
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LINEAR MODE CONNECTIVITY IN DIFFERENTIABLE
TREE ENSEMBLES

Anonymous authors
Paper under double-blind review

ABSTRACT

Linear Mode Connectivity (LMC) refers to the phenomenon that performance
remains consistent for linearly interpolated models in the parameter space. For in-
dependently optimized model pairs from different random initializations, achieving
LMC is considered crucial for understanding the stable success of the non-convex
optimization in modern machine learning models and for facilitating practical
parameter-based operations such as model merging. While LMC has been achieved
for neural networks by considering the permutation invariance of neurons in each
hidden layer, its attainment for other models remains an open question. In this
paper, we first achieve LMC for soft tree ensembles, which are tree-based differen-
tiable models extensively used in practice. We show the necessity of incorporating
two invariances: subtree flip invariance and splitting order invariance, which do
not exist in neural networks but are inherent to tree architectures, in addition to
permutation invariance of trees. Moreover, we demonstrate that it is even possible
to exclude such additional invariances while keeping LMC by designing decision
list-based tree architectures, where such invariances do not exist by definition. Our
findings indicate the significance of accounting for architecture-specific invariances
in achieving LMC.

1 INTRODUCTION

A non-trivial empirical characteristic of modern machine learning models trained using gradient
methods is that models trained from different random initializations could achieve nearly identical
performance, even though their parameter representations differ. If the outcomes of all training
sessions converge to the same local minima, this empirical phenomenon can be understood. However,
considering the complex non-convex nature of the loss surface, the optimization results are unlikely
to converge to the same local minima. In recent years, particularly within the context of neural
networks, the transformation of model parameters while preserving functional equivalence has been
explored by considering the permutation invariance of neurons in each hidden layer (Hecht-Nielsen,
1990; Chen et al., 1993). Notably, only a slight performance degradation has been observed when
using weights derived through linear interpolation between permuted parameters obtained from
different training processes (Entezari et al., 2022; Ainsworth et al., 2023). This demonstrates that the
trained models reside in different, yet equivalent, local minima. This situation is referred to as Linear
Mode Connectivity (LMC) (Frankle et al., 2020). From a theoretical perspective, LMC is crucial for
understanding the stable and successful application of non-convex optimization. As noted by Entezari
et al. (2022) and Ainsworth et al. (2023), achievement of LMC suggests that loss landscapes often
contain (nearly) a single basin after accounting for all possible invariances, which can be an intuitive
reason for the robustness of gradient methods to different random initialization and data batch orders.
In addition, LMC also holds significant practical importance, enabling techniques such as model
merging (Wortsman et al., 2022; Ortiz-Jimenez et al., 2023) by weight-space parameter averaging.

Although neural networks are most extensively studied among the models trained using gradient
methods, other models also thrive in real-world applications. A representative is decision tree ensem-
ble models, such as random forests (Breiman, 2001). A decision tree ensemble makes predictions by
combining the outputs of multiple trees that recursively split the data into subsets at each node and
make final predictions at their leaves. While they are originally trained by not gradient but greedy
algorithms, their differentiable variant, called soft tree ensembles, which learn parameters of the
entire model through gradient-based optimization, have recently been actively studied. Not only

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

empirical studies regarding accuracy and interpretability (Popov et al., 2020; Hazimeh et al., 2020;
Chang et al., 2022), but also theoretical analyses have been performed (Kanoh & Sugiyama, 2022;
2023). Moreover, the differentiability of soft trees allows for integration with various deep learning
methodologies, including fine-tuning (Ke et al., 2019), dropout (Srivastava et al., 2014), and various
stochastic gradient descent methods (Kingma & Ba, 2015; Foret et al., 2021). Furthermore, the
soft tree represents the most elementary form of a hierarchical mixture of experts (Jordan & Jacobs,
1993; Shazeer et al., 2017; Lepikhin et al., 2021). Investigating soft tree models not only advances
our understanding of this particular structure but also contributes to broader research into essential
technological components critical for the development of large-scale models (Jiang et al., 2024).

22

Only Permutation

Ours

Target

Origin

Figure 1: A representative experimental result on
the MiniBooNE (Roe, 2010) dataset (left) and con-
ceptual diagram of LMC for tree ensembles (right).

A research question that we tackle in this paper
is: “Can LMC be achieved for soft tree ensem-
bles?”. While achieving LMC has advanced the
understanding of non-convex optimization and
the use of model merging in neural networks,
it has yet to be explored in tree ensemble mod-
els. The reasons behind achieving LMC, even in
neural networks, are not fully understood, and
whether LMC can be realized in soft tree ensem-
bles, given their distinct architectures, is also
unclear. Thus, our contribution of examining
LMC in soft tree ensembles provides not only
novel insights and techniques for tree ensemble
models but also broadens the understanding of
the LMC phenomenon by introducing perspec-
tives beyond neural networks for the first time.

Our results, which are highlighted with a green line in the top left panel of Figure 1, clearly show
that the answer to our research question is “Yes”. This plot shows the variation in test accuracy
when interpolating weights of soft oblivious trees, perfect binary soft trees with shared parameters at
each depth, trained from different random initializations. The green line is obtained by our method
introduced in this paper, where there is almost zero performance degradation. Furthermore, as shown
in the bottom left panel of Figure 1, the performance can even improve when interpolating between
models trained on split datasets.

The key insight is that, when performing interpolation between two model parameters, considering
only tree permutation invariance, which corresponds to the permutation invariance of neural networks,
is not sufficient to achieve LMC, as shown in the orange lines in the plots. An intuitive understanding
of this situation is also illustrated in the right panel of Figure 1. To achieve LMC, that is, the green
lines, we show that two additional invariances beyond tree permutation, subtree flip invariance and
splitting order invariance, which inherently exist for tree architectures, should be accounted for.

Moreover, we demonstrate that it is possible to exclude such additional invariances while preserving
LMC by modifying tree architectures. We realize such an architecture based on a decision list, a
binary tree structure where branches extend in only one direction. By designating one of the terminal
leaves as an empty node, we introduce a customized decision list that omits both subtree flip invariance
and splitting order invariance, and empirically show that this can achieve LMC by considering only
tree permutation invariance. Since incorporating additional invariances is computationally expensive,
we can efficiently perform weight-space averaging in model merging on our customized decision
lists.

Our contributions are summarized as follows:

• First achievement of LMC for tree ensembles with additional invariances beyond tree permutation.
• Development of a decision list-based architecture that does not involve additional invariances.
• A thorough empirical investigation of LMC across various tree architectures, invariances, and

real-world datasets.

2 PRELIMINARY

We prepare the basic concepts of LMC and soft tree ensembles.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.1 LINEAR MODE CONNECTIVITY

Let us consider two models, A and B, that have the same architecture. In the context of evaluating
LMC, the concept of a “barrier” is frequently used (Ainsworth et al., 2023; Guerrero Peña et al.,
2023). Let ΘA and ΘB be parameters of models A and B, respectively. Their shapes can be
defined arbitrarily. In this paper, for tree ensemble models, ΘA,ΘB ∈ RM×P for the number P
of parameters per tree and the number M of trees. Assume that C : RM×P → R measures the
performance of the model, such as accuracy. If higher values of C(·) mean better performance, the
barrier between two parameter vectors ΘA and ΘB is defined as:

B(ΘA,ΘB) = sup
λ∈[0,1]

[λC(ΘA) + (1− λ)C(ΘB)− C(λΘA + (1− λ)ΘB)] . (1)

We can simply reverse the subtraction order if lower values of C(·) mean better performance like loss.

Several techniques have been developed to reduce barriers by transforming parameters while pre-
serving functional equivalence. Two main approaches are activation matching (AM) and weight
matching (WM). AM takes the behavior of model inference into account, while WM simply com-
pares two models using their parameters. The validity of both AM and WM has been theoretically
supported by Zhou et al. (2023). Numerous algorithms are available for implementing AM and WM.
For instance, Ainsworth et al. (2023) uses a formulation based on the Linear Assignment Problem
(LAP), also known as finding the minimum-cost matching in bipartite graphs, to determine suitable
permutations. Guerrero Peña et al. (2023) employs a differentiable formulation that allows for the
optimization of permutations using gradient-based methods.

Existing research has focused exclusively on neural networks such as multi-layer perceptrons (MLP)
and convolutional neural networks (CNN). No study has been conducted for soft tree ensembles.

2.2 SOFT TREE ENSEMBLE

Unlike typical hard decision trees, which explicitly determine the data flow to the right or left at each
splitting node, soft trees represent the proportion of data flowing to the right or left as continuous
values between 0 and 1. This approach enables a differentiable formulation. We use a sigmoid
function, σ : R→ (0, 1) to formulate a function µm,ℓ(xi,wm, bm) : RF ×RF×N ×R1×N → (0, 1)
that represents the proportion of the ith data point xi flowing to the ℓth leaf of the mth tree as a result
of soft splittings:

µm,ℓ(xi,wm, bm)=

N∏
n=1

σ(w⊤
m,nxi + bm,n)︸ ︷︷ ︸
flow to the left

1ℓ↙n
(1− σ(w⊤

m,nxi + bm,n))︸ ︷︷ ︸
flow to the right

1n↘ℓ
, (2)

where N denotes the number of splitting nodes in each tree. The parameters wm,n ∈ RF and
bm,n ∈ R correspond to the feature selection mask and splitting threshold value for nth node in a
mth tree, respectively. The expression 1ℓ↙n (resp. 1n↘ℓ) is an indicator function that returns 1 if the
ℓth leaf is positioned to the left (resp. right) of a node n, and 0 otherwise.

If parameters are shared across all splitting nodes at the same depth, such perfect binary trees are
called oblivious trees. Mathematically, wm,n = wm,n′ and bm,n = bm,n′ for any nodes n and n′ at
the same depth in an oblivious tree. Oblivious trees can significantly reduce the number of parameters
from an exponential to a linear order of the tree depth, and they are actively used in practice (Popov
et al., 2020; Chang et al., 2022).

