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ABSTRACT

While numerous work has been proposed to address fairness in machine learning,
existing methods do not guarantee fair predictions under imperceptible adversar-
ial feature perturbation, and a seemingly fair model can suffer from large group-
wise disparities under such perturbation. Moreover, while adversarial training has
been shown to be reliable in improving a model’s robustness to defend against
adversarial feature perturbation that deteriorates accuracy, it has not been prop-
erly studied in the context of adversarial perturbation against fairness. To tackle
these challenges, in this paper, we study the problem of adversarial attack and
adversarial robustness w.r.t. two terms: fairness and accuracy. From the adver-
sarial attack perspective, we propose a unified structure for adversarial attacks
against fairness which brings together common notions in group fairness, and we
theoretically prove the equivalence of adversarial attacks against different fairness
notions. Further, we derive the connections between adversarial attacks against
fairness and those against accuracy. From the adversarial robustness perspective,
we theoretically align robustness to adversarial attacks against fairness and accu-
racy, where robustness w.r.t. one term enhances robustness w.r.t. the other term.
Our study suggests a novel way to unify adversarial training w.r.t. fairness and
accuracy, and experiments show our proposed method achieves better robustness
w.r.t. both terms.

1 INTRODUCTION

As machine learning systems have been increasingly applied in high-stake fields, it is imperative
that machine learning models do not reflect real-world discrimination. However, machine learning
models have shown biased predictions against disadvantaged groups on several real-world tasks
(Larson et al., 2016; Dressel & Farid, 2018; Mehrabi et al., 2021a). In order to improve fairness
and reduce discrimination of machine learning systems, a variety of work has been proposed to
quantify and rectify bias (Hardt et al., 2016; Kleinberg et al., 2016; Mitchell et al., 2018). Despite
the emerging interest in fairness, fairness depreciation in the context of adversarial perturbation and
the corresponding defense techniques have not been adequately discussed.

Previous work has demonstrated that by applying small magnitude of adversarial perturbations to
input features, the performance (accuracy) of machine learning models can be severely deteriorated
(Goodfellow et al., 2014; Madry et al., 2017). For simplicity of discussion, with slight abuse of
phraseology we define such perturbation as the accuracy attack, i.e., the imperceptible perturba-
tion to deteriorate accuracy, and accuracy adversarial samples as samples that are adversarially
perturbed by the accuracy attack. We leave the mathematical formulations in Sec. 3.1. In response,
work on adversarial training has been proposed to improve robustness of machine learning models
to defend against accuracy attacks (Chakraborty et al., 2018; Wong et al., 2020; Sriramanan et al.,
2021). We define such robustness as accuracy robustness, i.e., a model’s ability to resist adversarial
perturbation by an accuracy attack and remain same predictions on clean and accuracy adversarial
samples.

Nonetheless, existing techniques of accuracy attacks cannot be directly applied to the context of
fairness depreciation under adversarial perturbation. While accuracy attacks aim at exacerbating
the classification error, adversarial attacks against fairness try to deteriorate group-wise parity be-
tween different sensitive groups, leading to varied perturbations up to each individual. A successful
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Figure 1: Demonstration of adversarial attacks against fairness on COMPAS dataset (Larson et al.,
2016) for a statically fair classifier obtained by in-processing (Wang et al., 2022). Under a small
perturbation level ϵ = 0.05 (⩽ 1.5% of input feature’s norm), the disparities in true positive rates
(TPR) and true negative rates (TNR) between white and black people increase sharply to 100%, and
the outcomes of classifier become solely dependent of sensitive information, leading to destructive
social injustice against the disadvantaged group (where all the black individuals will be considered
as of high risk in this demonstration). This shows that fairness shall not be considered as a static
measure, and a classifier with small fairness gaps can show large disparities under fairness attacks.
It is important to ensure robustness to fairness attack, but enforcing fairness alone during training
does not necessarily improve such robustness. Image credit: (Angwin et al., 2016).

accuracy attack does not necessarily ensure fairness depreciation, and vice versa. Similar to those
of accuracy, we define the fairness attack as the imperceptible perturbation to deteriorate fairness,
and fairness adversarial samples as samples that are adversarially perturbed by the fairness attack.
We show the mathematical formulations in Sec. 3.2. Work including (Solans et al., 2020; Mehrabi
et al., 2021b) first proposed to generate fairness adversarial samples taking into account fairness
objectives to perturb the training process and exacerbate bias on clean testing data. However, the
detailed mechanism of fairness attacks has not yet been properly discussed, and it remains unclear
the relationship between fairness attacks and accuracy attacks.

