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Abstract

S-band Synthetic Aperture Radar (SAR) offers advantages
in foliage, ground penetration, and weather tolerance.
However, it is comparatively underutilized for object clas-
sification due to the preference for higher band frequencies.
This paper presents the first application of deep learning
to S-band Synthetic Aperture Radar (SAR) data for local
object classification. Our method of extrapolating the 2D
SAR image to a 3D Radar Cross Section (RCS) response
differs from previous work that uses targets physical 3D
point clouds. We also present a novel preliminary 2D-3D
fusion method for S-band SAR to demonstrate the effective-
ness of ensemble methods on this type of data. We combine
a lightweight custom convolutional neural network (CNN)
with a PointNet-based network, enhancing feature extrac-
tion from image and point cloud domains. Our method
is more precise and robust to clutter compared to single-
modality techniques.

1. Introduction

Synthetic Aperture Radar (SAR) enables high-resolution
imaging through a single moving antenna, making it in-
valuable for remote sensing applications such as vegeta-
tion monitoring [ 18], change detection in deforestation [15],
flood impacts, moisture content in soil, wildfire damage as-
sessments and astronomically has been used by satellites to
map entire planets [17, 20]. Stripmap SAR, in particular,
generates 2D images of 3D scenes by acquiring data along
a linear trajectory, creating a “synthetic aperture” through
coherent signal processing methods such as backprojec-
tion [5, 26]. The spatial resolution in the 2D plane depends
on factors such as frequency, bandwidth, observation time,
and aperture size. Higher-frequency bands (e.g., X- and K-
band) are often preferred for small-scale tasks such as ob-
ject classification [9, 24] due to their finer resolution, while
lower-frequency bands (e.g., L- and S-band) are preferred
for large-scale tasks such as global change detection be-
cause the waves travel significantly farther and provide su-
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Figure 1. Our method of extrapolating 3D point clouds from 2D
SAR imagery effectively sums values along the target’s Z-axis (b).
The tea kettle example effectively demonstrates the difference be-
tween physical (a) and summed point clouds (c)

perior penetration through foliage, soil, and buildings. De-
spite these advantages, S-band SAR remains underutilized
in object classification due to its lower resolution and in-
creased clutter (for information regarding frequency bands,
see Table 1).

Our interest in S-band SAR for object classification
stems from a desire to detect heavily obscured objects at
a distance, such as objects that have been buried, hidden
in thick bushes, under branches, leaves, rubble, and more.
This area of hidden object detection is a complex problem
and a largely unexplored area of Computer Vision. Modern



research in object classification utilizes datasets that pro-
vide an assortment of modalities: electro-optical (EO), in-
frared (IR), laser (LiDAR), and radar. However, it is not
easy to find datasets in any of these modalities with a pri-
mary focus on detecting heavily obscured objects. One re-
cently published dataset similar to what we want to accom-
plish, PIDray, published by Zhang et al. in 2022, focuses on

detecting prohibited objects using X-ray technology [27].

However, PIDray requires close contact via a dangerously

high-frequency X-ray machine instead of long-range low-

frequency S-band SAR.

Deep learning has significantly advanced SAR-based ob-
ject recognition, CNNs largely dominate 2D image classi-
fication, and Graph Convolutional Networks (GCNs) and
PointNet-based networks excel in 3D point cloud process-
ing. However, existing methods primarily focus on high-
frequency SAR [9, 24], leaving a gap in deep learning-based
classification for S-band data. To bridge this gap, we pro-
pose a novel 2D-3D fusion approach that integrates a cus-
tom lightweight CNN with a PointNet-based network, en-
abling robust feature extraction from image and point cloud
domains. This paper marks the first application of Point-
Net to S-band SAR data, demonstrating the effectiveness of
multimodal fusion for cluttered low-frequency SAR envi-
ronments.

Our contributions are as follows:
¢ First, we introduce a 2D-3D fusion framework for S-band

SAR classification, leveraging complementary image and
point cloud features.

» Second, we present the first application of PointNet-based
architectures to S-band SAR, improving classification ac-
curacy in low-resolution, high-clutter conditions.

* Third, we validate our approach on a real-world dataset
and demonstrate that multimodal fusion surpasses single-
modality methods in accuracy and robustness.