23

Inner Node
 　

Leaf Leaf

Output

 Input

Figure 2: A soft decision tree with a
single inner node and two leaf nodes.

To classify C categories, the output of the mth tree is
computed by the function fm : RF × RF×N × R1×N ×
RC×L → RC as sum of the leaves πm,ℓ weighted by the
outputs of µm,ℓ(xi,wm, bm):

fm(xi,wm, bm,πm) =

L∑
ℓ=1

µm,ℓ(xi,wm, bm)πm,ℓ,

(3)
where L is the number of leaves in a tree. To facilitate
understanding, the formulation for tree depth is D = 1 is
illustrated in Figure 2.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Reordering

Leaf Swap
Subtree Flip

Inequality Sign Flip

(b) Subtree flip invariance (c) Splitting order invariance(a) Tree permutation invariance

Tree Permutation

Figure 3: Invariances inherent to tree ensembles.

If µm,ℓ(xi,wm, bm) takes the value of 1.0 for one leaf and 0.0 for the others, the leaf value itself
becomes the prediction output, making the model behavior equivalent to that of a standard oblique
decision tree (Murthy et al., 1994).

By combining this function for M trees, we realize the function f : RF ×RM×F×N ×RM×1×N ×
RM×C×L → RC as an ensemble model consisting of M trees:

f(xi,w, b,π) =

M∑
m=1

fm(xi,wm, bm,πm), (4)

with the trainable parameters w = (w1, . . . ,wM), b = (b1, . . . , bM), and π = (π1, . . . ,πM) being
randomly initialized.

As shown in Equation 4, tree ensembles exhibit permutation invariance when the order of the M
trees is rearranged, similar to the permutation invariance observed in the hidden neurons of neural
networks. However, as discussed in the next section, tree ensembles exhibit several other types of
invariance beyond permutation, setting their behavior apart from that of neural networks. In addition
to these invariances, there are several key differences between tree ensembles and neural networks.
Due to the hierarchical binary tree structure, the influence of each node parameter on the overall
model depends on its node position. Moreover, unlike neural networks, tree ensembles lack the
concept of activation and intermediate layers. These factors make it challenging to directly apply the
matching strategies used for neural networks to achieve LMC.

3 INVARIANCES INHERENT TO TREE ENSEMBLES

In this section, we discuss additional invariances inherent to trees (Section 3.1) and introduce a
matching strategy specifically for tree ensembles (Section 3.2). We also show that the presence of
additional invariances varies depending on the tree structure, and we present tree structures where no
additional invariances beyond tree permutation exist (Section 3.3).

3.1 PARAMETER MODIFICATION PROCESSES

When we consider perfect binary trees, there are three types of invariance:

• Tree permutation invariance. In Equation 4, the behavior of the function does not change even if
the order of the M trees is altered, as shown in Figure 3(a). This corresponds to the permutation of
hidden neurons in neural networks, which has been a subject in previous studies on LMC.

• Subtree flip invariance. When the left and right subtrees are swapped simultaneously with the
inversion of the inequality sign at the split, the functional behavior remains unchanged, which we
refer to subtree flip invariance. Figure 3(b) presents a schematic diagram of this invariance, which
is not found in neural networks but is unique to binary tree-based models. Since σ(−c) = 1− σ(c)
for c ∈ R due to the symmetry of sigmoid, the inversion of the inequality is achieved by inverting
the signs of wm,n and bm,n. Yadav et al. (2023) also focused on the sign of weights, but in a
different way from ours. They pay attention to the amount of change from the parameters at the
start of fine-tuning, rather than discussing the sign of the parameters.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

• Splitting order invariance. Oblivious trees share parameters at the same depth, which means
that the decision boundaries are straight lines without any bends. With this characteristic, even if
the splitting rules at different depths are swapped, functional equivalence can be achieved if the
positions of leaves are also swapped appropriately as shown in Figure 3(c). This invariance does
not exist for non-oblivious perfect binary trees without parameter sharing, as the behavior of the
decision boundary varies depending on the splitting order.

Note that MLPs also have an additional invariance beyond just permutation. Particularly in MLPs
that employ ReLU as an activation function, the output of each layer changes linearly with a zero
crossover. Therefore, it is possible to modify parameters without changing functional behavior by
multiplying the weights in one layer by a constant and dividing the weights in the previous layer
by the same constant. However, since the soft tree is based on the sigmoid function, this invariance
does not apply. Previous studies (Entezari et al., 2022; Ainsworth et al., 2023; Guerrero Peña et al.,
2023) have consistently achieved significant reductions in barriers without accounting for this scale
invariance. One potential reason is that changes in parameter scale are unlikely due to the nature of
optimization via gradient descent. Conversely, when we consider additional invariances inherent to
trees, the scale is equivalent to the original parameters.

3.2 MATCHING STRATEGY

1

8

4 4

2 2 2 2

4

3

2

Parameter Sharing Parameter Sharing

Figure 4: Weighting strategy.

When considering subtree flip invariance and
splitting order invariance, it is necessary to
compare multiple functionally equivalent trees
and select the most suitable one for achieving
LMC. Although comparing tree parameters is a
straightforward approach, since the contribution
of all the parameters in a tree is not equal, we
apply appropriate weighting for each node. By
interpreting a tree as a rule set with shared pa-
rameters as shown in Figure 4, we determine the
weight of each splitting node by counting the
number of leaves to which the node affects. For example, in the case of the left example in Figure 4,
the root node affects eight leaves, nodes at depth 2 affect four leaves, and nodes at depth 3 affect two
leaves. This strategy can apply to even trees other than perfect binary trees. For example, in the right
example of Figure 4, the root node affects four leaves, a node at depth 2 affects three leaves, and a
node at depth 3 affects two leaves.

Using the weighting operation described above, we present the straightforward matching procedure
in Algorithms 1 and 2. We perform an exhaustive search to explore all patterns with subtree flip
invariance and splitting order invariance, while handling tree permutation invariance with the LAP.
We treat the output of each individual tree like the activation value of a neural network in the case of
AM. Note that although it is necessary to solve the LAP multiple times for each layer in MLPs to
perform coordinate descent (Ainsworth et al., 2023), tree ensembles require only a single run of the
LAP since there is no concept of intermediate layers.

Notations used in Algorithms 1 and 2. Multidimensional array elements are accessed using square
brackets [·]. For example, for G ∈ RI×J , G[i] refers to the ith slice along the first dimension,
and G[:, j] refers to the jth slice along the second dimension, with sizes RJ and RI , respectively.
Furthermore, it can also accept a vector v ∈ Nl as an input. In this case, G[v] ∈ Rl×J . The
FLATTEN function converts multidimensional input into a one-dimensional vector format. As the
LINEARSUMASSIGNMENT function, scipy. optimize. linear_sum_assignment1 is used to solve the
LAP. In the ADJUSTTREE function, the parameters of a tree are modified according to the uth pattern
among the enumerated U ∈ N total additional invariances patterns. Additionally, in the WEIGHTING
function, parameters are multiplied by the square root of their weights to simulate the process of
assessing a rule set. If the first argument for the UPDATEBESTOPERATION function, the input inner
product, is larger than any previously input inner product values, then u′ is updated with u, the second
argument. If not, u′ remains unchanged.

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.
linear_sum_assignment.html

5

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1: Activation matching for soft tree ensembles

1 ACTIVATIONMATCHING(ΘA ∈ RM×P , ΘB ∈ RM×P , xsampled ∈ RF×Nsampled)
2 Initialize OA ∈ RM×Nsampled×C and OB ∈ RM×Nsampled×C to store outputs
3 for m = 1 to M do
4 for i = 1 to Nsampled do
5 Set the output of the mth tree with ΘA[m] using xsampled[:, i] to OA[m, i].
6 Set the output of the mth tree with ΘB [m] using xsampled[:, i] to OB [m, i].

7 Initialize similarity matrix S ∈ RM×M

8 for mA = 1 to M do
9 for mB = 1 to M do

10 S[mA,mB]← FLATTEN(OA[mA]) · FLATTEN(OB [mB])

11 p← LINEARSUMASSIGNMENT(S) // p ∈ NM : Optimal assignments
12 ΘA,ΘB ←WEIGHTING(ΘA,ΘB)
13 Initialize operation indices q ∈ NM

14 for m = 1 to M do
15 for u = 1 to U do // U ∈ N: Number of possible operations
16 u′ ← UPDATEBESTOPERATION(ADJUSTTREE(ΘA[m], u) ·ΘB [m], u)

17 Append u′ to q // q ∈ NM : Optimal operations
18 return p, q

Algorithm 2: Weight matching for soft tree ensembles

1 WEIGHTMATCHING(ΘA ∈ RM×P , ΘB ∈ RM×P)
2 ΘA,ΘB ←WEIGHTING(ΘA,ΘB)
3 Initialize similarity matrix for each operation S ∈ RU×M×M

4 for u = 1 to U do // U ∈ N: Number of possible operations
5 for mA = 1 to M do
6 θ ← ADJUSTTREE(ΘA[mA], u) // θ ∈ RP : Adjusted tree-wise parameters
7 for mB = 1 to M do
8 S[u,mA,mB]← θ ·ΘB [mB]

9 S′ ← max(S, axis=0) // S′ ∈ RM×M : Similarity matrix between trees
10 p← LINEARSUMASSIGNMENT(S′) // p ∈ NM : Optimal assignments
11 q ← argmax(S, axis=0)[p] // q ∈ NM : Optimal operations
12 return p, q

Complexity. The time complexity of solving the LAP is O(M3) using a modified Jonker-Volgenant
algorithm without initialization (Crouse, 2016), where M is the number of trees. This process needs
to be performed only once in both WM and AM to consider tree permutation invariance. However, the
number of additional invariance patterns U scales rapidly as D increases. In a non-oblivious perfect
binary tree with depth D, there are 2D − 1 splitting nodes, resulting in 22

D−1 possible combinations
of sign flips, giving total additional invariances pattern U = 22

D−1. Additionally, in the case of
oblivious trees with depth D, the number of splitting rules that consider sign flipping is reduced
from 22

D−1 to 2D due to the splitting rule sharing at the same depth, and considering the D! distinct
splitting order invariance patterns, we have U = 2DD!. Therefore, for large values of D, conducting
an exhaustive search to consider additional invariances becomes impractical.

