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Abstract

In multi-objective learning (MOL), several possibly competing prediction tasks
must be solved jointly by a single model. Achieving good trade-offs may require a
model class G with larger capacity than what is necessary for solving the individual
tasks. This, in turn, increases the statistical cost, as reflected in known MOL bounds
that depend on the complexity of G. We show that this cost is unavoidable for some
losses, even in an idealized semi-supervised setting, where the learner has access
to the Bayes-optimal solutions for the individual tasks as well as the marginal
distributions over the covariates. On the other hand, for objectives defined with
Bregman losses, we prove that the complexity of G may come into play only in
terms of unlabeled data. Concretely, we establish sample complexity upper bounds,
showing precisely when and how unlabeled data can significantly alleviate the need
for labeled data. This is achieved by a simple pseudo-labeling algorithm.

1 Introduction

The multi-objective learning (MOL) paradigm has recently emerged to extend the classical problem
of risk minimization from statistical learning to settings with multiple notions of risk [31, 18, 57, 26].
Multi-objective learning problems are ubiquitous in practice, as it often matters how our models
behave with respect to multiple metrics and across different populations. For example, consider
designing a policy for a self-driving car: the risks could measure different notions of safety (e.g.,
safety of passengers or pedestrians), or safety under various conditions (e.g., different locations).

More formally, we study the MOL setting with K population risk functionals R4, ..., Rk, each
quantifying an average, possibly different, loss ¢; incurred by a prediction model g over the data
distribution P*. The aim is to learn models from a class G that minimize all K excess risks
Er(g) := Ri(g) — inf Ry, jointly, using only finite-sample access to the distributions. Here, inf Ry
is the Bayes risk of the kth task, which is the smallest achievable risk over all measurable functions.
Specifically, we study the sample complexity of learning the set of Pareto optimal models in G. Recall
that a model is Pareto optimal in G if any alternative model in G that reduces one risk necessarily
increases another (see Definition 1); we often simply say that such a model makes an optimal trade-off.
Under mild conditions, the set of Pareto optimal models can be recovered by minimizing a family of
scalarized objectives T, that we call the s-trade-offs:'

1;1618 7'3(9) = s(&1(g), . .,EK(g))‘, seS (1)

the s-trade-off achieved by g

where the map s : RX — R is from some family S of scalarization functions that aggregates the
excess risks into a single statistic. Notice that if the excess risks were known, the problem in Eq. (1)
would reduce to a family of classical (multi-objective) optimization problems [42, 52, 37]. However,
because the objectives in Eq. (1) depend on distributional quantities that are unknown, we need to
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learn the solutions from data. Specifically, we study the sample complexity of achieving Eq. (1) up to
errors €5 > 0, a problem we call S-multi-objective learning, S-MOL for short (see Definition 2).

Two main lines of work have studied the sample complexity of MOL, both predominantly in the
supervised framework. In the multi-distribution learning (MDL) literature [26, 3, 49, 71], the goal of
the learner is to recover a solution to Eq. (1) for one specific s-trade-off induced by the scalarization
s(v) = maxye (k) vi. This yields the familiar min-max formulation of MOL.> And in the literature
for the general S-MOL setting [18, 57], the learner aims to solve Eq. (1) for multiple scalarizations.
Both lines establish sample complexity bounds in terms of capacity measures of G, which can be
shown to be tight in the worst case. However, solutions with good trade-offs may only be found
in a complex model class G even when individual tasks are easy to solve in smaller classes Hy. In
such cases, previous worst-case results do not address whether it is really necessary to pay the full,
supervised statistical cost of S-MOL over G. This motivates our consideration of semi-supervised
multi-objective learning, in which the learner has access to both labeled and (cheaper) unlabeled
data for each of the K tasks. In the single-objective setting, it is well-known that access to unlabeled
data can, at times, significantly reduce the amount of labeled data required [16, 68]. But for multi-
objective learning, the sample complexity in a semi-supervised setting is largely unexplored, with
only a few exceptions [4, 63] that rely on additional assumptions for unlabeled data to be helpful (see
Appendix A for a discussion of related works). Thus, the question we aim to address in this paper is

Given that each task k € [K] is solvable in a hypothesis class Hy,, how much labeled and unlabeled
data is needed to achieve trade-offs available in a larger function class G?

In this paper, we give a holistic characterization of the conditions when unlabeled data can help and
by how much. In terms of sample complexity upper bounds, we show that for a large class of losses,
the capacity of G comes into play only in the amount of unlabeled data required, while the amount of
labeled data merely depends on that of H1, ..., H x. Moreover, we show that these rates are achieved
by a simple, pseudo-labeling-based algorithm. Concretely, our contributions are as follows:

* We first show hardness of S-MOL under uninformative losses via a minimax sample complexity
lower bound that holds even when the learner knows the Bayes-optimal models for each task and has
access to the marginal distributions over unlabeled data, i.e., infinite unlabeled data (Section 3.1).

* We then prove that risks induced by Bregman divergence losses—which include the square and
cross-entropy losses—effectively disentangle the multi-objective learning problem. For Bregman
losses, information about individual risk minimizers can significantly reduce labeled sample
complexity in the semi-supervised setting via a simple pseudo-labeling algorithm (Section 3.2).

* Specifically, for S-MOL with Bregman losses, we first provide a uniform bound over the excess
s-trade-offs of the pseudo-labeling algorithm for bounded, Lipschitz losses via uniform convergence
(Section 4.1). Our major technical contribution then lies in proving localized rates that are
distribution-specific under stronger assumptions (Section 4.2). Crucially, the labeled sample
complexity in both bounds only depends on the classes {#Hj, }X_,, while G only appears in the
unlabeled sample complexity.

Our analysis reveals an interesting insight: even though the pseudo-labeling algorithm is reminiscent
of single-objective semi-supervised learning procedures, the reason behind the benefits of unlabeled
data turns out to be fundamentally different. In single-objective learning, unlabeled data can only
help if, roughly speaking, the marginal carries information about the labels [12, 25, 74]. Our results,
in contrast, hold without any such assumptions. In multi-objective learning, unlabeled data helps the
learner determine the relative importance of each test instance to each task: if the likelihood of an
input is higher under one task than another, a model can accordingly prioritize the more relevant risk
to achieve better trade-offs. This may be completely independent of the labels assigned by each task.

'We scalarize the excess risks £ because they each capture the suboptimality with respect to what is
theoretically attainable when optimizing R without consideration for other risks. Notice however that the
Pareto set of the excess risks &y, is the same as the Pareto set of the risks Ry, as they are equal up to the constants
inf R. We further motivate this in Section 2.3 and Fig. la.

?Contrary to Eq. (1), in the MDL literature, the risks are usually directly scalarized.



2 Semi-supervised multi-objective learning

In this section, we formally introduce the semi-supervised S-multi-objective learning problem. For
ease of reference, an overview of notation is provided in Table 2 of Appendix F.

2.1 Preliminaries and the individual tasks

Let X be the feature space, and ) C RY the label space. We are interested in K prediction tasks,
indexed by k € [K] := {1,..., K}, over joint distributions P* of (X*,Y*) on the product space
X x Y. We denote the underlying joint probability measure by IP. From each task, we observe ny
i.i.d. labeled samples {(XF,Y})}™, from P*, and Ny, i.i.d. unlabeled samples { X¥}N* from the

(2

marginal of P¥ on X, denoted P%. Let D denote the combined dataset of both labeled and unlabeled
data. For each task k € [K], we define the population and empirical risks of a function f : X — ) as

~ 1

Ru(f) =E[6(Y* F(X*)]  md  Ru(h) = LS 60E S, @

Nk

where /i, : Y x ) — Ris a (not necessarily symmetric) loss function with ¢ (y, ) being the loss
incurred by predicting § when the true label is y. Further, we write F,, for the set of all functions
f:+ X — Y for which all integrals in this paper are well-defined.For each k € [K], we assume access
to a function class Hj, C Fy) that contains a population risk minimizer of Ry, that is,

3f* € Fan such that fr € argmin R (f) and i€ Hy. 3)
fe€Fan

The risk that any model f : X — ) incurs is at least Ry (), so we focus our attention on achieving
small excess risk with respect to the Bayes optimal predictor, defined as £ (f) := Ri(f) — Re(f7).

2.2 Pareto optimality and scalarization

In multi-objective learning, our aim is to learn models g from some function class G that, ideally,
achieve low excess risk on all tasks simultaneously. Since, by assumption, the individual tasks are
optimally solved in 7, we only consider hypothesis classes G C Fay that satisfy G O |, (k] He-
But even if G is very large, minimizing all excess risks may not be possible. In particular, in this work
we do not assume that there exists one f : X — ) that performs well across objectives (as opposed
to the collaborative learning framework [13] or the setting in [4]). Instead, the aim is to recover the
set of Pareto optimal solutions in the class G for the K objectives, formally defined as follows.

Definition 1 (Pareto optimality). Let &1, ..., x be a collection of excess risk functionals. We say
that a function g € G is Pareto optimal in G if there is no other ¢’ € G such that

Jk € [K]s.t. Ex(g") < Er(g) and Vi€ [K],Ei(d) < Ei(g).

The subset of G containing all Pareto optimal functions is called the Pareto set. The subset of R
containing the excess risk vectors of the Pareto set is called the Pareto front, defined as

F(G) == {(&1(9),---,EK(g)) : gis in the Pareto set of G} C R¥.

In words, any model in G that reduces one risk over a Pareto optimal model must increase another
risk. Every Pareto-optimal model corresponds to a distinct “preference” or “trade-off”, all of which
are equally valid from a decision-theoretic perspective [28]. We can quantify such trade-offs using
scalarization functions s : R — R that, for all f € Fy, map the excess risks into a scalar objective

T(f) =s(&(f), .-, Ex(f)) with Js Gargenglinﬂ(g), “)
g

see also Eq. (1). We call T, (f) the s-trade-off achieved by f. It has a natural interpretation: recall that
Er(gs) is the cost incurred by the k-th task to make this particular type of trade-off over myopically
optimizing &. Then, T;(gs) aggregates these costs (see Fig. 1). This interpretation also further
motivates scalarizing the excess risks instead of the risks: if one task were to have much higher Bayes
risk than another, scalarizing the risks directly would not aggregate the additional cost, cf. Fig. 1a.



Ra & A A
\//I S
@@, el
PN &q;-\ /,’
%@»/ oY o
R " :
RZ(f;) Ry 51

(a) The attainable risks in each function (b) The larger G, the smaller (c) The larger G, the larger the ex-
class and one Tchebycheff scalarization of the minimal s-trade-off within G cess s-trade-off on the function
the risks and of the excess risks. due to low “bias”. class G due to high “variance”.

Figure 1: (a) All attainable risks for the function classes Fai, G, H1, H2. Using scalarizations on the risks
directly can be misleading if the Bayes risk of one task is much larger than that of another: even if both tasks have
equal weight, the Tchebycheff scalarization (5) may inadvertently only solve one task (triangles). Scalarizing
the excess risks avoids this (dots). (b) The Pareto fronts for the classes H1, Hz, G, Fan in the space of excess
risks, and two Tchebycheff scalarizations s3'** (5) with different A (gray dashed line), with the corresponding
trade-off minimizers (dots), and the gap to the minimizers in Fay (bi-directed red arrows). (c) The population
and empirical Pareto fronts §(G) and §(G), and the excess s-trade-off of the estimated Pareto points (bi-directed
red arrows) on the same two Tchebycheff scalarizations.

Two popular examples of scalarization families are Tchebycheff and linear scalarizations, defined as

Smax = {Sﬁlax(v) = ke[a;((] Ak | A € AKX 1}7 Siin = {sll{“(v) = Z Apvk | A € AK 1},
ke[K]

Q)
where AX~1 is the (K — 1)-probability simplex. They represent the worst-case and averaged
notions of excess risks, respectively (see Fig. 1a for a visualization of the Tchebycheff scalarization).
Minimizing these families of scalarizations recovers the Pareto set under some conditions (e.g.,
convexity for linear scalarization), see the detailed discussions in [45, 22, 42]. But of course, other
scalarizations also exist [22]. Our most general result (Section 4.1) holds for scalarizations that satisfy
the reverse triangle inequality and positive homogeneity, defined as

Vo, w e RE : Is(v) — s(w)| < s(|v1 —wi|, ..., vk —wkl), ©
Vo e RE o> 0: s(av) = a - s(v).

Both the linear and Tchebycheff scalarizations from Eq. (5) satisfy the properties in Eq. (6).

2.3 Multi-objective learning

Because inf,cg 7, (g) may be arbitrarily large, we evaluate our empirical estimates of g5 using the
excess s-trade-off, defined, for f € Foy, as T5(f) — infyeg T5(g). The S-MOL problem is then to
achieve small excess s-trade-off across scalarizations with high probability.

Definition 2 (S-MOL). Let S be a family of scalarizations s : RX — R, (g4)ses a family of
positive real numbers, and 6 € (0, 1). Let .4 be an algorithm that, provided with a dataset D and the

function classes {Hk},le and G, returns a family of functions {g; : s € S} C G. Then A solves the
S-multi-objective learning (S-MOL) problem with parameters ((¢5)ses,0), if

P (w €S TG, ~ inf Ti(g) < ss) > 14, (S-MOL)
g

where the probability is taken with respect to draws of the training dataset D.

From the population-level optimization perspective in Eq. (1), better trade-offs become possible as
the class G grows. This is visualized in Fig. 1b, showing the Pareto fronts achieved by the function
classes Fan, G, Hi, Ho in a two-objective setting. The separation between the Pareto front F(G)
and the theoretical optimum F(F,y) can be seen as the “multi-objective bias” incurred in S-MOL
due to a conservative choice of G. For two Tchebycheff scalarizations, the red bi-directed arrows



in Fig. 1b reflect this point-wise “bias”. However, because the Pareto front needs to be learned
from finite samples, we would also expect from classical learning theory that as G grows, so does
the “multi-objective variance” of an empirical Pareto front F(G). Fig. lc illustrates this by the gap
between F(G) and F(G), and for the same two Tchebycheff scalarizations, the red bi-directed arrows
reflect the excess s-trade-off. In the next section we first address how much excess trade-off any
algorithm necessarily incurs when learning §(G) from data.

3 Motivating Bregman losses: A hardness result

To answer this in the context of a semi-supervised setting, we now argue that for the unlabeled data
to help solve S-MOL, the structure of the loss functions is key.

3.1 A sample complexity lower bound for ideal semi-supervised S-MOL

Let us consider the class of PAC-learners for S-MOL, which are learners that achieve S-MOL for
all distributions over X x ). For concreteness, consider multi-objective binary classification with
zero-one loss, where S is the entire family of linear scalarizations Sy :

Definition 3 (Binary classification). Let G be a hypothesis class with VC dimension dg € N on a
data domain X x ) where ) = {0, 1}. For each task k € [K], define ¢;(y,y) = 1{y # ¥}.

For supervised S-MOL with 5, = ¢ for all s € Sy, prior works achieve a sample complexity upper
bound of O(Kdg/?), up to logarithmic terms, see [18, 57] and Corollary A.1. In fact, a matching
lower bound of Q(Kdg /%) holds as well: after all, the set of s-trade-offs {7 : s € Sji, } contains
the individual excess risk functionals &, and hence solving S-MOL requires the learner to solve the
K original tasks as well. The lower bound then follows from standard agnostic PAC-learning [55,
Theorem 6.8]. In short, previous upper bounds are tight and the sample complexity of supervised S-
MOL is ©(Kdg /£?), which also coincides with the sample complexity of MDL under non-adaptive
sampling [71]. In the semi-supervised S-MOL setting, the question now becomes: can the unlabeled
data reduce the label complexity of this problem? Perhaps surprisingly, we now show that the same
lower bound holds, even if the learner has additional access to Bayes optimal classifiers f; and the
marginal distributions P% .

Proposition 1 (Hardness of semi-supervised multi-objective binary classification). Fix any K > 1
and any ¢ € (0,1/12). For a given tuple (P, ..., PX), denote by S* a labeled dataset consisting
of i.i.d. samples from P, let fi be a Bayes optimal classifier of P*, and let P)’“( be the marginal
distribution on X. Denote by A any algorithm that, given {S*, e P)k( }5:1’ returns a set of classifiers
{gs € G : s € Sin}- If A achieves (S-MOL) with 5 = ¢ for all linear scalarizations s € Sy,
§ < 1/6, and for all distributions (P, ..., PX) in the multi-objective binary classification setting
(Definition 3), then the total number of labeled samples it requires is at least | S*| + - - - + |SE| >
CKdg/e? where C > 0 is a universal constant.

See Appendix D.1 for the proof. Proposition 1 shows that the label sample complexity lower bounds
for supervised S-MOL cannot be improved for the problem in Definition 3—even in an idealized
semi-supervised S-MOL setting where the learner has infinite unlabeled data and can perfectly solve
the individual learning tasks. This effect is due to the zero-one loss not being a proper scoring rule,
which is necessary for weighing the risks of two different tasks against each other. And indeed, other
losses, such as the hinge or absolute deviation loss, suffer from the same problem. See also [60] for a
discussion of calibration in multi-objective learning. In our main results, we show that this lower
bound can be circumvented in learning settings where the loss functions are proper in this sense.