2. Related Work
2.1. High vs Low Frequency

Due to the nature of wavelengths, using low-frequency
radar for global and astronomical tasks has always been
preferable. The low-band waves travel very far, very
quickly, and the attenuation of signal strength is signifi-
cantly lower than that of high-band frequencies, able to
effectively travel through space and ultimately map en-
tire planets [17, 20]. Due to this relationship, higher fre-
quency data tends to make sense for small-scale tasks be-
cause the waves are not required to travel across the vast
emptiness of space or penetrate forest canopies, buildings,
or the ground. However, when trying to identify obscured
and hidden objects at a distance, seeing them with low-
frequency radar is significantly more possible. The attenu-
ation effect on higher-frequency wavelengths by buildings,

(a) Trihedral SAR image formed (b) The surface meshed point cloud.
between 2.2-3.8GHz. Demon- This is created using the same data
strates a strong target response; de- used to create the SAR image pic-
fined sidelobes make this a unique tured to the left.

and distinguishable target.

Figure 2. Processed radar data for use in neural networks. Trihe-
dral SAR image (a) and Trihedral point cloud (b).

leaves, branches, and rubble is too strong to have a mean-
ingful target response. However, through-the-wall sensing
is a technology that utilizes low-frequency wifi radar sig-
nals, typically in the S-band (2.4GHz) for search and rescue
and military operations [3]. These penetrative capabilities
make radar an excellent sensor for obscured and buried tar-
gets that optical sensors cannot detect.

2.2. Synthetic Aperture Radar

SAR was first invented in 1951 by Carl Wiley at Goodyear,
now Lockheed Martin, and has been used for remote sens-
ing ever since. NASA has used SAR to map the topography
of the Earth using satellites and their Disaster Program to
show earthquake fault slips. Thousands of SAR systems
have been installed on various aircraft and ground vehicles
[10]. SAR penetration has been an ongoing research topic
for decades; in 1994, airborne SAR was performed at vari-
ous low frequencies to penetrate foliage in the Panamanian
rain forest and to detect buried objects at a desert site in Ari-
zona [6]. Through-the-wall personnel sensing [3] has also
been an area of interest for search and rescue missions and
military operations.

As for research in object classification, MSTAR is the
de facto standard for public SAR datasets. MSTAR is
a military dataset of two Air Force Research Laboratory
data collections from 1995 to 1996. It is an X-band SAR
dataset containing SAR imagery; the first collection con-
sists of 13 target types (20 actual targets) plus minor ex-
amples of articulation, obscuration, and camouflage. The
second collection consists of 15 target types (27 actual tar-
gets). 1998 Diemunsch et al. [4] utilized a "hypothesis and
test” approach with a Bayesian scoring framework for con-
fidence scores. The Bayesian objectives were three key
features: peak locations, semantically labeled regions, and
the SAR image itself to produce a maximum likelihood



estimate. Fast forward to the present, modern CNN and
transformer architectures dominate the space. Li et al. [12]
utilized adversarial autoencoders (AAEs) to generate addi-
tional SAR chips for the MSTAR dataset and trained/tested
with a YOLOv3 CNN classifier. Wang et al. [24] use the
original PointNet architecture to classify high-frequency K-
band point clouds of airplane targets such as F35s and F16s
with great success. It is worth noting that our approach
to utilizing PointView-GCN differs from the methodology
used by Wang et al. because we are strictly extrapolating
3D information from 2D SAR imagery as opposed to di-
rectly collecting point clouds from radar. It isIncluding both
methods could be beneficial.

2.2.1. MSTAR Dataset

As for research in object classification, MSTAR is the de
facto standard for public SAR datasets. MSTAR is a mili-
tary dataset of two Air Force Research Laboratory data col-
lections from 1995 to 1996. It is an X-band SAR dataset
containing SAR imagery; the first collection consists of 13
target types (20 actual targets) plus minor examples of ar-
ticulation, obscuration, and camouflage. The second col-
lection consists of 15 target types (27 actual targets). 1998
Diemunsch et al. [4] utilized a hypothesis and test” ap-
proach with a Bayesian scoring framework for confidence
scores. The Bayesian objectives were three key features:
peak locations, semantically labeled regions, and the SAR
image itself to produce a maximum likelihood estimate.
Fast forward to the present, modern CNN and transformer
architectures dominate the space. Li et al. [12] utilized ad-
versarial autoencoders (AAEs) to generate additional SAR
chips for the MSTAR dataset and trained/tested with a
YOLOV3 CNN classifier. Wang et al. [24] use the origi-
nal PointNet architecture to classify high-frequency K-band
point clouds of airplane targets such as F35s and F16s with
great success. It is worth noting that our approach to uti-
lizing PointView-GCN differs from the methodology used
by Wang et al. because we are strictly extrapolating 3D
information from 2D SAR imagery as opposed to directly
collecting point clouds from radar. Including both methods
in the ensemble network could be beneficial.