Just as a model optimized for accuracy in training may not be robust against an accuracy attack, sim-
ilarly, a fair model trained for static fairness may not inherently possess fairness robustness against
fairness attacks. Here we similarly define fairness robustness as a model’s ability to resist adversar-
ial perturbation by an fairness attack and remain same predictions on clean and fairness adversarial
samples. As shown in Fig. 1, fairness can be volatile under adversarial perturbations, where a small
degree of perturbation can lead to significant variations in group-wise disparities, and enforcing fair-
ness alone during training does not necessarily lead to improvement in robustness against fairness
attacks. It is worth noting that fairness attacks can be employed to depreciate the trustworthiness
of models and aggravate discrimination against disadvantaged groups, fostering social division and
social in-cohesion. Hence it is imperative to improve a model’s robustness to fairness attacks. As
discussed above, adversarial training has been shown successful in improving accuracy robustness.
In fairness literature, although adversarial learning has been widely discussed, most of them have
been focused on applying adversarial learning as a means to unlearn the impact of sensitive at-
tributes to achieve static fairness (Madras et al., 2018; Creager et al., 2019). Chhabra et al. (2022)
first propose a defense framework for adversarial perturbation against fairness; however, such per-
turbation is targeted against sensitive information, rather than input features. We therefore consider
two questions:

• Can we formulate adversarial attacks against various fairness notions?
• Can we propose adversarial training techniques to defend against such fairness attacks?

In this work, we propose a general framework for fairness attacks, where we show impacts of fairness
attacks up to each individual under different notions, as well as the connections between these no-
tions regarding gradient-based attacks. Based on this unified framework, we discuss the relationship
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between fairness attacks and accuracy attacks. Furthermore, we show that despite the discrepancies
in adversarial perturbations between the fairness attack and the accuracy attack for certain samples,
fairness robustness and accuracy robustness do not necessarily conflict with each other. Based on
the spatial proximity between such samples and samples where the fairness attack and the accuracy
attack acts in the same direction, we show theoretically how fairness robustness and accuracy ro-
bustness can benefit from each other, i.e., the alignment between fairness robustness and accuracy
robustness. Our theoretical results suggest a novel defense framework, fair adversarial training,
which incorporates fair classification with adversarial training so as to improve fairness robustness.
We summarize our contribution as follows:

• We propose a unified framework for fairness attacks, which brings together different no-
tions in group fairness.

• We theoretically demonstrate the alignment between fairness robustness and accuracy ro-
bustness, and we propose a novel defense framework, fair adversarial training, which in-
corporates fairness robustness with fair classification.

• We empirically validate the superiority of our method under fairness attacks, and the con-
nection between fairness robustness and accuracy robustness on four benchmark datasets.

2 RELATED WORK

2.1 FAIRNESS IN MACHINE LEARNING

Fairness has gained much attention in machine learning society. Different notions have been pro-
posed to quantify discrimination of machine learning models, including individual fairness (Lahoti
et al., 2019; John et al., 2020; Mukherjee et al., 2020), group fairness (Feldman et al., 2015; Hardt
et al., 2016; Zafar et al., 2017) and counterfactual fairness (Kusner et al., 2017). Our work is most
closely related with group fairness notions. Works on group fairness generally fall into three cat-
egories: preprocessing (Creager et al., 2019; Jiang & Nachum, 2020; Jang et al., 2021), where
the goal is to adjust training distribution to reduce discrimination; in-processing (Zafar et al., 2017;
Jung et al., 2021; Roh et al., 2021), where the goal is to impose fairness constraint during training by
reweighing or adding relaxed fairness regularization; and post-processing (Hardt et al., 2016; Jang
et al., 2022), where the goal is to adjust the decision threshold in each sensitive group to achieve
expected fairness parity.