3.2 Bregman divergence losses and a pseudo-labeling algorithm

In this section, we introduce Bregman losses and their key property that allows us to leverage
unlabeled data and alleviate labeled sample complexity via a pseudo-labeling algorithm.

Definition 4 (Bregman loss). Let ) be convex. A loss £ : ) x YV — [0, 00] is called a Bregman
loss if there is a strictly convex and differentiable potential ¢ : ) — R such that {(y,y) =

¢(y) — o) = (Vo) y — ).



Many standard prediction losses are Bregman losses. For example, the squared loss can be obtained
by setting ¢(y) = Hy||§, the logistic loss by choosing ¢(y) = ylogy + (1 — y) log(1 — y), and the
Kullback-Leibler divergence using ¢(y) = >_{_; y; logy,. As we now show, an important fact that
we will leverage about learning with a Bregman loss is that the associated excess risk functional can
be expressed in terms of its minimizer. To state it precisely, we introduce the notions of population
and empirical risk discrepancies of a function f € Fy); from some h € Hj,, defined as:

d(f:h) = E [tu(h(X"), f(X)] . di(f NkZE fX.

We further define for some hy € Hy,...,hx € Hg and h = (hq,...,hk) the population and
empirical scalarized risk discrepancies of a function f € F,; from h as

dy(fih) = s(di(fih), .. dxc(fihr))s du(f5h) = s(di(f5 ), dic(fiRi5)). (8)
We are now ready to state Lemma 1, proved in Appendix D.2.

Lemma 1 (Properties of Bregman losses, based on [6]). For each k € [K)|, let ¢}, be a Bregman loss
with potential ¢y. If both E[Y'*] and E[¢y(Y*)] are finite, then up to almost sure equivalence,

i) = a;gmin Rie(f)=E [Yk|Xk = } and Nf € Fan, Ex(f) = di(f; i)

all

Along with Eqs. (4) and (8), Lemma 1 implies Algorithm 1 Pseudo-labeling (PL-MOL)
Ts(f) =ds(f; %) for £* = (ff,..., f}). Note that

the second part of Lemma | decomposes the risk into 1+ fork € (K] do

a task-specific intrinsic noise and a discrepancy term; 2: ~ Compute hk = arg mthEH Rk(h)
Ri(f) = Ri(fy) + di(f; fi)- It turns out that Breg-  3: end for

man divergences are, up to transformation of the label  4: for s € S do

space, the only loss functions that enjoy such a de- s5: Compute J, = arg ming e Js(g; ﬁ)
composition (see [27] and Appendix B). This decom- 6: end for

position helps justify the following pseudo-labeling 7. Return {Gs s €Sh.

multi-objective learning algorithm (Algorithm 1).

First, we minimize the individual empirical risks ﬁk over Hy, to obtain h = (hq, ..., hx), the set of

empirical risk minimizers; thus, we estimate the task-wise Bayes-optimal models f;; (Line 2). Given
Lemma I, we can then approximate the excess risks & via the empirical risk discrepancies dy(-; hg)
using unlabeled data. And so, the s-trade-off T(-) can accordingly be approximated by ds(-; h). The
empirical estimate of the Pareto set in G is then given as the minimizer of ds(-; h) in G (Line 5). Note
that reusing the covariates of the labeled data in this second step would yield at most a constant gain.

Notice that the second step (Line 5) is equivalent to first pseudo-labeling all unlabeled data using the
ERMs, and then passing it to the supervised S-MOL algorithm from [57] (“ERM-MOL”, Algorithm 2
discussed in Appendix A.1). Finally, note that from a computational perspective, even if S is not
finite, Algorithm | can be implemented, e.g., using hypernetworks, see Appendix A.2.

3.3 Characterization of models with optimal trade-offs: A variational inequality

The pseudo-labeling method illustrates how one can estimate the s-trade-off solutions g5 € G from
both labeled and unlabeled data when the losses are Bregman divergences. We now show that
Bregman losses also enable characterizing the minimizers g, via a variational inequality in some
cases. From this inequality, in turn, we can derive conditions for g5 to have a particularly simple
representation which sheds some light on why unlabeled data can help. Specifically, under linear
scalarizations and convexity, we can show the following result.

Lemma 2 (Variational characterization of minimizers). For each k € [K], let ¢}, be a Bregman loss
with potential ¢y. Suppose s = shn is lmear with wezghts )\ and pg 1= Zszl )\kP)k(. Denote by

(-,-), the inner product defined as (f, '), = [ (f )) dus(x). Then for every non-empty,
convex and closed set G C F,y and convex g—Ts g),

X0 (9) (g9 — 7). 9 g> >0

S

.

K

Tolg) = Inf Tolg) ifandonlyif Vg € G <z
(o(a

where V2 ¢y (g) denotes the function x — V2, ). If G is bounded, such a g € G exists.



Lemma 2 is a direct consequence of Lemma D.6 and Theorem 46 in [67]. From this lemma, we can
derive the s-trade-off solutions g5 analytically in the special case where G = F, and all potentials
are shared ¢, = ¢. In that case, since the set of feasible models is unconstrained, the variational
inequality in Lemma 2 holds with equality. In particular, the first argument of (-, ), must vanish, up
to pus-equivalence. Thus, we can deduce that the s-trade-off solution is ps-a.s. of the form

dpk
m (x)

gs(x) = Z wg(z) f7 (x), where  wy(x) = A
ke[K]

so that z — wy, () is non-negative and 3, . x; wi(z) = 1. In short, the optimal prediction with
respect to the s-trade-off on the instance x € & is a convex combination of the individual Bayes
optimal labels. Additionally, if the marginals are shared P = Py, then each dP% /du, = 1, so the
weights wy, are independent of z. However, these are specific settings, and g5 does not generally
need to take this form. We will later make use of this specific form in Section 4.2.

4 Sample complexity upper bounds for pseudo-labeling

We now present uniform and localized upper bounds for Algorithm 1 for Bregman losses in terms
of Rademacher complexities. Specifically, we use the coordinate-wise Rademacher complexity of a
Y-valued function class H C JF,;; under distribution P)k( with n samples, which is defined as

1 n
k § E k
%n(H) = E sup | — Uijhj(Xi)
Xk L XE~oPE heH | TV~
0'1170'127~~-70'nqNRad

We discuss the choice and properties of this Rademacher complexity in Appendix E.2.

4.1 A uniform learning bound

We start with some assumptions on the loss functions ¢, that we require for our bounds.
Assumption 1 (Regularity of the losses). For each k € [K], let £;, be a Bregman loss satisfying:

* Its associated potential function ¢y, is pg-strongly convex in )} with respect to £5-norm, so that for
all y,y" € Y, itholds that £ (y,y") = ¢u(y) — ox(y') — (Vor(y),y — ') = & lly — v/'lI3-

e The loss is Lg-Lipschitz continuous in both arguments with £2-norm in R, that is, for all y, v, y" €
Y it holds that [¢(y, y") — £(y,y")| < Li [ly" — y"|l; and [€(y",y) — £(y", v)| < Li |y — v 5.

* The loss is bounded by some constant By, < oo as £, < By.

The boundedness enables the concentration bounds used in our results and is a common assumption,
and the strong convexity and Lipschitz continuity enable using a vector contraction inequality from
[39], as well as establishing a uniform approximation of the excess risks. Most Bregman losses
satisfy Assumption 1 on bounded domains ), while some (like the logistic loss) require careful
treatment of Lipschitz continuity if the gradient is unbounded at the boundary of ) (cf. Corollary C.1
and Lemma E.1). We now state our first main result.

Theorem 1. Suppose that Assumption 1 holds. Let S be any class of scalarizations that satisfy the
reverse triangle inequality and positive homogeneity in Eq. (6), and let {gs : s € S} be the class of
solutions returned by Algorithm 1. Then (S-MOL) holds for any § € (0,1) and e5 = s(e1,...,ex),
where each €y, is bounded by

1/2 1/2
e < Gk m?vk(g>+(l"g(m) +\/mﬁk<ﬂk>+<l°g(m) Lo

N, ng

with Cy, = max{4Lk, \/§Bk, L/ 24Lk/ﬂka L/ GBk/uk}

3The norm of the strong convexity and Lipschitz continuity in the first argument can be replaced by an
arbitrary norm in Theorem 1. Replacing the norm of the Lipschitz continuity in the second argument in
Theorem 1 entails using other vector Rademacher complexities, cf. Appendix E.2. They cannot be replaced in
Theorem 2. Moreover, for our results it is sufficient for the Lipschitz property to hold on the range of G.




Theorem 1 is proved in Appendix D.3. Using VC bounds on the Rademacher complexity (see
Lemma E.6), Theorem 1 implies that for VC (subgraph) classes G and H;, = H with VC dimensions
dg, dy, only O(Kdy /e*) labeled and O(Kdg/c?) unlabeled samples are necessary to achieve
e-excess s-trade-off uniformly for all scalarizations. Comparing this with the sample complexity
O(Kdg/<?) from Proposition 1, it is apparent that for Bregman losses, Algorithm 1 can alleviate the
label complexity of S-MOL significantly when dg > dy;, and completely eradicates its dependence
on G. It shows that a large complexity of G can be compensated by a large amount of unlabeled data
Ny, as long as %’ka (G) — 0 for Ny — oo.

Notice that, under Assumption 1, the map g — & (g) or its domain G can be non-convex, in which
case non-linear scalarizations are necessary to reach the entire Pareto front. Theorem 1 applies to
many such scalarizations, and in particular, the Tchebycheff scalarizations from Eq. (5).

4.2 A localized learning bound

The analysis in Theorem 1 is crude: it estimates the excess risks on all of Hj, and G, which is why the
global Rademacher complexities appear in the bound and the unusual extra square-root appears. Such
an analysis can be overly conservative, and a localized bound can provide much tighter statistical
guarantees [8, 35]. To facilitate a localized analysis for Algorithm 1, we require some additional
assumptions. First of all, we only consider linear scalarizations, that is, S C Sy;,, from Eq. (5), mostly
for the following norms to be Hilbert norms: for all k € [K], s € Syin, and f € Fay, define

2 2 2 2
AR =IO and 712 = s (1A )
We also require the following shape, strong convexity and smoothness assumptions.
Assumption 2 (Shape, strong convexity and smoothness). Recall that f € argming. | Ri(f).
* For all k € [K], the function classes H;, — f; are star-shaped around the origin; for all o € [0, 1],
it h € Hy, — f, then ah € Hj, — f}. Moreover, the function class G is convex and closed.
* There exists a constant v > 0 so that for all s € S and all h € H; X --- X H, the map
g+ dy(g;h) — 7| g]|? is convex on G.

* For some v € (0, c0), the second and third derivatives of the potentials ¢, are bounded on ) as
sup,cy || VZ0r(y)|, < v and sup,cy |[V3¢i(y)||, < v in the £o-operator norms.

The shape constraints are commonly used in local Rademacher complexity proofs [8], and the strong
convexity acts as a “multi-objective Bernstein condition” [8, 34]. Moreover, the convexity of G, strong
convexity, and smoothness also enable a variational argument that is integral to the bound based
on Lemma 2. For a refined version of our result, we also require the following norm-equivalence
assumption that allows relating errors in ||-|| .-norm to errors in |[|-||,.-norm.

Assumption 3 (Norm equivalence). All covariate distributions P% are absolutely continuous with

respect to the mixture distributions Zszl e P% for all si* € S, and there is a constant 7 so that

dPE

K k
d (Zk:l ArP X)
Specifically, as proved in Lemma D.7, Assumption 3 is equivalent to imposing [|-||,, < 7 ||-||, for all

k € [K] and s € S. Sufficient conditions for Assumption 3 are that all weights of the scalarizations
in S are bounded away from zero, or PX < P} and esssup dPX /dP3 < n? forall k, j € [K].

VEk € [K], sih € S ess sup < n? < oo.

We are now ready to state the localized bound. Recall that f} is the Bayes model for the kth task,
cf. Eq. 3), and forany b = (hy,...,hx) € Hy X --- X H, define g" := arg ming g ds(g; h), so
that g, = g  cf. Eq. (4). The result depends on the Rademacher complexities of the following sets
of functions, defined using the balls By = {f € Fan : || fl[,, < 1} as

Hi(r) = (Hi — fH)NrByy,  and  Gi(rih) = [ J(G—gM)nrByy,.  (10)

seS

The excess s-trade-off is bounded in terms of the following crifical radii, defined for each k € [K] as

[, =inf{r>0:r>> %ﬁk (Hi(r))} and w, =inf{r>0:r>> S)‘iﬁ,k (Gr(r; 7))} AD



Critical radii like these are the key quantities of localized generalization bounds [8, 35]. They can be
bounded using VC dimension (Lemma E.6) or with (generic) chaining [21, 59]. We define the worst-
case critical radius in G by replacing f* in the definition of u, with a supremum over ground-truth
functions h, iy, 1= SUPpey, ... xpye 0 {7 > 072 > RE (G (r; b))}, and then clearly u, < 1.

Theorem 2. Let S C Sy, be a set of linear scalarizations, and let Assumptions 1 and 2 hold. Then,
if 6 > 0 is sufficiently small, the output {gs : s € S} from Algorithm 1 satisfies (S-MOL) with
probability 1 — § and 5 = s(eq, . ..,ex ), where

ek S Cr (7 + G+ (N, "+ ny ') log(4K/6)) (12)
and Cj, = (v (I+diamy., ())/42) max{Li/+2 + Br/v, Lk/u2 + Br/uy }.* If additionally Assumption 3
holds, then for 1% = sup,cs (11, ..., 3) and ns = (sup,eg s(1/n1,...,1/nk)) "t we have

er S Cp (4 + 1% + (N' +ng') log(4K/5)) , (13)

with ék = Ck . (’7’//7)2 maXge|[K] (Bk/ﬂk + Li/ui)

The proof of Theorem 2 can be found in Appendix D.4. By comparing Eq. (9) with Eq. (12), we
can see that, under the additional assumptions, Theorem 2 yields much better rates than Theorem 1,
whenever the critical radii are (much) smaller than the global Rademacher complexities. Effectively,
Theorem 1 provides a “slow rate” analysis, while Theorem 2 provides a “fast rate” analysis. Addition-
ally, Theorem 2 avoids the “doubly slow rate” ‘ﬁﬁk (Hk)l/ 2 that appears in Theorem 1, and hence can
potentially yield a speed-up of power 4 over Theorem 1; e.g., if  has VC (subgraph) dimension dy,
the label complexity reduces to order O(K dy /€) compared to the O(Kd3,/e*) from Theorem 1.

In the setting where the algorithm has access to the marginals {P)k( le, called the ideal semi-
supervised setting [68], the proof of Theorem 2 also yields a slightly tighter bound than (12) (by
combining Eqgs. (31) and (35)). Under Assumptions 1 and 2, we obtain e, = s(eq,...,ex) with

ex S Ck (1 +ny, " log(2K/6)), where C, = ,”y—z(l + diam”,Hz(y))(Bk/uk + Li/u3).

Adaptivity and weakening Assumption 3. While Eq. (12) depends on the worst location of the
true Pareto set g, in G (through 1), Eq. (13) refines this bound by also showing the adaptivity of the
algorithm to the specific location of the true Pareto set g5 in G. Depending on the geometry of G, this
set may lie in a “low complexity region” of G. If that is the case, then the radii u;, can be smaller
than 1, and the bound adapts to this low complexity. But this comes at a cost: to prove Eq. (13),
we require the norm equivalence from Assumption 3, and have to replace [, by [5. Intuitively, the
distance of g to g5 can only be controlled in the norm ||- o> in particular, if A\, = 0, then there is no
reason that g, should be close to g, in the norm ||-||,.. But u,, defined through ||-||,, has to bound
the kth coordinate for all scalarizations s € S, making the norm equivalence from Assumption 3
necessary. For finite sets of scalarizations, on the other hand, this can be avoided (but replaced by a
union bound), see Corollary A.2. Hence, there seems to be an inherent tension between controlling
the error for all scalarizations simultaneously and proper adaptivity to the local complexity of the
problem. It is interesting to explore this tension further.

5 Example: non-parametric regression with Lipschitz functions

We now exemplify the benefit of Theorem 2 in an example where the localized rates are much faster
than unlocalized ones. More examples are presented in Appendix C.

Let X = [0, 1], ¥ = [0, 1] and let ¢, be the square loss. Define for 0 < L3; < Lg the function classes
H={h:[0,1] = [0,1] : his Ly-Lipschitz} andG = {g : [0,1] — [0,1] : g is Lg-Lipschitz}. Fur-
thermore, let K = 2 and P have a density py on [0, 1] with respect to the Lebesgue measure. For
Eq. (3) to hold, assume that there exist two functions f{, f5 € H for which E[Y*|X* = 2] = f#(z)
for all z € [0, 1]. We now apply Theorem 2 to obtain upper bounds for S-MOL in this setting.
Corollary 1. Let S C Sy, be a set of linear scalarizations. Then the output {gs : s € S}
of Algorithm 1 satisfies (S-MOL) with probability 0.99 and 5 = s(ey,...,ex) where e <
(LH/nk)Q/‘3 + (Lg/Nk)z/dfor alls € S.