2.3. Robustness

SAR has many distinct benefits for object detection; data
is invariant to the time of day because radar provides its il-
lumination [1]. Relatively long wavelengths can penetrate
through weather phenomena such as clouds and fog [1].
Radar provides a ground resolution that does not degrade
with distance (target response degrades, and noise can in-
crease as the signal attenuates over distance). Azimuth and
range resolutions are independent of the distance between
the sensor and the ground [1]. Radar measurements are
naturally precise due to signal coherence; radar imaging
systems can be configured to have outstanding geometric

accuracy [5, 10]. At lower radar frequencies, the system
becomes more susceptible to errors. However, SAR is tol-
erant of positioning errors due to its gathering information
at many positions along the aperture. Radar illumination
is coherent; radar antennas emit consistent and controlled
energy pulses. Natural coherence enables the creation of
digital elevation models and sensitive measurements of to-
pographic changes over time and is the foundation for SAR
images [1].

2.4. Point Cloud Processing

A typical disadvantage of point-based representation is that
surface information is implied by point density and orien-
tation [23]. Point clouds are commonly oversampled, con-
taining more data than necessary for object representation.
Furthermore, when point clouds are converted into 3D vox-
els or image grids before being fed to a deep net architec-
ture, the data can become unnecessarily large and contain
artifacts. Since voxels represent only a single point on a
grid, the space between each voxel is not represented and
would have to be reconstructed or approximated via inter-
polation. Despite this, we can voxelize our data due to the
low-frequency radar data we operate. Our point density is
already sparse due to the low frequency; refer to Figure
2b. We are classifying on rather unique “’blobs” within our
images representing the target’s response on a logarithmic
scale; refer to Figure 2a.

2.5. PointNets

PointNet, introduced by Qi et al. [21] in 2016, is a neural
network designed to process raw point clouds for classifica-
tion and segmentation tasks directly. PointNets use only a
single symmetric function, max pooling, to learn the opti-
mization functions and criteria to select only the most “im-
portant” points, downsampling point clouds for efficiency.
The original PointNet architecture is not capable of cap-
turing local structures. This limits the network’s ability to
recognize fine-grained patterns and generalizability to com-
plex scenes. In 2017, Qi et al. [22] introduced PointNet++
to improve upon PointNet by recursively using PointNets
on nested partitions of the input point clouds, allowing the
network to learn local features and their descriptors and in-
dividual pixels to be assigned labels for semantic segmenta-
tion. PointNet++ also introduced a convolution operation as
the kernel to learn local spatial features, introduced a multi-
scale and multi-resolution grouping to deal with the vari-
ation in different areas, and introduced farthest point sam-
pling (FPS) to sample points more efficiently. PointView-
GCN is a PointNet network published by Mohamaddi et
al. [16] in 2021. They use multi-level Graph Convolu-
tional Networks (GCNs) to hierarchically aggregate shape
features of single-view point clouds to encode geometrical
object cues and their multi-view relations, producing a more



descriptive global shape feature to improve classification
accuracy. PointView-GCN is the architecture that we will
be using for our results because it has the highest accuracy
results on the ModelNet-40 dataset with a public codebase
[25] (at the time of writing, PointView-GCN is temporarily
unavailable on the ModelNet40 Benchmark leaderboard for
reasons unknown to us). Multi-view processing is benefi-
cial for our task because synthetic aperture data allows us
to split our single large aperture into as many apertures as
we see fit. In our case, the left half, right half, and whole
aperture are processed as separate views refer to Figure 3.