2.2 ADVERSARIAL MACHINE LEARNING

Adversarial training and adversarial attack have been widely studied in trustworthy machine learn-
ing. Goodfellow et al. (2014) propose a simple one-step gradient-based attack to adversarially per-
turb the input features. Madry et al. (2017) extend the one-step attack to an iterative attack strategy
and show that iterative strategy is better at finding accuracy adversarial samples. Accordingly, dif-
ferent methods on adversarial defense have been proposed (Shafahi et al., 2019; Wong et al., 2020;
Xie et al., 2020; Cui et al., 2021; Jia et al., 2022) to improve accuracy robustness of a classifier.
However, few literature has addressed adversarial training and attack against fairness. Some work
discusses the problem of fairness poisoning attack during training (Solans et al., 2020; Mehrabi
et al., 2021b); however, it is not clear how fairness attack would influence the predicted soft labels,
and the relationship between the fairness attack and the accuracy attack, as well as the corresponding
adversarial robustness remains unclear.

2.3 FAIRNESS IN ADVERSARIAL ROBUSTNESS

Group fairness in the context of adversarial robustness has been less studied in current work. Work
including (Nanda et al., 2021; Xu et al., 2021; Ma et al., 2022) argues that adversarial training with-
out proper regularization leads to class-wise disparities in accuracy and robustness. However, group-
wise disparities are not considered in these work, and the formulation of disparities by these work
is not in accord with notions in group fairness. Recent work studies the poisoning attack against
group fairness measure (Solans et al., 2020; Mehrabi et al., 2021b); however, these work lacks in-
depth discussion regarding the detailed mechanism of adversarial attacks against fairness, and no
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defense technique is considered in these work. Our work is most related to Chhabra et al. (2022),
where adversarial perturbation against sensitive information and the corresponding defense mecha-
nism are considered. In comparison, our framework considers feature-level perturbation, rather than
sensitive-information-level.

3 PROBLEM DEFINITION

3.1 ADVERSARIAL ATTACK AGAINST ACCURACY

We start by formulating the accuracy attack. Denote x ∈ Rn as the input feature, y ∈ {0, 1} as the
label, and a ∈ {0, 1} as the sensitive attribute. Let f : Rn → [0, 1] be the function of classifier, then
the objective of accuracy attack for sample (x, y, a) can be formulated as

argmax
ϵ

LCE(f(x+ ϵ), y), s.t.∥ϵ∥ ≤ ϵ0,

where ∥ϵ∥ refers to the Lp norm of ϵ with a general choice of L∞ norm, and LCE is the cross-entropy
loss. A common way to obtain accuracy adversarial samples is through projected gradient descent
(PGD) attack, where accuracy adversarial samples are updated in each step based on the signed
gradient:

xt+1 = Πx+S

(
xt + α sign (∇xLCE(x, y))

)
,

where α is the step size, and S := {ϵ, ∥ϵ∥ ≤ ϵ0} is the set of allowed perturbation. PGD attack has
been shown to be effective in finding adversarial samples compared with one-step adversarial attack
(Madry et al., 2017).

3.2 ADVERSARIAL ATTACK AGAINST FAIRNESS

Fairness attack has yet been less studied in current literature. Inspired by accuracy attack, we
propose to formulate the fairness attack as follows:

argmax
ϵ

L(f(x+ ϵ), a, y), s.t.∥ϵ∥ ≤ ϵ0,

where L is some relaxed fairness constraint. We consider two widely adopted group fairness notions:
disparate impact (DI) and equalized odds (EOd). For a testing set S = {(xi, yi, ai), 1 ≤ i ≤ N},
denote Sjk := {xi|yi = j, ai = k}, and S.k := {xi|ai = k}. The relaxations for fairness attacks
corresponding to DI and EOd (Madras et al., 2018; Wang et al., 2022) can be formulated as:

LDI =

∣∣∣∣∣ ∑
xi∈S.1

f(xi)

|S.1|
−

∑
xi∈S.0

f(xi)

|S.0|

∣∣∣∣∣ , LEOd =
∑
y

∣∣∣∣∣∣
∑

xi∈Sy0

f(xi)

|Sy0|
−

∑
xi∈Sy1

f(xi)

|Sy1|

∣∣∣∣∣∣ . (1)

And fairness adversarial samples can be obtained analogous to the accuracy attack via PGD attack:
xt+1 = Πx+S

(
xt + α sign (∇xL(x, a, y))

)
.