In Section 3.3, we will discuss methods to eliminate additional invariance by adjusting the tree
structure. This enables efficient matching even for deep models. Additionally, in Section 4.2, we
will present numerical experiment results and discuss that the practical motivation to apply these
algorithms is limited when targeting deep perfect binary trees.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.3 ARCHITECTURE-DEPENDENCY OF THE INVARIANCES

6

Invariance exists Empty Node

Figure 5: Tree architecture where neither subtree
flip invariance nor splitting order invariance exists.

In Section 3.1, we focused on perfect binary
trees as they are most commonly used in soft
trees (Frosst & Hinton, 2017; Popov et al., 2020;
Hazimeh et al., 2020). However, tree architec-
tures can be flexible, and we show that we can
specifically design architecture that has neither
subtree flip nor splitting order invariances. This
allows efficient matching as considering such
two invariances is computationally expensive.

Table 1: Invariances inherent to each model archi-
tecture.

Perm Flip Order

Non-Oblivious Tree ✓ ✓ ×
Oblivious Tree ✓ ✓ ✓
Decision List ✓ (✓) ×

Decision List (Modified) ✓ × ×

Our idea is to modify a decision list shown on
the left side of Figure 5, which is a tree structure
where branches extend in only one direction.
Due to this asymmetric structure, the number of
parameters does not increase exponentially with
the depth, and the splitting order invariance does
not exist. Moreover, subtree flip invariance also
does not exist for any internal nodes except for
the terminal splitting node, as shown in the left
side of Figure 5. To completely remove this invariance, we virtually eliminate one of the terminal
leaves by leaving the node empty, that is, a fixed prediction value of zero, as shown on the right
side of Figure 5. Therefore only permutation invariance exists for our proposed architecture. We
summarize invariances inherent to each model architecture in Table 1.

4 EXPERIMENT

We empirically evaluate barriers in soft tree ensembles to examine LMC.

4.1 SETUP

Datasets. In our experiments, we employed Tabular-Benchmark (Grinsztajn et al., 2022), a collection
of tabular datasets suitable for evaluating tree ensembles. Details of datasets are provided in Section A
in Appendix. As proposed in Grinsztajn et al. (2022), we randomly sampled 10, 000 instances for
train and test data from each dataset. If the dataset contains fewer than 20, 000 instances, they are
randomly divided into halves for train and test data. We applied quantile transformation to each
feature and standardized it to follow a normal distribution.

Hyperparameters. We used three different learning rates η ∈ {0.01, 0.001, 0.0001} and adopted
the one that yields the highest training accuracy for each dataset. The batch size is set at 512. It is
known that the optimal settings for the learning rate and batch size are interdependent (Smith et al.,
2018). Therefore, it is reasonable to fix the batch size while adjusting the learning rate. During
AM, we set the amount of data used for random sampling to be the same as the batch size, thus
using 512 samples to measure the similarity of the tree outputs. As the number of trees M and their
depths D vary for each experiment, these details will be specified in the experimental results section.
During training, we minimized cross-entropy using Adam (Kingma & Ba, 2015) with its default
hyperparameters2. Training is conducted for 50 epochs. To measure the barrier using Equation 1,
experiments were conducted by interpolating between two models with λ ∈ {0, 1/24, . . . , 23/24, 1},
which has the same granularity as in Ainsworth et al. (2023).

Randomness. We conducted experiments with five different random seed pairs: rA ∈ {1, 3, 5, 7, 9}
and rB ∈ {2, 4, 6, 8, 10}. As a result, the initial parameters and the contents of the data mini-batches
during training are different in each training. In contrast to spawning (Frankle et al., 2020) that
branches off from the exact same model partway through, we used more challenging practical
conditions. The parameters w, b, and π were randomly initialized using a uniform distribution,
identical to the procedure for a fully connected layer in the MLP3.

2https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
3https://pytorch.org/docs/stable/generated/torch.nn.Linear.html

7

https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.nn.Linear.html

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Naive Perm Perm&Flip
0

5

10

15

20

Av
er

ag
ed

 A
cc

ur
ac

y
B

ar
rie

r (
N

on
-O

bl
iv

io
us

) M=256 (Train)

Naive Perm Perm&Flip
0

5

10

15

20
D=2 (Train)

Naive Perm
Perm&Order

Perm&Flip
Perm&Flip&Order

0

5

10

15

20

Av
er

ag
ed

 A
cc

ur
ac

y
B

ar
rie

r (
O

bl
iv

io
us

)

Naive Perm
Perm&Order

Perm&Flip
Perm&Flip&Order

0

5

10

15

20

Naive Perm Perm&Flip
0

5

10

15

20
M=256 (Test)

Naive Perm Perm&Flip
0

5

10

15

20
D=2 (Test)

Naive Perm
Perm&Order

Perm&Flip
Perm&Flip&Order

0

5

10

15

20

D=1, WM
D=2, WM
D=3, WM

D=1, AM
D=2, AM
D=3, AM

Naive Perm
Perm&Order

Perm&Flip
Perm&Flip&Order

0

5

10

15

20

M=64, WM
M=256, WM
M=1024, WM

M=64, AM
M=256, AM
M=1024, AM

Figure 6: Barriers averaged across 16 datasets with respect to considered invariances for non-
oblivious (top row) and oblivious (bottom row) trees. The error bars show the standard deviations of
5 executions.

Interpolation

70

75

A
cc

ur
ac

y

Bioresponse

Interpolation

55

60

Diabetes130US

Interpolation
55

60

65

Higgs

Interpolation

80

85

MagicTelescope

Interpolation

60

80

MiniBooNE

Interpolation

60

70

bank-marketing

Interpolation
75

80

85

california

Interpolation
50

60

70

covertype

Interpolation

70

75

A
cc

ur
ac

y

credit

Interpolation

60

70
default-of-credit-card-clients

Interpolation
60

70

80
electricity

Interpolation

54

56

58

eye_movements

Interpolation

65

70

heloc

Interpolation
75

80

85

house_16H

Interpolation

65

70

jannis

Interpolation

80

90

pol

Naive Tree Permutation Ours

Figure 7: Interpolation curves of test accuracy for oblivious trees on 16 datasets from Tabular-
Benchmark (Grinsztajn et al., 2022). Two model pairs are trained on the same dataset. The error bars
show the standard deviations of 5 executions.

Resources. All experiments were conducted on a system equipped with an Intel Xeon E5-2698
CPU at 2.20 GHz, 252 GB of memory, and Tesla V100-DGXS-32GB GPU, running Ubuntu Linux
(version 4.15.0-117-generic). The reproducible PyTorch (Paszke et al., 2019) implementation is
provided in the supplementary material.

4.2 RESULTS FOR PERFECT BINARY TREES

Figure 6 shows how the barrier between two perfect binary tree model pairs changes in each operation.
The vertical axis of each plot in Figure 6 shows the averaged barrier over datasets for each considered
invariance. The results for both the oblivious and non-oblivious trees are plotted separately in a
vertical layout. The panels on the left display the results when the depth D of the tree varies, keeping
M = 256 constant. The panels on the right show the results when the number of trees M varies, with
D fixed at 2. For both oblivious and non-oblivious trees, we observed that the barrier significantly
decreases as the considered invariances increase. Focusing on the test data results, after accounting for
various invariances, the barrier is nearly zero, indicating that LMC has been achieved. In particular,
the difference between the case of only permutation and the case where additional invariances are
considered tends to be larger in the case of AM. This is because parameter values are not used during
the rearrangement of the tree in AM. Additionally, it has been observed that the barrier increases as
trees become deeper, and the barrier decreases as the number of trees increases. These behaviors
correspond to the changes observed in neural networks when the depth varies or when the width of
hidden layers increases (Entezari et al., 2022; Ainsworth et al., 2023). Figure 7 shows interpolation
curves for AM in oblivious trees with D = 2 and M = 256. In our figures and tables, “Naive” refers
to a straightforward parameter interpolation without any specific optimization; “Tree Permutation”

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Interpolation

60

70

A
cc

ur
ac

y

Bioresponse

Interpolation
50

55

60
Diabetes130US

Interpolation

60

65

Higgs

Interpolation

75

80

85
MagicTelescope

Interpolation

70

80

90

MiniBooNE

Interpolation

70

75

bank-marketing

Interpolation
75

80

85

california

Interpolation
50

60

70

covertype

Interpolation

60

70

A
cc

ur
ac

y

credit

Interpolation

60

70
default-of-credit-card-clients

Interpolation

70

80
electricity

Interpolation

52.5

55.0

57.5
eye_movements

Interpolation

60

70

heloc

Interpolation

80

85

house_16H

Interpolation

65

70

jannis

Interpolation60

80

pol

Naive Tree Permutation Ours

Figure 8: Interpolation curves of test accuracy for oblivious trees on 16 datasets from Tabular-
Benchmark (Grinsztajn et al., 2022). Two model pairs are trained on split datasets with different class
ratios. The error bars show the standard deviations of 5 executions. Performance of a model trained
with the full dataset is shown in the red dashed horizontal lines as a reference.

or “Perm” considers only the permutation invariance; and “Ours” incorporates both the permutation
of the trees and tree-inherent invariances. Other details, such as performance for each dataset, are
provided in Section B in Appendix.

Furthermore, we conducted experiments with split data following the protocol in Ainsworth et al.
(2023) and Jordan et al. (2023), where the initial split consists of randomly sampled 80% negative
and 20% positive instances, and the second split inverts these ratios. There is no overlap between the
two split datasets. We trained two model pairs using these separately split datasets and observed an
improvement in performance by interpolating their parameters. Figure 8 illustrates the interpolation
curves under AM in oblivious trees with parameters D = 2 and M = 256. Through model merging,
it demonstrates similar performance to full data training even with split data training for the majority
of datasets. Note that the data split is configured to remain consistent even when the training random
seeds differ. Detailed results for each dataset using WM or AM are provided in Section B in Appendix.