2.6. Attention and Fairness

The field of explainable Al seeks to characterize model ac-
curacy, fairness, transparency, and outcomes. Neural net-
works utilize attention mechanisms to weight importance of
regions within data. It has been established that neural net-
works tend to take shortcuts and converge on incorrect fea-
tures commonly associated with the intended target class [8]
instead of the target features themselves. PointNet [21] in-
troduced the concept of “Critical Points”, a subset of points
deemed important enough to remain as individual points af-
ter the final pooling layer. Levi et al. [11] concluded that
PointNet neural networks have a habit of attributing out-
liers and coincidental features as influential or critical to the
target; this is a real problem in Synthetic Aperture Radar as
lower frequencies tend to have higher noise. It is possible
for the ground response to possibly drown out weaker tar-
get responses and lead to our PointNet classifying on back-
ground noise. By defining the “focus” of a point cloud as
the normalized entropy, they then “refocus” the influence
from the most influential critical points to the least influen-
tial points and see a similar but more generalizable, robust
performance. Refocusing our points would be difficult be-
cause our point clouds are generally very noisy due to the
low frequency data and strong ground response

3. Methodology

Our side-looking aperture radar (SLAR) is collected in a
controlled environment with a motorized planar scanner and
a rotating table. The planar scanner has two translational
degrees of freedom and can move 9 meters along the X
axis and 2 meters along the Z axis, refer to Figure 4. Our
UXO dataset has six explosive targets and four clutter tar-
gets split between two distinct categories, explosive and
non-explosive. The primary task of our network is binary
classification, differentiating a target into the respective cat-
egory and whether or not it is an explosive object. The sec-
ondary task of multi-class classification is identifying the
exact object within each category.
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Figure 3. SAR images for each independent aperture angle: Left
column (right aperture), Center column (left aperture), Right col-
umn(whole aperture)

3.1. Hardware

All data is taken using custom-built hardware. The Radio
Frequency System On Chip (RFSoC) is built and produced
by Huntington Ingalls Industries (HII). The RFSoC is con-
nected to four antennas, two transmitters, and two receivers
to capture all four polarizations: HH, HV, VH, and VV (e.g.,
A VH polarization means a vertical transmitter and hori-
zontal receiver) simultaneously. The RFSoC and antenna
are securely mounted on our planar scanner to ensure the
accuracy of motor units for accurate spatial SAR image for-
mation (Refer to Figure 4).
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Figure 4. Planar Scanner and Rotating Table Diagram
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3.2. Data Collection

Each target has data collected at three heights on the Z axis,
1, 1.5, and 2 meters. At each respective height, the rotat-
ing table does a full 360-degree rotation in 20 degree incre-
ments to account for different angle responses. Every time
the table rotates 20 degrees, the scanner does a single lin-
ear pass, creating an aperture for a SAR image. The target
is placed in the center of the rotating table, directly facing
the linear scanner at a ground range of 6 meters. The table
starts rotated at —180 degrees and stops at 180 degrees. It is
worth noting that some targets within our dataset are asym-
metrical and have angles where the response is significant,
but other angles where the response is buried deep within
the noise (Refer to Figure 6).

By defining each linear pass as a separate aperture, we
can generate distinct SAR images at each table azimuth an-
gle. Then, each of those linear apertures can be divided
further into nearly infinite sub-apertures. For our purposes,
we will subdivide each of our linear apertures into a left
and right half to simulate stereo vision. Therefore, each
pass will generate three unique SAR images by segmenting
the aperture into the left half, right half, and whole aper-
ture; right-squinted, left-squinted, and zero-squint images,
respectively (Refer to Figure 3). Background data is col-
lected on each respective day of data collection for use in
background subtraction.

We are collecting data for four polarizations (HH, HV,
VH, VV), and each 360 degree table rotation produces 19
target apertures from the 20 degree rotation increments,
with two identical images being generated at —180 and
180 degrees. For each of these 19 target apertures, we
produce our multi-view left-squinted, right-squinted, and
whole aperture, totaling 57 for images. Since we are re-
peating the above collection at three distinct heights, each
polarization will have 57 % 3 = 171 images. Accounting for
all four polarizations, each target will have 171 x 4 = 684
unique SAR images. After performing background subtrac-
tion, each target class will have 684 x 2 = 1368 SAR im-
ages. We then re-use the 2D SAR image to create 3D point

clouds by extrapolating the RCS response at each pixel and
assigning it as the z value for each (x,y) image coordinate,
producing a voxelized point cloud for each SAR image.
Thus, we can run our 2D CNN on the SAR images and
use the same SAR data to create 3D point clouds that the
PointView-GCN network can process.

