.

* MATHS500: A challenging benchmark of 500 high school competition-level problems
spanning seven subjects, including Algebra, Geometry, Number Theory, and Precalculus.
Each problem is presented in natural language with LaTeX-formatted notation, offering a
strong measure of mathematical reasoning and generalization across diverse topics.

* AIME2024: A dataset containing 30 problems from the 2024 American Invitational
Mathematics Examination (AIME), a prestigious high school mathematics competition for
top-performing students. Each problem is designed to require deep mathematical insight,
multi-step reasoning, and precise problem-solving skills.

¢ AMC: The AMC dataset consists of all 83 problems from AMC12 2022 and AMC12 2023,
extracted from the AoPS wiki page. We used a subset of this data containing 40 problems.

* MinervaMath: MinervaMath is a high-difficulty math problem dataset containing 272
challenging problems.

F BASELINE REPRODUCE DETAILS

ConciseCoT & TALE-EP. For the prompt-based baseline, we list the prompts used in Prompt 4.
OverThink. For the MATH12K dataset, we sample each problem 8 times. The shortest correct
sample is selected as the chosen sample, and the longest sample is selected as the rejected sample.
The model is trained for 1 epoch.

ThinkPruner. In our reproduction, we use the competition-level training data provided in the original
paper and train the model for 10 epochs with a learning rate of 1e-6. The maximum response length
is set to 4096 tokens. We follow their early stopping strategy to select the optimal checkpoint for
evaluation.

CoT-Valve. Since CoI-Valve does not report performance on all datasets, we reproduced the results
using the public datasets released by Col-Valve. We followed the training settings officially reported in
the paper, using LoRA=2 to fine-tune all models. The dataset version used is Mix-Chain-Z-GSM8K.
All models were fine-tuned for 5 epochs on 8 GPUs with 80GB of memory each.

L1. In L1 reproduction on the 7B System-2 model, we utilize the LI-Exact reward function and limit
the token length to between 100 and 4,096 tokens, while setting the token difference penalization
parameter « to 0.0003, as described in the paper. We follow their original prompt by appending
"Think for n;,ken tokens" to the end of the question. In inference, the token budget is set to the same
number as the average tokens from our method across the evaluated benchmarks.

G TRrAINING DETAILS

Due to the need to evaluate accuracy and token count on a validation set every n steps, our validation
set consists of 512 questions sampled from past questions in AIME-1983 to AIME-2023. The original
ratio for shortcot and longcot is set to 0.5:0.5, with an evaluation interval of every 32 steps. The
model is allowed to train for a total of 7=500 steps, and the learning rate is set as a constant at
le-5. For the 7B and 14B models, we conducted training on two 8-GPU (80GB) machines, with
one 8-GPU machine performing vllm inference and the other performing training. Every n steps,
parameter synchronization is executed using vllm’s parameter sync function. We ultimately select the
checkpoint with the shortest token length among those whose accuracy on the validation set is no less
than 30% of that achieved by the original long CoT.
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Evaluation Prompt on Dataset

=== EVALUATION PROMPT FOR GSM8K ===

<|begin_of_sentence|>Please reason step by step, and put your final answer within *boxed’.
<|User|>query<|Assistant|>Given the following problem, reason and give a final answer to the problem.
Problem: {question} B

Your response should end with The final answer is [answer]where [answer] is the response to the
problem. <think>

=== EVALUATION PROMPT FOR MATHS500 ===
<|begin_of_sentence|>Please reason step by step, and put your final answer within ’
boxed’. <|User|>{query }<|Assistant|>Return your final response within ’boxed’. {problem}. <think>

=== EVALUATION PROMPT FOR AIME24 ===
<|begin_of_sentence|>Please reason step by step, and put your final answer within ’
boxed’. <|User|>query<|Assistant|>Return your final response within ’

boxed’. {problem}. <think>

=== EVALUATION PROMPT FOR AMC ===
<|begin_of_sentence|>Please reason step by step, and put your final answer within “boxed’.
<|User|>query<|Assistant|>Return your final response within *boxed’. {problem}. <think>

=== EVALUATION PROMPT FOR MINERVAMATH ===
<|begin_of_sentence|>Please reason step by step, and put your final answer within ’boxed’.
<|User|>query<|Assistant|>Return your final response within *boxed’. problem. <think>

. J

Figure 4: Evaluation Prompt for GSM8K, MATH500, AIME24, AMC, MinervaMath

50%
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Figure 5: Comparison of TLDR and baseline models in terms of average accuracy and token compression ratio
on 6 math benchmarks, including GSM8K, MATH, AIME?24, and three others. Higher values on both axes
indicate better performance.