4 CONNECTION BETWEEN THE FAIRNESS ATTACK AND THE ACCURACY
ATTACK

Before going to the discussion, we first clarify the notations. We denote xt,obj
sub,a as the adversarial

sample(s) generated from the clean subgroup {sub, a} at t-th iteration targeting attack type obj ∈
{DI,EOd,Acc}. For example, xt,Acc

TP,0 refers to the accuracy adversarial sample(s) generated form the
true positive (TP) sample(s) in the disadvantaged group (a = 0) at t-th iteration. We will slightly
abuse the notation xt,obj

sub,a in this section to denote both individual samples and a set of samples
within a subgroup. We denote xobj

sub,a as the adversarial sample(s) obtained after the attack type
obj and xsub,a as the clean samples. For example, xFP,1 means clean false positive samples in the
sensitive group a = 1. We denote as pobj

sub,a the distribution of soft predictions in the clean subgroup
{sub, a} after the attack type obj and psub,a the distribution of soft predictions in the clean subgroup
{sub, a} without attack. Without loss of generality, we assume a = 1 is the advantaged group1. We
refer to fairness attacks targeting DI and EOd as DI attack and EOd attack, respectively.

1Here we define the advantaged group as the one with higher average positive prediction.
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4.1 CONNECTION BETWEEN EOD AND DI ATTACK

We now discuss the detailed relationship between DI and EOd attack. The following corollary states
the compatibility of the two objectives:

Corollary 1. The adversarial objective of EOd attack is lower-bounded by that of DI attack up to
multiplicative constants.

We defer the proof to appendix. Corollary 1 shows the connection between adversarial attacks
against different group fairness notions, where these attacks perturb the predicted soft labels against
sensitive attributes. Specifically, a successful DI attack also leads to a successful EOd attack, while
the opposite does not necessarily hold true. In light of this, we will focus on DI attack as means of
the fairness attack for the rest of this paper. In the following context, we refer to DI attack as fairness
attack unless otherwise specified.

For a given sample (xj , yj , aj) in the advantaged group, we can rewrite LDI in equation 1 as:

LDI =

∣∣∣∣∣ ∑
xi∈S.1

f(xi)

|S.1|
−

∑
xi∈S.0

f(xi)

|S.0|

∣∣∣∣∣ = f(xj)

|S.aj
|
+

∑
xi∈S.aj

\{xj}

f(xi)

|S.aj
|
−

∑
xi∈S.âj

f(xi)

|S.âj
|
=

f(xj)

|S.aj
|
+ Cj ,

(2)
where âj = |1− aj | and Cj is a constant w.r.t. xj since it does not affect ∂LDI

∂xj
. This shows that the

DI attack is expected to maximize the prediction in the advantaged group. Similarly, for a sample
(xk, yk, ak) in the disadvantaged group, we have:

LDI =

∣∣∣∣∣ ∑
xi∈S.1

f(xi)

|S.1|
−

∑
xi∈S.0

f(xi)

|S.0|

∣∣∣∣∣ = −f(xk)

|S.ak
|
+ Ck, (3)

where Ck is a constant w.r.t. xk thus does not affect ∂LDI
∂xk

. equation 3 shows that the DI attack in the
disadvantaged group is contrary to that of advantaged group, where the predictions are expected to
be minimized.

4.2 CONNECTION BETWEEN THE FAIRNESS ATTACK AND THE ACCURACY ATTACK

We move on to discuss the connection between the fairness attack and the accuracy attack. The
following corollary shows the connection between the fairness attack and the accuracy attack:

Corollary 2. The fairness attack and the accuracy attack operate in the same direction regarding
true negative (TN) and false positive (FP) samples in the advantaged group and true positive (TP)
and false negative (FN) samples in the disadvantaged group.