*We assume min { Ly, ux } /v > 1 for all k € [K]; otherwise, remove the squares on each ratio.
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Figure 2: On the left: one fit of the methods on 5 labeled and 100 unlabeled samples with weights A =
(1/2,1/2). In the center: excess s-trade-off as a function of labeled and unlabeled sample sizes for fixed weights
A = (1/2,1/2). We fix the unlabeled and labeled sample sizes to 2'? and 2°, respectively. On the right: the
excess s-trade-off of PL-MOL as a function of unlabeled sample size N1 while n1 = ny = No = 2° are fixed,
and for varying weights. We repeat each experiment 10 times and show median, 20% and 80% quantiles.

The proof of Corollary 1 can be found in Appendix C.3. Note that we recover the familiar minimax
rate n~ 2/ of Lipschitz regression. In comparison, the crude, unlocalized bound from Theorem 1
would yield the potentially much slower rates L;_[/ 4n,:1 ‘4 Lé °N & 12,

We illustrate Corollary 1 in Fig. 2 on the following example: Let H be a set of almost constant
functions (that is, Ly = 0.2), and let f = a and f3 = b for two constants a, b € [0, 1]. Minimizing
Ts(h) for the weights A = (1/2,1/2) over H yields the solution hs =~ (a + b)/2 while for large
enough Lg, the solution in G becomes g; = (p1a + p2b)/(p1 + p2). On the left of Fig. 2, we
show one data instance and the resulting models from Algorithms 1 and 2 when the densities are
p1(xz) = 0.7sin(20z) + 1 and p; = 2 — p;. In the center and on the right, we show the excess
s-trade-off in this setting as a function of sample size. We can see the rates predicted by Corollary 1:
when we fix the unlabeled sample sizes as large enough (N; = Ny = 2'2), PL-MOL achieves a
small excess s-trade-off already for small labeled sample sizes. Meanwhile, ERM-MOL requires a
labeled sample size to be of the same order 22 before it achieves a similar excess s-trade-off. At the
same time, if we fix the labeled sample size sufficiently large to learn the almost constant functions in
‘H, only PL-MOL improves with an increasing number of unlabeled data. In both cases, the familiar
n~2/3.rate from Lipschitz regression is observable, as also predicted by Corollary 1. Finally, on the
right of Fig. 2, we see that if we keep all sample sizes fixed—except for N;—, then the rates are

eventually bottlenecked by the harder task for all scalarizations; the risks stagnate at Ao [V, 23— Ao,

6 Discussion

This work studies when it is possible to mitigate the statistical cost of multi-objective learning, in
which we illuminate the roles of unlabeled data and of the loss functions. This need arises because
the function classes that contain models achieving good trade-offs may need to be much larger than
those that are well-suited for any one task. We show that for general losses, the label complexity of
learning multiple trade-offs simultaneously in a class G is determined solely by the complexity of G,
even when the learner has full access to marginal distributions and the Bayes optimal models for each
task (Proposition 1). But for Bregman losses, a simple pseudo-labeling algorithm can significantly
reduce the label complexity (Theorem 1), where unlabeled data can fully absorb the statistical cost of
the expressive model class. Our analysis with local Rademacher complexities further refines these
bounds (Theorem 2) and shows adaptivity of the algorithm under some conditions.

The key property that the pseudo-labeling algorithm exploits is the risk decomposition from Lemma 1,
which is unique to (generalized) Bregman losses [27]. Nevertheless, it is interesting to determine
for exactly which losses the semi-supervised setting can improve upon the supervised one beyond
Bregman losses. Under stronger assumptions, we provide a first result of this kind in Appendix B.

Future work may also investigate the tension between controlling the errors of all scalarizations
and adaptive rates, and in this context, whether Assumption 3 is really necessary (see discussion in
Section 4.2). Moreover, it would be interesting to relax structural assumptions in Theorem 2, e.g., by
generalizing it to non-linear scalarizations, and to apply our framework to generative models.
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will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We explicitly state all assumptions, that is, Assumptions 1 to 3

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our work is theoretical, and we only conduct toy experiments that are easily
reproducible from the problem setups.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:

Justification: The paper is theoretical. The only experiments that we run are detailed in
Section 5 and Appendix C, and do not present a main contribution of this work. They can
easily be reproduced from the description in these sections.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide full details on the one toy experiments we run in Section 5
and Appendix C.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The only figure where this is necessary is Fig. 3, where we report the inter-
quartile ranges as a measure of error.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We only have have toy experiments (Figs. 2 and 3) which execute within a
minutes on a standard laptop, as described in Section 5 and Appendix C.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We reviewed the code of conduct.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:
Justification: The work is mostly theoretical, and does not have any direct societal impacts.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related work
We review related work; for S-MOL in Appendix A.1 and more adjacent literature in Appendix A.2.

Semi-supervised learning. Semi-supervised single-objective learning is a well-established field
of research, and the question of when and how unlabeled data can help in a single learning problem
is rather subtle [16, 25, 74, 5]. Interestingly, the reason that unlabeled data helps in our setting
is quite different from how it can help in single-objective learning. Contrary to our setup, results
that demonstrate a benefit of semi-supervised settings in single-objective learning usually require
the marginals to carry some form of information about the labels (such as clusterability, manifold
structure, low-density separation, smoothness, compatibility, etc.) [53, 50, 16], without which semi-
supervised learners are no better than ones that discard the unlabeled data altogether [25, 12]. Our
results, on the other hand, hold regardless of such assumptions: if the likelihood of a sample is
higher under one task than another, a model with a good trade-off prioritizes that task, and unlabeled
data enables (implicitly) estimating that likelihood. This is true, even if that likelihood carries no
additional information about the labels.
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Algorithm 2 ERM for Multi-objective Learning (ERM-MOL)
Input: Labeled data {(XF,V/)} " |
1: for k € [K] do

hypothesis space G, scalarization set S.

2:  Define the empirical risk functional: R (g) := n—lk Yokl (Yik7 g(Xf))

3: end for

4: for s € S do N ~

5:  Minimize the empirical s-trade-off: g, = argmin cg s(R1(9), ..., Rk (g)).
6: end for

7: Return {g; : s € S}.

A priori and a posteriori decision making. In multi-objective optimization, decision makers can
be broadly categorized based on whether they have an a priori or an a posteriori preference over
Pareto solutions [28, 32]. An a priori decision maker aims to recover a specific Pareto model, which
is the solution to a trade-off 7T that is known beforehand. In contrast, an a posteriori decision maker
will first recover the whole Pareto set. Recall from Section 2.3 or [22] that, under mild conditions,
this entails solving a family of optimization problems Vs € S, mingeg 75(g). The preference of
such a decision maker is then informed by the set of trade-offs that are possible.

The learning version of the problem has been studied for both types of decision makers, where the
trade-off functionals need to be estimated from data. This leads to two types of algorithms and
generalization bounds. The a priori approach has been especially developed in the context of learning
with fairness or multi-group constraints [26, 3, 49, 71]. The a posteriori approach, to which our work
mostly belongs, has been studied by [18, 57].

Multi-distribution learning. In the (supervised) multi-distribution learning (MDL) setting, the
goal is to learn only one s-trade-off for the scalarization s(v) = max vy, which belongs to the family
of a priori decision making. Then, for VC-classes of dimension dg, the label complexity to achieve
excess s-trade-off ¢ > 01is O((K + dg)/e?) using an on-demand sampling framework, in which
the algorithm is allowed to decide which distribution to sample from sequentially [26, 3, 49, 71].
Importantly, this adaptive sampling improves upon the “trivial” rate ©(Kdg/c?) (see [71] and
Appendix A.1) by removing the multiplicative dependence on the number of objectives. For non-
adaptive sampling, the rate © (K dg/<?) is tight, that is, the fact that the algorithm has to solve only
one scalarization does not improve upon the sample complexity of solving all scalarizations, cf.
Corollary A.1. Of course, the statistical complexity under adaptive sampling must fail to hold for
S-MOL with multiple scalarizations, because it includes all individual learning tasks. MDL is also
related to collaborative (where the tasks are assumed to share a ground-truth), federated, and group
DRO frameworks, for which we refer the readers to the discussions in [26, 71, 13].

In [4], the authors propose a semi-supervised framework for group DRO (a problem related to
MDL). The underlying assumption in [4] is that for each label-scarce group, there exists a group with
sufficiently much labeled data and which is “related enough” for cross-group pseudo-labeling to be
effective (similar to the collaborative learning setup).

A.1 A posteriori multi-objective learning

Empirical risk minimization for S-MOL. Applying empirical risk minimization (ERM) on
labeled data to solve S-MOL was analyzed in [18, 57] and in [17] through algorithmic stability. ERM,
or perhaps more aptly empirical trade-off minimization, is a natural approach to learning all Pareto
solutions. The idea is simply to use labeled data sampled for each of the K tasks to empirically
estimate the s-trade-off functional 7 of any model. The Pareto set can then be found by minimizing
the estimated trade-offs. This algorithm, that we call empirical risk minimization for multi-objective
learning (ERM-MOL), is formalized in Algorithm 2.

Learning the Pareto set through ERM has been described and analyzed by [18], where S is a family
of linear scalarizations. In particular, they provide a sample complexity upper bound that depends
on the complexity of S through a covering number of the weights that appear in S. Later, [57]
extended the ERM framework to go beyond the empirical estimator of the risk functionals, allowing
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for any “statistically valid” estimator based on uniform convergence. They further improve the sample
complexity upper bound by removing dependency on S in [57, Theorem 2]. Their result can be used
to derive bounds for ERM in S-MOL: we now instantiate their bound in our setting (see Section 2.1),
making the following assumption to enable comparison with our results:

Assumption 4 (Regularity conditions for ERM-MOL). The risk and excess risk functionals are
equal,
Vk € [K] : fg}'{u Ri(f)=0.

Proposition A.1 (Sample complexity of ERM-MOL). Suppose that Assumption 4 holds and that the
loss (-, ) is bounded by B and Ly-Lipschitz continuous in the second argument for each k € [K].
Let S be any class of scalarizations satisfying reverse triangle inequality and positive homogeneity
(6). Then, for any § € (0,1), the class of solutions returned by Algorithm 2, {gs : s € S}, satisfies
(S-MOL) with probability 1 — § and €5 = 5({—:1, ... €K ), where for each k € [K], €y, is given by:

1/2
e = 6L (G) + 2B (W) . (14)
k

We demonstrate the implications of this bound for a VC class and for linear scalarizations below,
using the VC bound on the Rademacher complexity (Lemma E.6), see Appendix A.3 for proofs.

Corollary A.1. Let G be any hypothesis class with VC dimension dg € N on data domain X x Y
where Y = {0,1}. For each task k € [K], define Uy, (y,y') = 1{y # y'} be the zero-one loss (cf.
Definition 3). Let (P, ..., PX) be any tuple of data distributions over X x ). Then, for any §,¢ > 0,
the output of Algorithm 2 {gs : s € Sin } satisfies (S-MOL) with probability 1 — 6 and e = € for all

s € Siin whenever the number of samples is at least ny, = () (%52([(/5)) foreach k € [K].

Dependence on the size of S in our results. The authors in [57] noted that the dependence on S in
[18] is sub-optimal, in the worst case by a factor of K logny, and that such a dependence could be
removed. Here, we should add that this is only true because in [57] the learning bounds are globally
uniform—no localization bounds were derived. Similarly, the bound from our Theorem 1 is also
independent of the size of S. Theorem 2, on the other hand, paints a more nuanced picture: the size of
the sets G, (r; f*) from Eq. (10) depends on the size of S through a union: if all local neighborhoods
of the g, are “similar,” then S does not affect the bound at all. However, if the local neighborhoods are
very different, then the union may be larger than any of the individual neighborhoods and hence the
bound will grow with the size of S; see the right side of Fig. 5. See also the discussion in Section 4.2.
Nonetheless, if S is finite, Theorem 2 also yields the following bound.

Corollary A.2. Let S C Syy, be finite and let Assumptions 1 and 2 hold. Define
ug(s) =inf {r>0:7r°> Dﬁ“vk (TB”.Hk N(G—gs)}-

Then, if 6 > 0 is sufficiently small, the output {gs : s € S} from Algorithm 1 satisfies (S-MOL) with
probability 1 —§ and e5 = s(eq,...,ex), where

er S Cr (ui(s) + G + (N + ") log(4K |8 /4)) |
with Cj, = C(s) from Eq. (13) where n2 = n?(s) := max {1/\ : k € [K], A, > 0} for s = sin,

Proof of Corollary A.2. Consider the setting where & = {s“n} is a singleton. Because we only
consider this one scalarization, we can make the following case distinction for each k 6 [K |: either
Ak = 0, s0 we can ignore index k completely, or A, > 0 and SO ess sup dP)k(/d(Z Pl) <1/\g.
Hence, Assumption 3 is satisfied for S = {si®} with n?(si®) = max {1/\ : ie [K] Ax > 0}
The bound for S = {s}i"} follows from Theorem 2, and the corollary for a finite S follows from a
union bound. 0

Semi-supervised S-MOL. As far as we are aware, we are the first to study the S-MOL problem in
the general semi-supervised setting. The closest work to ours is [63], where the question of learning
Pareto manifolds in high-dimensional Euclidean space was studied in a semi-supervised setting. They
assume that 1) the ground-truths exhibit a sufficiently sparse structure and 2) the objectives have
a benign parametrization (their Assumptions 1,2, and 3): the paper considers parametric function
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classes, and the algorithm that achieves the bounds requires knowledge about a parameter 6, € RY
so that R, depends on distribution P* only through 6. Estimating these parameters and then
performing standard multi-objective optimization can enable learning in high dimensions. The
resulting two-stage estimator is similar to our pseudo-labeling algorithm, and they can coincide,
e.g., for linear regression with square loss. Moreover, in [63] the necessity of unlabeled data in
high-dimensional linear regression is shown. While we borrow an idea for the stability argument in
our Proposition D.1, our results apply to far more general settings.

Comparison of label sample complexities. In order to compare the label sample complexity of our
results with prior work, we summarize the resulting bounds in Table 1 for VC (subgraph)-classes G
and H; = H with VC dimensions dg, dy;. Recall that in the ideal setting, the marginals are known.

Table 1: Label complexities up to logarithmic factors from this (gray) and prior work for VC (subgraph) classes.
It holds that d3; < dg and potentially d3; < dg. A definition of dg is in Appendix B; both de¢ < dg and
de > dg are possible. Note that these results are not strictly comparable, as they depend on varying technical
assumptions.

zero-one loss Bregman loss
problem class upper bound lower bound upper bound
supervised MDL 4o tK 171,49] 4ot 126] o tK 1711
supervised S-MOL K49 571/ Cor. A.1 K9 prop. 1 K9 [57]/ Prop. A.1
ideal semi-sup. S-MOL Ksig [57]/ Cor. A.1 K:ég Prop. 1 K:j‘ Thm. 1
ideal semi-sup. S-MOL Kdg Kdy,
(with stronger assumptions) g P B o g i 2

A.2 Adjacent related works

There are many works considering multi-risk settings in different contexts (not to be confused with
the multiple competing risks in survival analysis, cf. [33]), for example, in fairness or insurance
mathematics through the lens of multiple quantile risk measures [20, 36, 56]. Our work specifically
is related to the fields of ensembling, multi-task learning, and Pareto set learning.

Learning multiple models for one task. Recall that in our Algorithm 1, we first learn multiple
models (one per task), and combine them into a family of models that trade off the different risks. In
comparison, there are many different ways in which combining multiple models can also help on a
single task, usually by using some sort of ensembling. For instance:

* Stacked generalization combines multiple base models via a meta-model that takes their predictions
as input features and outputs the final prediction [64, 44].

* Mixture-of-Experts models maintain a collection of expert predictors, and use a routing mechanism
to select one or more experts based on the new input. This routing is often done through a direct
soft gating or a weighted combination of the models [43].

* Boosting aggregates multiple weak learners to form a single strong predictor for one task, typically
through sequential training where each model corrects the errors of the previous ensemble [24].

In contrast to any of these methods, our pseudo-labeling algorithm uses the predictions from individual
models (in our work ERMs for simplicity) as training targets and fits a new model (or family of models)
from scratch using the unlabeled inputs. This distinction is essential: unlike the aforementioned
methods, our algorithm does not aggregate existing models to solve a single task, but instead
leverages them as a supervisory signal to reduce the statistical cost of learning trade-offs in a richer
function class. In particular, the described methods do not address the core challenge in MOL.: the
need to reconcile conflicting objectives within a single model. Our method explicitly constructs a
family of joint predictors that trades off competing risks and can—or sometimes even must—deviate
significantly from any of the base models.

Learning multiple models for multiple tasks. Multi-task learning (MTL), including semi-
supervised MTL, is a problem that is related to MOL in that both are used in settings where multiple
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learning problems need to be solved. However, in MTL, the aim is to learn multiple models, one
per task, and exploit relatedness between tasks to improve sample complexity [38, 70]. As such, the
problem of striking a trade-off, which is at the heart of MOL, is not present in MTL. For example,
suppose a new instance x € X is observed. In MTL, we can make multiple different predictions, one
per task, in the hope that each prediction is good for the corresponding task. In MOL, on the other
hand, we have to commit to one prediction for all tasks. Aside from these differences, as mentioned,
if there is a relationship between the different learning problems, we could employ off-the-shelf MTL
algorithms to adapt our pseudo-labeling algorithm by learning the task-specific models in the first part
of the algorithm (Line 2 in Algorithm 1). Finally, from a technical perspective, it is worth mentioning
that (localized) Rademacher complexities have been used for MTL in [65, 2, 39, 48].

