Under review as a conference paper at ICLR 2024

REINFORCEMENT LEARNING-BASED LAYER-WISE
AGGREGATION FOR PERSONALIZED FEDERATED
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

A key challenge in Federated Learning (FL) is statistical heterogeneity, which
may result in slow convergence and accuracy reduction. To tackle this problem,
personalized federated learning (PFL) aims to adapt the global model to the in-
dividual data distribution of each client. One approach for this is personalized
aggregation, which automatically determines how much each client can benefit
from other clients’ models. This paper proposes a new PFL method based on two
principles: a) shared knowledge and personalized knowledge are reflected in dif-
ferent layers of the network and b) clients with more data should contribute more
to shared knowledge, while knowledge transfer from similar clients can boost per-
sonalization. Based on these, we propose a reinforcement learning-based layer-
wise aggregation method (pFedRLLA) that applies different mechanisms for dif-
ferent neural network layers. For layers representing shared knowledge, aggre-
gation is carried out based on the size of the local data samples of the client.
For layers representing personalized knowledge, a deep reinforcement learning
(DRL) agent is used to generate personalized aggregation weights. To ascertain
efficiency and scalability, we train a single DRL agent (for all users) that operates
on the server-side and takes as input a subset of user models. To further reduce
its state-space, we design a multi-head auto-encoder to obtain low-dimensional
embeddings of user models. Extensive experiments on benchmark datasets for
variable data heterogeneity levels reveal that the proposed algorithm consistently
outperforms baselines in terms of both higher accuracy (up to +3.1%) and faster
convergence (a reduction of global rounds by up to 20.5%).

1 INTRODUCTION

Artificial Internet of Things (AloT) is the domain where a large number of edge devices (such as
mobile phones, sensors, cameras, etc.) generate big volumes of data that are used to train machine
learning models in order to provide intelligent services. To this end, traditional centralized machine
learning methods (LeCun et al., |2015; [Dean et al., 2012) face many challenges, such as excessive
communication burden, device battery consumption, and threats to data privacy and security. In
order to overcome these problems, Federated Learning (McMahan et al| [2017) emerged as a new
paradigm for distributed learning (Bottou, 2010), tailored to address the aforementioned challenges.
FL involves four operations: 1) edge devices download the global model, 2) they fine-tune it based
on local training, 3) they upload the updated model, and 4) the server carries model aggregation.

In FL, a core issue is statistical heterogeneity, i.e., the situation where the data of different clients
are unbalanced in volume and not independent and identically distributed (non-IID). This makes it
difficult to obtain a shared global model that generalizes to all clients—for example, due to client drift
(the case where the model overfits to a user’s data)-and slows down the progress of the FL process.

Personalized Federated Learning (PFL) is a framework that aims to generate customized models for
clients based on their local data while benefiting from collaborative training. In contrast to classical
FL which trains a common model for all users (e.g., (McMahan et al.l 2017; Wang et al.l 2022;
Gong et al., [2022)), PFL considers the heterogeneity and diversity of clients’ data and tasks. PFL
methods can be classified into two categories: (i) Global model personalization, where the users
personalize the shared model: there are data-driven methods (Wang et al., 2020; Chai et al.| [2020;

Under review as a conference paper at ICLR 2024

Duan et al.||2021)) that attempt to reduce the distribution imbalance among clients, as well as model-
based methods (Li et al., |2021a; |[Finn et al., 2017;|Yao & Sun, 2020; |Li et al., 2020) that optimize
the global FL model for personalized needs, using techniques such as regularization (L1 et al.,2020;
2021b; [T. Dinh et al. [2020), meta-learning (Finn et al.| 2017} [Fallah et al. [2020), and transfer
learning (L1 & Wang, [2019). (ii) Client-specific model generation, which trains a personalized
model for each client: this includes structure-based (Liang et al.,[2020; |Collins et al., 2021;|Oh et al.}
2021)) and similarity-based methods (Smith et al.l 2017; [Huang et al., 2021)). Notably, personalized
aggregation is a popular approach (Zhang et al.,|2022;|2020; Ma et al., 2022).

In this paper, we mainly focus on image classification tasks, for which Convolutional Neural Net-
works (CNNs) are used. CNNs consist of two main components: a feature extractor and a classifier.
In representation learning (Kang et al.,2019;|Yu et al.,|2020), all tasks share the same feature extrac-
tor, while each task has its own classifier. [Kornblith et al.| (2019)) verified that increasing the amount
of data significantly improves the performance of the model on various tasks, while the connection
with the label distribution of the tasks is relatively weak. Drawing inspiration from this, we divide
the CNN model for each client into two parts: the first part (the body) is responsible for learning
domain representation, and the second part (the head) is task-specific. Each client maintains a per-
sonal model (both for body and head), but we adopt different aggregation strategies for the two
parts. The body is more dependent on data quantity, so we use weighted aggregation based on the
data sizes. The head is more susceptible to the distribution of client data. For this reason, we design
a DRL algorithm that generates personalized aggregation weights by learning the potential corre-
lations between clients. The state of the DRL agent consists of the personalized models of clients
selected in the previous round. The reason for not choosing all clients as the state is that FL. may
involve a large number of clients (e.g., thousands), so this would result in a large state space which,
in turn, would cause the DRL training to be slow and expensive. Extensive experiments show that
our design is effective even when the clients selected in the previous round are substantially different
in terms of distribution with the currently selected clients (in such case, the weights automatically
detect and capture this: the self-weight will be large and the unrelated clients will contribute little).
Furthermore, in view of the high dimension of the model parameters (for example, a 6-layer CNN
has 0.925M parameters), we design a multi-head auto-encoder (MHAE) to obtain low-dimensional
embeddings of the heads. Unlike most FL. methods, pFedRLLA no longer generates a global model.
Instead, it produces a personalized model for each client, which is more tailored to individual needs
than methods in category (Global model personalization). Besides, we take into account inter-client
relationships when generating personalized aggregation weights for client 4, unlike methods such as
pFedLA that only consider the connection between the global model and client <.

Contributions:

* We propose a personalized aggregation method that generates a personal model for each
client. Our method utilizes a layer-wise approach, adopting different aggregation strategies
for different neural network layers. This ensures that the resulting model has a universally
effective feature extractor and a classifier tailored to individual needs.

* We design a DRL agent to achieve the aggregation of the head parameters for every client.
Its training is carried using a compound reward, which takes into account both the improve-
ment of validation accuracy as well as the similarity between clients. To further expedite
the process, we design a multi-head auto-encoder that reduces the state space. Besides, the
aggregation of the bodies is carried using weighted aggregation based on the data volumes
of the participants.

* We conducted numerous experiments on four datasets. Our proposed solution outperforms
other baselines in all settings (3.13% higher accuracy on CIFAR-100) and achieves a faster
convergence (a maximum 20.4% of communication savings over the best performing base-
line on CIFAR-10).

The novelty of this paper does not lie in the tools used (i.e., RL, MHAE) but rather in the succinct
design and implementation of a data-driven solution for PFL that is shown to be effective and robust
via extensive experimentation in diverse scenarios. To that end, there are two main distinctions
with existing methods. First, the use of a single DRL agent at the server side which allows for
scalability. The efficacy of this choice is made possible by three means: a) pre-training based on a
compound reward that balances accuracy, and model similarities, b) the setting of single-step task,

Under review as a conference paper at ICLR 2024

which provides a more pronounced reward signal and simplifies the collection of training data and
c) the use of MHAE, that reduces the complexity and captures the similarities more effectively.
Second, we have adopted the simplest possible layer-wise approach (body and head), which allows
to obtain feature extractor and a more customized classifier efficiently.

2 RELATED WORK

Personalized Federated Learning (PFL) intends to produce customized models that meet users’ de-
mands by capitalizing on information exchanges through the federated process in addition to local
data. As mentioned earlier, PFL algorithms can be divided into two categories.

Global model personalization. FedDRL (Nguyen et al.,|2023)) employs a DRL approach to derive
aggregation weights for the global model. In model-based methods, the use of regularization is
popular. FedProx (Li et al., 2020) adds a penalty term in the local loss function of the client to
capture the dissimilarity between the global and local models. Per-FedAvg (Fallah et al.,[2020) and
pFedMe (T. Dinh et al, |2020) are methods that adopt meta-learning. The former is a variant of
FedAvg built on top of the MAML framework (Finn et al., 2017) that targets to compute a shared
model that new users can easily adapt to with minimal local fine-tuning. pFedMe uses the Moreau
envelope as a regularizer and optimizes the personalized model and the global model simultaneously.
Nevertheless, and in contrast to our proposed solution, these methods rely on training a single global
model and are not well suited to address personalization in scenarios where there are significant
differences among client data distributions.