3.3. Networks

The two networks, PointView-GCN [16] and our custom
RadarCNNv1 in Figure 5, are trained independently with
the same training/test split of 50/50. We chose this abnor-
mal training/test split due to the similarity in data; many
targets do not drastically change with each 20-degree rota-
tion. Predictions are calculated using the naive approach of
a weighted average between the two network predictions.
The 2D SAR data for the CNN is augmented using affine
transformations, rotation, translation, reflection, and shear-
ing. The PointView-GCN network augments data using
similar affine transformations, rotation, scaling, and trans-
lations and introduces Gaussian jitter to the 3D points.

3.4. PointNet Training

Given a point set {p; }_, where {p;} € R? is represented
by a matrix o € R"™*® we use a training/test split of
50/50, and the PointNet training data is augmented with
affine transformations such as scale, reflection, rotation, and
shearing. Gaussian jitter is also applied to perturb the orig-
inal data.

6]
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where zj, ~ N (0, I) is a random noise vector from a nor-
mal distribution and A is a scalar value to control the noise
magnitude [24]. This network also supports multi-view pro-
cessing, allowing us to pass our left, right, and whole aper-
ture point clouds as multi-channel data.

3.5. CNN Training

The RadarCNNv1 network is capable of accepting 2D SAR
imagery as well as raw, complex 2D radar data. For our



purposes, we trained exclusively on image data. We ex-
perimented with training on complex matrix data; however,
due to the scene of our data collection, there is significant
multipath noise. Each target had distinguishable electro-
magnetic interactions with the background, and we were
achieving 100% accuracy due to the network converging on
background multipath features instead of target features.

Our CNN model is simple and implements standard,
well-researched layers with a focus on preventing over-
fitting. Our main module involves convolution through
our image input, which is our three SAR aperture images
stacked on top of each other. Channel 1 is the left aper-
ture, channel 2 is the right aperture, and channel 3 is the
whole aperture. After convolving, we perform batch nor-
malization on our data to normalize the activations within
each layer. We then apply the RELU activation function to
introduce non-linearity to our model. Max pooling allows
us to reduce the dimensionality of our features, and finally,
the dropout layer ensures that all output nodes will be relied
upon for classification information. We repeat this convo-
lution three times with an increasing number of filters to
capture both local and global features.

4. Experiments

The initial images had a pixel resolution of 200 x 200 and
a spatial resolution of 4m?2, each pixel representing a space
of 2cm?. However, the size of the target response never ex-
ceeded a single square meter; therefore, in our final results,
we have chosen only to include 50 x 50 images covering a
spatial resolution of a single square meter centered on the
target response as we can segment our synthetic aperture
into as many apertures as we see fit. We train two separate
models, one combining the three target look angles (left,
right, and full aperture) into a three-channel SAR image and
the other training on every aperture image separately.

4.1. Results

In Tables 1 and 2, we see that combining the three aper-
tures produces significantly stronger results in both multi-
classification and binary classification tasks, respectively
achieving Fl-scores of 59.74% and 88.07%; however, it
is less likely that data collected in the field will have all
of these views available due to obscuration. Adding the
PointView-GCN predictions to our CNN predictions always
resulted in a higher accuracy and F1 score.

4.2. Ablation

4.2.1. Network Weighting

Initially, we applied an equal 50-50 weight to our CNN and
PointNet networks. However, PointNet tends to perform
better on targets with lower signal-to-noise ratios (SNR),
such as in figure 6 due to the shape of the target response

being nearly indistinguishable in 2D images as opposed to
the 3D point clouds. The CNN and PointNet predictions
each have a minimum weight of 20%, and the other 60%
is distributed by taking the SNR values of each image and
proportionately distributing weights between the maximum
SNR values. We see in Table 3 that the improvements from
SNR weighting, while minor, still see improvement.