Learning for multi-objective optimization. A recent line of research has introduced the so-
called Pareto set learning (PSL) framework [52, 37, 46], which has found various applications,
e.g., in finetuning language models on multiple objectives [62]. PSL is an approach to making
learning algorithms such as Algorithms 1 and 2 computationally tractable: instead of producing
a family of models, one for each trade-off, PSL approximates this family with one fixed function
that takes both weights of the objectives and covariates as input (often called a hypernetwork [46]).
However, importantly, there is no direct connection of PSL to the learning part of the MOL problem:
it is actually purely a computational technique. Specifically, if one approximates the outputs of
Algorithms 1 and 2 with PSL, then it inherits their statistical guarantees up to the approximation
errors. The name Pareto set learning has its origin in the fact that to find such a PSL function, it is
common to minimize some expected scalarization, where the expectation is taken with respect to
weights of the objectives [69]. A standard way to make this tractable is to sample the weights [46].
Generalization is then usually discussed in terms of the number of sampled weights, not the data. See
also [63] for a discussion. Finally, beyond hypernetworks, various other learning techniques have
been deployed for multi-objective optimization when evaluating the objectives is expensive, such as
active learning in [73, 72, 30].

A.3 Proofs for ERM-MOL

Proof of Proposition A.1. The proof is analogous to the proof of [57, Theorem 2], additionally using
Rademacher complexity and McDiarmid’s bound to bound the supremum (denoted C'y in [57]) and
slightly different assumptions on the scalarizations. We repeat the proof here for completeness.

Fix 6 > 0. By a standard Rademacher bound (also see Appendix D.3), the following generalization
guarantee holds for each task k € [K],

_ 5
]P’(Vgegz 1Ri(g) — Rilg)] ggk/2) >1- . (15)

For any scalarization s, let ’7A; denote the empirical s-trade-off

Then, 7, is well-approximated by 7A’s By Assumption 4, Ry, = &, so that when the event Eq. (15)
holds for all k& € [K], and this occurs with probability at least 1 — ¢ by a union bound, we obtain that:

sup |Ta(9) — Talg)| = up |s(R1(g), ..., Ri(9)) — s(Ru(g),-.., Rx(9))|

< sup s(|R1(g) = Ri(9)],-- -+ |Rk(9) — Ric(9)])
<s(e1/2,...,ex/2), (16)

where the first inequality used the reverse triangle inequality, and the second inequality used the
above claim. In particular, this will allow us to bound the excess s-trade-off of g, as follows:

To(@s) — Talgs) = Ta(@s) — To(@s) + Ta(@s) — Talgs) + Talgs) — Talgs)
(a) (b) (c)
< 5(51/2,...,€K/2) +s(51/2,...,€K/2)

IN

8(81,...,&‘[{),
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where the (a) and (c) terms both contribute at most s(e1/2, . ..,ex/2) error from Equation (16),

while the (b) term is non-positive, since gs minimizes the empirical s-trade-off 7A',5 The last inequality
follows from the positive homogeneity of the scalarizations. O

Proof of Corollary A.1. From Proposition A.1 and the VC bound on Rademacher complexity
(Lemma E.6), there exists a constant C' > 0 such that for each k¥ € [K] we have ¢, < ¢ for
whenever ny, is sufficiently large:

1 K
k> <7202de9 + 16 B2 log6> .

The result follows, since we have that for any s € Syjy:
s(er,....,ex) <s(e,....e) =¢,

which concludes the proof. O

B Beyond Bregman losses: Pseudo-labeling for the zero-one loss

Recall that Proposition 1 is a worst-case negative result that rules out any benefit of unlabeled data
for MOL, at least in the absence of any additional structure. Indeed, our main results focus on
overcoming this hardness for more structured losses—namely, Bregman losses. But, there are other
natural forms of structure to consider; in this section, we take an alternative approach.

To help motivate this next approach, let us revisit the reason that Bregman losses are amenable to
the semi-supervised approach. As we discuss in Section 3.2, the crux is Lemma 1. It expresses the
excess risk functionals & in terms of a discrepancy operator dj (- ; -) and the Bayes-optimal model
fr, as follows:

Ee() = di (5 7). a7

Estimating the discrepancy operator over G only makes use of unlabeled data. And even though
learning the Bayes-optimal model requires labeled data, its statistical cost is mitigated by the
knowledge that 7}, contains the optimal model. Algorithm 1 precisely constructs estimators of & in
this way, before solving for the s-trade-offs over the learned approximations. The close relationship
between &, and f} described by Eq. (17) is specific to Bregman losses, see [60, 14, 27]. Nevertheless,
the excess risk functional for other losses may have decompositions that are similar in spirit.

Excess risk decomposition for the zero-one loss. To see another instance of excess-risk decompo-
sition, let us revisit the setting of the worst-case examples in Proposition 1: the multi-objective binary
classification setting with the zero-one loss (Definition 3). In this case, it is a standard result that the
excess risk can be expressed in terms of the conditional mean of the labels 0, (z) := E[Y*|X* = z],
asin [19, Section 2.1]. In particular, the excess risks for the zero-one loss is given by

Ex(f) =B [[20x(X") = 1] - [F(X") = 1{06(X*) > 1/2}]]. (18)

Thus, for the zero-one loss, the form of its corresponding excess risk functional is & (-) =

d,g /1 (+;6k), where let dlg /1 (+; ) be the “zero-one discrepancy” operator, given by

],

where 6 : X — [0,1] is a conditional mean. Notice that the operator d,? / '(-;+) depends only the
marginal distribution P%, as was the case for Bregman losses (cf. Eq. (17)). This suggests that a
semi-supervised approach analogous to Algorithm 1 becomes possible if the regression problem of
learning 6, is easy. Note that this is potentially much harder than solving the individual classification
tasks, and hence different from the original premise of this work.

4 (f50) = E[|20(X%) — 1] - |F(X*) — 1{6(X*) > 1/2}

We now formalize this intuition. For each k € [K], let © be a class of functions 6 : X — [0, 1].
In lieu of assuming that f;; € Hj, we now assume that the true conditional mean ¢y, is contained
in ©f (we do not assume that O, C G, especially as Oy consists of regression functions and G
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gpnslists of classifiers). Define the empirical regression map §k() and empirical zero-one discrepancy
dko (g; 0%) as follows:
ngk

1
0r(-) := arg min — Y, — 0(X*))?
)= argmin 3 (0~ 0(X")

0 = 35 [ | vty i 21}

And finally, define the analogous s-scalarization as dx o/1 (g; 0) = s(glo/l(g; 51), e c@g/l(g; 5}())

Proposition B.1. In the multi-objective binary classification setting (Definition 3), let S be a class
of scalarizations satisfying the reverse triangle mequalt% amj\posmve homogeneity (6). Assume
that E[Y*|X = ] € Oy. Then {gS € argmin g d""(g;0) : s € S} satisfies (S-MOL) with
probability 1 —§ and e5 = s(eq, .. ), where

1/2
=12 [, log( 2K/5 \/% log(2K/6))
\/ ng

The proof of Proposition B.1 is in Appendix B.1 and is analogous to that of Theorem 1. Here, we can
also give a data-independent sample complexity bound. Let dg, denote the VC subgraph dimension
(a.k.a. pseudo dimension) of ©; and dg the VC dimension of G. Then, Proposition B.1 implies
a label sample complexity on the order of O(Kde, /c*) and an unlabeled sample complexity of
O(Kdg/e?) (see Lemma E.0).

In summary, the hardness result Proposition 1 shows that, in the worst-case, the Bayes classifiers f;
are uninformative for making appropriate trade-offs over zero-one losses. Instead, Eq. (18) suggests
that the relevant information is actually captured by the Bayes regressors ;. Proposition B.1 makes
this intuition rigorous: if we have additional structure, given here in the form of ©, we can expect
benefits of semi-supervision even for the zero-one loss, as long as the Rademacher complexity of O,
is manageable.

B.1 Proof of Proposition B.1
For this proof, define fy(z,g) = |20(z) — 1] - |g(x) — 1{6(x) > 1/2}|. Then
[fo(z,9) = for(z,9)| < |[20(x) — 1| — [20"(z) — 1]
+ 120" (2) — 1] - [1{0'(z) > 1/2} — 1{0(x) > 1/2}|
< 210(a) — 0/(@)] + 206(x) — ()| < 418(x) ()]

where in (a) we used that the indicators can only disagree if |¢'(x) — 0(x)| > |6(z) —1/2|. Tt
follows that for any g € G,

Eulg) = 4" (9:00)| < |€lg) — & (9300) | + |a (9:80) — 4" (9:6)
= ’E [fek (X*.g) - ff(X’“,g)} ‘ + ’dzg/l(g;@k) - Ek0/1(9§§k)’
<A4E HQk ) — O, (X H +‘d,f/l(g;@e)—@0/1(9;9})‘-

We bound each term separately. First, analogous to Eq. (29) in the proof of Theorem 1, since the
square loss is 2-Lipschitz on [0, 1], with probability at least 1 — §/(2K)

E[|on(X*) - Bu(xh)|| < \/E {(Qk(Xk) - ak(Xk))2:| < \/249%gk(@k) +2 (W>U2.

Nk

For the second term, we use that g — fy(x, g) is 1-Lipschitz continuous. Let ¢(z) = 1 {6(x) > 1/2};
then

[fo(z,9) = fole,g')| <120(x) — 1| [lg(x) — c(x)| — Ig'(x) — c(@)|| < [g(x) — g'(2)]-
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Hence, using contraction again, we get the analogous bound to Eq. (28) with probability 1 —

sup |dy (g;0k) — 4" (g;01)| = sup

Ny
N 255, (K g) ~ B [15, (X" g)]
=1

i 9g€eg
2log(1/6
< 2Ry, ({7 f,(w.9) g € GH + %
< 608, (9) + || 2D,

In conclusion, we have proved that with probability 1 — 4, for all & € [K], we have

1/2
2log(2K/§)> L6, (0)+ 210g](5K/5).
k
19)
The rest of the proof then follows analogously to the proof of Theorem | provided in Appendix D.3
by replacing the “claim” with the uniform bound in Equation (19).

sup |Ex(g) — C?kg/l(g; é\k)‘ < \/24mﬁk(@k) +2 <

geG Nk

C More examples

In this section, we discuss two more examples: classification with logistic loss and another example
applying Theorem 2 to linear regression.

C.1 Binary classification

Denote for any ¢ € [1, 0] the norm balls B = {w € R? : [|wll, < 1}. Suppose that the covariates

lie in the space X = BL C RY, and that the labels in ) = [0, 1] for each task follow the Bernoulli
distribution
YH|X = 2 ~ Ber(o((z, uf)))

where o(x) = 1/(1 + exp (—z)) denotes the sigmoid function and we assume that w} € B¢. This
is the standard logistic regression setup. The Bayes-optimal models with respect to the logistic
loss £(y,9) = —(ylog(§) + (1 — y)log(1 — §)) are given by fi(-) = o({-,wi)) € H = {h(x) =
o((z,w)) : w € B¢}. However, striking a good trade-off between the tasks within H can be
impossible (see Fig. 3 for a simple example). To circumvent this issue, we may want to use some
feature map ® : BL, — BE with p >> d, and then learn in the larger function class G = {g(x) =
o((®(z),w)) : w € BY}. For example, p = O(d*) and H C G whenever ® maps to the set of
all polynomial features up to degree . In this setting, Algorithm 1 effectively exploits unlabeled
data to achieve good trade-offs in the larger function class G, as we show in Corollary C.1. This
straightforwardly follows from Theorem 1; the proof is given in Appendix C.3.

Corollary C.1 (Logistic regression). In the setting described above, let S be some class of
scalarizations satisfying reverse triangle inequality and positive homogeneity. Suppose that
minge(x) Ny > log(p + K) and mingecgyny > log(d + K). Then, the output of Algorithm 1
{Gs : s € S} satisfies (S-MOL) with probability at least 0.99 and e5 = s(e1,...,ex) where
er S (108(dK) )/ 4 (108K [, ) /2,

We can also empirically observe the benefits of the semi-supervised method, Algorithm 1 (PL-MOL),
over purely supervised approaches—namely, over running Algorithm 2 to learn models from either
‘H (ERM-MOL linear) or G (ERM-MOL polynomial). Fig. 3 visualizes a toy classification problem
with linear scalarization, and it compares the resulting decision boundaries, Pareto fronts, and excess
s-trade-off across the different approaches.

Specifically, consider the data from Fig. 3a: the support of task 2 is completely contained within
the support of task 1, and in particular, there is an area where the labels of the two tasks disagree
(the bottom left “striped rectangle”). Both tasks are optimally solvable by linear models, but trying
to solve both tasks at the same time is impossible, even in F,;;. Meanwhile, better trade-offs still
become available using, e.g., polynomial features.
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Figure 3: Learning trade-offs in the classification problem visualized in Fig. 3a. We show 1) supervised linear
models, 2) supervised polynomial kernels, and 3) the mixture through the semi-supervised PL-MOL algorithm.
(b) The training data and decision boundaries of the three methods, with a score threshold of 1/2, for varying
trade-off parameters A;. (c) The Pareto fronts for logistic loss and the s-trade-off as a function of the parameter
A1 in the linear scalarization. (d) The Pareto fronts for zero-one loss and the s-trade-off as a function of the
parameter \;. We repeat the experiment 10 times and show corresponding interquartile ranges.

We sample n; = ny = 25 data points uniformly from the Pseudo-labeled (soft labels)

regions in Fig. 3a and, in Figs. 3b and 3c, label them according :

to the linear logistic model Y*|X* = z ~ Ber(f;(x)), that ‘s | [ Fos
is, with noise and in accordance with Eq. (3). Again, we run E
the three different algorithms on the logistic loss using linear | % ; " 3
scalarization: ERM-MOL (Algorithm 2) on the function class & 1 % Loa 2
H of linear models, ERM-MOL on the function class G of linear % 5 g L oa s
models on polynomial features up to degree 5, and PL-MOL Pl o8

(Algorithm 1) using H in the first stage for all tasks, and G in - -

the second stage with an additional number of N; = Ny = Task 1 (pseudo, soft)

300 unlabeled data points. PL-MOL fits linear models to the Task 2 (pseudo, soft)

labeled data and uses these to predict (soft) pseudo-labels for

the unlabeled data, resulting in Fig. 4. Some resulting decision ~Figure 4: Pseudo-labeled data using
boundaries of each method are shown in Fig. 3b, and the Pareto PL-MOL with the logistic loss.

fronts (on the test data) as well as excess s-trade-offs are shown

in Fig. 3c.

The expected bias-variance trade-off arises here. In this case, the individual tasks can be perfectly
solved over the family of linear classifiers 7. However, ERM-MOL over H necessarily fails to
find good trade-offs, as this model class is insufficiently expressive for the multi-objective learning
problem—it has large bias. On the other hand, the ERM-MOL over G yields large estimation error,
since there is not enough labeled data to solve for trade-offs over the much larger family of polynomial
classifiers—the learned trade-offs have high variance. In contrast, the PL-MOL algorithm reduces
this variance using only additional unlabeled data.

In this experiment, we can also corroborate the importance of the loss function. Fig. 3d shows that
PL-MOL can be inconsistent when the losses are not Bregman divergences. While the Pareto front
found by PL-MOL dominates the other methods, it incorrectly weighs the different objectives per
linear scalarization, resulting in a sub-optimal excess s-trade-off. To amplify this effect, in Fig. 3d
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we generate the labels in task 1 without any noise, and in task 2 according to this model:

YOIX® =4 ~ 0 x is in the “red region” of task 2,
Ber(0.65) « is in the “blue region” of task 2,

where recall the different regions from Fig. 3a. Merely changing the loss to the zero-one loss then
breaks Algorithm 1. Specifically, in Fig. 3d, we show how the same algorithms perform in a large
sample regime (n; = ny = 400). PL-MOL does not attain the best-possible trade-off within G, even
when it recovers the Pareto front of G.

C.2 />-constrained linear regression

We now discuss another example where the localization can yield much tighter results than Theorem 1.
To that end, we consider the following problem of constrained linear regression with squared loss.

Let X = B¢, Y = [~1,1], and ¢}, be the squared loss. For R € [0, 1], define the hypothesis
spaces H = {h(z) = (z,w) : |w|, < R} and § = {g(x) = (z,w) : [|w||, < 1}. We consider
distributions that satisfy E [Y*|X* = 2] = (w}, ), that is, a (possibly heteroscedastic) zero-mean
noise model

VE = (wp, X*)+¢¥  with  VaeX: E[¢f|xF=2] =0,

where f; = (w},-) € H C Fan for all k. Suppose that the covariance matrices of X* have smallest
eigenvalue bounded from below by k € [R, 1] (which is easily satisfied). Theorem 2 then yields the
following corollary, proven in Appendix C.3.