Client-specific model generation. There is a multitude of relevant methods such as representation
learning-based, cluster-based, and personalized aggregation-based methods. FedRep (Collins et al.,
2021) and FedBABU (Oh et al., [2021) were designed based on representation learning, i.e., they
decouple the model parameters into two parts: base layers and personalized layers. The former are
obtained from the aggregated model held by the server while the latter are updated through local
training. Clustered federated learning (Ghosh et al., 2020; |Long et al., [2020) uses similarity scores
to divide clients into different groups and maintains one model per group at the server. To further
enhance personalization, there are methods that generate customized models for each client through
personalized aggregation, an approach that we also adopt in this paper. For instance, FedAMP
(Huang et al., |2021) utilizes a message-passing mechanism to perform personalized aggregation
among similar clients, while FedALA (Zhang et al., [2022) built an Adaptive Local Aggregation
(ALA) module to incorporate knowledge from the global model into the local model.

Our proposed solution lies in the second category, and specifically invokes representation learning
(Bengio et al,, [2013). The main novelty lies in the design of different aggregation strategies for
different parts of the neural network: the aggregation of the body allows us to extract better rep-
resentations from data-rich clients, while the aggregation of the head leverages task-similar clients
to personalize the model to better meet the unique needs of each client. The main differences with
related baselines are as follows. pFedLHN |Zhu et al.| (2023) employs layer-wise modules with
parameter-sharing mechanisms in the hypernetwork to create personalized models for each client.
The hypernetwork generates these personalized models by utilizing layer embeddings uploaded by
the clients themselves, and does not rely on learning from other clients. Moreover, uploading these
layer embeddings to the server introduces additional communication. FedPAC (Xu et al., [2023)
adopts local-global feature alignment to learn a better representation and formulates an optimization
problem to estimate optimal aggregation weights for the classifier. However, this method introduces
additional communication overhead and client-side computation burden. Furthermore, its applica-
bility is limited to scenarios involving label distribution shift. FedALA adaptively aggregates the
global model and the local model on the client side to initialize the local training. Therefore, the
performance has a high requirement on the quality of the global model, otherwise, a poor initial-
ization may stagnate the process. The most similar to our algorithm is pFedLA. It maintains a
hypernetwork for each client on the server, which can generate personalized aggregation weights
for each layer of the corresponding client model. However, this method requires training individual
networks for each client on the server side, therefore, it suffers from limited scalability. In contrast,
our method only needs a single hypernetwork for all clients. Besides, in our design, the DRL agent
takes as input models corresponding to participants in the previous round and effectively identifies
similar clients, in contrast to pFedLA. Finally, our method does not only consider user similarity but
also the amount of local data, which have higher impact on the body of the network.

Under review as a conference paper at ICLR 2024

1
| Server !
l ll 5 1
1 > 5 1
1 o %3
1'||IMHAE for the embedding block 29 1
" s 2 § 1
ik 2 o 2 !
O+ el c I
= ° -l o
1|8 ® > =y w 8 T E 1
o <
I § - — 2 g 1
1yl e © 8 t+1
gk = i Pofukery !
1 1
1 1

1 Clients Step 3: perform local training :
1 — |
! I H_]

] l - ans :
I o me E Em EE EE EE EE N N N O D S R M B B M M M N M M M M EE BN M M EE M e e O e E Ee E .

Figure 1: The overall architecture of pFedRLLA. The algorithm iterates through three main steps:
In Step 1, the server selects k participants. These upload their models as in (I). The server computes
the embeddings of the models through a multi-head-autoencoder (MHAE). In Step 2, the server uses
layer-wise aggregation for each selected client using the information held in storage (for the body the
weights are proportional to the data sizes of the clients, while for the heads they are calculated by the
DRL agent). Finally, the server updates the storage with the embeddings and data sizes pertaining to
the selected clients (2). In Step 3, the selected users download their corresponding updated models
(®) and perform local training.

3 ARCHITECTURE OF PFEDRLLA

The architecture of our proposed solution is illustrated in Fig. [Tand the detailed description is given
in Alg. [T} On the server side, we maintain a DRL agent, which generates aggregate weights for all
clients, and an MHAE, which reduces the dimensionality of model parameters. The details of their
design will be detailed in the next section. At the beginning, all N eligible devices download the
initial random model from the server and train locally to initialize their local models. After that, the
algorithm iteratively computes personalized models as follows.

Step 1: In round ¢, the server randomly selects a subset of clients. These clients upload their
local models, and then the server extracts the embeddings of their models through a multi-head-
autoencoder (MHAE).

Step 2: The server applies a layer-wise aggregation for each selected client. For the body, aggre-
gation is based on the volume of the local data size (lines 1-2 in Alg. |Z|) For the head, the server
combines its embedding with the embeddings of the clients selected in the previous round, and the
DRL agent is invoked to generate the aggregation weights (lines 3-5 in Alg. [2). Finally, the server
updates the storage with the embeddings and data sizes pertaining to the selected clients (to be used
at the next round).

Step 3: The selected clients download their corresponding updated models and perform local train-
ing (lines 10-13 in Alg. [I).

Note that this procedure incurs no extra computational or communication burdens on the client side.
Furthermore, it does not impact the overall training time, because both the MHAE and the DRL
agent are pre-trained (detailed in Appendix [D)), and are further fine-tuned during the PFL process
(detailed in Appendix [E). Finally, scalability at the server side is ensured by controlling the size of
the subset of participants (i.e., the store does not need to maintain information for all users).

3.1 DIMENSION REDUCTION

A typical deep learning model comprises of layers that may vary in size. In order to deal with the
large dimension, several FL algorithms (Wang et al.,[2020; |(Ghosh et al., [2020) concatenate different

Under review as a conference paper at ICLR 2024

Algorithm 1 pFedRLLA Algorithm 2 Layer-wise aggregation
Parameter: NN clients, Selection ratio ¢, Commu- Aggregation(k, K") > Run on server
nication rounds 7'. Parameter: W is the model’s body, ¢ is the

1: for eachroundt=1to T do model’s head, d; represents the size of client i’s
2 K + (random set of [c - V| clients) local dataset.
3: Selected users upload their models Body aggregation:
4: Server computes the embeddings: 1: Calculate weights based on local data sizes:
ek:MHAE(wk),kEIC d<—dk+Zk’e}C’ dp
5: for client k € K do dyr 1.0 / dy,
: — ri=EE e K'Y}, proi= 2k
6: wy < Aggregation(k, K') . Updpate th{e{ll))gdy as: | b 1}
update models, as detailed in Alg. ’
7 end(f(Fr B Vi Wi+ 3 e P Vi
: . Head aggregation:
8: Server updates the embeddings in storage; 3. Use the embeddines
9: K' = K > record previously selected clientsE] ’ en = MHAEg(CDk)
S) , / ’

10: for client k € K in parallel do eSi/ _ {]\fegj\é}fé@%% ke;ﬁ K

s Client download.s W from server 4: Calculate the aggregation weight Ay,

12: Conduct local training Ay, < DRL(S);

14 endfor A = {{pw € K. i)

: 5: Update the head as:

(bk — pk(bk + Zk’eK:’ pk/q)k/

a !l
For the first round, K is the set of currently se- 6: return { Wy, by}

lected clients.

layers into a large tensor and then invoke dimension reduction, e.g., using Principal Component
Analysis (PCA). Nonetheless, PCA overlooks the structural features of the network. For this reason,
we opt to devise a multi-head auto-encoder (MHAE) for dimension reduction. In this, the multi-head
architecture aims to transform the task heads into feature matrices of uniform dimensions (using
PAC). Then, we employ an LSTM auto-encoder to learn the correlations between these feature
matrices. The comparison of dimensionality reduction results between MHAE and PCA is shown
in Fig. [6]in the Appendix.

3.2 LAYER-WISE AGGREGATION

Our proposed layer-wise aggregation algorithm adopts different strategies for different parts to
achieve model personalization. More specifically, the network is divided into two parts: the body,
that is responsible for feature extraction, and the head, that corresponds to responsible for the de-
cision layers of the CNN. For the feature extraction layers, previous works (Collins et al., 2021}
Oh et al.| 2021)) have shown that heterogeneous data distributed across tasks may share a common
representation despite having different labels. This motivates the aggregation of feature extraction
layers that ignore the local label distribution and only focus on the data volume. Specifically, for
body aggregation, we use weighted averaging based on the data size of each client. In contrast, the
classifier layers (i.e., heads) are closely tied to the tasks handled by the clients and are therefore more
influenced by the local data distributions. Therefore, we propose a DRL-based approach to generate
personalized weights. The detailed process of the head aggregation is presented in the following
subsection.