H More RELATED WORK

Another category concentrates on building efficient representations. TokenSkip (Xia et al., 2025)
selects data based on token importance for compressed reasoning and more concise thought chains.
COCONUT (Hao et al., 2024) explores more efficient reasoning in the latent space. ICoI-KD (Cheng
& Van Durme, 2024) and CCoT (Cheng & Van Durme, 2024) attempt to build more efficient reasoning
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Subi Accuracy Tokens
ubject

DS-7B TLDR-7B A Tokens  Tokens A
College Chemistry 54.0 60.0 +6.0 3086.03 2489.37 -596.66
Electrical Engineering 72.4 65.5 -6.9 1553.04 968.78  -584.26
Conceptual Physics 87.2 78.3 -89 1110.13  806.51  -303.62
College Computer Science 79.0 70.0 -9.0 2732.12 1871.20 -860.92

Table 7: Accuracy and token usage comparison between DeepSeek-Distill-Qwen-7B(DS-7B) and
TLDR-7B across four subjects. A indicates the difference (TLDR-7B - DS-7B), with positive accuracy
gains in green and token reductions in green.

strategies in the hidden space, while Token Assorted combines hidden space and text-based reasoning
to balance interpretability and efficiency.

I More NoN-MATH STEM ReEasoN BENCHMARK IN MMLU

We also included additional non-mathematics STEM benchmarks in Table 7 to evaluate whether models
trained primarily on mathematical reasoning can generalize to other STEM domains. Specifically,
we assessed sub-tasks in MMLU, including college-level chemistry, conceptual physics, computer
science, and electrical engineering. Our observations indicate that the model is capable of reducing the
number of generated tokens in these tasks as well. For non-mathematical reasoning tasks, TLDR-7B
exhibits a modest reduction in token count, likely attributable to the relative scarcity of training data
in these domains.

J Caske Stupy

To better understand the behavioral differences between baseline and TLDR strategies, we conduct a
qualitative analysis using the DeepSeek-R1-Distill-Qwen-7B model. Case studies are drawn from
three representative math datasets: GSM8K, AIME, and MATHS500. As shown in Figures 68, the
baseline model tends to generate verbose reasoning paths with redundant or speculative content.
In contrast, TLDR produces significantly more concise outputs while maintaining correctness and
logical structure. These examples demonstrate TLDR’s ability to suppress unnecessary reasoning
tokens—such as exploratory or reflective phrases—leading to more efficient and focused reasoning
processes.
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Generated Answer For GSM8K

Question:

Michael is traveling on the interstate at an average speed of 50km/hr (taking into account all the necessary stops
for gas, relaxation, etc.). If he goes on like this for 3 days, and the distance between Alaska and Texas is 6000 km,
what percentage of this distance has he covered?

Baseline (842 tokens) TLDR(248 tokens)

Okay, let me try to figure out how much of the
distance from Alaska to Texas Michael has covered. : Let's break down the problem step by step.

So, Michael is driving at an average speed of 50 km ; 1. Calculate the total distance Michael will
per hour, and he's doing this for 3 days. The total travel: Michael is traveling at an average speed
distance between Alaska and Texas is 6000 km. I need of 50 km/hr for 3 days. To find the total

to find out what percentage of that 6000 km he's distance, we multiply the speed by the number
covered.\n\nFirst, I think I should calculate the total of days: Total distance = 50km/hr x 3 days =

distance Michael has driven in those 3 days. To do that, : 150km.
I need to know how many hours he's been driving
each day. Hmm, the problem says he's taking into
account all stops for gas, relaxation, etc., so I guess
he's driving non-stop each day.

Step 2: 87 tokens : 2. Calculate the percentage of the distance
between Alaska and Texas that Michael has
covered: The distance between Alaska and
Texas is 6000 km. To find the percentage of
this distance that Michael has covered, we use

the formula:

Distan d
Percentage = ———— "€ » 100

Total distance

Substituting the values:

P tage = 150 x 100 =25
ercentage = =0 =2

Step 13: 40 tokens

So, Michael has covered 2.5% of the distance
between Alaska and Texas.

Step 14: 49 tokens

Figure 6: Comparison of Reasoning process on GSM8K: Baseline vs. TLDR.
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Generated Answer For AIME

Question:

Let B be the set of rectangular boxes with surface area 54 and volume 23. Let r be the radius of the smallest
sphere that can contain each of the rectangular boxes that are elements of B. The value of Zcan be written
as —, where p and q are relatively prime positive integers. Find p + q

Baseline (7482 tokens)

Observe that the \"worst\" possible box is one of the
maximum possible length. \nBy symmetry, the height
and the width are the same in this antioptimal box. (If
the height and width weren't the same, the extra
difference between them could be used to make the
length longer.) Thus, let the width and height be of
length $a$ and the length be $LS$. \nWe're given that
the volume is $238$; thus, $a"2L=23$.

Step 2: 168 tokens

Step 27: 168 tokens

TLDR(5960 tokens)

Observe that the \"worst\" possible box is one
of the maximum possible length. \nBy
symmetry, the height and the width are the
same in this antioptimal box. (If the height and
width weren't the same, the extra difference
between them could be used to make the
length longer.) Thus, let the width and height
be of length $a$ and the length be $LS.
\nWe're given that the volume is $23$; thus,
$a"20=238.