Corollary C.2 (¢5-constrained linear regression). In the setting described above, the output of
Algorithm 1 satisfies (S-MOL) with probability 0.99 and e, = s(e1,...,ex) for all s € Sin
(Eq. (5)), where

e <mnd L 2BVl L2
o kN A/Tk kN /Ny |~
Here 1/ny, and 1/Nj, are the localized rates, where Theorem 1 would yield 1/,/n; and 1/+/Nj,
instead. Notice that if H is very small (i.e., R < 1/(2kny)), then the first term is small due to the

smaller complexity of H, while the second term may only become small due to larger unlabeled
sample size Ny.

C.3 Proofs for the Examples

In this section we provide the proofs of Corollaries 1, C.1 and C.2.

Proof of Corollary 1. We verify the assumptions of Theorem 2: Eq. (3) holds by definition of the data
generating model. Assumption 1 and the smoothness from Assumption 2 hold, because the square
loss ¢ is 2-Lipschitz and 1-bounded on ) = [0, 1], and induced by ¢(y) = y? which is 1-strongly
convex, and max {¢”, ¢"’} < 2. The other parts of Assumption 2 holds because the function classes

G and H are convex, and the strong convexity holds with «; = 1: For every s = sl;\“ € Siin a quick
calculation shows that

ds(g; h) =/O (9(x) = ha(2))*Mip1(2) + (9(2) = ha(x))*Aopa(z) da

lgll? = / (@) (apr (2) + Ao (1)) d

which implies that

1
dy(g;h)=|gll; = /0 ((9(@) = ha(2))* = g°(x)) Mapr(2)+((9(2) = ha(2))® = g°(2)) Aopa(z) d

and hence the strong convexity follows from the convexity of g — (g — a)? — g2 for any a € R.

31



To apply Theorem 2, denote the space of 2Lg-Lipschitz functions [0, 1] — [—1,1] as G, and note
that for any function g € G we have that G — g C G. Hence, we can see that

Gr(rih) =By, 0 [ J(G —g¥) C {g €G:|gll, < T} :

sES

Denote by N(¢, A, ||-||) the covering number of a set .4 with norm ||-|| at radius ¢ > 0, see e.g.,
[61, Chapter 5] for a definition. It is a standard fact [61, Example 5.10] that the metric entropy of
{9 €G:|gll, <r}isbounded as

8Lg
-

Hence, using standard bounds with Dudley’s entropy integral [21], we can bound the Rademacher
complexity of this function class by

(e toll<r}) £ [ \loen (oG ol <}l

vo<t<r:  logN (t{ge G lgl <r}IM,) <

vl

S (Lg 1/2t—1/2dt
Ny Jo )

< JLer

~ N

and, similarly for H(r) we get that

k Lur
o, (1) ) 2L

Solving the corresponding inequalities 72 > , / L—;ki and 2 >,/ LN—QI: yields
2 <LyPn?? and  w SLYPNPS

Plugging this into Eq. (12) from Theorem 2 and noting that 1) for any fixed confidence 1 — § (such
as 0.99) the confidence term goes to zero faster than the main terms, and 2) the constants C}, are
universal constants in this example, yields the result. O

Proof of Corollary C.1. We apply Theorem 1 to the setting.  First, note that f}(x) =
E [Y*|X* = 2] = o((z,w})) is contained in H, so that Eq. (3) holds. Also note that the loss
L(y,9) = —(ylog(y) + (1 — y) log(1 — §)) is a Bregman loss (Definition 4) induced by the potential
¢(y) = ylogy + (1 — y) log(1 — y).

Moreover, for all g € G we have that g(X') C [o(—1),0(1)], since for all w € B} and ®(z) € BE,
we have that | (w, ®(z))] < [[w], [|2(2)]l, < 1.

We can then check Assumption | (using the remark that only the range of G needs to be considered):
1. Because %qb(y) =1/(y(1—y)) > 4forally € [0, 1], we have that ¢ is 4-strongly convex.

2. Making use of the fact that the range of functions in G lies in [0(—1), o(1)], we get that ¢ is

L-Lipschitz in both arguments with L = m To see that, employ Lemma E. 1 with

diam|. () = 1 and %(ﬁ(y) < m on the range of G.

3. Similarly, because the range of functions in G lies in [o0(—1), o(1)], the loss is bounded by
¢ < B = —log(o(-1)).

Hence, we may apply Theorem 1. Standard bounds on the Rademacher complexities yield

1 /2log2d 1 /2log2p

32




This can be proven using Lipschitz contraction with respect to the sigmoid (which is 1/4-Lipschitz
continuous). For both bounds, there exist distributions so that the bound is tight. Plugging this into
Theorem 1 yields (for some fixed high probability, such as 0.99)
log K\ /2
(55
Nk

log p 1/2+ log K 1/2+ logd 1/2
Nk Nk ni

< <logdK)1/4 N <long>1/2
~ ng Nk

A

€k

where the last inequality holds if max {l(]’\%, loﬁ kK , 1‘:i d 107%:{ } < 1, which we assumed. O
Proof of Corollary C.2. Denote ¥j, = E [X*(X*)T], s = si" and g, = (-, w) € G, so that for any
w,w € R?

9w = gully = E [ (9u(X*) = gur(X)*] = E [((w = 0/, X*))] = (w = ) TSp(w - w),

and by an identical argument dy(gu; gu) = (w — ') T Sp(w — w') = ||gw — Gur ||i It follows that

K
do(gwi £7) =D A (w — wp) TSk (w — w}))
k=1
(w —wy) (Z /\ka> w —wx) + ds(Guwy; ) (20)

where we defined the minimizers

Js = guwy With  wx = argminds(gw; f (Z /\ka> <Z A;ﬁ]mui) .
k=1

llwll, <1

This holds because the unconstrained minimizer coincides with the constrained one, ensured by
the bounded norms |lwj||, < R < « and bounded smallest eigenvalue fiyin(Xx) > x—note that

because ||X k ||2 < 1 we have that fi;.x(2x) < 1—which implies

K -1 /K

A max by R
Z)\kzk Z)\kzkwk < Zk 1 Ak bmax (Zk) [[will, <<,
k=1 k=1 K

9 Zk 1 )\kﬂmln(zk)

We verify the assumptions of Theorem 2: Eq. (3) holds by definition of the data generating model.
Assumption 1 and the smoothness from Assumption 2 hold, because ¢ is 4-Lipschitz and 4-bounded
onY = [~1,1], and induced by ¢(y) = »? which is 1-strongly convex, and max {¢", ¢’} < 2. The

convexity of d(g; h) — || ng in Assumption 2 holds with constants s = 1 by inspecting Eq. (20),
and G and H are clearly convex.

We now bound the critical radius g := inf {r > 0: 7% > R%(Fg(r))} of the following func-
tion class Fr(r) = {(,w):|w|, <2R,w'Syw < r?}. Note that because pmax(X;') =
1/ ptmin(Sx) < 1/k and XF € B, it holds that

n 2 n
n
E|> o Xf =E > 0i0;(X))TE8 ' XF = E§ (XM e Xk < -
i=1 st 3,j=1

and thus we get by Jensen’s inequality that for any R,r > 0

sup <w, E aiXik>] < KIE
n
i=1

”
<

R (Fr(r) < ~E

n
E OZXZk
i=1

wT Bpw<r2

-1
2
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and, by standard Rademacher complexity bounds (applying Cauchy-Schwartz and Jensen’s inequal-

ity),
" 2R
k
sup w, E 0:X; < —.
|w|2S2R< i=1 >] vn

Hence, we can solve 72 > r /+/kn and r2 > 2R/+/n to get, taking the minimum of the two,
r% < min i E
R = kn’
We are now ready to apply Theorem 2. Noting that
Hi(r) =78y, N (Hr — fi) C {(,w) wlly < 2R, w! Spw < 7‘2} = Fgr(r)
and that the set Gy (r; f*) is included in F; (r);
Gr(r; £*) =By, N | J (G - gs)

seS
={( )t w Spw <P {( w—wa) :lwll, < LA e AR
C{{w)w Spw <2 Jwl, <2} = Fi(r),

we can apply the previous bound on the critical radius and get that

1 2 1 2
; Smin{ i } and T Smin{ }

R (Fn(r) < LB

g g kN /Ny,
Plugging this into Theorem 2 yields the result. O

D Proofs of main results

D.1 Proof of Proposition 1

To prove a sample complexity lower bound, we show a reduction from a statistical estimation problem
to the semi-supervised multi-objective binary classification problem.

We start by constructing a statistical estimation problem, defining a family of distributions
parametrized by the set of Boolean vectors o € {0,1}?. We aim to use samples from a distri-
bution to estimate its associated parameter; the distributions will be designed so that any estimator
given insufficiently many samples will fail to estimate the underlying parameter well for some o .
Then, we show that any learner that solves the multi-objective learning problem (S-MOL) with
s = eand 6 > 5/6 can be used to solve the parametric estimation problem, implying a sample
complexity lower bound for S-MOL. For convenience, we reproduce the PAC version of S-MOL
here:

V(Pl,...,PK) e Pk, ]P’(VsESlin, Ts(gs) — 11615 T:(9) SE) > 5/6, 21
g

where P is the set of all distributions over X x ).

Let’s consider the K = 2 case first. We show that n > d/1024¢? samples are necessary.

Defining the statistical estimation problem. Let Xj := {z1,...,24} C X be a set shattered by
G. For each o € {0, 1}¢, define the distributions P and P2 over X x ) where (i) the marginal dis-

tributions on X’ is uniform over the shattered set {1, ..., x4}, and (ii) their conditional distributions
on )Y = {0, 1} given z; are Bernoulli distributions. Let ¢ = 4¢ and define:

Pl = % Z 0z, ® Ber (; + col) and P2 = % Z 0z, ® Ber (; —c(l— O’i)> .

i€ld) ield)

Fix a sample size n € N. Define the family Q = {Q,, : o € {0,1}?}, where:

Q, = (P; ® P3)®".
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Let Z5 ~ Qo consist of n i.i.d. draws from PL and P2 each. The statistical estimation problem will
be to construct an estimator & (Z,) for o that recovers at least 3/4 of the coordinates of o:

16(Zs) =y 1\ _5
p (10 2e) ZII 2 5 2 22
max ( d =4)-6 (22)

Reduction to multi-objective learning. Suppose that a learner can solve the S-MOL problem (21)
for K = 2 using at most n samples. The reduction from estimating o is as follows:

1. Given any instance o € {0, 1}¢ of the above statistical estimation problem, have the learner
solve the MOL problem over (P;, Pg) and linear scalarization Sy, using data Z, ~ Q4
and zero-one loss.

2. Query the learner for the solution to the linear scalarization sy, = sl)i\“ with weights

A = (3, 3). Denote this solution by g, 12("1Z5) € G and construct the estimator o'yoL
for o as:

oMoL(Zo)i = sy, (Ti5 Zo )
Correctness of reduction. Before proving correctness, we make a few observations:

1. For P;, the conditional label distribution associated to x; € A} is either biased toward 1 or
uniform over {0, 1}. In either case, under the zero-one loss, the label 1 is Bayes optimal, and
so the constant function f , = 1is a Bayes-optimal classifier for PL. Likewise, [5=0
is Bayes optimal for P2.

2. A function g : X — ) only incurs excess risk from an instance x; drawn from P; when
o; = 1 and g(x;) = 0. Similarly, it accumulates excess risk from instances x; from P2
when o; = 0 and g(z;) = 1. The total excess risks of g is given by:

2c 2c
&ilg) = 7 > oil{g(zi) =0} and  &(g) = 7 > (1 —ai)1{g(x;) = 1}.

i€[d] i€[d]
For the linear scalarization s; /5, we have:

Toal9) = 3 (6160 + E20)) = 5 3 1ow) # i}

i€[d]

3. Since G shatters Xj, it contains a function g, that satisfies g (z;) = o; for all ¢ € [d]. Thus:

7;1/2(9) = 7;1/2(90') =0.

inf
geg

4. Given g : X — Y, define the Boolean vector o, € {0,1}¢ by o, ; = g(x;). Then, by our
choice of c, the excess sy jp-trade-off of g is related to the Hamming distance between o,

and o: ” i .
. 04— 0|1
s — inf 7 < — <o 23
Ts1/2(9) inf To1p(9) <€ = y e (23)
. c
since 7'51/2(9) =7 log —ol1.

This last point implies the correctness of the reduction. That is, if a learner can solve (21), then we
can use it to construct ooy, that achieves (22). In particular, (23) shows that:

19(7 (G2 (5 Zo)) — inf. o, () < ) _ n»('”MOL(Z") —oll 1>.

geg d - Z

We now show that this statistical estimation problem requires at least n > /10242 samples across P
or P2. This holds for any estimator including those that knows that /1 and f3 , are Bayes-optimal
classifiers and that the marginal distribution over X’ for both P and P2 are uniform over the shattered
set. In particular, the lower bound applies to the semi-supervised MOL learner, which is given access
to these Bayes-optimal classifiers and marginal distributions over X'.
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Minimax lower bound. We now show that if n < d/ 10242, the following bound holds:

: lo(Z) — ol 1 5
P{—m < — -
max min < 1 < 6

where & : (X x ) x X x V)" — {0, 1} ranges over all estimators using n samples from P. and
P2 each.

For every o and o it follows from Markov’s inequality that

(12 el 1) _p(y_ 12) o, 9) o0

We lower bound max E [[|6(Zo) — o||1] for any estimator & using Assouad’s lemma:
o

Lemma D.1 (Assouad’s lemma, [66]). Let d > 1 be an integer and let Q = {Qo : o € {0,1}¢}
contain 2% probability measures. Given o,0’ € {0,1}%, write & ~ o' if they differ only in one
coordinate. Let o be any estimator. Then

o(Z)— >
max £ (16(2) - ol] =

g' H{]. ;KL(QalQU’):UNU/}a

where KL(-||-) measures the Kullback-Leibler divergence between two distributions.

When o and o’ differ only in one coordinate, the KL divergence between @), and Q4 is bounded:
KL(Qq[|Qor) = n - KL(P,||P5/) +n - KL(P3||P7)

Z KL( +coi || 5 —1—002)

7€[d

1 1 1 , 8nc
_ - — O — — O <
y E% KL (2 +e(l—oy) || 5 el 01)> <=

where the last inequality holds when ¢ = 4¢ < 1/3 by Lemma D.2. Indeed, we’ve assumed ¢ < 1/12.

By Assouad’s lemma (Lemma D.1) and the above bound on the KL divergence, in the worst-case
setting, any algorithm using n samples will have expected error at least

2
max E [|6(Z)—oll] > g. <1_ 4726 )

T Z~Qo

Plugging into Equation (24), we finally obtain:

np llo —a'||1<1 <2+2 4n02<5

max min — - - -

G o d —4) -3 3 d 6’

where the last inequality holds whenever /4nc?/d < 1/4, which holds when n < d/1024&2.
Generalization to all X' > 1. The MOL problem with K tasks is at least as hard as M = | K/2]
separate MOL problems each with two tasks. This leads to a total sample complexity lower bound

M - d/1024%. We obtain the lower bound CKd/<? in the statement of the result by setting
C' =1/3072 and using Lemma D.3, which shows that | /2] > K/3 for all K > 1.

More explicitly, we can reduce M separate copies of the statistical estimation problem for

o1,...,0) into a single MOL problem over the distributions:
2k 1 p2k
(....p2=1 p2e )
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where k = 1,..., M. Define s’f /o to be the linear scalarization that equally divides all weight across

the 2k — 1 and 2k components:
k _ Ugk—1 t+ V2K
sk ja(v) = LTI

Then, an estimator &, for o, can be obtained from the by defining as before:
a'k,i = §S;1c/2 (4).

The analysis from the K = 2 setting now holds for each £ = 1,..., M. This implies that at
least d/1024¢? samples must be drawn across each pair of the 2k — 1 and 2kth distributions. This
concludes the proof.

Lemma D.2 (KL-divergence bound, e.g. [15]). Letx € (—1/3,1/3). Then:

1,1 1 1
KL(§H§+J:>§4952 and KL<§+JUH§>§4332-

Proof. By a direct computation, we have that whenever 422 < 1/2, which is satisfied when x €
[=1/3,1/3],

1.1 1 1
KL(f - ):71 <4
g5 +z)=3lei o

where the last inequality holds from the fact that % log i < z whenever z € [0,1/2].

For the second inequality, we show that the function ¢(xz) = KL(1/2 + x|[1/2) is L-smooth on

(—1/3,1/3) where L < 8 and has zero derivative at = 0. This implies that it is upper bounded by

%xz. In particular, the first and second derivatives are:

- 4
1 — 422’
so that ¢ < 8 whenever 2% < 1/9. O

Lemma D.3. Let K > 1 be a natural number. Then, | K /2] > K/3.

¢'(x) = log(1 + 2z) + log(1 — 2z) and ¢ (x)

Proof. There are two cases:

* When K is even, then | K/2| = K/2 > K/3.
* When K is odd, then | K/2| = (K — 1)/2 > K/3, where the last inequality is equivalent
to 3(K — 1) > 2K, which is further equivalent to K > 3.