3.2.1 HEAD AGGREGATION

We employed DDPG (Lillicrap et al. |2015) (deep deterministic policy gradient), leveraging its
actor-critic architecture. The actor network is tasked with acquiring the aggregation weights, while
the critic network estimates the value function associated with the current action, thereby guiding
the actor’s subsequent actions. The choice of the DDPG algorithm stems from two primary rea-
sons: first, our task operates within continuous state and action spaces, and second, DDPG enables
the generation of deterministic policies. The task of learning aggregation weight is formulated as
a single-step process where the generation of one set of aggregation weights (for each participat-
ing client based on the embeddings at the previous round) constitutes an episode (more details are
provided in the Appendix [C). One-step tasks typically feature a more pronounced reward signal,
facilitating the agent’s understanding of when to be rewarded or penalized. The definitions of State,
Action, and Reward are detailed next.

Under review as a conference paper at ICLR 2024

State: The state of client k contains the embeddings of the model parameters of the participants in
the previous round {ey |k’ € K'} as well as the embedding of its own model e, (line 3 of Alg. [2).

Action: The action is the set of weights corresponding to the previous participants and client k
itself, Ay, = {{pw |k’ € K'}, pr}, the sum of Ay, equals 1, which is achieved by adding a softmax
activation function to the final layer of the actor network.

Reward: The reward for a single-step is computed as a compound of three sub-rewards with weights
{B;}3_,, which are set as {1, 1, 2} in our experiments (see Appendix [F.1).

3

R=Y B, (1)
i=1

,r,l — eacck—accm _ 17 (lb)

ro = acctt — acch -, (Ic)

ry = — || Ax — Vil (1d)

In (Ib), accy, is the test accuracy achieved by the model of client & on the held-out validation set,
while accy,, is a predetermined target accuracy. This can be adjusted with the process of training.
This term is negative unless the user has met its local needs.

The second term 1| rewards improvement in test accuracy after aggregation: accigg denotes the
test accuracy of the newly aggregated model of client k£ on the validation set, and accll';ra represents
the accuracy of client k before updating its model by layer-wise aggregation.

The last term (Id) is used to generate weights to identify model similarities (this term is negative
since it penalizes the discrepancy). In specific, Ay denotes the normalized weights (line 4 of Alg.
generated by the DRL agent and V}, is given by:

Vi = {{d(ek,ek/)\k’ € IC/}, 1}/ (Z d(ek,ek/) + 1) s

k'eK’ 2)
/
1
where d(e,€’) := %.
The cosine similarity is denoted by cos(-,-) (note that 1 = d(eg,e) in Vj reflects the self-

similarity), so that Vi corresponds to normalized cosine similarity.

4 EXPERIMENTS

In order to support the merits of our proposed algorithm, we have conducted a wide range of ex-
periments on real datasets under variable levels of heterogeneity and in comparison with a dozen
baseline methods. Our main findings enlist: (1) pFedRLLA features higher accuracy at the user
end as well as a faster convergence rate. (2) Our ablation experiments provide empirical evidence
supporting the validity of our design choices, specifically the utilization of weighted aggregation for
body and personalized aggregation for head.

4.1 EXPERIMENTAL SETUP

We have used four datasets to evaluate pFedRLLA and other baselines, namely CIFAR-10, CIFAR-
100, MNIST*, and Omniglot. For the first two datasets, we consider various levels of heterogeneity
(see Data Partioning for the detailed description) based on a) a ’pathological’ scenario, where each
user contains only a small number of labels and b) a Dirichlet distribution with adjustable parameter.
The latter two datasets are different from the aforementioned heterogeneous scenarios: the Omniglot
dataset is gathered from 20 distinct users and is thus naturally partitioned into 20 FL clients. The
MNIST* dataset is a hybrid dataset constructed from three datasets (MNIST, MNIST-M, and USPS),
and in this case we established three distinct client groups, with each group containing different
domain samples. We divide these datasets into training set, validation set, and test set with a ratio of
65:15:20. More details about the datasets are provided in Appendix

In order to test our method and all baselines, we use a 6-layer CNN architecture, as employed in
FedALA (Zhang et al,, [2022), for all four tasks. The learning rates of the local SGD solver are
chosen from the candidate set {0.005, 0.01, 0.1, 0.2} for best performance. Our experiments for

Under review as a conference paper at ICLR 2024

the CIFAR and MNIST* datasets consisted of 100 users, with 10% of them selected for each round
(line 2 of Alg. [I). The Omniglot dataset contains data from 20 users and for this case, ¢ = 20% is
chosen. The reported accuracy reflects the average test accuracy across all users.

Data Partitioning. We adopted two data partitioning methods. (1) Pathological non-IID as in
FedAvg (McMabhan et al., |2017): first, we group all the data according to the label and then divide
them into s * N shards, where s is the number of labels per client and NV is the total number of
clients. Smaller values of s indicate fewer data labels per client and a smaller number of clients with
the same data label, resulting in a higher level of heterogeneity. However, in such case, the clients
have more data for the corresponding classes (thus a larger s is more challenging for this reason).
(2) Dirichlet non-1ID (Hsu et al.| 2019): we use a vector z, to represent the probability distribution
of class k on different clients, which is sampled from the Dirichlet distribution, denoted as Dir(«);
the smaller «v is, the higher the level of heterogeneity.

Baselines. We compare pFedRLLA versus several state-of-the-art methods. The baselines include
the traditional federated averaging and PFL methods from the two categories discussed in Section
2 (global model personalization and client-specific model generation). In the former category, we
choose Ditto, APFL, FedRep, and FedBABU as baselines. In the latter, FedAMP, FedFomo, Fed-
PHP, FedPAC, and FedALA are chosen. Last, we further include the variant of FedAvg where clients
fine-tune the global model so as to personalize (listed as FedAvg+FT) and Local-only refers to when
clients train locally without communicating with the server.

Implementation. We simulate all clients and the server on a workstation with 2 Intel® Xeon® 353
Gold 6330 CPUs and 8 NVIDIA® 354 GeForce RTX 3090 GPUs. All methods are implemented in
PyTorch. Our code is available at: anonymous . 4open.science/r/pFedRLLA-7BEF.

Table 1: Average test accuracy on CIFAR-10, CIFAR-100, Omniglot, and MNIST#*; the selection
ratio was set to 0.1 in all cases (except Omniglot, where it equals to 0.2). The first two datasets ex-
hibit varying levels of heterogeneity, while the latter two datasets have a fixed level of heterogeneity
(as per their construction). pFedRLLA improves the average accuracy by 1%-3%. The best results
are plotted in bold and the second best are underlined.

Pathological non-I1ID Dirichlet non-I1ID -
CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100 | Omniglot MNIST*
s=2 s=5 s=5 =20 a=01 a=1 a=0.1 - -
Local-only | 82.88 61.17 6596 32.36 84.58 49.76 39.55 15.92 34.27
FedAvg 86.26 79.43 70.14 46.20 84.31 69.05 49.77 44.89 72.27
FedAvg+FT | 89.61 80.26 72.94 47.62 89.24 71.64 52.86 44.73 73.88
Ditto 89.40 80.00 72.36 47.49 86.81 70.78 53.21 45.36 70.46
APFL 89.43 80.10 72.82 48.01 89.38 7141 52.76 44.80 73.77
FedRep 88.44 75.63 70.26 39.89 86.94 56.76 41.35 27.35 69.77
FedBABU | 89.80 79.17 73.62 48.03 89.54 70.89 53.06 44.12 72.58
FedAMP 83.47 6478 67.67 34.50 84.73 50.09 38.99 16.18 64.75
FedFomo 88.34 76.80 71.01 43.94 84.93 55.42 38.18 39.60 68.77
FedPHP 88.28 79.67 71.66 46.70 88.22 69.14 50.23 45.26 72.66
FedPAC 74.97 7527 5898 48.04 82.82 65.13 45.94 39.64 68.59
FedALA 89.38 79.04 7037 44.22 87.94 69.47 44.50 45.20 73.58
Ours 90.81 81.76 76.06 51.15 90.26 72.46 53.79 48.43 74.58
Impr. 1.01 150 244 311 0.72 0.82 0.58 3.07 0.70

4.2 EXPERIMENTAL RESULTS

Table [T] exposes the test accuracy (averaged across all clients) achieved by each method after 500
global rounds (after which all listed methods have little or no accuracy gain with additional training).
As it can be inspected, pFedRLLA consistently achieves higher accuracy than all tested baselines
with the main advantages discussed in the following.