Figure 6. SAR images with weaker target responses (left) are more
likely to be correctly identified by their point cloud (right)

4.2.2. MSTAR Dataset

As previously stated, MSTAR is the de facto standard of
public SAR datasets. We use the MSTAR Public Mixed
Target dataset, eight targets, seven of which are ground ve-
hicles, and one is a calibration target (like our trihedral).
This sub-dataset is used to compare the usefulness of our
method in S-band radar with that of the higher X-band
MSTAR radar dataset. Similar to our dataset, we take the
intensity values at each pixel and assign them as the Z-value
for the 3D points to create point clouds from 2D SAR im-
agery directly. We conclude that there is no notable in-
crease to the RadarCNNvl performance with or without
the PointView-GCN; refer to Table 4. We also verify that
both networks are independently performing exceptionally
well on this test dataset, with all metrics coming in above
98%. We compare this to the benchmark results of Amrani
et al. [2] in 2021. Unfortunately, finding a central leader-
board for this dataset is difficult, but our CNN results are
competitive with the state-of-the-art results. When down-
loading the dataset directly from the official Air Force Re-
search Laboratory (AFRL) website, there is no distinct train
and test set, so it is possible that our training/test splits do
not match that of other papers and their subsequent results.
NUDT4MSTAR [14] by Liu et al. was recently accepted
into CVPR 2025 with a SAR Automatic Target Recogni-
tion (ATR) dataset that is 10x larger than the highly im-
pactful MSTAR vehicle SAR ATR dataset. In the future,
NUDT4MSTAR could become the benchmarking standard
that supersedes MSTAR.



Table 1. Multiclass Classification Results

Data Network Accuracy Precision Recall F1-Score
50x50x1 RadarCNNv1 47.63 48.34 48.17 48.25
PointView-GCN 34.42 39.24 35.20 37.11
PointView-GCN 48.07 51.27 48.80 50.01
+ RadarCNNvl
50x50x3 RadarCNNv1 56.93 58.92 57.24 58.07
PointView-GCN 41.32 45.07 42.47 43.73
PointView-GCN 57.89 61.17 58.37 59.74
+ RadarCNNv1
Table 2. Binary Classification Results
Data Network Accuracy Precision Recall F1-Score
50x50x1 RadarCNNv1 79.33 78.55 78.31 78.43
PointView-GCN 71.75 70.81 69.26 70.03
PointView-GCN 79.82 79.33 78.27 78.80
+ RadarCNNv1
50x50x3 RadarCNNvl 86.58 86.28 87.45 86.86
PointView-GCN 78.60 77.91 77.68 77.79
PointView-GCN 87.98 87.53 88.61 88.07
+ RadarCNNv1
Table 3. SNR vs Equal Weighting (Combined Networks)
Data Network Accuracy Precision Recall F1-Score
Equal Weight 50x50x1 48.07 50.24 48.75 49.48
50x50x3 57.98 59.95 58.36 59.14
50x50x1 Binary 79.71 79.10 78.34 78.72
50x50x3 Binary 87.89 87.44 88.50 87.97
SNR Weight 50x50x1 48.07 51.27 48.80 50.01
50x50x3 57.89 61.17 58.37 59.74
50x50x1 Binary 79.82 79.33 78.27 78.80
50x50x3 Binary 87.98 87.53 88.61 88.07
Table 4. MSTAR Ablation Classification Results
Network Accuracy Precision Recall F1-Score
RadarCNNv1 99.88 99.89 99.91 99.90
PointView-GCN 98.94 98.95 98.74 98.84
PointView-GCN + 99.88 99.89 99.91 99.90
RadarCNNv1

5. Conclusion and Future Directions

In this paper, we have introduced the first application of
deep learning to S-band Synthetic Aperture Radar. We
have introduced a novel method of point-cloud generation
using RCS values directly from SAR images as an alter-
native to physical object point clouds and established the
first CNN+PointNet network for S-band Radar. Moreover,
we demonstrated that by combining these two distinct net-

works, we could exploit our radar data for more robust and
improved results.

In the future, it could be interesting to run separate tests
for each of the polarizations as co-polarization responses
HH and VV tend to have stronger RCS responses than
cross-polarizations HV and VH (Figure 7). When we de-
cided to use PointView-GCN for our testing, it was at the
top of the ModelNet40 leaderboard. Now, there have been
many advances since PointView-GCN [16] in the way of



(a) Co-polarization SAR Trihedral
Images.

(b) Cross polarization SAR Trihe-
dral Images.

Figure 7. Comparison of a. Co-polarization (HH: Horizontal
transmitter and horizontal receiver) and b. Cross-Polarization
(HV: Horizontal transmitter and vertical receiver) for SAR Trihe-
dral Images.

Mamba3D [7], Point DeepONet [19], and PointGST [13].
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