O

D.2 Proof of Lemma 1
Let /) be a Bregman loss associated with the potential ¢y. The first part is proven in [6, Theorem 1]:
for any Y'* such that E[Y*] and E[¢y (Y*)] are finite, it holds that

fi =argminE[¢,(Y*, f(XF)] =E [Y*|X* =].
fE€Fan

Then, by definition of Bregman divergences, we have the following generalized Pythagorean identity
[7, Equation (26)]

Kk(ya ‘T) = gk(ya Z) + Ek(z7 JJ) - <y - % v¢k<x) - V¢k(2)> ’
so that by the tower property (see also [6, Equation (1)])

Ri(f) = Elbe(Y*, F(X*))]
=E [(:(Y"E [Y¥IX*])] +E [6:(E [Y*XF], £(X*)]
Re(f}) de(f3f})
— (B [Y* —E [Y*X*]], Vi (f(X*)) = Vér(E [Y* X)) .

=0
Rearranging yields that £ (f) = Ri(f) — Re(ff) = di(f; ff), which is the second claim.
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D.3 Proof of Theorem 1

The proof of Theorem 1 relies on the following lemma on estimating the excess risk functionals &
with the risk discrepancies dy ( f; hy) under Assumption 1.

Lemma D.4 (Excess risk functional estimation). Suppose that Assumption I holds and that a function
hy achieves excess risk E;(hy) < €. Let ¢, = Lir/2/ . Then, the risk discrepancy functional
di(+; hi,) defined in Equation (7) approximates E(+) uniformly on Fay, that is,

sup |di(f;he) — Ex(f)] < crv/Er

fE€Fan

Proof. Recall that [} € Hy, is the minimizer of & over F,y. Then for all f € Fau:
|dk(f;ﬁk) - &(f)| = |dk(f;ﬁk) — di(f5 f7)] (Lemma 1)
= B[ (hi(XF), F(XF) = b (£5(XF), F(XF))]]
< Lk]EHEk XFEy — fr(XP) ||2 (Lipschitz continuity from Assumption 1)

< Lk\/EHhk XKy — fr(XF) H2 (Jensen’s inequality)

< Lk\/uk : E[gk(f]:(Xk)vﬁk(Xk)ﬂ
(strong convexity from Assumption 1)

< Cv/Ers (& (hy) < ex)
which is the claim. 0

Proof of Theorem 1. For k € [K], let Ty, be the empirical risk minimizer obtained in Line 2 of

Algorithm 1 for the kth objective. Let us recall that we use the empirical risk discrepancy C/l\k ( ﬁk)
as an estimate for the excess risk & () = di(-; f}), following the properties of Bregman losses in
Lemma 1. We now prove the theorem assuming that the following claim holds.

Claim. With probability at least 1 — J, each estimate (fk ( ﬁk) approximates the population excess
risk functional & up to error £ /2:

vk € [K], sup |3k(g;ﬁk) —di(g; 1) | <ew/2, (25)
9€g —_——

=& (9)
where ¢, is bounded as in Eq. (9).

Then, for any scalarization s that satisfies the reverse triangle inequality, the s-trade-off 7 is also
well-approximated by empirical scalarized discrepancy ds(+; k). In particular, we obtain

sup |ds(g;h) — To(g)| = sup |s(di(g;h), .- dic(g: hi)) — s(da(gs ), - - dic(g: f2)]
g

< sup s(|d(g;ha) = du(gs 7)1, |dre (g:h) — dic(g: f7)])
g
< 8(61/27...,51(/2), (26)

where the first inequality used the reverse triangle inequality of s, and the second inequality used
Eq. (25). In particular, this allows us to bound the excess s-trade-off of g, the minimizer of the
empirical scalarized discrepancy in G obtained in Line 5 of Algorithm 1, as follows:
7—5(/9\3) - 7;(93) = 7;(./9\.9) - ds(./g\s; h) + ds(/g\s§ h) - ds(Qs? h) + ds(Qs? h) - 7;(93)
(a) (b) (¢)
< 3(61/2, o ,5K/2) + 3(51/2, ... ,eK/Z)

= 3(51, e ,5K)7
where the (a) and (c) terms both contribute at most s(1/2, ..., /2) error from Eq. (26), while the
(b) term is non-positive, since g, minimizes the empirical scalarized discrepancy d(-; h). The last
equality follows from positive homogeneity of the scalarization. Then, the result follows for all such
scalarizations simultaneously. It remains to prove Eq. (25).
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Proof of claim. Recall that dj, (g; ﬁk) is an empirical estimator of dy(g; Ek) based on the unlabeled
samples:

di.(g; he) = Nik ng(ﬁk()?ik)vg()?ik)) and  dy(g;hy) =E [fk(ﬁk(Xk)ag(Xk))] )
=1

where these were defined in Eq. (7). Moreover, di(g; Ek) itself is an estimator of the excess risk
functional & (g) = di(g; f7), where f} is the Bayes optimal regression function (Lemma 1). Thus,
we have the decomposition:

Ai(g5Te) = Ex(9)| = |dioi i) = dulgi Ta)| + |dulgson) = Exg)]- )

Ta,k Ty, x

We can bound T, ;; and T}, separately:

(a) For each k € [K], we condition on the labeled samples (i.e., on Ek) and employ a standard
Rademacher bound on the function class:

by oG= {33 — Ek(ﬁk(x),g(x)) 1g € g} .
With probability at least 1 — §/(2K),

S5 ~ 2log(2K/6)\ "/
T < sup [dulgie) — du(osh)] < 29%, (67, 26) + by (KL
9geg k
. 21og(2K/5)\ /*
< 6LxRY, (9) + By <N) ; (28)
k

where the first inequality applies symmetrization (Lemma E.5) and the bounded difference inequality
(Lemma E.2), and the second inequality follows by contraction (Lemma E.4).

(b) For each k € [K], we apply Lemma D.4 to bound T}, j;, in terms of the excess risk of }Azk, which is
a minimizer of the empirical risk R (-) defined in Eq. (2):

~ 1 &
> 6V h(XE)).
=1

Ri(h) = P

In order to use the lemma, we need to show that the excess risk of iALk is indeed upper bounded by ¢.
First, observe that the excess risk can be upper bounded as follows

Ex(hw) = Ri(hie) — R (f7)
= Rk(ﬁk) - ﬁk(ﬁk) "‘ﬁ/k(ﬁk) - ﬁ/k(fl:) + 7€lc(fl:) - Ri(fr)

<2 sup [Ry(h) — Ry(h)|.
hEH
Again by symmetrization (Lemma E.5), bounded difference (Lemma E.2), and contraction
(Lemma E.4) for the function class £, o Hy = {(x,y) — x(y, h(x)) : h € Hy}, we obtain that
with probability at least 1 — §/(2K),

R 2log(2K/6)\ /2
2 sup |Ri(h) — Ry(h)| < 4R (6 0 Hy) + 2By, (0‘3(/)>
heHy d N
2log(2K/5)\ "/?
< 12,9, () + 25, (ZECEAD)
ng

And so, by Lemma D.4, we obtain that with probability at least 1 — ¢/ (2K),

2log(2K/5) > 1/2 29)

Nk

Ty < ck\/ 12, %% () + 2B, (
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where Cr = L}C\/ 2//1,k.

The claim in Eq. (25) follows by a union bound. By combining Equations (27) to (29), we obtain that
with probability at least 1 — 0, for all k& € [K]:

sup |di(g; he) — Ex(9)] < er/2,
geg

where we can set ¢, as:
, 21og(2K/5)\ /> 21og(2K/8)\ />
cu/2 = L%, (0)+ B (HEEEL) e 12, () 2, (R )
k k
This concludes the proof of Theorem 1. O

D.4 Proof of Theorem 2

In this section, we provide the proof of Theorem 2, but leave some of the technical details to auxiliary
results that we prove after the main proof. See also Fig. 5 for a visualization of the proof.

D.4.1 Preliminaries

We begin by introducing the notation p, = P% as well as the mixture distribution s =
s(p1y .- ., i ). Recall the definitions of the (semi-)Hilbert norms
2 2 2
1fl =/ E NI and |f], = \/ (W15 1A ).
~Hk

which correspond to the inner products (denoting (-, -) the inner product on R)

o f)y = /X oy and (), = () ke

We first verify that these are indeed (semi-)Hilbert norms and inner products.
Lemma D.5. The functions (-,-), , (), and ||-|| , ||-||; defined above are the inner products and
norms of the L*(uy,) and L*(pis)-Bochner spaces of functions X — (R4, ||-||,,).

See [29, Definition 1.2.15] for a definition. We prove Lemma D.5 in Appendix D.4.3 and use it
throughout without explicitly referring to it. Note that we have implicitly assumed that F5;; C
Mk €[K] L?(ju1,). In order to use first-order calculus throughout the proof, we derive the gradient and

smoothness of the map g — d;(g; h) below. We also prove Lemma D.7 in Appendix D.4.3.
Lemma D.6 (Gradients and smoothness). For any h € H1 X --- x H, denote by V 4ds(g; h) :

X — R the gradient of the map g — d(g; h) induced by the Fréchet derivatives on L? () and the
inner product (-, -) .. Then it holds that®

K

dpg

Vds(gsh) ia =) M7= (@) V20k(9(2))(9(2) — e (2)))-
k=1 s

Moreover, if Assumption 2 holds and we denote D = diam|. |, ()), then the map g — ds(g; h) is

C™ :=v(1 4 D)-smooth in ||-|| , that is, the gradient from above is C*™-Lipschitz continuous in g

with respect to ||-|| ;. Moreover, for g = argmin, ¢ ds(g; h) and all g € G

csm 2
ds(gih) — ds(gl;h) < THQ-Q?HS- (30)
Lemma 2 is a direct consequence of the gradient characterization in Lemma D.6 together with
Theorem 46 in [67]. Finally, we show that if Assumption 3 holds, the norms ||-||,, and |-||, are
equivalent.

Lemma D.7. Let S C Sy, be in the set of linear scalarizations (5). Then, for any n € [0, c0)

<7’

d
sup{|||‘;|||k ;kG[K],SES,fGFau} <n < Vke[K],s€S: esssup d//jk

We also prove Lemma D.7 in Appendix D.4.3.

>Note that whenever A, > 0, the Radon-Nikodym derivative dju /dps is well-defined.
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Figure 5: Informal visualization of the proof of Theorem 2. We first localize the set of estimators {gs : s € S}

(dotted red line) around the random “helper” set {g. : s € S} (dashed blue line) within the set G (1i,; k).

We then expand a set G, (uy,, f*) centered at the “true” set {g, : s € S} (solid green line) to include the set

G (s h) C Gr(uy, + 1,; £*) where [, bounds the maximal deviation of g, to g.. This way, we may bound the

critical random critical radius u of Gy, (1, k) in terms of the deterministic critical radius u of G (u; f*) and [,
~2 2 2

asuy Sup + 3.

D.4.2 Main proof of Theorem 2

Recall the empirical and population minimizers of the corresponding risk discrepancies from Eq. (7)

VseS: gs€ argminc@(g;fz) and g € argmind(g; f*).
9€9g 9€G

Our goal is to bound 7,(gs) — inf,eg T5(g) simultaneously for all s € S. By Lemma 1, we have
Ts(gs) — infyeg Ts(g) = ds(9s; F7) — ds(gs; £*) so that we focus on bounding this expression.

The basic decomposition of our proof is a triangle inequality with a helper set of minimizers of the
population risk discrepancy, defined with respect to pseudo-labeled data as

g\ € argmind,(g; h).
geg

Specifically, by the smoothness from Lemma D.6, we can bound the excess trade-off as

Sm

dS(§s§f*) - dS(gs§ .f*) < ¢

~ 2 sm [ 1~ 2 2
13 = gsl2 < (|, = gilli + gt~ 0sl2)- @D

—.7Tun _.7lab
oy =Tl

s

Here TP quantifies the error from having a finite amount of labeled data to estimate fr with ﬁk
and how that error propagates to g4, and T2 quantifies how close to g/, we can get with the finite
amount of unlabeled data. Our goal will be to bound the terms 71" and 7" using localization,
simultaneously for all s € S. For the general proof technique of localization, we take inspiration
from the approaches outlined in [61, 54, 34, 8, 10, 35].

We proceed in three main steps. See also Fig. 5.

1. To bound TP, we first use standard localization bounds for the ERMs in each task separately,
using uniform bound on the local sets Hy.(r) = (Hx — fi) N B, from Eq. (10). We then show
how their errors translate to g/, through a deterministic stability argument.

2. To bound T?*", we condition on h and simultaneously localize around the (random) functions ¢/,
for all s € S, resulting in a uniform learning bound on local sets

G (1; ’;) = T‘BH.“k N U (G — gg) (32)
seS
that are “centered” at the helper set {¢, : s € S}.

3. The resulting bound on T* from the previous step is random, because ¢. depends on ﬁ, SO we
need to further bound it. We prove two ways of doing that, so that the bound takes the minimum
of the two: the critical radius of Gy, (r, f*) = rBj.|, N U,cs(G — gs) from Eq. (10) together with

the bound on TP, or a worst-case bound taking the supremum over such {g’ : s € S}.
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See also Fig. 5 for a visualization of the corresponding sets.

Throughout, we heavily use the following monotonicity property of the Rademacher complexity,
analogous to the usual localization proofs. The proof can be found in Appendix D.4.4.

Lemma D.8. Consider the sets from Egs. (10) and (32). Under Assumption 2, the functions

LR Or) B (Gurih)
r r

(33)

are non-increasing on (0,00) forallh € Hy x -+ X Hk.

Step 1: Localization for ERMs in ;. and bounding 7'2P. 1In this step, we first bound the error
of learning f} with the ERMs hy, (or, in fact, any other estimator that satisfies the basic inequality
Ri(hi) < Ri(f;))- Recall the definition Hy,(r) = (Hi — f) N By, from Eq. (10), and the
corresponding critical radii [, = inf {r >0:72> %ﬁk (Hi(r)) } Using the non-increasing property
from Lemma D.8, we can summarize the bound in the following Lemma.

Lemma D.9. Under Assumptions 1 and 2, and if § > 0 is sufficiently small, we have that P(E};ab) >
1 — 9, where we define the event

Bl = {‘v’k e K] : Hﬁk _fr

2 2 2

sobge (e b)Y gl g
N Be My Nk
The proof of Lemma D.9 can be found in Appendix D.4.5, and it essentially follows the localization
technique from [8]: We bound the suprema of the empirical process over Hy (r) using Talagrand’s
inequality (Lemma E.3) in terms of the Rademacher complexity and variance. Using Lemma D.8 and
a peeling argument, we get the bound in terms of the critical radius.

Next, we show that the bound from Eq. (34) directly translates into a bound on the helper set

{g, : s € 8} with respect to labels from h but known covariate distributions. To do so, we prove the
following stability result. Effectively, it removes the square-root from Lemma D.4 that appears in
Theorem 1.

Proposition D.1 (Quadratic stability of minimizers). Denote g* = arg ming g ds (g; h) and Cs* :=
v?/a~2. Under Assumptions 1 and 2, we have for any h,h' € Hy x -+ x H, any s = si® € S, that

We prove Proposition D.1 in Appendix D.4.6. Note that a linear bound would directly follow from
Lipschitz continuity of the losses. However, this would yield much slower statistical rates than the
stability argument from Proposition D.1. Recalling the definition of (x, from (34), we can now use

Proposition D.1 with g? = ¢/, gf* = g, to conclude that on E¥"_ it holds that for all s € S,

T = ||g! — g,|2 S O -5 (3. C2). (35)

Eq. (35) describes how well our estimators would approximate the true set {gs : s € S} if we had an
infinite amount of unlabeled data. In that sense, this can be seen as an intermediate result in the ideal
semi-supervised setting by combining Egs. (31) and (35).

K
112 2
g — gt LSCStE Ak N = gl -

k=1

Step 2: Localization along helper Pareto set in G to bound 7.'". We now need to take into account
the finite sample effect of having only /Ny unlabeled samples to estimate the risk discrepancies.

To perform localization around the helper set, we again rely on Talagrand’s concentration inequality
(Lemma E.3). The benefit of Talagrand’s inequality in standard localization usually comes from
the fact that it accounts for the variance of the losses when centered at the ground truth, which can
usually be controlled by its radius of the local function class. We also used this in Step 1. Now,

however, we need to simultaneously localize for all scalarizations s € S. Hence, recall Gy (r; IAz) from
Eq. (32) where, intuitively, r uniformly controls the deviations g; — ¢, for all s € S. To keep track

of which g/, any g € G (r; i\l) “belongs to”, we also define the set
/\/lk(r):{(s,g):sGS,gfggegk(r,iAz)}. (36)
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Lifting the set G (r; ﬁ) to S x G is inspired by a similar trick from multi-objective optimization,
where the Pareto set is often lifted to this larger space to obtain its manifold structure, cf. [51].

We apply Talagrand’s concentration inequality on My (r) and use a localization argument, sum-
marized in the following lemma. Define the radii 11, = inf {r >0:72> %’Ii[k (G (r; iAL))}, and

note that these radii are deterministic with respect to the unlabeled data, but are random with re-
spect to the labeled data through the ERMs, a point revisited in the next section. Recall that g

is the minimizer of c?s(g; h) and ¢/, is the minimizer of d;(g; ) (Eq. (7)). The next proposition
bounds T = llgs — g~ ||§ (or, in fact, the deviation of any estimator satisfying the basic inequality

dy(Gs: h) < dy(gl; h)).