For the pathological non-IID case, a larger value of s reflects a more complex classification task.
This is because in such case the users have more labels (equal to s) but fewer data points per label

anonymous.4open.science/r/pFedRLLA-7BEF

Under review as a conference paper at ICLR 2024

(equal to %; N is the number of clients, D is the dataset size). Therefore, in our experiments,
the performance of each baseline decreases as s increases. Besides, when comparing CIFAR-10 s
= 5 with CIFAR-100 s =5, the latter is a more heterogeneous scenario (in both cases there are 5
classes per client, but in the case of CIFAR-10 the 100 clients will be divided into 2 categories while
there 20 categories in CIFAR-100). In Table[I} we observe that the improvement of pFedRLLA over
the second best baseline increases from 1.5% to 2.4% from CIFAR-10 s =5 to CIFAR-100 s =5,
which indicates a higher improvement for our algorithm in scenarios with higher heterogeneity. Last
but not least, due to the characteristics of the data partitioning method, each client possesses only
a specific subset of labels controlled by s, and these clients are grouped together with significant
between-group variability and high within-group similarity. This characteristic allows our algorithm
to generate better aggregation weights and produce more personalized models. In all four scenarios,
our algorithm demonstrated a clear advantage, with a 3.11% lead in the best case (CIFAR-100 s =
20) and a 1.01% improvement in the worst case (CIFAR-10 s = 2).

In the Dirichlet non-IID scenario, the degree of improvement is comparatively less significant. This
occurs because this setting raises considerable variability across clients’ data in terms of both vol-
umes as well as the distribution of labels. Therefore, the clients are less similar to one another in
terms of data distribution (Fig. [/|in the Appendix), thus reducing the apparent benefits of collabo-
ration in compromising of the resulting accuracy. Nevertheless, pFedRLLA consistently surpasses
the baseline methods in accuracy.

Finally, we used two more heterogeneous scenarios: on the Omniglot dataset, we outperform the best
performing baseline by 3.07%, while on MNIST#*, our algorithm achieves a 0.7% improvement.

Ablation studies. Our algorithm adopts a layer-wise aggregation method (applying different aggre-
gation strategies for the body and head), so ablation experiments are conducted to verify the effect
of each mechanism. Table 2] presents the initial and personalized accuracy of each sub-variants in
the three heterogeneous scenarios of CIFAR-100. We observe that both aggregation strategies con-
tributed to accuracy improvement. In the IID case (s = 100), the advantage brought by the ‘Body*
strategy (weighted aggregation) is more pronounced. As heterogeneity increases (the smaller s is,
the higher the heterogeneity), the advantage of the ‘Head® strategy (DRL aggregation) becomes
more prominent, indicating a close relationship between the head and personalization in heteroge-
neous data settings. pFedRLLA utilizes both aggregation methods, resulting in better performance
than all variants (i.e., that adopt one of the two strategies and use the simple aggregation strategy
of FedAvg for the other). For comparison, we also added the setting aggregating the full model
based on the DRL agent (which is trained for this setting), instead of just the heads. This is listed
as ‘DRL‘ in Table 2, and we can observe that the accuracy is noticeably inferior to our proposed
solution that adopts the layer-wise aggregation strategy. Furthermore, we noted that the personal-
ized accuracy of ‘None‘ and ‘Body‘ are comparable in s = 10, which is expected as the latter merely
introduces a simple modification (i.e., size-proprotional weights) to the body aggregation. However,
it is worth noting that the ‘Body* strategy consistently exhibits better initial accuracy, potentially
attributed to its consideration of local hard-won models, enabling the newly aggregated model to
extract representations that align better with the characteristics of the local dataset.

Table 2: Ablation study. The table displays the before-personalization (BP) and after-personalization
(AP) accuracy results from five different algorithms. The distinction among the five settings lies in
which part of the neural network adopts our proposed aggregation methods, while the remaining
parts employ simple averaging (as in FedAvg).

None Body Head Both DRL
BP AP BP AP BP AP BP AP BP AP
s=10 0.5821 0.6223 0.5964 0.6286 0.6008 0.6318 0.6099 0.6414 0.5805 0.6006
s=50 03383 0.3698 0.3579 0.3757 0.3512 0.3735 0.3706 0.3846 0.3418 0.3448
s=100 03136 0.3135 0.3279 03279 0.3232 0.3235 0.3390 0.3395 0.2785 0.2768

‘None* indicates neither the head nor the body utilizes our aggregation method (i.e., this is FedAvg);
‘Head‘ means that only the head uses our proposed method (based on DRL); ‘Body‘ means weighted
aggregation for the body and simple averaging for the heads; ‘Both® is our proposed method (pFe-
dRLLA). ‘DRL* means that the aggregation weights generated by the DRL agent are applied to the
entire networks.

Under review as a conference paper at ICLR 2024

Better initialization. We conducted experiments with variable local training loads of 1 and 5
epochs, and the experimental results are shown in Table [3] We observe that pFedRLLA exhibits
a more pronounced advantage under the le = 1 setting, performing even better than some algorithms
under the le = 5 setting. This supports its efficiency under limited local work, and can be interpreted
to its adaptivity (it generates personalized aggregation weights for each client, which are dynami-
cally adjusted based on client data characteristics). This results in faster convergence and improved
accuracy. In contradistinction, algorithms that rely on a single global model for personalization re-
quire additional training to capture the unique representative patterns present in the local data, which
leads to slower convergence.

Table 3: Experiments with variable local training load (le) measured in epochs. The accuracy boost
obtained by pFedRLLA is more accentuated for lower effort (le = 1). Notably, with 80% less load
(i.e., le = 1 for pFedRLLA and le = 5 for other methods) our method has the highest accuracy.

FL settings Average test accuracy
dataset dist. le FedAvg FedAvg-FT APFL FedBABU FedALA pFedRLLA

s=5 1 77.46 78.35 77.86 78.55 77.57 80.14 (1.59 1)

CIFAR-10 5 7943 80.26 80.10 79.17 79.04 81.76 (1.50 1)
=01 1 78.98 85.22 85.66 85.61 84.75 88.20 (2.54 1)

5 8431 89.24 89.38 89.55 87.94 90.26 (0.71 1)

s=5 1 59.60 62.43 62.28 63.63 64.94 70.60 (5.66 1)

CIFAR-100 5 70.14 72.95 72.82 73.62 70.37 76.06 (2.44 1)
=01 1 3712 39.92 35.10 41.96 42.00 5242104 1)

5 4978 52.87 52.77 53.07 4451 53.79 (0.72 1)

Convergence speed and communication Table 4: The computation time and convergence time
cost. We include a comprehensive anal- for all baselines. Computation time denotes the total
ysis of the computation and convergence time required for training 500 rounds, whereas con-
time of our proposed algorithm. The ex- vergence time refers to the duration for an algorithm
periments are conducted on the CIFAR-10 o reach a stable state.

dataset, with a total of 500 training rounds

and a fixed learning rate of 0.01. The de- Computation time _ Convergence time
tailed results are summarized in Table Total time Time/iter. Time Accuracy

Regarding computation time, FedAvg ex-
hibits the shortest, while FedPHP demon- | coav8 109311219 870.61 - 0.794

strates the longest duration. pFedRLLA in- FedProx 1191.65 238 91586 0.795
curs an inherent overhead introduced by the Ditto 1634.04 3.27 1368.34 0.800
MHAE and DRL agent components (which A pp[, 1438.62 288 110175 0.801
are run on the server side, i.e., no addi-

tional burden on the user devices). How- FedBABU 1346.77 269 1021.07 0.791
ever, this is remedied by a significantly im- FedFomo 1159.67 2.32 997.13 0.768

proved convergence rate. In specific, the FedAMP 1188.62 237 96393 0.647

accuracy of pFedRLLA is stabilized (to a
value that is higher than all baselines) in FedPHP 1754.37 351 1291.61 0.797

less overall time: the reduction of 20.5% pFedRLLA 1673.37 335 69264 0.817

in total time is deemed significant and jus-
tifies and compensates for the overhead on the server side. For more analysis of the convergence
behavior, we provide supplementary experiments in the Appendix [F.5]

5 CONCLUSION

The paper proposed a novel layer-wise aggregation method for personalized federated learning to
address data heterogeneity. pFedRLLA leverages different aggregation methods for different layers
of neural networks, allowing to learn a better representation while ensuring model personalization.
Through ablation experiments, we demonstrated the advantages of the two aggregation methods and
confirmed that considering both methods simultaneously can yield a synergistic effect. An extensive
experimental analysis illustrated higher accuracy in less time.

Under review as a conference paper at ICLR 2024

REFERENCES

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation Learning: A review and new
perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35:1798-1828,
2013.

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In International Con-
ference on Computational Statistics, pp. 177-186, 2010.