We defer the detailed proof to appendix. Notably, the fairness attack and the accuracy attack behave
in the opposite direction for the remaining sets of samples (i.e., TP and FN samples in the advantaged
group, and TN and FP samples in the disadvantaged group). Specifically, for the two subgroups
xTP,1 and xTN,0, the fairness attack aims at maximizing their predicted soft labels as in equation 2
and equation 3, respectively. This results in maximizing the predicted soft labels for xTP,1 and
minimizing the predicted soft labels for xTN,0. Whereas the accuracy attack seeks to minimize the
predicted soft labels for xTP,1 and maximize the predicted soft labels for xTN,0.

Likewise, for the subgroups xFN,1 and xFP,0, the fairness attack tries to ‘correct’ the predicted soft
labels such that the adversarial predictions align with the ground-truth labels. In contrast, the accu-
racy attack is designed to exacerbate the error within these subgroups. We summarize the connection
between the the fairness attack and the accuracy attack on various subgroups in Table 1.

Sensitive Group Same Direction Opposite Direction
Disadvantaged (a = 0) xTP,0, xFN,0 xTN,0, xFP,0
Advantaged (a = 1) xTN,1, xFP,1 xTP,1, xFN,1

Table 1: Connection between the fairness attack and the accuracy attack regarding samples in dif-
ferent subgroups.
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5 ALIGNMENT BETWEEN FAIRNESS ROBUSTNESS AND ACCURACY
ROBUSTNESS

We now discuss the alignment between fairness robustness and accuracy robustness. According to
Table 1, the relationship between fairness robustness and accuracy robustness is straightforward on
the four subgroups in ‘Same Direction’ category. Since the the fairness attack and the accuracy at-
tack operate in the same direction for those samples, the fairness robustness and accuracy robustness
also attain alignment on these samples. Consider sample xi from the ‘Same Direction’ groups, by
Corollary 2 we have:

f(xt,Fair
i ) = f

(
Πxi+S

(
xt−1
i + α sign (∇xiLDI(xi, ai, yi))

))
= f

(
Πxi+S

(
xt−1
i + α sign (∇xiLCE(xi, yi))

))
.

Under same perturbation level ϵ and same step size α up to T iterations, the fairness attack and
the accuracy attack leads to equivalent perturbations in soft predictions regarding xi’s in the ‘Same
Direction’ category. Therefore, it is feasible to leverage existing adversarial training tools targeting
accuracy robustness to improve fairness robustness for such samples. However, such alignment
cannot be directly extended to the four subgroups in the ‘Opposite Direction’ category. As the
fairness attack and the accuracy attack operate in the opposite direction, it is not straightforward
whether there exists alignment or misalignment between fairness robustness and accuracy robustness
regarding those samples.

Therefore, in the following we focus our discussion on the four ‘Opposite Direction’ subgroups
in Table 1: xTP,1, xFN,1, xTN,0, xFP,0. Under ϵ-level fairness attack with step size α and up to
T iterations, we define DFair

sub,a := |LCE(f(x
Fair
sub,a), y) − LCE(f(xsub,a), y)| as the change of cross-

entropy loss for sample xsub,a and δFair
sub,a := |f(xDI

sub,a) − f(xsub,a)| as the change of f(xsub,a).
Therefore, DFair

sub,a and δFair
sub,a are related with fairness robustness, and smaller DFair

sub,a and δFair
sub,a

indicate better fairness robustness. Likewise, under ϵ-level accuracy attack with step size α and
up to T iterations, we define DAcc

sub,a := |LCE(f(x
Acc
sub,a), y) − LCE(f(xsub,a), y)| as the change of

cross-entropy loss for sample xsub,a and δAcc
sub,a := |f(xAcc

sub,a)− f(xsub,a)| as the change of f(xsub,a),
and smaller DAcc

sub,a and δAcc
sub,a indicates better accuracy robustness. Before we state the detailed

relationship, we first state the assumptions we need to prove the relationship:

Assumption 1. The gradient of f w.r.t. input feature x is Lipschitz with constant K.

Assumption 2. The distributions psub,a are uniformly bounded by constants Msub,a.