Table 2: Barriers, accuracies, and model sizes for
MLP, non-oblivious trees, and oblivious trees.

MLP

BarrierDepth

Naive Perm
Accuracy Size

1 8.755 ± 0.877 0.491 ± 0.062 76.286 ± 0.094 12034
2 15.341± 1.125 2.997 ± 0.709 75.981 ± 0.139 77826
3 15.915 ± 2.479 5.940 ± 2.153 75.935 ± 0.117 143618

Non-Oblivious Tree

BarrierDepth

Naive Perm Ours
Accuracy Size

1 8.965 ± 0.963 0.449 ± 0.235 0.181 ± 0.078 76.464 ± 0.167 12544
2 6.801 ± 0.464 0.811 ± 0.333 0.455 ± 0.105 76.631 ± 0.052 36608
3 5.602 ± 0.926 1.635 ± 0.334 0.740 ± 0.158 76.339 ± 0.115 84736

Oblivious Tree

BarrierDepth

Naive Perm Ours
Accuracy Size

1 8.965 ± 0.963 0.449 ± 0.235 0.181 ± 0.078 76.464 ± 0.167 12544
2 7.881 ± 0.866 0.918 ± 0.092 0.348 ± 0.172 76.623 ± 0.042 25088
3 7.096 ± 0.856 1.283 ± 0.139 0.484 ± 0.049 76.535 ± 0.063 38656

Table 2 compares the average test barriers of an
MLP with a ReLU activation function, whose
width is equal to the number of trees, M = 256.
The procedure for MLPs follows that described
in Section 4.1. The permutation for MLPs
is optimized using the method described in
Ainsworth et al. (2023). Since Ainsworth et al.
(2023) indicated that WM outperforms AM in
neural networks, WM was used for the com-
parison. Overall, tree models exhibit smaller
barriers compared to MLPs while keeping sim-
ilar accuracy levels. It is important to note that
MLPs with D > 1 tend to have more parameters
at the same depth compared to trees, leading to
more complex optimization landscapes. Nev-
ertheless, the barrier for the non-oblivious tree
at D = 3 is smaller than that for the MLP at
D = 2, even with more parameters. Further-
more, at the same depth of D = 1, tree models
have a smaller barrier. Here, the model size is
evaluated using F = 44, the average input feature size of 16 datasets used in the experiments.

In Section 3.2, we have shown that considering additional invariances for deep perfect binary trees
is computationally challenging, which may suggest developing heuristic algorithms for deep trees.
However, we consider it is rather a low priority, supported by our observations that the barrier tends
to increase as trees deepen even if we consider invariances. This trend indicates that deep models
are fundamentally less important for model merging considerations. Furthermore, deep perfect
binary trees are rarely used in practical scenarios. Kanoh & Sugiyama (2022) have demonstrated
that generalization performance degrades with increasing depth in perfect binary trees due to the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Barriers averaged for 16 datasets under WM with D = 2 and M = 256.
Train Test

Barrier BarrierArchitecture

Naive Perm Ours
Accuracy

Naive Perm Ours
Accuracy

Non-Oblivious Tree 13.079 ± 0.755 4.707 ± 0.332 3.303 ± 0.104 85.646 ± 0.090 6.801 ± 0.464 0.811 ± 0.333 0.455 ± 0.105 76.631 ± 0.052
Oblivious Tree 14.580 ± 1.108 4.834 ± 0.176 2.874 ± 0.108 85.808 ± 0.146 7.881 ± 0.866 0.919 ± 0.093 0.348 ± 0.172 76.623 ± 0.042
Decision List 13.835 ± 0.788 3.687 ± 0.230 — 85.337 ± 0.134 7.513 ± 0.944 0.436 ± 0.120 — 76.629 ± 0.119

Decision List (Modified) 12.922 ± 1.131 3.328 ± 0.204 — 85.563 ± 0.141 6.734 ± 1.096 0.468 ± 0.150 — 76.773 ± 0.051

Table 4: Barriers averaged for 16 datasets under AM with D = 2 and M = 256.
Train Test

Barrier BarrierArchitecture

Naive Perm Ours
Accuracy

Naive Perm Ours
Accuracy

Non-Oblivious Tree 13.079 ± 0.755 14.963 ± 1.520 4.500 ± 0.527 85.646 ± 0.090 6.801 ± 0.464 8.631 ± 1.444 0.943 ± 0.435 76.631 ± 0.052
Oblivious Tree 14.580 ± 1.108 17.380 ± 0.509 3.557 ± 0.201 85.808 ± 0.146 7.881 ± 0.866 10.349 ± 0.476 0.395 ± 0.185 76.623 ± 0.042
Decision List 13.835 ± 0.788 12.785 ± 1.924 — 85.337 ± 0.134 7.513 ± 0.944 7.452 ± 1.840 — 76.629 ± 0.119

Decision List (Modified) 12.922 ± 1.131 6.364 ± 0.194 — 85.563 ± 0.141 6.734 ± 1.096 2.114 ± 0.243 — 76.773 ± 0.051

degeneracy of the Neural Tangent Kernel (NTK) (Jacot et al., 2018). This evidence further supports
the preference for shallow perfect binary trees, and increasing the number of trees can enhance the
expressive power while reducing barriers.

4.3 RESULTS FOR DECISION LISTS

2 4 8
D

0.0

2.5

5.0

7.5

10.0

Av
er

ag
ed

 A
cc

ur
ac

y
B

ar
rie

r

WM

Oblivious Decision List Decision List (Modified)

2 4 8
D

5

10

15

20
AM

Figure 9: Averaged barrier for 16 datasets as a
function of tree depth. The error bars show the
standard deviations of 5 executions. The solid line
represents the barrier in train accuracy, while the
dashed line represents the barrier in test accuracy.

We present empirical results of the original de-
cision lists and our modified decision lists, as
shown in Figure 5. As we have shown in Table 1,
they have fewer invariances.

Figure 9 illustrates barriers as a function of
depth, considering only permutation invariance,
with M fixed at 256. In this experiment, we
have excluded non-oblivious trees from compar-
ison as the number of their parameters exponen-
tially increases as trees deepen, making them
infeasible computation. Our proposed modified
decision lists reduce the barrier more effectively
than both oblivious trees and the original deci-
sion lists. However, barriers of the modified decision lists are still larger than those obtained by
considering additional invariances with perfect binary trees. Tables 3 and 4 show the averaged
barriers for 16 datasets, with D = 2 and M = 256. Although barriers of modified decision lists are
small when considering only permutations (Perm), perfect binary trees such as oblivious trees with
additional invariances (Ours) exhibit smaller barriers, which supports the validity of using oblivious
trees as in Popov et al. (2020) and Chang et al. (2022). To summarize, when considering the practical
use of model merging, if the goal is to prioritize efficient computation, we recommend using our
proposed decision list. Conversely, if the goal is to prioritize barriers, it would be preferable to use
perfect binary trees, which have a greater number of invariances that maintain the functional behavior.

5 CONCLUSION

We have presented the first investigation of LMC for soft tree ensembles. We have identified additional
invariances inherent in tree architectures and empirically demonstrated the importance of considering
these factors. Achieving LMC is crucial not only for understanding the behavior of non-convex
optimization from a learning theory perspective but also for implementing practical techniques such as
model merging. By arithmetically combining parameters of differently trained models, a wide range
of applications such as federated-leanning (McMahan et al., 2017) and continual-learning (Mirzadeh
et al., 2021) have been explored. Our research extends these techniques to soft tree ensembles. We
will leave these empirical investigations for future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

This study provides a fundamental analysis of ensemble learning, and we believe that our discussion
will not result in detrimental uses.

REPRODUCIBILITY STATEMENT

Source codes are available in the supplementary material to reproduce the numerical experiments and
visualizations.

REFERENCES

Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git Re-Basin: Merging Models
modulo Permutation Symmetries. In International Conference on Learning Representations, 2023.

Leo Breiman. Random Forests. In Machine Learning, 2001.

Chun-Hao Chang, Rich Caruana, and Anna Goldenberg. NODE-GAM: Neural generalized additive
model for interpretable deep learning. In International Conference on Learning Representations,
2022.

An Mei Chen, Haw-minn Lu, and Robert Hecht-Nielsen. On the Geometry of Feedforward Neural
Network Error Surfaces. Neural Computation, 1993.

David F. Crouse. On implementing 2D rectangular assignment algorithms. IEEE Transactions on
Aerospace and Electronic Systems, 2016.

Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The Role of Permutation
Invariance in Linear Mode Connectivity of Neural Networks. In International Conference on
Learning Representations, 2022.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware Minimization
for Efficiently Improving Generalization. In International Conference on Learning Representations,
2021.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear Mode Con-
nectivity and the Lottery Ticket Hypothesis. In Proceedings of the 37th International Conference
on Machine Learning, 2020.

Nicholas Frosst and Geoffrey E. Hinton. Distilling a Neural Network Into a Soft Decision Tree.
CoRR, 2017.

Leo Grinsztajn, Edouard Oyallon, and Gael Varoquaux. Why do tree-based models still outperform
deep learning on typical tabular data? In Thirty-sixth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2022.

Fidel A. Guerrero Peña, Heitor Rapela Medeiros, Thomas Dubail, Masih Aminbeidokhti, Eric
Granger, and Marco Pedersoli. Re-basin via implicit Sinkhorn differentiation. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2023.

Hussein Hazimeh, Natalia Ponomareva, Petros Mol, Zhenyu Tan, and Rahul Mazumder. The Tree
Ensemble Layer: Differentiability meets Conditional Computation. In Proceedings of the 37th
International Conference on Machine Learning, 2020.

Robert Hecht-Nielsen. On the algebraic structure of feedforward network weight spaces. In Advanced
Neural Computers. 1990.

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural Tangent Kernel: Convergence and
Generalization in Neural Networks. In Advances in Neural Information Processing Systems, 2018.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts, 2024.