Zheng Chai, Ahsan Ali, Syed Zawad, Stacey Truex, Ali Anwar, Nathalie Baracaldo, Yi Zhou, Heiko
Ludwig, Feng Yan, and Yue Cheng. TiFL: A tier-based federated learning system. International
Symposium on High-Performance Parallel and Distributed Computing, pp. 125-136, 2020.

Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Exploiting shared repre-
sentations for personalized federated learning. In International Conference on Machine Learning,
volume 139, pp. 2089-2099, 2021.

Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le, Mark Z.
Mao, Marc’ Aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, and Andrew Y. Ng. Large
scale distributed deep networks. In Advances in Neural Information Processing Systems, pp.
1223-1231, 2012.

Moming Duan, Duo Liu, Xianzhang Chen, Renping Liu, Yujuan Tan, and Liang Liang. Self-
balancing federated learning with global imbalanced data in mobile systems. IEEE Transactions
on Parallel and Distributed Systems, 32:59-71, 2021.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning with theo-
retical guarantees: A model-agnostic meta-learning approach. In Advances in Neural Information
Processing Systems, volume 33, pp. 3557-3568, 2020.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International Conference on Machine Learning, pp. 1126—1135, 2017.

Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient framework for
clustered federated learning. IEEE Transactions on Information Theory, 68:8076-8091, 2020.

Yonghai Gong, Yichuan Li, and Nikolaos M. Freris. FedADMM: A robust federated deep learning
framework with adaptivity to system heterogeneity. In /CDE, pp. 2575-2587, 2022.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
distribution for federated visual classification. arXiv:1909.06335, 2019.

Yutao Huang, Lingyang Chu, Zirui Zhou, Lanjun Wang, Jiangchuan Liu, Jian Pei, and Yong Zhang.
Personalized cross-silo federated learning on non-iid data. In the AAAI Conference on Artificial
Intelligence, volume 35, pp. 78657873, 2021.

Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi Feng, and Yannis
Kalantidis. Decoupling representation and classifier for long-tailed recognition. In International
Conference on Learning Representations, 2019.

Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better ImageNet models transfer better? In
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2661-2671, 2019.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521:436-444, 2015.

Daliang Li and Junpu Wang. FedMD: Heterogenous federated learning via model distillation.
arXiv:1910.03581, 2019.

Qinbin Li, Bingsheng He, and Dawn Xiaodong Song. Model-contrastive federated learning. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10708-10717, 2021a.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine Learning and Sys-
tems, 2:429-450, 2020.

10

Under review as a conference paper at ICLR 2024

Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated
learning through personalization. In International Conference on Machine Learning, volume
139, pp. 6357-6368, 2021b.

Paul Pu Liang, Terrance Liu, Liu Ziyin, Nicholas B Allen, Randy P Auerbach, David Brent, Ruslan
Salakhutdinov, and Louis-Philippe Morency. Think locally, act globally: Federated learning with
local and global representations. arXiv:2001.01523, 2020.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Manfred Otto Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learn-
ing. CoRR, abs/1509.02971, 2015.

Guodong Long, Minge Xie, Tao Shen, Tianyi Zhou, Xianzhi Wang, and Jing Jiang. Multi-center
Federated Learning: clients clustering for better personalization. World Wide Web, 26:481 — 500,
2020.

Xiaosong Ma, J. Zhang, Song Guo, and Wenchao Xu. Layer-wised model aggregation for personal-
ized federated learning. In the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 10082—-10091, 2022.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273-1282, 2017.

Nang Hung Nguyen, Phi Le Nguyen, Thuy Dung Nguyen, Trung Thanh Nguyen, Duc Long Nguyen,
Thanh Hung Nguyen, Huy Hieu Pham, and Thao Nguyen Truong. FedDRL: Deep reinforcement
learning-based adaptive aggregation for non-iid data in federated learning. In Proceedings of the
51st International Conference on Parallel Processing, 2023.

Jaehoon Oh, SangMook Kim, and Se-Young Yun. FedBABU: Toward enhanced representation for
federated image classification. In International Conference on Learning Representations, 2021.

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. Federated Multi-Task
Learning. In Advances in Neural Information Processing Systems, volume 30, 2017.

Canh T. Dinh, Nguyen Tran, and Josh Nguyen. Personalized federated learning with Moreau En-
velopes. In Advances in Neural Information Processing Systems, volume 33, pp. 21394-21405,
2020.

Han Wang, Siddartha Marella, and James Anderson. FedADMM: A federated primal-dual algorithm
allowing partial participation. In IEEE Conference on Decision and Control (CDC), pp. 287-294,
2022.

Hao Wang, Zakhary Kaplan, Di Niu, and Baochun Li. Optimizing federated learning on non-iid data
with reinforcement learning. In IEEE Conference on Computer Communications, pp. 1698—1707,
2020.

Jian Xu, Xinyi Tong, and Shao-Lun Huang. Personalized federated learning with feature alignment
and classifier collaboration. arXiv:2306.11867, 2023.

Xin Yao and Lifeng Sun. Continual local training for better initialization of federated models. In
IEEE International Conference on Image Processing, pp. 1736-1740, 2020.

Haiyang Yu, Ningyu Zhang, Shumin Deng, Zonggang Yuan, Yantao Jia, and Huajun Chen. The
Devil is the Classifier: Investigating long tail relation classification with decoupling analysis.
arXiv, abs:2009.07022, 2020.

Jianging Zhang, Yang Hua, Hao Wang, Tao Song, Zhengui Xue, Ruhui Ma, and Haibing Guan.
FedALA: Adaptive local aggregation for personalized federated learning. arXiv:2212.01197,
2022.

Michael Zhang, Karan Sapra, Sanja Fidler, Serena Yeung, and Jose M Alvarez. Personalized feder-
ated learning with first order model optimization. arXiv:2012.08565, 2020.

Suxia Zhu, Tianyu Liu, and Guanglu Sun. Layer-wise personalized federated learning with hyper-
network. Neural Processing Letters, pp. 1-15, 2023.

11

Under review as a conference paper at ICLR 2024

A APPENDIX

The supplementary material is organized as follows. Section 1 introduces the datasets used in this
paper. Section 2 shows the design of the DRL agent and the details of its training. Section 3 presents
additional experiments to assess the performance of the algorithm.

B EXPERIMENTAL SETUP

B.1 DATASETS

We have open-sourced our code on GitHub (https://anonymous.4open.science/r/
pFedRLLA-7BEF). We adopted the official public codebase of Jianqing Zhang et al. (https:
//github.com/Tsingz0/PFL-Non-I1ID) to implement our method and other baselines in
PyTorch V.1.8.1. For baselines, we have adjusted their hyperparameters to ensure that their best
performance is shown in our experiments. The setting of the hyperparameters can be found in the
shell script in our code.

In this paper, we evaluate our algorithm on four datasets, CIFAR-10, CIFAR-100, MNIST* and
Omniglot. The first two datasets are very common and we will not go into too much detail here.
For the latter two datasets, we treat them as heterogeneous scenarios that differ from the first two.
The MNIST* dataset is a hybrid dataset constructed from three datasets: MNIST, MNIST-M, and
USPS. All three datasets contain digits from 0-9. MNIST consists of handwritten digits from the
census, while USPS is a set of digits automatically scanned from envelopes by the US Postal Service.
MNIST-M is a dataset that combines MNIST digits with random color patches from the BSDS500
dataset. During the experiment, we drew samples from three distinct datasets. Specifically, we sam-
pled 40% of clients from the MNIST dataset, another 40% of clients from the USPS dataset, and the
remaining 20% of clients from the MNIST-M dataset. This sampling strategy ensured that different
clients were assigned the same task but from different domains, thereby making the scenario more
realistic.

The Omniglot dataset contains 1,623 different handwritten characters from 50 different alphabets.
Each of these characters was drawn online via Amazon’s Mechanical Turk by 20 different users. It
is one of the most naturally separated datasets representing real-world scenarios.

B.2 HYPERPARAMETERS

For the baselines employed in this work, we conducted an optimization of their hyperparameters.
Here, we present the specific configurations utilized in our experiments. For the FedAvg-FT ap-
proach, we performed a 5-epoch fine-tuning process. For Ditto, we set A=0.5 which is the regu-
larization term control parameter. For APFL, the initial value of o was set to 1, which was then
adaptively adjusted based on the algorithm’s recommendations. For FedRep, we set the number of
local epochs for both the head and body to 5. For FedAMP, A was set to 5 X 10~7 and ay, was set
to 5 x 1073, For FedPHP, both X and y were set to 0.1. For FedFomo, the server only transmits)/
(=5) client models to each client in every round. Last, for FedALA, the ALA module selected all
layers and employed 80% of the local training data for training purposes, while the weight learning
rate was set to 1. For more detailed parameter settings, please refer to our shared code.