Under Assumption 1 and 2, below we discuss the alignment between fairness robustness and accu-
racy robustness in two directions, i.e., how fairness/accuracy robustness improves accuracy/fairness
robustness. While the assumption of Lipschitz gradient seems a bit strong, it is a widely used as-
sumption for neural network, and it is feasible to estimate the Lipschitz constant (Fazlyab et al.,
2019; Shi et al., 2022). Also, the difference in fairness/accuracy robustness as discussed in the The-
orem 1 and 3 are indeed upper-bounded by the Lipschitz constant K, and a smaller K indicates
better upper-bounds for the difference in robustness, which also suggests better alignment between
fairness robustness and accuracy robustness.

5.1 FROM ACCURACY ROBUSTNESS TO FAIRNESS ROBUSTNESS

We first derive the guarantee for fairness robustness by accuracy robustness. We will focus on xFN,1

and xFP,0, as fairness attack regarding xTP,1 and xTN,0 does not affect fairness, i.e., the predicted
labels for xTP,1 and xTN,0 will remain the same before and after the fairness attack.

Theorem 1. Given a classifier f , consider ϵ-level fairness attack with step size α and up to T
iterations, the difference of fairness robustness between xFN,1 and xFN,0 is upper-bounded by the
accuracy robustness of xFN,0 up to an additive and a multiplicative constant:

DFair
FN,1 ≤ min

xFN,0∈S10
DAcc

FN,0 + α

T∑
t=1

Gt,
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Gt =

[√
nKd(xt−1,Fair

FN,1 , xt−1,Fair
FN,0 )

f(xt−1,Fair
FN,1 )

+ ηtδ
t−1,Acc
FN,0

]
, ηt =

∣∣∣∣∣f(x
t−1,Fair
FN,0 )− f(xt−1,Fair

FN,1 )

f(xt−1,Fair
FN,1 )f(xt−1,Fair

FN,0 )

∣∣∣∣∣ .
Detailed proof and empirical verification can be found in the appendix. As discussed in Section 4.2,
adversarial training w.r.t. accuracy also improves fairness robustness of subgroup xFN,0 while it is
unclear for subgroup xFN,1. Thus, we leverage xFN,0 to explore robustness guarantee against fairness
attack for xFN,1.

Specifically, for f ′ under adversarial training w.r.t. accuracy and f under normal training, we have
similar upper-bound, except that we now have δ

′t−1,Acc
FN,0 ≤ δt−1,Acc

FN,0 , which indicates a tighter upper-
bound for f ′ in Theorem 1. For the marginal advantaged FN samples (xFN,1) which are more vulner-
able under the fairness attack, we have their fairness robustness bounded by marginal disadvantaged
FN samples (xFN,0), and smaller δAcc

FN,0, or tighter bound indicates better fairness robustness. Similar
inequality in Theorem 1 also holds for xFP,0 and xFP,1:
Remark 1. For xFP,0 and xFP,1, we have similar inequality regarding the upper-bound of robustness
difference:

DFair
FP,0 ≤ min

xFP,1∈S01
DAcc

FP,1 + α

T∑
t=1

Ht,

Ht =

[√
nKd(xt−1,Fair

FP,0 , xt−1,Fair
FP,1 )

f(xt−1,Fair
FP,0 )

+ ρtδ
t−1,Acc
FP,1

]
, ρt =

∣∣∣∣∣f(x
t−1,Fair
FP,0 )− f(xt−1,Fair

FP,1 )

f(xt−1,Fair
FP,1 )f(xt−1,Fair

FP,0 )

∣∣∣∣∣ .
5.2 FAIR ADVERSARIAL TRAINING

Theorem 1 provides robustness guarantee in terms of changes in soft predictions under the fairness
attack regarding ’Opposite Direction’ samples. Based on such discussion, we now derive the fairness
robustness guarantee regarding fairness measures, namely DI and EOd. Consider DIFair, DI, EOdFair

and EOd as the fairness measures after and before the fairness attack, the following theorem states
the fairness guarantee by static fairness and accuracy robustness under the fairness attack:
Theorem 2. Given a classifier f , consider ϵ-level fairness attack with step size α and up to T it-
erations, let ∆obj

sub,a := max{xsub,a∈Ssub,a} δ
obj
sub,a be the maximum shift in soft predictions within the

subgroup under attack type obj, the resulting fairness measures are upper-bounded by the corre-
sponding clean measures and accuracy robustness of the classifier up to a multiplicative constant:

DIFair ≤ DI +M(∆Acc
TP,0 + min

j∈SFP,1

(DAcc
j +Hj) + ∆Acc

TN,1 + min
j∈SFN,0

(DAcc
j +Gj)),

EOdFair ≤ EOd +M((∆Acc
TP,0 + min

j∈SFP,1

(DAcc
j +Hj) + ∆Acc

TN,1 + min
j∈SFN,0

(DAcc
j +Gj))),

M = max
{sub,a}

Msub,a.

We defer full proof to the Appendix. The DI and EOd terms in the upper-bounds of Theorem
2 corresponds to the static fairness, and the remainder corresponds to the accuracy robustness as
stated in Theorem 1. Consequently, enhancing fairness during training results in lower values of
DI and EOd, and enhancing accuracy robustness results in lower value of the remainder, leading to
smaller upper-bounds for DIFair and EOdFair, i.e., smaller fairness violation under the fairness attack.

One direct result regarding Theorem 2 is to incorporate accuracy adversarial samples during train-
ing to obtain a classifier that is also robust to fairness attack. Thus, we consider the following to
minimize the fairness gap while ensuring accuracy robustness, as means to ensure fairness robust-
ness. Specifically, we propose to improve fairness robustness of classifier by incorporating accuracy
adversarial samples and fairness constraints during training:

argmin
θ

1

N

N∑
i=1

LCE(f(x
Acc
i ), yi), s.t. L ≤ γ, (4)

where xAcc
i is the accuracy adversarial sample by xi, the LCE(f(x

Acc
i ), yi) term corresponds to ac-

curacy robustness, and L ≤ γ corresponds to static fairness, as we derived in Theorem 2. L can be
explicitly specified by fairness relaxations during training or implicitly specified as preprocessing or
post-processing techniques.
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5.3 FROM FAIRNESS ROBUSTNESS TO ACCURACY ROBUSTNESS

For the other direction, under Assumption 1, we have the following guarantee for accuracy robust-
ness by fairness robustness. We will focus on xTP,1 and xTN,0, as accuracy attack regarding xFN,1 and
xFP,0 does not affect accuracy, i.e., the predicted labels remain false before and after the accuracy
attack.
Theorem 3. Given a classifier f , consider ϵ-level accuracy attack with step size α and up to T
iterations, the accuracy robustness of xTP,1 is upper-bounded by the fairness robustness of xTP,0 up
to an additive constant:

δAcc
TP,1 ≤ min

xTP,0∈S10
δFair

TP,0 +

T∑
t=1

√
nαKd(xt−1,Acc

TP,1 , xt−1,Acc
TP,0 ).

Here the the fairness attack and the accuracy attacks are in alignment regarding xTP,0, which we use
to upper-bound accuracy robustness of xTP,1. Specifically, the first term in the RHS of the inequality
corresponds to the fairness robustness of xTP,0, and the second term is determined by the spatial
distance between xTP,0 and xTP,1 under the accuracy attack. Theorem 3 shows that adversarial
training w.r.t. fairness also benefits accuracy robustness. Specifically, for f ′′ under adversarial
training w.r.t. fairness and f under normal training, we have similar inequality, except that we now
have δ

′′Acc
TP,0 ≤ δAcc

TP,0, which indicates better accuracy robustness for xTP,1 under adversarial training.
Similar upper-bound also holds for TN samples:
Remark 2. For xTN,1 and xTN,0, we have similar inequality regarding the upper-bound of accuracy
robustness:

δAcc
TN,0 ≤ min

xTN,1∈S01
δFair

TN,1 +

T∑
t=1

√
nαKd(xt−1,Acc

TN,0 , xt−1,Acc
TN,1 ).

Since the change of predictions under accuracy attack is upper-bounded by fairness robustness, it
is also feasible to improve accuracy robustness of classifier by using fairness adversarial samples
during training.