Proposition D.2 (Localization along helper Pareto set). Under Assumptions | and 2, and for
sufficiently small 5 > 0, we have that ]P’(E(‘sm) > 1 — 0, where we define the event

L2, (L2 By log(2K/5)
un .__ lin ~ / 2 k g
E§" = {Vs =sxeS: |gs gs|| E Ak ( > W, + (7 o ) A ) . (37

The proof of Proposition D.2 can be found in Appendix D.4.7.

Step 3: Bounding the random critical radii u,. Recall that 1, is deterministic with respect to the
unlabeled data, but random with respect to the labeled data. To make the bound fully deterministic,
we prove two bounds, so that their minimum appears in Theorem 2.

Option 1 is taking the trivial approach: recall from Eq. (10) that we define for the function g? =
argmin g ds(g; h) the set
Gi(r;h) := U (G- g?) N TBH'Hk'
sES

Then the following deterministic worst-case localized radii

U = sup inf {r >0:7> > ER?VIC (Gr(r;h))}
heH i X XHK

bounds u7 < 117 (and uj < u1?) deterministically (i.e., also almost surely).

Option 2 is more nuanced: If Assumption 3 holds, we can combine Eq. (35) with an expansion
argument to bound u,, in terms of the [, and the u, . To relate them, we employ the following key
proposition.

Proposition D.3 (Critical radius shift). Let G be any class of functions that is convex (Assumption 2),
and letn € N. Let ||| be any norm on Fay and let B = {f € Fan : || f|| < 1} be its unit ball. Define

Gy =JG-g)nrB  and  G(r)=]J(G-g)NrB

sES SES

as well as the critical radii (for R,, defined w.r.t. an arbitrary distribution)
:inf{TEO:Eﬁn (G(r)) §7"2} and u:= inf{rZO:iRn (G'(r)) §r2}.
Let A = sup,cs ||gs — g.||- Then it holds that u < 5(u + A).

The proof of Proposition D.3 can be found in Appendix D.4.8. We can apply Proposition D.3 to our
setting: recall the definitions of Gj,(r) from Eq. (32) and Gy (r) from Eq. (10), and the definitions u, =

inf {7’ >0:72 > Gr(r; H)} and u;, = inf {r > 0: 7% > RE (Gr(r; £*))}. From Assumption 3,
Lemma D.7, and Eq. (35), we know that on E}* from Eq. (34), for (% = sup,cs s (¢},.... (%)

sup g — gsll; < sup 1 216t = g5l S SUPUQCSt s (G C) SO G = A

Employing Proposition D.3 with this A yields u? < uf 4+ n2Cst - (2.

We define B 2
0244 .= max (’“ + §> , (38)
Pk oy



(2 :=sup,css(3,...,5),and ng = 1/sup,cs s(1/n1,...,1/nk). We can bound

0 Sup + 020 (G

L2 B L2 log(4K /8)\
:ui—i-nQCStsup S (]2“[%—1- ( k ) 708);( / )>
seS My Kk /”Lk) ng k=1

log(4K
S ui + 772CStCadd (LQS‘ + Og(n /6)>
S

log(4K
S nQCStcadd (ui + [‘25 + Og(n /5)> (39)
S

Note that in general, either bound can be tighter. For practical purposes, it may be easier to bound 11,
anyways, so the detour through u,, may be unnecessary.

Putting everything together. From Eq. (31), we see that on E};}g N Ej},, which holds with
probability at least 1 — § by union bound, for all s € S, the excess s-trade-off 7 (g,) — infyeg T5(g)
is bounded by

csm (Tun Tlab)
2 2 2 2

gl v Ni I, I uk Nk
(from Egs. (35) and (37))

K

sm st L% Bk Bk L2 ~ 2 —1 —1

SZ)\kC’ C*" max ?%-7,’[74-”— (up + G+ (N, +n ') log(4K/6))
k k

=:Ck

where < only hides universal constants. From the two options of bounding 1, we obtain:
2

1. The first bound, valid without Assumption 3: Recalling C*™ = v(1 + D), C** = o

-
K
To(@) — inf To(g) S D MeCi (0 + 1 + (N + ) log(4K/9)
k=1
3 2 2
where Cka(li—;D)ma {L +Bk Bk_’_Lg}
Y Mk K

2. The second bound, valid under Assumption 3, by plugging in Eq. (39) and C*4 from Eq. (38)

T.(Gs) — me Zxkck (uZ + 1% + (N, ' +ng') log(4K/4))
k=1

~ 2 B L
where Cp = C} -nQC’StC’add = O}, ~772V—2 max <k k)
V2 kelK) \ pe 13

That concludes the proof of Theorem 2, with the proofs of the auxiliary results presented next.
D.4.3 Proof of preliminary lemmata

Proof of Lemma D.5. The claim for (-,-), , |||/, , k € [K] is true by definition, but also as a special
case of the scalarized form: for any s = sl)“n € Sin and f, f’ € L*(p5) we have

ZAk [ty = [ f’>d<§Akuk> — [ (5.0 ds

where (-, -) is the Euclidean inner product. This is exactly the inner product of the Bochner L? (1)

space (e.g., [29]). Further, plugging in f' = f we obtain directly that (f, f), = || f ||§, verifying that
the norm is induced by this inner product. O
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Proof of Lemma D.6. Recall that (-, -) . denotes the inner product of the norm |- Hi = Zle YIE ||i
In this proof, we use Fréchet derivatives (denoted D) and the corresponding gradients V , induced by
the inner product (-, -) .. Background on Fréchet derivatives can be found in [1, 11]. From Lemma D.5
we know that ||-||, actually is the (semi-)Hilbert norm that corresponds to the Bochner L?(115) space
with respect to the space (R, ||-||,), where recall that 1, denotes the mixture distribution

= Z Ak ik where L = P)k(.

It is then easily shown that the gradient of EkK L ME [Qr(9(X*))] for any differentiable functions
Qr :RID Y — Rwithsup,cy, [VQ(y)|l, < M < oo, induced by (-, -), is given by

K K
VoY ME[Qua(XN] X SR a3 NP ()9 Qu(g(a).

k=1 k=1 S

Indeed, for any f € Fa C L%(us), we can write the Fréchet derivative as the limit

K X A B .
7 (Z ME [Qk<g<xk>>]> =3 A tim Q0 + e/ (XD)] ~ B [Qulg(X)]
k=1 1

e—0 3

where we could use dominated convergence thanks to sup, ¢y, [|[VQ(y)||, < M < co. This implies
the claimed form of the gradient.

Since ¢}, is Lipschitz and differentiable, its gradient in g is bounded. Further,

K K
Vyds(g;h) =V, Z Aedi(g; hi) = Vg Z)\k]E [0k (hie(XF), g(X7))]
k=1 k=1

and the gradient of a Bregman divergence in its second argument is given by
VyDy(2,y) = Vy (¢(z) — ¢(y) = (Vo(y), = — 1))

= —Vo(y) — VZo(y)z + VZe(y)y + Vé(y)
= vg ( )(y $)7

so that the previous derivations imply for the Bregman losses that

d
Vods(g:h) 12 3 A (2) V2 n(9(2)) (9() — ha(2)),
which is the first claim of the lemma.
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Note that ps-almost surely Z o1 kg d“’“ = 1. Hence, for every fixed h, and g, ¢’,
”vgds(g; ) - g s(g 5 )”S

2

d
- / . d“’“ [(V201(9) (i — 9) — V26u(a) (s — )] | s
s 2
/Z Ak dr; HV2 (9)(hp — g) — VZ¢r(g") (hg — g’)”i dps (Jensen’s inequality)
d/Lk 2 / 2 2
s/ZAkm(Hv o(9)(g — ), + [ (V20k(9) — V20r(g) (ke — ¢),)° dss- (40)
k=1 5

To bound the first term, we use from Assumption 2 that the fo-operator norm of V2¢(g(x)) is
bounded by v > 0, so that

V2or(9) (g =9, <vig—dl,-
To bound the second term, we use that ||y, — g’||2 < diamy.,(¥) =: D, and so

[|(V2¢r(9) — V2br(9") (e — 9') ||, < D||VZorlg) — VZor(g)|,

which together with the smoothness from Assumptlon 2 implies

1
|V2r(g9) — VZor(g)]|, = ’ / (Vior(g+tlg —9))(g—g')dt
0
Plugging both into Eq. (40) yields

<vilg=g'lly
2

S

K
d
[V gdds(g: 1) = Vyda(gs B < / > Mgt A D) llg = oI5 diss = v (14+D) g = g I
k=1

Hence, by equivalent characterizations of smoothness (e.g., [11, Corollary 18.14]) it follows that

1 + D
ds(g:h) — ds(g'sh) = (Vyds(g'sh), 9 — g'), < v+ D) lg— gl
For the minimizer ¢g" = arg min, g ds(g; h) we can use the variational inequality
(Vds(gt;h), g — g&), > 0 (e.g., [67, Theorem 46]) to obtain the bound
v(1 + D) 2
dS(QQh)*dS(gg;h > H ?Hs
This concludes the proof. O

Proof of Lemma D.7. Denote uj, = P)’“( and ps = & Ak k- Recall the definition of the essential
supremum of a function f : X — R (with respect to p):

esssup f = inf {a € R : pu,(f~"(a,00)) = 0} .

We start with “<": Since pus({x € X : dux/dps(z) > n*}) = 0, forany k € [K],s € S and
[ € Fan,

12 = [ 113 Lo < 2 U112 = 171 <11,

Now we show “=": Choose an arbitrary y # 0 € ) and measurable A C X, and let f =
(y/|lylly)14. Note that || f[|2 = 14. Then forall s = si* € S

/Ilfllz e = Iz < 7 IF15 = TIQZA If15 = 7722/\]/1; =11 pis (A).
j=1
This implies the bound « := esssup duy/dus § n?, since for any € > 0 we can choose the
measurable event A, := {x : duy/dps(x) > o — e} which satisfies (by definition) p5(A.) > 0 and
o)
Ae 1 d
221%( ) _ R > o .
s (AE) Ks (Aa) A. dpg
Taking ¢ — 0 concludes the proof. O
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D.4.4 Proof of Lemma D.8

For the first function, the argument is standard, we repeat it here for completeness. Let 0 < r < r’ and
consider some h € Hy(r’). Then || k||, < " and hence ||(r/r’)h, < 7, sothat (r/r")h € Hy(r) by
the star-shape of H, from Assumption 2. Therefore, we have that

T 1 & T
— Rk N=E — > oy hi(Xy) | < RE
P, (He(r") hesgg/) - i:u:lojrl G (Xa) | <My, (He(r))

which is the claim.

For the other function the proof is identical once we realize that the convexity of G from Assumption 2
implies that Gy (r; h) is star-shaped around the origin. Indeed, for any h € H; X --- x Hy and
gl = argmin g ds(g; h), since (G — g*) N 7By, is convex and contains the origin,

g€ U(g—g?)ﬁrli'k = Vae€l0,1], ag € U(g—gg)ﬂrlik.
s€S seS

We require this star-shapedness for all b € H; x - - - x H, because we also localize around g/, = gP
that are random elements and may be anywhere in G.

D.4.5 Proof of Lemma D.9

The proof of this Lemma is a mixture of Corollary 5.3 in [8] and Theorem 14.20 in [61]; see also
[34] for an exposition. We repeat it here for completeness and because we make slightly different
assumptions from [8, 61], see Remark 1 below. Recall the definition of the sets for any r > 0,

Hi(r) = (He — fir) OBy,

and the random variables

To(r) = sup |(Ry(h) = Ri(f7)) = (Ru(h) = R(fi)
h—freH(r)
which are the suprema of empirical processes indexed by the function classes defined as
{(z,y) = Le(y, h(x)) — bely, fi(x)) - h— fi € Hi(r)}.

By Assumption 1, these function classes are uniformly bounded by B, > 0. Hence, by Talagrand’s
concentration inequality (Lemma E.3), for any choice of deterministic radii r1, ..., rg > 0, the event

R (ri) log(K/5) | , Blog(k/)

Bbp L rk) = Vk € [K] s Ti(ry) < 2E [Tr(ri)] + V2 o o

holds with probability at least 1 — . Here 772(r) is a short-hand for the variance proxy from
Lemma E.3, defined as

T]?(T) = sup  Var [ﬂk(Yk, h(Xk)) — Ek(Yk,f,j(Xk))] .
h—freHr(r)

We now bound E [T}, (ry)] and 77 (ry). Using symmetrization (Lemma E.5) and vector contraction
(Lemma E.4), recalling that ¢;, is Li-Lipschitz w.r.t. the ¢5-norm in its second argument, we can
bound

E [T}, (r)] < 6Ly (Hi(r))  and  72(r) < Lir®

Therefore, we get on the event QP (r1, ..., 7 ) that for all k € [K]
log(K /6 log(K/d
Tk(rk) < 12Lkm]:”c (Hk(rk» + \/ELka g(n / ) + 3B ggn, / )
k k

Now recall the definition

[, ==1inf {r > 0:7% > RE (Hy(r))}.
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By (33), we get that for any r > [,

Ry, (Ma(r) _ AL, (e (1))

r - I

<1,

and therefore, if 7, > [, for all k, on the event Qlab(rl, ..
least 1 — §), it holds that

.,k ) (which holds with probability at

log(K/0) | 4 plog(K/d)

Ti(ry) < 12Lri 1, + \@Lkrk
ng N

= ‘I’k(rk, 5)

We now choose 7y, := Hhk - f;:‘

, which are random radii, so we have to perform a peeling
E

argument. Define the event
Wi = {3k € [K], h € Hi: b= filly > b and Ta(llh — f ) > 3@x(lh = fill, . 0)} -

Because ||k — fr]|, < diamH.HQ(y) =: D, we know that for any M satisfying 2M[k > D —
M > log(D/1;,)/log(2), for any ||h — f}||, > [, there must be at least one 0 < m < M so that
2m=l < ||h — f£ » < 2™, Moreover, a calculation shows that the functions ®;, satisfy

Vm < M: 30,27, 6) > @p(2™1,,5/2™).
for sufficiently small 6, and so P(W}2P) is bounded by

]P’( U {3k € [K],h € Hi: 2™, < [|h— fill, < 2™,
me[M]

and Ty, ([ = fillx) = 3®x(|[h — fl:”k?é)})

< > P(Ike[K]: Te(2M,) > 38,2771, 0))
me[M]

< > PEke[K]: Th(2™) > @x(2M,6/2™)) % Z

me[M]

0
o <9
where in (a) we used that P( }53/'32 (2™, ..., 2MKk)) > 1 —4§/2™.

Now, by the standard risk decomposition, we have that

Rk(ﬁk) - Ri(fr) = Rk(ﬁk) - ﬁk(ﬁk) + ﬁk(ﬁk) - ﬁk(f;?) +7€k(f1:) - Ri(f7)

<0
).
k

Remark 1. Many localization proofs for general loss functions only assume strong convexity and
Lipschitz continuity (see, e.g., Section 14.3 in [61]), and therefore one needs to handle the case
where the L2-radius is bounded but the excess loss is not (tightly) bounded, which would occur in the
first case below. In our setting, by the smoothness (Lemma D.6), a bounded radius directly implies
bounded excess risk, so this case cannot occur and no separate treatment is required.

< 2T;, (H}\lk - f

and we can make a case distinction.

Either r, = Hﬁk - fr . < [, and we are done, or 1, = Hﬁk — f,ij > [, and so, because
P(W}aP) < §, we have with probability at least 1 — §

T (1) = T (HEk —fr

) <50 (s, ) =300 0.
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Recall that by Assumption 1, ¢y, is pux-strongly convex w.r.t. |-||,, so that £, (y,y') > & ||y — y’||§
Hence, we have that

—~ 2
= E |t - et
Xk~ Pl 2
2 ~ 2 ~ 4 12
<= E (X he) = = (Re(hi) = Re(fF)) < —Tk(ri) < = (14,9) ,
S i k(fk( ) k) #k( k() k(flc)) " k(Tk) ” k Tk 0)

where we used Lemma 1 in the second equality. Solving 77 < llf Dy (g, 0) for g, we get that

2 2
2 < 82944Lk 24 144 (Bk N 8Lk) log (/)

Mk ngk

Mk

Hence, in either case we have

L2
S k[k+<

By, N L%) log(K/6)
5 =) ==
H,

Pk M% n

Therefore, because P(W}*") < §, we have that }P’(Elab) > 1—§, where

< LSIi n <Bk n o ) log(K/(S)}
k

plab . {Vk e Hhk - fk i o -

which concludes the proof for localization in Hy.

D.4.6 Proof of Proposition D.1
Recall the form of the gradient V,d(g; h) from Lemma D.7. For every fixed g, and any h, b/,
2
vads(g; h) - Vst(g; hl)”g

2
dpk
fipaiaiil

S

(V2r(9)(hi — 9) = V2or(9) (b, — 9))|| dhs

2

d . .
- (9)(hi = 9) = V2r(9)(hi, — 9)||5 dus  (Jensen’s inequality)

k=1
K
P>
2 de 72
v Z)‘ Hhk_ kll2 dpss

- VQZAk by, — Iy - 1)

This is what we call “cross-smoothness”.