Keller Jordan, Hanie Sedghi, Olga Saukh, Rahim Entezari, and Behnam Neyshabur. REPAIR:
REnormalizing permuted activations for interpolation repair. In International Conference on
Learning Representations, 2023.

M.I. Jordan and R.A. Jacobs. Hierarchical mixtures of experts and the EM algorithm. In Proceedings
of International Conference on Neural Networks, 1993.

Ryuichi Kanoh and Mahito Sugiyama. A Neural Tangent Kernel Perspective of Infinite Tree
Ensembles. In International Conference on Learning Representations, 2022.

Ryuichi Kanoh and Mahito Sugiyama. Analyzing Tree Architectures in Ensembles via Neural
Tangent Kernel. In International Conference on Learning Representations, 2023.

Guolin Ke, Zhenhui Xu, Jia Zhang, Jiang Bian, and Tie-Yan Liu. DeepGBM: A Deep Learning
Framework Distilled by GBDT for Online Prediction Tasks. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019.

Diederik Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In International
Conference on Learning Representations, 2015.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. GShard: Scaling Giant Models with Conditional
Computation and Automatic Sharding. In International Conference on Learning Representations,
2021.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-Efficient Learning of Deep Networks from Decentralized Data. In Proceedings of
the 20th International Conference on Artificial Intelligence and Statistics, 2017.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Dilan Gorur, Razvan Pascanu, and Hassan Ghasemzadeh.
Linear Mode Connectivity in Multitask and Continual Learning. In International Conference on
Learning Representations, 2021.

Sreerama K. Murthy, Simon Kasif, and Steven Salzberg. A system for induction of oblique decision
trees. Journal of Artificial Intelligence Research, 1994.

Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task Arithmetic in the Tan-
gent Space: Improved Editing of Pre-Trained Models. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural Information Processing Systems, 2019.

Sergei Popov, Stanislav Morozov, and Artem Babenko. Neural Oblivious Decision Ensembles for
Deep Learning on Tabular Data. In International Conference on Learning Representations, 2020.

Byron Roe. MiniBooNE particle identification. UCI Machine Learning Repository, 2010.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey E. Hinton,
and Jeff Dean. Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts
Layer. In International Conference on Learning Representations, 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Samuel L. Smith, Pieter-Jan Kindermans, and Quoc V. Le. Don’t Decay the Learning Rate, Increase
the Batch Size. In International Conference on Learning Representations, 2018.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine
Learning Research, 2014.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Ludwig
Schmidt. Model soups: averaging weights of multiple fine-tuned models improves accuracy
without increasing inference time. In Proceedings of the 39th International Conference on
Machine Learning, 2022.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. TIES-merging:
Resolving interference when merging models. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

Zhanpeng Zhou, Yongyi Yang, Xiaojiang Yang, Junchi Yan, and Wei Hu. Going Beyond Linear
Mode Connectivity: The Layerwise Linear Feature Connectivity. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A DATASET

Details of datasets used in experiments are provided in Table 5.

Table 5: Summary of the datasets used in the experiments.
Dataset N F Link

Bioresponse 3434 419 https://www.openml.org/d/45019
Diabetes130US 71090 7 https://www.openml.org/d/45022

Higgs 940160 24 https://www.openml.org/d/44129
MagicTelescope 13376 10 https://www.openml.org/d/44125

MiniBooNE 72998 50 https://www.openml.org/d/44128
bank-marketing 10578 7 https://www.openml.org/d/44126

california 20634 8 https://www.openml.org/d/45028
covertype 566602 10 https://www.openml.org/d/44121

credit 16714 10 https://www.openml.org/d/44089
default-of-credit-card-clients 13272 20 https://www.openml.org/d/45020

electricity 38474 7 https://www.openml.org/d/44120
eye_movements 7608 20 https://www.openml.org/d/44130

heloc 10000 22 https://www.openml.org/d/45026
house_16H 13488 16 https://www.openml.org/d/44123

jannis 57580 54 https://www.openml.org/d/45021
pol 10082 26 https://www.openml.org/d/44122

B ADDITIONAL EMPIRICAL RESULTS

Tables 6, 7, 8 and 9 present the barrier for each dataset with D = 2 and M = 256. By incorporating
additional invariances, it has been possible to consistently reduce the barriers.

Tables 10 and 11 detail the characteristics of the barriers in the decision lists for each dataset with
D = 2 and M = 256. The barriers in the modified decision lists tend to be smaller.

Tables 12 and 13 show the barrier for each model when only considering permutations with D = 2
and M = 256. It is evident that focusing solely on permutations leads to smaller barriers in the
modified decision lists compared to other architectures.

Figures 10, 11, 12, 13, 14, 15, 16 and 17 show the interpolation curves of oblivious trees with D = 2
and M = 256 across various datasets and configurations. Significant improvements are particularly
noticeable in AM, but improvements are also observed in WM. These characteristics are also apparent
in the non-oblivious trees, as shown in Figures 18, 19, 20, 21, 22, 23, 24 and 25. Regarding split data
training, the dataset for each of the two classes is initially complete (100%). It is then divided into
splits of 80% and 20%, and 20% and 80%, respectively. Each model is trained using these splits.
Figures 14, 16, 22, and 24 show the training accuracy evaluated using the full dataset (100% for each
class). In split data training, the performance reference of full data training is shown only for the
performance on the test data. This is because, in split data training, even the training dataset used
for evaluation includes portions that are not used for training each model, which differs from the
conditions in full data training. In contrast, when evaluating performance on the test data, all of the
test data has not been used equally for the training of each model, which allows for a fair comparison
between the two approaches. Figures 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 and 41
visualize the same to that of perfect binary trees for the decision lists.

Figures 42 and 43 show the interpolation curves for MNIST (LeCun & Cortes, 2010) with various
tree architectures where D = 2 and M = 256. Although MNIST consists of 2-dimensional image
data, it is input as a 1-dimensional vector.

14

https://www.openml.org/d/45019
https://www.openml.org/d/45022
https://www.openml.org/d/44129
https://www.openml.org/d/44125
https://www.openml.org/d/44128
https://www.openml.org/d/44126
https://www.openml.org/d/45028
https://www.openml.org/d/44121
https://www.openml.org/d/44089
https://www.openml.org/d/45020
https://www.openml.org/d/44120
https://www.openml.org/d/44130
https://www.openml.org/d/45026
https://www.openml.org/d/44123
https://www.openml.org/d/45021
https://www.openml.org/d/44122

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 6: Accuracy barrier for non-oblivious trees with WM.
Train Test

Dataset
Naive Perm Perm&Flip Naive Perm Perm&Flip

Bioresponse 18.944 ± 10.076 5.876 ± 1.477 4.132 ± 0.893 8.235 ± 6.456 1.285 ± 0.635 0.314 ± 0.432
Diabetes130US 2.148 ± 0.601 1.388 ± 1.159 0.947 ± 0.888 1.014 ± 0.959 0.540 ± 0.999 0.784 ± 0.840

Higgs 27.578 ± 1.742 18.470 ± 0.769 14.772 ± 1.419 4.055 ± 1.089 0.662 ± 0.590 0.292 ± 0.421
MagicTelescope 2.995 ± 1.198 0.576 ± 0.556 0.307 ± 0.346 2.096 ± 1.055 0.361 ± 0.618 0.229 ± 0.348

MiniBooNE 18.238 ± 4.570 2.272 ± 0.215 1.506 ± 0.211 12.592 ± 4.190 0.231 ± 0.314 0.000 ± 0.000
bank-marketing 13.999 ± 4.110 2.711 ± 1.183 1.521 ± 0.463 13.593 ± 4.567 1.843 ± 1.001 0.953 ± 0.688

california 6.396 ± 2.472 0.873 ± 0.551 0.520 ± 0.327 5.226 ± 2.377 0.224 ± 0.248 0.206 ± 0.131
covertype 16.823 ± 4.159 1.839 ± 0.336 0.914 ± 0.546 14.900 ± 4.016 1.035 ± 0.106 0.376 ± 0.333

credit 7.317 ± 2.425 3.172 ± 2.636 2.615 ± 0.831 5.861 ± 2.064 2.202 ± 3.103 1.830 ± 0.588
default-of-credit-card-clients 14.318 ± 4.509 5.419 ± 1.318 3.273 ± 0.793 6.227 ± 4.205 0.937 ± 1.036 0.243 ± 0.172

electricity 10.090 ± 2.930 1.035 ± 0.543 0.221 ± 0.192 9.422 ± 2.795 0.771 ± 0.478 0.130 ± 0.071
eye_movements 18.743 ± 1.994 11.605 ± 1.927 7.866 ± 1.301 1.495 ± 0.467 0.463 ± 0.183 0.180 ± 0.206

heloc 4.434 ± 1.611 1.652 ± 0.475 1.012 ± 0.481 0.830 ± 0.727 0.475 ± 0.447 0.322 ± 0.338
house_16H 8.935 ± 2.504 3.362 ± 0.482 2.660 ± 1.208 4.230 ± 2.189 0.219 ± 0.224 0.404 ± 0.782

jannis 17.756 ± 3.322 10.442 ± 1.404 7.362 ± 0.219 3.205 ± 2.849 0.029 ± 0.064 0.007 ± 0.016
pol 20.542 ± 2.873 4.612 ± 0.912 3.225 ± 1.080 15.830 ± 2.562 1.708 ± 0.599 1.012 ± 0.859

Table 7: Accuracy barrier for non-oblivious trees with AM.
Train Test

Dataset
Naive Perm Perm&Flip Naive Perm Perm&Flip

Bioresponse 18.944 ± 10.076 14.066 ± 7.045 5.710 ± 0.915 8.235 ± 6.456 5.037 ± 3.141 0.966 ± 0.316
Diabetes130US 2.148 ± 0.601 3.086 ± 2.566 0.574 ± 0.365 1.014 ± 0.959 1.936 ± 2.878 0.105 ± 0.152