6 EXPERIMENTS

(a) EOd (Adult) (b) DI (Adult) (c) Accuracy (Adult)

Figure 2: Change of accuracy, DI and EOd under fairness attack on Adult dataset. Our adversarial
training methods (preprocessing, in-processing, post-processing) obtain improved fairness robust-
ness (lower EOd, DI and higher accuracy) with significant margin.
We evaluate our method on four datasets: Adult (Dua & Graff, 2017), COMPAS (Larson et al.,
2016), German (Dua & Graff, 2017) and CelebA (Liu et al., 2015). Details of datasets and experi-
mental setup are in the Appendix. We use accuracy as performance evaluation, and disparate impact
(DI) and equalized odds (EOd) as fairness metric. In the following subsections, we validate the
adversarial training framework under the fairness attack and the accuracy attack, respectively.

6.1 ROBUSTNESS AGAINST FAIRNESS ATTACK

We consider five different methods for comparison: Baseline: Neural network under normal train-
ing; Preprocessing: Neural network under normal training with label processed by Jiang & Nachum
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(a) Accuracy (b) DI (c) EOd

Figure 3: Change of accuracy, DI and EOd under accuracy attack on Adult dataset.

(2020); In-processing: Neural network under normal training with relaxed EOd constraint by Wang
et al. (2022); Post-processing: Neural network under normal training with post-processing tech-
nique by Jang et al. (2022); Adversarial training: Neural network under adversarial training w.r.t.
accuracy. We consider three different versions for our fair adversarial training method: Adversarial
training (preprocessing): Neural network under adversarial training w.r.t. accuracy with training
labels processed by Jiang & Nachum (2020); Adversarial training (in-processing): Neural network
under adversarial training w.r.t. accuracy with relaxed EOd constraint by Wang et al. (2022); Ad-
versarial training (post-processing): Neural network under adversarial training w.r.t. accuracy with
predicted soft labels postprocessed by Jang et al. (2022).. The three versions differ in the fairness
regularization L in equation 4.

Results on classifiers under fairness attack on Adult dataset are shown in Fig. 2. The fairness attack
enforces biased predictions against testing samples based on the sensitive information, and under
a successful attack (the DI reaches its maximum), the EOd also reaches its maximum, while the
accuracy is dependent of the base rate in each sensitive group. Compared with methods under ad-
versarial training, methods under normal training show a sharp increase in DI and EOd under fairness
attacks, and improvement in fairness under normal training does not help with fairness robustness.
In comparison, classifiers under adversarial training w.r.t. accuracy show improvement in fairness
robustness, and classifiers under fair adversarial training show further remarkable improvement in
terms of fairness robustness. We defer full results and ablation study to the appendix.

6.2 ROBUSTNESS AGAINST ACCURACY ATTACK

We move on to discuss the improvement of accuracy robustness under adversarial training w.r.t. fair-
ness. We compare two different methods: Baseline: MLP model under normal training; Adversarial
training (DI): MLP model under adversarial training w.r.t. relaxed DI. We show results on classifiers
under accuracy attack on Adult dataset in Fig. 3. Under a successful accuracy attack (the accuracy
reaches its minimum), the EOd also becomes zero, while DI does not necessarily vanishes due to
group-wise disparities in base rates. Compared with baseline, classifier under adversarial training
shows remarkable improvement in accuracy robustness, which validates that accuracy robustness
also benefits from adversarial training w.r.t. fairness. Results on other datasets are shown in the
appendix.

7 CONCLUSION

Fairness attack and defense is an important yet not properly addressed problem. In this paper, we
propose a unified framework for fairness attack against group fairness notions, where we show
theoretically the connection of fairness attacks under different notions, and we demonstrate the con-
nections between fairness attack and accuracy attack. We show theoretically the alignment between
fairness robustness and accuracy robustness, and we propose a fair adversarial training structure,
where the goal is to improve fairness robustness while maintaining fairness. Further, from experi-
ments we validate that our method achieves better fairness robustness, and that fairness robustness
and accuracy robustness align with each other. Future directions include finding alternative relax-
ations for fairness attack, and alternative training strategies for fair adversarial training.
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