Denote g = g" and ¢’ = ggl. We may now use a generalization of the stability argument used in the
proof of Theorem 1 in [63], where the following argument was used in R and for unconstrained
optimization: By the convexity of G (Assumption 2), and the optimality of g, g’ we get these two
variational inequalities

(Vyds(gih),g' —g), >0 and  (Vyds(g'sh'),g—9g"), >0 <= (Vyds(g'sh'),9' —g), <0,

see Lemma 2 and [67, Theorem 46]. Combining both, and subtracting (V4ds(g; k'), g’ — g) on both
sides we see that

(Vgds(gih) — Veds(g;h'), 9" — g), > (Veds(g'sh') — Veds(gih'), g’ —g), . (42)

From the second item in Assumption 2, and the main results in [47], we get that the right-hand side
of (42) is lower bounded as

2
2v[lg = ¢'ll; < (Vgds(g';h') = Vyds(g;h), 9" = g),
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and from the cross-smoothness in (41), we get that the left-hand side of (42) is upper bounded by
(Vgds(gih) = Veds(gih'),g' = g), < [[Vgds(g:h) = Vods(g:h)| [ 9" = gl

K

2

<vlg = glly y| DA lhw = Rl
k=1

Combining the two, we can see that

K 2

2 2 2
2909 = g'lI; < vl = glls | D Aellh = hilly = llg = dl; <

K
14 7 12
2 e ;Ak Ak — Pl -

2
k=

This is the claimed quadratic bound.

D.4.7 Proof of Proposition D.2

Throughout this proof, condition on the Ek In particular, all expectations and variances are condi-
tioned on hy. Recall from Eq. (32) that for any > 0

Gr(r;h) = | J (G —gl)nrBy.,

SES
and from Eq. (36) that

My(r) = {(s,g) :s€8,9g—g. € Qk(r;ﬁ)}.

The first part of this proof is mostly standard and follows the same proof structure as Lemma D.9.
Define the random variables

Zy(r) == sup (di(g; hr) — di(g-; b)) — (di(g; hi) — dk(9;§/f\lk))’
(s,9) €M (1)
1 o -
= sup o D (i (XF), g(XF)) = (i (XF), g (XF)))
(s,9)EMi(r) [+VE 1

— B0, (i (X"), g(X*)) — ek<ﬁk<x’“>,gg<xk>>>|

which are the suprema of an empirical processes over the function classes for k € [K]

{25 (@), 9(a)) - @), g (@) : (5.9) € Mu(r)}

By Assumption 1, these function classes are uniformly bounded by B;, > 0. Hence, by Talagrand’s
concentration inequality (Lemma E.3), for any choice of deterministic radii 1, ...,rx > 0, the event

(e k) = Ak € [K]: Zi(ry) < 2B [Zi(r)] + V2 o) log(K/9) | 5 By log(K/0)

Ny, Ny

holds with probability at least 1 — . Here o7 (ry) is a short-hand for the variance proxy from
Lemma E.3, defined in this section as

of(r) = sup  Var [l(e(X*), g(X*)) — e (hir(X"), gL (X)) -
(s,9)EM(r)

We now bound E [Z(r)] and o7 (r). Using symmetrization (Lemma E.5) in addition to vector
contraction (Lemma E.4), recalling that /; is Lj-Lipschitz w.r.t. /3-norm in its second argument, we
can bound

E([Zy(r)] < 6LyR% (Gi(r;h))  and  o2(r) < Lir’.
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Therefore, we get on the event Q3" (1, ..., rx) that
~ log(K/d log(K/d
Zi(r) < 12L3R% (G(r; h)) + V2Lyry LEV/ ) +63k70ggv/ ),
k k

Define
U, := inf {r >0:r2> m’;vk(gk(r;h))} .

By Lemma D.8, which holds under Assumption 2, we get that for any > u,

R, (Gu(r; b)) . m’;vggﬁwk;ﬁ)) <

r ug

Therefore, if ry, > ﬁk for all k, on the event Q};“(rl, ..., Tx) (which holds with probability at least
1 — 0), it holds that for all k € [K],

a(R/0) 5, B _ 1, 5),

Z < 12L;riu 2L
k(rk) < ETEU T f kTk N, N,

We now come to the part of the proof that is less standard. Consider the family of random radii
ri=gs =gl seS.
We perform a peeling argument to bound the probabilities of the two events
Wit == {3k € [K]: Zp(uy,) > V(uy,0)}
o i={Fke[K],s€S,9€G: lg—gilly 2w, and Ze(llg — g4ll) = 3Px(llg — gilly, 0}

Remark 2. Contrary to Remark 1, here we include the case where the radii are small, because we
have to control all K radii simultaneously. One could also adapt the following proof without this
case, but the resulting bound would be the same (up to constants).

By the previous derivations, P (Wﬁg) < ¢, and for Wj'} we apply a peeling argument. Because
llg — g5l < diamy. (Y) =: D, we know that for any M satisfying

oMy, > D <« M >log(D/u,)/log(2),

and for any ||g — g, ||,, > 1, there must be at least one 0 < m < M so that 2!, < |lg — gL ||, <
Qmﬁk. Moreover, a calculation shows that the functions W, satisfy

VO<m<M: 302" 1, 6) > Uy (2™, 6/2™)

for small enough J, which yields that

P (W5%) :]P( U {3k € [K],s€8S,9e€G: 2" "u, < |lg—g.ll, < 2™,
me[M]

and Zx(|lg — gill,) > 3Pk(|lg — géllkﬁ)})

< > P(Fk e (K] Zi(2MTy) = 30427 'y, 0))

_ - (a) b
< Y P@EkE[K]: Ze(2M) = U270, 6/27) < Y o <4
me[M] me[M]

where in (a) we used that P(Qg%m&mﬁl, ..,2™ug)) > 1 —§/2™. Combining the two with a
union bound yields P ((W(}:g)c N (W(}”f)c) > 1 —26. Condition on (W3'5)° N (Wgh)e.
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By the standard risk decomposition, we get forall s € S
ds(Gs; h) — ds(gli h) = do(Gs; B) — do(Gas B) + da(Ga; h) — da(gls h) +da(gli h) — ds(gl; )
<0
< dy(Go; h) — ds(Go; h) + ds (gl h) — dy(gl; )
= d AS;B —JAS;E d, S;fAL —d ;/l\z
8(( k(Gs; i) — di(Gs; hi) + di(gs; hi) — di(g k>)ke[K])

< s ((Z0(ri)) e (43)

Further, by the “multi-objective Bernstein condition” ||gs — ¢, ||§ < %(ds (Gs; ﬁ) —ds(9gs; lAL)) implied
by the second item from Assumption 2, and Eq. (43),

—~ 2
r2i=s((r5)% ..., (1%)?) = |[9s — o217

(4@ = il ) < 25 ((ZelriDpernn) -

On the event (W§5) N (W), we thus get for every s = sy” € S

2<i Y NG+ Y M3UE,0)
v kg <uy krrg>u,
1 K K
< - < AW (1, 8) + Zx\k?)\llk(ri,é)) .
v k=1 k=1

We can simplify the first term using ab < %(a2 +b?) as

K K
1 ~ 1 ~ ~  [log(K/d log(K/§
; E )\k‘llk(uk,é) = ; E Ak 12Lkui + \@Lkuk Ogﬁ\fk/ ) + 3By Ogg\fk/ )
k=1 k=1

x|

1 - log(K/5)>
< =Y N [ 13L402 + (L 4+ 3By) —————2 ) =: b, 1.
<33 (mait + (1 amPEG !

Plugging this into the bound on 72 yields

K
1 N log(K /6 log(K /6
r2 < > 3" A [ 36Lurfii, + 5Lir %}C/) n 18Bk%’c/) + by
k=1
= li (VA7) |V | 36L4iy + 5L log(X/0) +183iA Bylos(K/0) |,
-5 2 k- Tk k kU k Ny 5 2 k N, 5,1
=:ar ::bs,2
s 12, g 1/2
<= Z/\k(r,if) (Z /\ka£> +bs1 +bs2
7 (k_l k=1 —
Ko 1/2
=T ZAk ,yk +bg
k=1
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where the last inequality is Cauchy-Schwarz. Some algebra shows that 2 < r,a, + by implies
r2 < 2(a? + b,), and so

K 2
1 ~ log(K/9) Ly -
2 2
ry <2 E Me| —= [ 36Lgu, + 5L | ———= + 13—u
— <W2 ( F N, v

+(Lk+3BmlmﬂkV®_+183kby37®>

v Ni ¥ N,
K
L2 Lk ~ L2 Lk Bk log(K/d)

< )\k<<k+>u2+<k++) )

,; ¥y oy ) N

K

L3, (L} By log(K/s)

SNCHCRED

,; A2y Ny,

where in the last line we used Ly, /v > 1. Therefore, because P ((WES)C N (W;?)C) >1-29, we
have that P (E§™) > 1 — §, where
K
. L2 L? By log(2K/6)
EM.={Vs=si"e§: ||§s—gg||§§ Ak (ku2+ (k—i—) ) ,
? { A kz_l Py N
which concludes the proof of this part.

D.4.8 Proof of Proposition D.3

Recall that A = sup,cs [|gs — 4. For every » > 0, we have the following key inclusion
G'(r) CG(r+A)+{gs —g;:s €S}
To see that, leth =g — g, € G'(r). Then h + (¢, — gs) = g — gs and ||h + (g- — gs)|| < r + A.
Because Rademacher complexity is sub-additive, we get that for all » > 0
R (G'(r) <R (Gr+A) +{gs — g : s €S})

<R, (G(r+A)) + Ry ({95 — g4 - 5 € S})

<R (G(r+4)) + R (9(4))
where in the last step we used that

—{9s—9gi:s€Sy={gs —g:: 5 €S} CG(A).
Using that for all » > u we have R,, (G(r)) < r?, we get that
R (G'(u+A)) <Ry (G(u+24)) + R, (G(A)) < (u+24)% + R, (G(A))

and using that r — 2R, (G(r)) /r is non-increasing (by Assumption 2 and Lemma D.8), we get that

R (G(A) < T ZP0 (Glu+ A)) < Alu+A),
which together yields
R, (G (u+A) < (u+2A)°+Alu+ A).

Again, by the fact that » — R, (G'(r)) /r is non-increasing (Lemma D.8), we get that for all
r>u+A

%, (0'(r) < 5P

In particular, for the choice 7 = 5(u + A)

R, (' (5(u+A))) < % ((u+2A)* + Au+A))

=5(u+A)2%+2(u+A)A+ A%+ A(u+A))
<5(5(u +A)%)
= (5(u+A4))

which implies that t < 5(u + A), completing the proof.

R, (G'(u+A)) < " . ((u+2A)° + A(u+ A))

+A
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E Auxiliary results

Lemma E.1 (Lipschitz continuity of Bregman divergences). Assume dlam” 1Y) =
sup, ey |y — ¥'|| < oo and that ¢ is v-smooth w.rt. ||-|| and [V ¢(x) — Vo(2)||, < M ||z — z||
Then D is Lipschitz continuous in both of its arguments separately, that is, for all x y, z we have

v .
[Ds(y,2) = Da(z,2)| < (5 + M) diaany ) ly = =11

v .
[Ds(y,2) = Da(y, )| < (5 + M) diamy (V) o = 2]

Proof. This follows from the three-point identity: First,
1D (y,2) = Doz, )| = 1Do(y, 2) = (y = 2, Vo() = Vo(2))|
174
< 2y =212+ lly = 21 1V6(2) = Vo(2)l.,

v 2
5 ly =2l +2M [ly — 2| |z — 2|

(% + M) diam”.H(y) Hy - Z”

IN

IN

and second, by the same argument,
[Dg(y, ) = Do(y, 2)| = [Dg(2,2) — (y — 2, Vo(z) — Vo (2))|
v
Sllz =l + Iy = 2 19(@) - Vo(:)ll,

v 2
5 Iz =2l +2M Iy — 2|l |z — 2|

INIA

IN

v .
(5 + M) diamy () 1z =]
which concludes the proof. O

E.1 Concentration inequalities

Lemma E.2 (Consequence of McDiarmid’s inequality [41]). Let F be a function class of measurable
functions X — R that is B-bounded, sup,c  |f(x)| < B forall f € F, and X, X1,..., X, bei.id.
random elements in X. Define

= sup
ferF|n

Zf X))

Then it holds that
IP><|Z—E[Z]| <B W) > 126

n

The proof can be found, for instance, in [61, 54]. A significant improvement over Lemma E.2 is
Talagrand’s concentration inequality, stated next.

Lemma E.3 (Talagrand’s concentration inequality [58]). Let F be a countable function class of
measurable functions X — R that is B/2-bounded, sup,cy |f(x)| < B/2 forall f € F, and
Xi,..., X, bei.id. random elements in X. Define

Zf f(X1)]

Then it holds that
IP’<Z§2E[ |+ v3y ) 1oe(1/0) 3Blog(1/5)>215.

and o*(F) = sup’E [(£(X) ~B[(X0)])"] < B

= sup
fer

n n
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E.2 Rademacher complexities

While there are multiple notions of Rademacher complexity for vector-valued functions [48], our
choice of Rademacher complexity in this work is motivated by the following contraction inequality,
which is used multiple times in our proofs.

Lemma E.4 (Vector contraction, Theorem 3 in [40] adapted for Rademacher complexities with
absolute values). Let H be a class of functions X — Y C R%. Assume that ¢ :' Y x Y — R is
L-Lipschitz continuous in its second argument with {s-norm in RY, that is,

Yy, vy €V 1y, y") =y, y") < LIy = 4",
Then it holds for £ o H := {(x,y) — L(y, h(z)) : h € H} that

R, (LoH) < 2V2LR, (H) < 3LR, (H),

where $R,, denotes the coordinate-wise Rademacher complexity.

This contraction inequality crucially relies on the ¢2-Lipschitz continuity. If the loss exhibits more
favourable Lipschitz continuity, e.g., with respect to an ¢,-norm with p > 2, then our results can
readily be adapted to use other contraction inequalities [23].

We now state two more well-known results from learning theory appearing throughout the manuscript,
solely for convenience purposes.

Lemma E.5 (Symmetrization in expectation, e.g., Theorem 4.10 in [61]). Let F be a class of
functions X — Randn € N. Let X1, ..., X, bei.id. samplesin X. Then

n

LS px) —Elf(x)]

n -
=1

E |sup

fer

] <2, (F).

Lemma E.6 (VC Bounds, [9, 81). Suppose that H consists of functions X — {0, 1} and that H has
VC dimension dy € N. Let n > dy. Then there exists a constant C' > 0 so that the Rademacher
complexity of H with respect to any distribution on X is bounded as

m(%)mm{wﬁﬁ}

If H consists of functions X — [— B, B] and has VC-subgraph dimension (a.k.a. pseudo-dimension)
dy € N, then there exists a constant C' > 0 such that the Rademacher complexity of H with respect
to any distribution on X is bounded as

%L(H)Smm{w [2xlog(en/d) (. /da},
n n

Moreover, for the L?-norm ball of functions with the same distribution . as the Rademacher complex-
ity, B = {f € L?(p) : Hf||L2(H) < 1}, let p :=inf {r > 0: 1% > R, (H NrB)}. Then there exists
a constant C' > 0 so that

dy log(en/dy)

p? < ¢ OB,
n
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F Table of Notations

Table 2: Notation

Symbol Definition
L, Dy loss / Bregman divergence: ) x Y — R
Ru(f)  risk: B[(Y*, F(X5)
Ri(f) empirical risk: - Y7, £ (Y, f(XF))
Ek(f) excess risk: Ry (f) —infrer,, Ri(f)
Ts(f) s-trade-off: s(&1(f),...,Ex(f))
— excess s-trade-off: 7;(f) — infyeg T5(9)
di(f;h) risk discrepancy: E[¢x (h(X%), f(X*))]
dy (f;h) empirical risk discrepancy: Nik Zf\]:kl &g(h()?lk), f(Xf))
ds(f; h) scalarized discrepancy: s(dy1(f;h1),...,dx(f;hK))
c/l\s(f; h) empirical scalarized discrepancy: 5(671 (fih1)y...y JK(f; hi))
‘f: = g;:)ke[K] Bayes-optimalAmodels: fr =argmingcx  Ri(f)
h = (hk)ke[K] ERMs in Hkl hk = arg minher ﬁk(h)
Js Pareto set in G: arg min g ds(g; f7)
qg. helper Pareto set in G: arg min ¢ d;(g; h)
Js our estimator: arg min ¢ d;(g; h)
sin linear scalarization: Y1, Ay,
sy Tchebycheff scalarization: maxyc(g] Akvk
B¢ {1-ball: {v e R4 : v, < 1}
B¢ lo-ball: {v € RY: v < 1}
B4, loo-ball: {v € RY: ||lv]|o < 1}
diamy. (A) diameter of the set A C R%: sup {||z — y|| : =,y € A}
RE Rademacher complexity w.r.t. distribution k£ and n samples
[y, critial radii from Eq. (11)
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