Higgs 27.578 ± 1.742 30.704 ± 2.899 18.435 ± 1.599 4.055 ± 1.089 7.272 ± 1.089 1.044 ± 0.483
MagicTelescope 2.995 ± 1.198 3.309 ± 1.486 0.778 ± 0.515 2.096 ± 1.055 2.693 ± 1.190 0.428 ± 0.327

MiniBooNE 18.238 ± 4.570 34.934 ± 8.157 2.332 ± 0.383 12.592 ± 4.190 28.721 ± 7.869 0.074 ± 0.081
bank-marketing 13.999 ± 4.110 13.598 ± 7.638 3.098 ± 0.539 13.593 ± 4.567 12.810 ± 7.605 2.643 ± 0.704

california 6.396 ± 2.472 5.800 ± 2.036 0.697 ± 0.535 5.226 ± 2.377 4.858 ± 2.017 0.261 ± 0.285
covertype 16.823 ± 4.159 19.708 ± 6.392 1.420 ± 0.619 14.900 ± 4.016 17.765 ± 6.400 0.758 ± 0.540

credit 7.317 ± 2.425 10.556 ± 8.753 3.640 ± 1.624 5.861 ± 2.064 9.378 ± 9.083 2.551 ± 1.987
default-of-credit-card-clients 14.318 ± 4.509 14.166 ± 2.297 4.247 ± 1.678 6.227 ± 4.205 6.514 ± 2.049 0.885 ± 1.852

electricity 10.090 ± 2.930 12.955 ± 4.558 0.762 ± 0.332 9.422 ± 2.795 12.261 ± 4.554 0.499 ± 0.260
eye_movements 18.743 ± 1.994 18.757 ± 1.273 10.957 ± 1.019 1.495 ± 0.467 1.583 ± 1.011 0.146 ± 0.167

heloc 4.434 ± 1.611 6.564 ± 2.404 1.774 ± 0.672 0.830 ± 0.727 2.179 ± 2.100 0.385 ± 0.370
house_16H 8.935 ± 2.504 10.184 ± 2.667 3.908 ± 0.863 4.230 ± 2.189 5.664 ± 2.461 1.056 ± 0.693

jannis 17.756 ± 3.322 19.004 ± 1.246 9.890 ± 1.036 3.205 ± 2.849 4.047 ± 1.415 0.346 ± 0.443
pol 20.542 ± 2.873 16.267 ± 3.914 7.967 ± 3.208 15.830 ± 2.562 12.863 ± 3.983 4.539 ± 2.727

Table 8: Accuracy barrier for oblivious trees with WM.
Train Test

Dataset
Naive Perm Perm&Order&Flip Naive Perm Perm&Order&Flip

Bioresponse 16.642 ± 4.362 4.800 ± 0.895 3.289 ± 0.680 7.165 ± 2.547 1.069 ± 1.020 0.299 ± 0.247
Diabetes130US 3.170 ± 3.304 1.120 ± 1.123 0.246 ± 0.177 2.831 ± 3.476 0.882 ± 1.309 0.181 ± 0.155

Higgs 28.640 ± 0.914 19.754 ± 1.023 13.689 ± 0.814 4.648 ± 0.966 1.270 ± 0.808 0.266 ± 0.232
MagicTelescope 2.659 ± 1.637 0.473 ± 0.632 0.077 ± 0.110 2.012 ± 1.343 0.534 ± 0.565 0.093 ± 0.144

MiniBooNE 22.344 ± 7.001 2.388 ± 0.194 1.628 ± 0.208 16.454 ± 6.706 0.075 ± 0.086 0.012 ± 0.019
bank-marketing 13.512 ± 6.416 2.998 ± 1.582 0.925 ± 0.688 12.856 ± 6.609 2.324 ± 1.618 0.634 ± 0.433

california 8.281 ± 4.253 0.874 ± 0.524 0.351 ± 0.267 6.578 ± 4.264 0.342 ± 0.209 0.034 ± 0.024
covertype 23.977 ± 2.565 2.073 ± 0.657 0.976 ± 0.523 21.790 ± 2.253 0.992 ± 0.496 0.422 ± 0.319

credit 6.912 ± 4.083 2.369 ± 0.887 0.662 ± 0.606 5.739 ± 4.502 1.324 ± 0.674 0.350 ± 0.522
default-of-credit-card-clients 16.301 ± 4.462 4.512 ± 1.033 2.902 ± 0.620 7.618 ± 3.873 0.728 ± 0.331 0.531 ± 0.557

electricity 8.835 ± 1.824 1.060 ± 0.684 0.279 ± 0.266 7.952 ± 1.995 0.731 ± 0.383 0.285 ± 0.200
eye_movements 22.604 ± 1.486 12.687 ± 1.645 7.826 ± 1.822 2.884 ± 1.646 0.825 ± 0.711 0.607 ± 0.259

heloc 6.282 ± 2.351 2.517 ± 1.156 1.507 ± 0.498 1.625 ± 1.480 0.869 ± 0.957 0.727 ± 0.785
house_16H 13.600 ± 5.135 3.302 ± 0.376 1.950 ± 0.346 8.055 ± 4.429 0.330 ± 0.441 0.158 ± 0.098

jannis 19.390 ± 1.013 11.358 ± 0.377 7.140 ± 0.538 1.999 ± 1.237 0.305 ± 0.409 0.214 ± 0.235
pol 20.125 ± 2.902 5.059 ± 1.482 2.544 ± 1.005 15.887 ± 3.061 2.100 ± 1.358 0.751 ± 0.892

Table 9: Accuracy barrier for oblivious trees with AM.
Train Test

Dataset
Naive Perm Perm&Order&Flip Naive Perm Perm&Order&Flip

Bioresponse 16.642 ± 4.362 19.033 ± 8.533 6.358 ± 1.915 7.165 ± 2.547 6.904 ± 5.380 1.038 ± 0.591
Diabetes130US 3.170 ± 3.304 5.473 ± 3.260 0.703 ± 0.517 2.831 ± 3.476 5.290 ± 3.486 0.390 ± 0.291

Higgs 28.640 ± 0.914 33.234 ± 3.164 15.678 ± 0.713 4.648 ± 0.966 8.113 ± 2.614 0.415 ± 0.454
MagicTelescope 2.659 ± 1.637 3.902 ± 1.931 0.224 ± 0.256 2.012 ± 1.343 3.687 ± 1.876 0.334 ± 0.434

MiniBooNE 22.344 ± 7.001 41.022 ± 3.398 2.184 ± 0.425 16.454 ± 6.706 34.452 ± 3.161 0.033 ± 0.056
bank-marketing 13.512 ± 6.416 12.248 ± 6.748 1.330 ± 0.806 12.856 ± 6.609 11.356 ± 7.168 0.695 ± 0.464

california 8.281 ± 4.253 9.539 ± 4.798 0.371 ± 0.365 6.578 ± 4.264 8.354 ± 4.648 0.112 ± 0.181
covertype 23.977 ± 2.565 27.590 ± 2.172 1.051 ± 0.407 21.790 ± 2.253 25.289 ± 1.787 0.403 ± 0.236

credit 6.912 ± 4.083 9.839 ± 6.698 1.169 ± 0.839 5.739 ± 4.502 8.291 ± 7.268 0.549 ± 0.751
default-of-credit-card-clients 16.301 ± 4.462 21.746 ± 7.075 3.646 ± 0.520 7.618 ± 3.873 12.183 ± 5.954 0.285 ± 0.372

electricity 8.835 ± 1.824 18.177 ± 5.979 0.472 ± 0.507 7.952 ± 1.995 17.396 ± 5.809 0.405 ± 0.356
eye_movements 22.604 ± 1.486 23.221 ± 3.024 8.588 ± 2.248 2.884 ± 1.646 2.761 ± 1.628 0.398 ± 0.435

heloc 6.282 ± 2.351 9.074 ± 3.894 2.541 ± 0.471 1.625 ± 1.480 3.891 ± 2.655 0.485 ± 0.397
house_16H 13.600 ± 5.135 17.963 ± 5.099 2.841 ± 0.543 8.055 ± 4.429 12.192 ± 4.635 0.292 ± 0.157

jannis 19.390 ± 1.013 22.482 ± 3.113 9.570 ± 0.316 1.999 ± 1.237 4.292 ± 2.509 0.069 ± 0.154
pol 20.125 ± 2.902 19.558 ± 5.785 3.056 ± 0.510 15.887 ± 3.061 14.858 ± 5.523 0.961 ± 0.722

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 10: Accuracy barrier for decision lists with WM.
Train Test

Dataset
Naive Perm Naive (Modified) Perm (Modified) Naive Perm Naive (Modified) Perm (Modified)

Bioresponse 21.323 ± 6.563 4.259 ± 0.698 14.578 ± 3.930 4.641 ± 0.918 9.325 ± 3.988 0.346 ± 0.277 7.346 ± 4.261 1.309 ± 0.827
Diabetes130US 5.182 ± 3.745 1.483 ± 1.006 2.754 ± 1.098 1.088 ± 0.608 4.910 ± 4.244 1.293 ± 1.332 1.476 ± 1.308 0.849 ± 0.885

Higgs 27.778 ± 1.036 16.110 ± 0.518 28.915 ± 1.314 14.071 ± 0.395 4.777 ± 0.803 0.106 ± 0.203 5.136 ± 0.946 0.039 ± 0.083
MagicTelescope 4.855 ± 3.388 0.355 ± 0.682 5.138 ± 2.655 0.182 ± 0.141 4.137 ± 3.763 0.280 ± 0.519 4.534 ± 2.588 0.157 ± 0.162