We're also given that the surface area is
$54=2\\cdot27$; thus, $a"2+2al.=27$. \nFrom
the first equation, we can get

$L=\\dfrac{23} {a"2}$. We do a bunch of
algebra:

\n\\begin{align*}\nL&=\\dfrac{23} {a"2}
\\Wn27&=a"2+2aL.
\\Wn&=a"2+2a\left(\\dfrac {23} {a*2}\\right)
\\Wn&=a2+\\dfrac {46}a \\\\n27a&=a"3+46
\\W\na"3-27a+46&=0. \\\\n\\end {align* }\nWe
can use the Rational Root Theorem and test a
few values. It turns out that $a=2$ works. We
use synthetic division to divide by $a-2$:
\n[Asdf.png](https://artofproblemsolving.com
/wiki/index.php/File:Asdf.png)\nAs we expect,
the remainder is $0$, and we are left with the
polynomial $x"2+2x-23$.

To find the maximum m for $x3-mx"2+27x-
23=0$\nrewrite m as function of x and
calculate derivatives to get maximum value,
Wm(x) =-x +27x{-1} - 23x*{-2}\\]\n\\[m'(x)
=-1-27x"-2} -46x"{-3} = O\\n\\[x"3 -
27x+46=0\]\n\\[(x-2)(x"2+2x-23)=0\\]\nwhen
x =2, \\[m=2 + \\frac{27} {2} - \\frac{23} {4}
=\\frac{39} {4}\\]\nthe rest is similar to
solution 3.

Figure 7: Comparison of Reasoning process on AIME: Baseline vs. TLDR.
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1188
1189
1190
1191 Generated Answer For MATHS500
1192
1193 Question:
The set of points $(x,y,2)$ that satisfy\n\\[2x = 3y = -z\\]is a line.\n\nThe set of points $(x,y,z)$ that satisfy\n\\[6x
1194 = -y = -47\\]is another line.\n\nFind the angle between these lines, in degrees.
1195
1196
1197 Baseline (1165 tokens) : TLDR(204 tokens)
1198 g
1199 Okay, so I've got this problem where there are two
1200 . 2 . : + To find the angle between the two lines, we
lines defined by sets of equations, and I need to find B B R
+ first need to determine their direction vectors.
1201 the angle between them. Hmm, let me see. The first : . .
Lo . . +  For the first line, given by \\(2x = 3y = -z\\),
1202 line is given by the equations 2x = 3y = -z, and the : it iric fi Let \(2
1203 second line is 6x = -y = -4z. I remember that to find : ZVZ ca_n eXEIK\S SRR o o LA e
the angle between two lines, I need to find the angle P ==
1204 between their direction vectors. So, first step is
1205 probably to figure out the direction vectors of each 3
1206 line.\n\nLet me think about the first line: 2x =3y =-z. :
1207 I think that when an equation like this is given, it's ¢ Then, we have:\n\n\\[\nx = \\frac {t} {2}, \\quad
setting all these expressions equal to some parameter, : Y= \\frac {t} {3}, \\quad z = -t\n\\]\n\nThus, the
1208 maybe t. :  direction vector \\(\\mathbf{v}\\) of the first
1209 ¢ line is \(\\left(\frac {1} {2}, \\frac{1} {3}, -
1210 Step 2: 237 tokens 1\\right)\\).\n\nFor the second line, give.n l?y
+ \(6x = -y = -4z\\), we can express it in
1211 : .
+  parametric form as well.
1212 :
1213 E
1214 :
s Let\\(6x =-y =-4z =5s\\). Then, we
1215 ¢ have:\n\n\\[\nx = \\frac{s} {6}, \\quad y = -s,
1216 ¢ \\quad z =\\frac{s} {-4}\n\\]\n\nThus, the
1217 E direction vector \\(\\mathbf{w}\\) of the
1218 ¢ second line is \\(\left(\\frac {1} {6}, -1, -
5 frac{1} {4}\\right
1219 : \frac {1} {4} \\right)\\)
1220 :
1221 :
1222 é Next, we use the dot product formula to find
1223 ¢ the angle between the two direction vectors.
1224 ¢ The dot product \\(\mathbf{v} \\cdot
1295 ¢ \\mathbf{w}\)) is calculated as
sreaas ¢ follows:\n\n\\[\n\\mathbf{v} \\cdot \\mathbf{w}
1226 + =\left(\frac{1} {2} \\right)\left(\frac {1} {6} \\r
eer Step 10: 68 tokens P ight) + \eft(Wrac{1} {3} \right)(-1) + (-
1228 + D\eft(-\\frac{1} {4}\\right) = \\frac {1} {12} -
1229 \frac {1} {3} + \\frac{1} {4}\n\\]
1230 :
1231
1232 Simplifying the expression: [\n\\frac{1} {12} -
1233 \frac{4} {12} +\\frac{3} {12} = \\frac{0} {12}
= 0\n\\]\n\nSince the dot product is zero, the
1234 vectors are perpendicular, and thus the angle
1235 between the lines is \\(90"\\circ\\).
1236
1237
1238
1239 . . . .
1240 Figure 8: Comparison of Reasoning process on MATHS500: Baseline vs. TLDR.
1241
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