C THE DESIGN OF THE DRL AGENT

We present the deep deterministic policy gradient (DDPG) (Lillicrap et al., 2015)) algorithm as the
basis for our DRL agent. DDPG is constructed based on the Actor-Critic framework, where the
Actor network represents the policy p, and the Critic network represents the value function (). The
Actor network takes the environmental state s as input and outputs the action that maximizes the
value () under the current state, thus forming a deterministic policy. This network directly performs
gradient descent on the value function Q. The critic network takes the environmental state s and the
action a generated by the Actor network as input and outputs the fitted @) value. Notably, DDPG
employs the technique of Soft Target Update, which involves maintaining two sets of Actor and

12

https://anonymous.4open.science/r/pFedRLLA-7BEF
https://anonymous.4open.science/r/pFedRLLA-7BEF
https://github.com/TsingZ0/PFL-Non-IID
https://github.com/TsingZ0/PFL-Non-IID

Under review as a conference paper at ICLR 2024

Critic networks: the source network and the target network. This approach aims to enhance the
stability of the learning process.

In the training of DDPG, we treat the learning task as a one-step decision task, where each weight
aggregation is considered as one task. One-step tasks typically exhibit a more prominent reward
signal, which facilitates the agent’s understanding of when to receive rewards or penalties. To avoid
defining it as a multi-objective task (since we need to aggregate weights for each client), we design
the state representation analogously. We consider the clients selected in the previous round and the
client for which the aggregated model is currently being generated as part of the state. We place the
target client at the end to indicate the objective for each decision, aiming to train the DRL agent to
allocate higher aggregation weights to clients similar to the target client.

Regarding the selection of the algorithm for DRL agent, various methods and architectures could be
explored. However, we did not try alternative approaches to the one presented because we believe
the obtained results demonstrate the merits of the proposed solution, while it is not the focus of this
paper to compare RL algorithms in the DRL agent block.

0.0 \ 0.0 WW’W/
—0.2 -0.2 W
Lol Wm

© B
S 04 S 04
Q Q
o o
-0.6 —— Reward —06 —— Reward
~08 Moving average ~0.8 Moving average
0 2000 4000 6000 0 2000 4000 6000
episode episode
(a) CIFAR-10 (b) CIFAR-100

0.00 Ww
e

—— Reward —— Reward
) -0.75)
—0.6 —— Moving average —— Moving average
0 2500 5000 7500 10000 0 2000 4000 6000
episode episode
(c) MNIST* (d) Omniglot

Figure 2: Training progress of the DRL agent on four datasets. The specific experimental settings are
discussed in the first paragraph of appendix|[D} The moving average is a smoothing technique applied
to rewards, accomplished by computing the average of a sequence of consecutive subsequences. It
can be inspected that the training process is relatively smooth and stabilizes after 6,000 episodes
(equal to 600 communication rounds in our experimental setting).

D THE DETAILS OF PRE-TRAIN

In this work, both the DRL agent and the multi-head auto-encoder are pre-trained. It should be
noted that pre-training uses a single scenario (in terms of the data held by the users), while testing is
done across distinct heterogeneity scenarios. During testing, the DRL/MHAE is further fine-tuned
(detailed in Appendix [E) simultaneously with the PFL process (i.e., without any additional cost in
terms of iterations of the algorithm). In specific the pre-training settings are as follows: a) CIFAR-10
wich s=4 (different than those tested, which are s € {2, 5}). b) CIFAR-100 with s=10 (different than
those tested, which are s € {5,20}). ¢) Omniglot data are randomly discarded based on label, to
ensure its heterogeneity is different from the test environment. d) for MNIST*, the user ratio across
the three datasets is adjusted for both pre-training and testing. Specifically, for the pretraining stage,
aratio of 30% MNIST, 30% USPS, and 40% MNIST-M is used, while for the testing stage, the ratio
is adjusted to 40% MNIST, 40% USPS, and 20% MNIST-M. In the following, we give more details

13

Under review as a conference paper at ICLR 2024

about the pre-training process of auto-encoder and DRL agent on CIFAR-10, respectively (other
cases are similar).

Pre-training of the multi-head auto-encoder (MHAE): In each iteration, the Multi-Head Autoen-
coder (MHAE) is employed to compute a novel embedding (the encoder output) for each selected
user. To train the MHAE, the decoder is utilized to generate a reconstructed output, and subse-
quently, the mean square error (MSE) between the input and reconstructed output is computed as
the loss function for updating the MHAE.

Pre-training of the DRL agent: The settings used for pre-training are the same as for the MHAE.
In each round, we use DRL agent to generate actions (aggregation weight) for each selected user
based on the current state; after performing the action, we calculate the reward and the new state.
This process forms a (state, new_state, weight, reward) tuple, and we store these tuples to the replay
buffer. The replay buffer is continuously updated with new experiences, and the training process
keeps cycling through sampling from the buffer. It is worth noting that our reward is directly linked
to accuracy. Therefore, in the pre-training process, in order to mitigate the influence of the body
and ensure that any accuracy improvements observed in the validation set are solely attributed to the
head, we restrict the body to local training only, without any communication with the server. The
head does personalized aggregation using the DRL agent.

In Fig. 2] we illustrate the training process of DDPG on four datasets, where each episode represents
a decision-making process, and the reward reflects the accuracy of the resulting aggregated model
in that particular aggregation.

E THE DETAILS OF FINE-TUNING

Our DRL agent is pre-trained. And then it is further fine-tuned simultaneously with the federated
process (and the same holds true for the auto-encoder). During each iteration of the fine-tuning
process, we will sample 32 data instances from the replay buffer to fine-tune the DRL agent every
10 rounds. As for the multi-head auto-encoder (MHAE), we conduct fine-tuning every 10 rounds.
The mean square error (MSE) between the input and output (the decoder output) serves as the loss
function for updating the MHAE. In the remaining rounds, we solely focus on using the encoder to
obtain the embedding.

In our method, the additional overhead on the server side mainly comes from the DRL agent and
MHAE (other operations like updating storage and computing weights based on data volumes have
minimum overhead). We demonstrate the costs in the following setting: CIFAR-10 s=5, 100 users,
global_round=500, local_epoch=5, batch_size=64. In this experiment, we calculated the average
time by dividing the total time by 500, which encompasses the local training time (2.37s), DRL
time (0.16s), and MHAE time (0.94s). The latter two times are composed of inference time and
fine-tuning time. A detailed analysis is presented below:

» The total cost at the server is just 46% of the cost of local training: 85% for MHAE (70%
for inference and 30% for fine-tuning), 15% for DRL agent (12% for inference and 3% for
fine-tuning).

The above analysis shows that compared with local training time, the computation costs caused by
the DRL agent are minimal. The MHAE incurs a significant cost, but it is not a core component. We
can use other efficient dimension-reduction methods. In addition, in a non-simulated environment,
fine-tuning of the DRL agent and MHAE can be parallel-processed, i.e., when the server is idle
(selected clients do local training, and the server is waiting for updated models).

F ADDITIONAL EXPERIMENTS

F.1 DISCUSSION OF REWARD HYPERPARAMETERS

When designing the reward function, we conducted individual experiments for each sub-reward to
ensure their effectiveness. To address this, we introduce ablation experiments using 71, 72, and r3 to
investigate the impact of each sub-reward (detailed in Table [5)). From this, it can be seen that if any
coefficient for the three reward components r1, 72, 73, equals 0, this leads to the lowest accuracy;

14

Under review as a conference paper at ICLR 2024

this corroborates using all three. In addition, when varying a single weight, further gains over default
choices (base) can be obtained for a specific setting (CIFAR-10 s=5 was used here) in the case of
51, Bs. For fair reporting of results, we adopt a common setting {1,1,2} in all experiments (for all
datasets and heterogeneity levels).

Table 5: Ablation experiment of superparameter 3 in reward. The first row indicates the hyperparam-
eters manipulated in the experiment. The second row presents the specific values of the parameter
combinations. The last row denotes the average test accuracy. These experiments are conducted at
CIFAR-10 s=5.

var. 51 B 53 base
B1— B2 — B3| 0-1-2 5-1-2 10-1-2 | 1-0-2 1-5-2 1-10-2 | 1-1-0 1-1-5 1-1-10 | 1-1-2
Acc 69.22 70.95 70.85 | 69.28 69.38 69.34 | 69.45 71.14 70.95 |70.84

F.2 DISCUSSION OF PRETRAINED DRL AGENT

In the preceding description, we pre-train our DRL agent on a dataset and apply it to various hetero-
geneous scenarios on this dataset. We emphasize that our DRL task is exclusively associated with
the employed model in the FL task, utilizing the embedding of model parameters as the state, thereby
remaining independent of the FL task. Consequently, we further investigate a new scenario where
pre-training is conducted on a different dataset than the one used for testing (pre-train on CIFAR-10,
test on other datasets). The results presented in Table [f]demonstrate that our algorithm continues to
perform effectively under the new scenario. While the experimental results may be comparatively
inferior to previous cases, it is essential to note that our algorithm still exhibits advantages when
compared with the best baselines in these particular scenarios.