MiniBooNE 23.059 ± 1.479 1.911 ± 0.138 14.916 ± 3.616 1.580 ± 0.178 17.248 ± 1.683 0.025 ± 0.036 9.340 ± 3.585 0.035 ± 0.042
bank-marketing 11.952 ± 3.794 0.979 ± 0.478 11.589 ± 2.167 0.373 ± 0.448 11.387 ± 4.113 0.536 ± 0.472 10.540 ± 2.067 0.349 ± 0.348

california 6.522 ± 3.195 0.621 ± 0.363 8.435 ± 3.273 0.538 ± 0.214 5.167 ± 2.962 0.236 ± 0.146 6.844 ± 3.087 0.151 ± 0.147
covertype 13.408 ± 3.839 1.341 ± 0.433 11.114 ± 2.689 1.257 ± 0.904 11.162 ± 3.620 0.472 ± 0.340 8.826 ± 2.729 0.477 ± 0.889

credit 11.238 ± 8.115 1.968 ± 0.990 14.626 ± 5.448 1.390 ± 0.423 10.880 ± 9.040 1.421 ± 1.046 13.667 ± 5.951 0.940 ± 0.612
default-of-credit-card-clients 12.513 ± 5.116 3.107 ± 1.123 11.378 ± 2.123 3.793 ± 0.881 5.161 ± 4.304 0.328 ± 0.512 3.197 ± 1.916 0.666 ± 0.651

electricity 6.524 ± 1.863 0.725 ± 0.451 9.101 ± 2.685 0.944 ± 0.557 5.834 ± 1.838 0.420 ± 0.354 8.487 ± 2.460 0.543 ± 0.511
eye_movements 19.125 ± 1.791 9.433 ± 1.385 19.738 ± 1.490 8.755 ± 1.391 1.990 ± 1.623 0.329 ± 0.102 1.916 ± 1.492 0.277 ± 0.302

heloc 4.513 ± 1.826 1.564 ± 0.617 5.116 ± 0.793 1.574 ± 0.154 0.725 ± 0.598 0.155 ± 0.190 1.263 ± 0.711 0.359 ± 0.346
house_16H 9.195 ± 2.408 2.520 ± 0.446 8.693 ± 1.302 2.222 ± 0.730 4.629 ± 2.314 0.063 ± 0.129 4.192 ± 1.517 0.185 ± 0.296

jannis 20.766 ± 2.097 9.484 ± 0.371 20.520 ± 1.017 7.400 ± 0.324 3.947 ± 2.605 0.006 ± 0.013 4.451 ± 1.300 0.004 ± 0.009
pol 23.401 ± 5.448 3.137 ± 1.038 20.137 ± 4.200 3.435 ± 0.675 18.933 ± 5.249 0.952 ± 0.925 16.522 ± 3.502 1.143 ± 0.565

Table 11: Accuracy barrier for decision lists with AM.
Train Test

Dataset
Naive Perm Naive (Modified) Perm (Modified) Naive Perm Naive (Modified) Perm (Modified)

Bioresponse 21.323 ± 6.563 13.349 ± 5.943 14.578 ± 3.930 10.363 ± 7.256 9.325 ± 3.988 4.817 ± 2.825 7.346 ± 4.261 3.871 ± 4.608
Diabetes130US 5.182 ± 3.745 5.590 ± 3.328 2.754 ± 1.098 1.371 ± 0.507 4.910 ± 4.244 4.926 ± 3.796 1.476 ± 1.308 0.694 ± 0.649

Higgs 27.778 ± 1.036 28.910 ± 2.132 28.915 ± 1.314 20.131 ± 1.693 4.777 ± 0.803 6.722 ± 1.231 5.136 ± 0.946 1.755 ± 1.403
MagicTelescope 4.855 ± 3.388 3.349 ± 3.273 5.138 ± 2.655 1.451 ± 0.705 4.137 ± 3.763 3.001 ± 3.478 4.534 ± 2.588 1.090 ± 0.437

MiniBooNE 23.059 ± 1.479 18.149 ± 7.500 14.916 ± 3.616 3.870 ± 1.168 17.248 ± 1.683 13.868 ± 7.222 9.340 ± 3.585 0.797 ± 0.860
bank-marketing 11.952 ± 3.794 9.782 ± 6.722 11.589 ± 2.167 2.815 ± 0.957 11.387 ± 4.113 9.151 ± 7.204 10.540 ± 2.067 2.521 ± 1.055

california 6.522 ± 3.195 5.812 ± 2.365 8.435 ± 3.273 2.254 ± 0.813 5.167 ± 2.962 4.899 ± 2.018 6.844 ± 3.087 1.186 ± 0.643
covertype 13.408 ± 3.839 14.727 ± 7.029 11.114 ± 2.689 4.036 ± 1.450 11.162 ± 3.620 13.352 ± 7.056 8.826 ± 2.729 2.656 ± 1.302

credit 11.238 ± 8.115 18.620 ± 9.806 14.626 ± 5.448 8.979 ± 6.919 10.880 ± 9.040 18.606 ± 10.015 13.667 ± 5.951 8.113 ± 6.633
default-of-credit-card-clients 12.513 ± 5.116 12.880 ± 5.070 11.378 ± 2.123 6.055 ± 1.178 5.161 ± 4.304 6.465 ± 5.062 3.197 ± 1.916 0.533 ± 0.239

electricity 6.524 ± 1.863 4.988 ± 2.732 9.101 ± 2.685 3.041 ± 0.676 5.834 ± 1.838 4.361 ± 2.532 8.487 ± 2.460 2.637 ± 0.730
eye_movements 19.125 ± 1.791 18.694 ± 1.774 19.738 ± 1.490 13.408 ± 1.196 1.990 ± 1.623 3.046 ± 1.625 1.916 ± 1.492 1.807 ± 1.312

heloc 4.513 ± 1.826 5.504 ± 1.650 5.116 ± 0.793 3.287 ± 0.758 0.725 ± 0.598 1.711 ± 1.278 1.263 ± 0.711 0.528 ± 0.147
house_16H 9.195 ± 2.408 8.591 ± 3.370 8.693 ± 1.302 3.937 ± 0.816 4.629 ± 2.314 4.547 ± 2.726 4.192 ± 1.517 0.751 ± 0.508

jannis 20.766 ± 2.097 20.768 ± 2.200 20.520 ± 1.017 12.008 ± 0.892 3.947 ± 2.605 6.472 ± 2.342 4.451 ± 1.300 0.106 ± 0.162
pol 23.401 ± 5.448 17.384 ± 6.441 20.137 ± 4.200 10.339 ± 2.743 18.933 ± 5.249 13.285 ± 5.863 16.522 ± 3.502 6.492 ± 2.536

Table 12: Training accuracy barrier for permuted models with WM. The numbers in parentheses
represent the original accuracy.

Dataset Non-Oblivious Tree Oblivious Tree Decision List Decision List (Modified)

Bioresponse 5.876 ± 1.477 (93.005) 4.800 ± 0.895 (91.753) 4.259 ± 0.698 (91.771) 4.641 ± 0.918 (90.489)
Diabetes130US 1.388 ± 1.159 (60.686) 1.120 ± 1.123 (60.567) 1.483 ± 1.006 (60.425) 1.088 ± 0.608 (61.178)

Higgs 18.470 ± 0.769 (97.232) 19.754 ± 1.023 (97.616) 16.110 ± 0.518 (95.838) 14.071 ± 0.395 (95.831)
MagicTelescope 0.576 ± 0.556 (84.963) 0.473 ± 0.632 (84.460) 0.355 ± 0.682 (84.999) 0.182 ± 0.141 (85.411)

MiniBooNE 2.272 ± 0.215 (99.980) 2.388 ± 0.194 (99.980) 1.911 ± 0.138 (99.977) 1.580 ± 0.178 (99.976)
bank-marketing 2.711 ± 1.183 (79.490) 2.998 ± 1.582 (79.351) 0.979 ± 0.478 (79.166) 0.373 ± 0.448 (79.709)

california 0.873 ± 0.551 (87.897) 0.874 ± 0.524 (87.909) 0.621 ± 0.363 (88.012) 0.538 ± 0.214 (88.054)
covertype 1.839 ± 0.336 (79.445) 2.073 ± 0.657 (79.754) 1.341 ± 0.433 (79.618) 1.257 ± 0.904 (79.550)

credit 3.172 ± 2.636 (78.679) 2.369 ± 0.887 (78.231) 1.968 ± 0.990 (78.166) 1.390 ± 0.423 (78.905)
default-of-credit-card-clients 5.419 ± 1.318 (78.017) 4.512 ± 1.033 (78.657) 3.107 ± 1.123 (77.315) 3.793 ± 0.881 (78.308)

electricity 1.035 ± 0.543 (80.375) 1.060 ± 0.684 (80.861) 0.725 ± 0.451 (80.396) 0.944 ± 0.557 (80.651)
eye_movements 11.605 ± 1.927 (81.693) 12.687 ± 1.645 (83.730) 9.433 ± 1.385 (81.075) 8.755 ± 1.391 (81.451)

heloc 1.652 ± 0.475 (77.430) 2.517 ± 1.156 (78.370) 1.564 ± 0.617 (77.968) 1.574 ± 0.154 (78.550)
house_16H 3.362 ± 0.482 (93.093) 3.302 ± 0.376 (93.351) 2.520 ± 0.446 (92.783) 2.222 ± 0.730 (93.058)

jannis 10.442 ± 1.404 (100.000) 11.358 ± 0.377 (100.000) 9.484 ± 0.371 (100.000) 7.400 ± 0.324 (100.000)
pol 4.612 ± 0.912 (98.348) 5.059 ± 1.482 (98.340) 3.137 ± 1.038 (97.883) 3.435 ± 0.675 (97.881)

Table 13: Training accuracy barrier for permuted models with AM. The numbers in parentheses
represent the original accuracy.