Table 6: Average Accuracy on CIFAR-100, Omniglot, MNIST* datasets. We use the DRL agent
pre-trained on CIFAR-10 s=2, and then use it on different dataset. ‘new‘ represents pFedRLLA
under the new scenario (mentioned in[F-2)), while “previous™ refers to pFedRLLA using the previous
method. “best baseline” indicates the highest accuracy achieved among other baseline methods
across different experimental settings.

CIFAR-100 Omniglot | MNIST*
s=5 a=0.1 - -
new 74.53 53.01 47.74 73.90
previous 76.06 53.79 48.43 74.58
best baseline | 73.62 53.21 45.36 73.88

F.3 ANALYSIS OF AGGREGATION WEIGHTS.

To demonstrate that our algorithm can assign higher weights to similar clients (without any prior
knowledge of similarities), we designed and conducted an additional set of experiments. We con-
sider a set of nine clients with full participation at each round and record the weight values of each
client on the target participant during the training process. The results are listed in Fig. [3] with the
data partitioning on the left, the heatmap of weights of all clients in the middle, and the weights for
a single client (client 1) on the right, for better visualization.

From the visualization on the left, we may divide the commonalities between the clients into three
types: (1) similar distributions, i.e., users that have the same class (for example user 1 and user 2
in the CIFAR-10 example); (2) different distributions, with the same class (i.e., user 1 and user 4
in the CIFAR-10 example); (3) different distributions, without common class (i.e., user 1 and user
8 in the CIFAR-10 example). In the heatmaps, the illustration is column-wise, i.e., the weights at
the 7—th column are the contributions of all clients to target client ;. We observe that the brightness
of the diagonal is very high, which means that the self-weight is relatively large. Combined with
the setting of data distribution, we can also find that the more similar the clients are, the larger the
weight of contribution during aggregation. When there are fewer similar clients, the self-weight is

15

Under review as a conference paper at ICLR 2024

9 o 0.35
8 o 9 0.5 0.3
0! 8 0.4 0.25
a6 7 % 0.2 Type(l) Type (2)
E 5 o 6 0.3 gO.ls r—‘—\ r_;\Type (3) Type (3)
54 () 5
3 4 0.2 0.1 I I I
3 0.05 I I I I
2
0.1
1 2 0 l
2 3 4 5 6 7 | 0.0 1234567809
Class labels 1234567809 ' Client IDs
(a) CIFAR-10 setting (b) CIFAR-10 heatmap (c) Aggregation weights
9 00000 0.35
8 0@ 0.5 0.3
" 7 LY XX J 8 0.4 0.25
06 (I XX 1] 7 o T (1)
E500° - 00000 6 0.3 -GE.; 0.2 ype Type (2)
2100000000- ¢ 5 5015 Ty"i?) Kty
3eccoe 4 0.2 0.1 ——
2000 -0 3 0.05
lec00¢ 2 0.1 R . l
OV PO DO RVRONRD 1 0.0 2 3456 789
Class labels 1234567859 ' Client IDs
(d) CIFAR-100 setting (e) CIFAR-100 heatmap (f) Aggregation weights

Figure 3: Analysis of aggregation weights. The first column is the visualization of the non-IID data
distribution of the designed experiment on CIFAR-10 and CIFAR-100. The second column is a
heatmap of aggregated weights for all clients at the end of training. With client 1 as the target, the
row of data corresponding to client 1 in the heatmap is the aggregation weight for other clients. The
third column is the aggregation weight of client 1.

very large, but at the same time, the algorithm still keeps learning new knowledge from others. For
instance, the aggregation weights for client 1 are depicted in Fig. revealing that clients belonging
to type 1 exhibit relatively higher aggregation weights. Type 2 clients represent the second highest
weights, while clients 6-9 (type 3) possess dissimilar labels to client 1, leading to comparatively
lower weights being assigned to them.

F.4 MORE DETAILS OF THE ABLATION STUDY

In this section, we present additional results based on the ablation study outlined in the main pa-
per. For specific details regarding these settings, please refer to Table [/| Our primary focus here
is to evaluate the impact of two distinct aggregation methods when applied to different components
of the model. Our findings demonstrate that when employing weighted aggregation solely on the
body, the model exhibits higher test accuracy prior to the other two configurations in “Weighted
Aggregation‘. Furthermore, this approach demonstrates further improvement after undergoing per-
sonalized training. Conversely, when personalized aggregation is exclusively applied to the head,
superior performance is observed compared to the other two settings. These results serve to provide
supporting evidence for our choices. In light of these outcomes, our proposed algorithm incorpo-
rates weighted aggregation and personalized aggregation for the body and head, respectively. This
particular configuration yields the most favorable performance among all tested settings.

F.5 THE CURVE OF TEST ACCURACY

In this section, we depict the accuracy curves and the number of rounds required for each algo-
rithm to reach a prescribed target accuracy. Detailed results are presented in Fig. [f] We observe
that pFedRLLA achieves the best performance among the compared baselines, achieving a 40%
communication savings compared with the best baseline in (a), (b), and (c). Based on the results
presented in Table[T] it is evident that FedALA exhibits superior test accuracy compared to the ma-
jority of baseline methods. However, a closer examination of Fig. @] reveals that FedALA generally
demonstrates comparatively slower progress at the initial stages when compared to other algorithms
across various scenarios.

16

Under review as a conference paper at ICLR 2024

Table 7: Ablation study. This is a supplement to the ablation experiments in the main text, which
records the test accuracy before and after personalization. In each sub-table, the second line indicates
the aggregation method used, and the third line specifies the particular part of the model where the
aggregation method is applied.

Before Personalization (BP)

Weighted Aggregation Personalized Aggregation pFedRLLA
body head both body head both
s=10 05931 0.5253 0.5890 0.5947 0.6008 0.5805 0.6099
s=50 03706 0.2482 0.3516 0.3766 0.3512 0.3418 0.3706
s=100 0.3279 0.1873 0.3001 0.3279 0.3232 0.2785 0.3390
After Personalization (AP)
Weighted Aggregation Personalized Aggregation pFedRLLA
body head both body head both
s=10 0.6282 0.5253 0.6072 0.6304 0.6318 0.6006 0.6414
s=50 0.3744 0.2482 0.3552 0.3807 0.3735 0.3448 0.3846
s=100 0.3279 0.1873 0.2987 0.3279 0.3235 0.2768 0.3395

F.6 INCREASING SELECTION RATIO.

Fig. [] demonstrates multiple experiments with variable participant selection ratio (¢ €
{0.1,0.25,0.5}). It can be seen that pFedRLLA is very robust to the choice of ¢, which is in support
of both the communication and training efficiency of the method (the lower the participation, the
lower the communication and local training). Besides, we can also observe that the performance of
FedAvg deteriorates as the selection ratio increases. This is in line with the intuition because FedAvg
does not employ personalized learning, and a large number of heterogeneous clients is confusing to
the algorithm. FedBABU, FedPHP, and FedALA exhibit significant performance fluctuations under
certain data distributions (especially in Fig. [5b). Comparing FedAvg-FT and FedBABU, we find
that FedBABU outperforms FedAvg-FT in the CIFAR-100 experiments, but the opposite is true un-
der the CIFAR-10 experimental settings. This indicates that FedBABU has limitations in certain
scenarios. In contrast, our algorithm, pFedRLLA, demonstrates consistent and best performance in
various heterogeneous scenarios and demonstrates robustness to changes in the selection ratio.

0.6 0.6 pm
> > 7
@) @)
o Co.4
50.4 —— FedAvg (113 rounds) = =~ FedAvg (103 rounds)
8 FedProx (113 rounds) 8 FedProx (103 rounds)
< = Ditto (174 rounds) < = Ditto (94 rounds)
- = APFL (93 rounds) a 0 2 == APFL (73 rounds)
0 —— FedBABU (71 rounds) 0 Y. ~—— FedBABU (69 rounds)
0.2 —— FedPHP (118 rounds) 2 —— FedPHP (86 rounds)
FedALA (89 rounds) FedALA (62 rounds)
= Ours (50 rounds) 0 O == Ours (36 rounds)
0 50 100 150 20 40 60 80 100
Communication Rounds Communication Rounds
(a) CIFAR-10 a=1 (b) CIFAR-100 s = 5
0.3f
0.6 /
& @
5 0.4 / —— FedAvg (64 rounds) ’5 0.2 —— FedAvg (26 rounds)
8 . ‘/ ~— FedProx (64 rounds) 8 ~— FedProx (26 rounds)
< —— Ditto (123 rounds) < —— Ditto (38 rounds)
- —— APFL (60 rounds) - —— APFL (28 rounds)
0 ~—— FedBABU (63 rounds) 0 0.1 ~— FedBABU (33 rounds)
@ 0.2 —— FedPHP (60 rounds) @ —— FedPHP (30 rounds)
FedALA (69 rounds) FedALA (19 rounds)
B === Ours (36 rounds) == 0urs (20 rounds)
0 25 50 75 100 12t 10 20 30

Communication Rounds

(c) MNIST*

Communication Rounds

(d) Omniglot

Figure 4: Test accuracy trajectories. pFedRLLA portrays the fastest convergence speed. For exam-
ple, on CIFAR-10, our algorithm needed 50 rounds to achieve 0.6 accuracy, while the best of the
other baseline required 89 rounds.

17

Under review as a conference paper at ICLR 2024

B FedAvg I FedAvg-FT | APFL Bl FedBABU @ FedPHP B FedALA [Ours

0.825

o
3
N

0.800

o
3
o

0.775-

o
o
@

0.750+

Test Accuracy
Test Accuracy

0.725-

o
o2}
o2}

0.700- 0.25

Selection Ratio

0.25
Selection Ratio

(a) CIFAR-10 s =5 (b) CIFAR-10 a = 1

0.55
0.7
5 5‘0'50-
g e
a =1
g Q
% 0.6 g 0.45
2 k7
2]]
= ~
0.404
0.5

0.25
Selection Ratio

0.1

0.25
Selection Ratio

(c) CIFAR-100 s =5 (d) CIFAR-100 a = 0.1
Figure 5: As the selection ratio grows, our algorithm can still maintain an advantage over other
baselines, showing demonstrating robustness.

F.7 VISUALIZATION OF DIMENSIONALITY REDUCTION RESULTS FROM MHAE AND PCA

To verify the effectiveness of our dimension reduction method, we design the following experiment
on CIFAR-10: 100 clients are divided into five groups according to the distribution of their local
data. Each group of clients has data with two labels, and different groups of clients have different
labels. We run our algorithm for 100 rounds. Before the end of the algorithm, we use the PCA and
MHAE we designed to extract the features of the model parameters. Fig. [fillustrates a comparative
visualization of MHAE vs. PCA. It can be observed that the MHAE achieves a denser intra-group
distribution and a clearer inter-group boundary, indicating its superiority over the PCA method in
our context.

o8 ..o . 1.0 .. o o
“.. ° o ° [.". ° ‘. o
0.6 3 0.8 &
() ° o []
° (Y] °® (]
0.4 '.4 ° ? ’. o’ o° P %
go . ° 0.6 ..0’) !. .o.
02| o8 o° Lo e ° o o> &% ‘
° L) ®e
0.0 ¢ .‘. 04 ‘.
0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8
(a) MHAE (b) PCA

Figure 6: Visualization of the embedding obtained by using the multi-head auto-encoder. (b) is

the visualization result of embedding using PCA. Clients are divided into 5 groups based on data

distribution, each of which is distinguished using a different color.

18

Under review as a conference paper at ICLR 2024

® . | g. Y) . ®-00 »o“

| 0000 “.“-....
7 @ .o‘o.-o--..-.o.o.
2 @O0 o - 0@0c0c -0 @0

o *
H
P

O P N W A O O N ® ©

1%}
o
S5 0 | G5 0cco@o-c0f)-000:-0000 -
12] 12]
g @- ‘@0 co--@ 2. 00000 -0 -000 0000 - 00
;@ o . - e o O c.-.o‘-..o..-o-.o..
. - o) ! P 2..-...-........-.-..
® ° () (] 1 000@ -0@c@00:--0-00 00
. @- @ 0 -00.-0--.-00..0000
012345678 91011121314151617181920 012345678 91011121314151617181920
Client IDs Client IDs
(a) a=0.1 b)a=1

Figure 7: Visualization of the Dirichlet non-IID scenario. In this figure, we employed the Dirichlet
data partitioning method to divide the CIFAR-10 dataset into 20 subsets. This choice was made due
to the impracticality of visualizing the dataset when divided into 100 subsets. The size of the balls
represents the data volume. It is worth highlighting that the observed heterogeneity is even more
pronounced when the dataset is partitioned into 100 clients.

G THE EXPERIMENTS WITHOUT PRE-TRAINING

We conducted experiments without pre-training, and the specific details of the experiment are out-
lined as follows:

* Firstly, we modified the experiment settings to require each user to maintain two local
models. One model, denoted as wy, is utilized for training and uploading and is updated
through layer-wise aggregation. The second model, denoted as wpryr, is employed for
validation testing, and its test accuracy is used to calculate the reward. Notably, wppr,
does not undergo training; instead, it updates its head once w), is updated (by copying from
wp). The update timing for the body of wp gy, depends on a signal received from the server,
as described in detail below.

* Secondly, the training process for both the DRL agent and MHAE can be likened to fine-
tuning, as mentioned in Appendix E. The main distinction lies in the initial 50 rounds of
federated learning, during which the DRL agent randomly generates aggregation weights
(sampled from the interval [0, 1] and subsequently normalized). MHAE, on the other hand,
undergoes training in every round, and after 50 rounds, it undergoes fine-tuning every 10
rounds. Additionally, whenever the DRL agent is updated, a signal is sent to all users to
prompt them to update the body of wpry, (by copying from the latest w,,).

* Lastly, the remaining experiment settings for training are consistent with those outlined in
Section 4.1 (100 users, 500 rounds, learning rate=0.01, and selection ratio=0.1).

The experimental settings are 100 users, 500 rounds, learning rate=0.01, and selection ratio=0.1, the
same as the previous setting in the paper (section 4.1, page 6). From the Table[8] we can observe
that the new algorithm without pre-training can achieve better results than the baseline. However,
the attained accuracy is, of course, lower than before because of zero-shot training for DRL/MHAE.
We further explore the slowdown in the Fig. [8] This figure illustrates the learning process of the
algorithms. Fig. [8a] shows that the new algorithm initially has a slower convergence speed, and
it reaches 90% of the previous algorithm in 100 rounds and 95% of the previous algorithm in 200
rounds. As the process continues, the difference between the two algorithms becomes smaller and
smaller (1% after 500 rounds).

19

Table 8: Without pre-train. The experimental settings are 100 users, 500 rounds, learning rate=0.01,
and selection ratio=0.1. In this figure, we present the average accuracy achieved by the three meth-
ods. ‘best baseline‘ refers to the highest performance observed among the baseline approaches.
‘previous’ denotes our algorithm utilizing a pre-trained DRL (Deep Reinforcement Learning) agent,
while ‘new* represents our algorithm without any pre-training.

0.8
0.7
0.6

> 05
b=
e
5 0.4
o
o

<03

0.2

0.1

CIFAR-10 CIFAR-100 Omniglot | MNIST*
s=2 s=5 s=5 s=20 - -
best baseline | 89.80 80.26 | 73.62 48.04 45.36 73.88
previous 90.81 81.76 | 76.06 51.15 48.43 74.58
new 89.93 81.63 | 75.12 51.03 46.06 74.24
038
0.7
0.6
a 0.5
g 04
<03
0.2
0.1 :
—preViOUS —NEW e——previous =———new
0
(a) CIFAR-100 s=20 (b) MNIST*

Figure 8: The convergence process of our algorithm. We conducted a comparison between its
convergence with pre-training (previous) and without pre-training (new). In CIFAR-10 s=20, it can
be found that without pre-training, the gap (defined as: (prev Acc. - new Acc.) / prev. Acc.) is about
10% after 100 rounds, 5% after 200 rounds, and 1% after 500 rounds.

	Introduction
	Related work
	Architecture of pFedRLLA
	Dimension Reduction
	Layer-wise aggregation
	Head aggregation

	Experiments
	Experimental Setup
	Experimental Results

	Conclusion
	Appendix
	Experimental Setup
	Datasets
	Hyperparameters

	The design of the DRL agent
	The details of pre-train
	The details of fine-tuning
	Additional experiments
	Discussion of reward hyperparameters
	Discussion of pretrained DRL agent
	Analysis of aggregation weights.
	More details of the ablation study
	The curve of test accuracy
	Increasing Selection ratio.
	Visualization of dimensionality reduction results from MHAE and PCA

	The experiments without pre-training