Dataset Non-Oblivious Oblivious Decision List Decision List (Modified)

Bioresponse 14.066 ± 7.045 (93.005) 19.033 ± 8.533 (91.753) 13.349 ± 5.943 (91.771) 10.363 ± 7.256 (90.489)
Diabetes130US 3.086 ± 2.566 (60.686) 5.473 ± 3.260 (60.567) 5.590 ± 3.328 (60.425) 1.371 ± 0.507 (61.178)

Higgs 30.704 ± 2.899 (97.232) 33.234 ± 3.164 (97.616) 28.910 ± 2.132 (95.838) 20.131 ± 1.693 (95.831)
MagicTelescope 3.309 ± 1.486 (84.963) 3.902 ± 1.931 (84.460) 3.349 ± 3.273 (84.999) 1.451 ± 0.705 (85.411)

MiniBooNE 34.934 ± 8.157 (99.980) 41.022 ± 3.398 (99.980) 18.149 ± 7.500 (99.977) 3.870 ± 1.168 (99.976)
bank-marketing 13.598 ± 7.638 (79.490) 12.248 ± 6.748 (79.351) 9.782 ± 6.722 (79.166) 2.815 ± 0.957 (79.709)

california 5.800 ± 2.036 (87.897) 9.539 ± 4.798 (87.909) 5.812 ± 2.365 (88.012) 2.254 ± 0.813 (88.054)
covertype 19.708 ± 6.392 (79.445) 27.590 ± 2.172 (79.754) 14.727 ± 7.029 (79.618) 4.036 ± 1.450 (79.550)

credit 10.556 ± 8.753 (78.679) 9.839 ± 6.698 (78.231) 18.620 ± 9.806 (78.166) 8.979 ± 6.919 (78.905)
default-of-credit-card-clients 14.166 ± 2.297 (78.017) 21.746 ± 7.075 (78.657) 12.880 ± 5.070 (77.315) 6.055 ± 1.178 (78.308)

electricity 12.955 ± 4.558 (80.375) 18.177 ± 5.979 (80.861) 4.988 ± 2.732 (80.396) 3.041 ± 0.676 (80.651)
eye_movements 18.757 ± 1.273 (81.693) 23.221 ± 3.024 (83.730) 18.694 ± 1.774 (81.075) 13.408 ± 1.196 (81.451)

heloc 6.564 ± 2.404 (77.430) 9.074 ± 3.894 (78.370) 5.504 ± 1.650 (77.968) 3.287 ± 0.758 (78.550)
house_16H 10.184 ± 2.667 (93.093) 17.963 ± 5.099 (93.351) 8.591 ± 3.370 (92.783) 3.937 ± 0.816 (93.058)

jannis 19.004 ± 1.246 (100.000) 22.482 ± 3.113 (100.000) 20.768 ± 2.200 (100.000) 12.008 ± 0.892 (100.000)
pol 16.267 ± 3.914 (98.348) 19.558 ± 5.785 (98.340) 17.384 ± 6.441 (97.883) 10.339 ± 2.743 (97.881)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Interpolation
70

80

90

A
cc

ur
ac

y

Bioresponse

Interpolation

55

60

Diabetes130US

Interpolation
60

80

100
Higgs

Interpolation

80

85

MagicTelescope

Interpolation

60

80

100
MiniBooNE

Interpolation
60

70

80
bank-marketing

Interpolation
75

80

85

california

Interpolation

60

80
covertype

Interpolation

70

75

A
cc

ur
ac

y

credit

Interpolation

60

70

80
default-of-credit-card-clients

Interpolation
60

70

80
electricity

Interpolation
60

70

80

eye_movements

Interpolation

70

80
heloc

Interpolation

80

90

house_16H

Interpolation

80

100
jannis

Interpolation

80

90

100
pol

Naive Tree Permutation Ours

Figure 10: Interpolation curves of train accuracy for oblivious trees with AM.

Interpolation

70

75

A
cc

ur
ac

y

Bioresponse

Interpolation

55

60

Diabetes130US

Interpolation
55

60

65

Higgs

Interpolation

80

85

MagicTelescope

Interpolation

60

80

MiniBooNE

Interpolation

60

70

bank-marketing

Interpolation
75

80

85

california

Interpolation
50

60

70

covertype

Interpolation

70

75

A
cc

ur
ac

y

credit

Interpolation

60

70
default-of-credit-card-clients

Interpolation
60

70

80
electricity

Interpolation

54

56

58

eye_movements

Interpolation

65

70

heloc

Interpolation
75

80

85

house_16H

Interpolation

65

70

jannis

Interpolation

80

90

pol

Naive Tree Permutation Ours

Figure 11: Interpolation curves of test accuracy for oblivious trees with AM.

Interpolation

80

90

A
cc

ur
ac

y

Bioresponse

Interpolation

55

60

Diabetes130US

Interpolation
70

80

90

Higgs

Interpolation

82

84

86

MagicTelescope

Interpolation

80

100
MiniBooNE

Interpolation
60

70

80
bank-marketing

Interpolation

80

85

california

Interpolation

60

70

80
covertype

Interpolation

70

75

A
cc

ur
ac

y

credit

Interpolation

60

70

80
default-of-credit-card-clients

Interpolation
70

75

80

electricity

Interpolation
60

70

80

eye_movements

Interpolation
70

75

heloc

Interpolation

80

90

house_16H

Interpolation
80

90

100
jannis

Interpolation

80

90

pol

Naive Tree Permutation Ours

Figure 12: Interpolation curves of train accuracy for oblivious trees with WM.

Interpolation

70

75

A
cc

ur
ac

y

Bioresponse

Interpolation

55

60

Diabetes130US

Interpolation

62.5

65.0

Higgs

Interpolation

82

84

MagicTelescope

Interpolation
70

80

90

MiniBooNE

Interpolation
60

70

bank-marketing

Interpolation

80

85

california

Interpolation

60

70

covertype

Interpolation

70

75

A
cc

ur
ac

y

credit

Interpolation

60

65

70
default-of-credit-card-clients

Interpolation
70

75

80
electricity

Interpolation

54

56

58

eye_movements

Interpolation

66

68

70

heloc

Interpolation
75

80

85

house_16H

Interpolation
70

72

jannis

Interpolation

80

90

pol

Naive Tree Permutation Ours

Figure 13: Interpolation curves of test accuracy for oblivious trees with WM.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Interpolation
60

70
A

cc
ur

ac
y

Bioresponse

Interpolation
50

55

60
Diabetes130US

Interpolation

65

70

75
Higgs

Interpolation

75

80

85
MagicTelescope

Interpolation

70

80

90

MiniBooNE

Interpolation

70

75

bank-marketing

Interpolation
75

80

85

california

Interpolation
50

60

70

covertype

Interpolation

60

70

A
cc

ur
ac

y

credit

Interpolation

60

70

default-of-credit-card-clients

Interpolation

70

80
electricity

Interpolation

55

60

65
eye_movements

Interpolation
60

70

heloc

Interpolation

80

85

90
house_16H

Interpolation

75

80

jannis

Interpolation

70

80

90
pol

Naive Tree Permutation Ours

Figure 14: Interpolation curves of train accuracy for oblivious trees with AM by use of split dataset.

Interpolation

60

70

A
cc

ur
ac

y

Bioresponse

Interpolation
50

55

60
Diabetes130US

Interpolation

60

65

Higgs

Interpolation

75

80

85
MagicTelescope

Interpolation

70

80

90

MiniBooNE

Interpolation

70

75

bank-marketing

Interpolation
75

80

85

california

Interpolation
50

60

70

covertype

Interpolation

60

70

A
cc

ur
ac

y

credit

Interpolation

60

70
default-of-credit-card-clients

Interpolation

70

80
electricity

Interpolation

52.5

55.0

57.5
eye_movements

Interpolation

60

70

heloc

Interpolation

80

85

house_16H

Interpolation

65

70

jannis

Interpolation60

80

pol

Naive Tree Permutation Ours

Figure 15: Interpolation curves of test accuracy for oblivious trees with AM by use of split dataset.

Interpolation
60

70

A
cc

ur
ac

y

Bioresponse

Interpolation50

55

60
Diabetes130US

Interpolation

65

70

Higgs

Interpolation

75

80

85
MagicTelescope

Interpolation

80

90

MiniBooNE

Interpolation

70

75

bank-marketing

Interpolation

80

85

california

Interpolation

60

70

covertype

Interpolation

60

70

A
cc

ur
ac

y

credit

Interpolation
60

65

70

default-of-credit-card-clients

Interpolation

70

80
electricity

Interpolation
55

60

65
eye_movements

Interpolation
60

70

heloc

Interpolation80

85

house_16H

Interpolation
75

80

jannis

Interpolation
70

80

90

pol

Naive Tree Permutation Ours

Figure 16: Interpolation curves of train accuracy for oblivious trees with WM by use of split dataset.

Interpolation

60

70

A
cc

ur
ac

y

Bioresponse

Interpolation
50

55

60
Diabetes130US

Interpolation

60

65

Higgs

Interpolation

75

80

85
MagicTelescope

Interpolation

80

90

MiniBooNE

Interpolation

70

75

bank-marketing

Interpolation

80

85

california

Interpolation

60

70

covertype

Interpolation

60

70

A
cc

ur
ac

y

credit

Interpolation

60

70
default-of-credit-card-clients

Interpolation

70

80
electricity

Interpolation

52.5

55.0

57.5
eye_movements

Interpolation

60

70
heloc

Interpolation

80

85

house_16H

Interpolation

65

70

jannis

Interpolation
70

80

90

pol

Naive Tree Permutation Ours

Figure 17: Interpolation curves of test accuracy for oblivious trees with WM by use of split dataset.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Interpolation

70

80

90

A
cc

ur
ac

y

Bioresponse

Interpolation

55

60

Diabetes130US

Interpolation

70

80

90

Higgs

Interpolation
80.0

82.5

85.0

MagicTelescope

Interpolation

80

100
MiniBooNE

Interpolation
60

70

80
bank-marketing

Interpolation

80

85

california

Interpolation

60

80
covertype

Interpolation

60

70

80

A
cc

ur
ac

y

credit

Interpolation
60

70

80
default-of-credit-card-clients

Interpolation

70

80

electricity

Interpolation

70

80

eye_movements

Interpolation

70

75

heloc

Interpolation

85

90

house_16H

Interpolation
80

90

100
jannis

Interpolation

80

90

pol

Naive Tree Permutation Ours

Figure 18: Interpolation curves of train accuracy for non-oblivious trees with AM.

Interpolation

65

70

75

A
cc

ur
ac

y

Bioresponse

Interpolation

55

60
Diabetes130US

Interpolation

60

65

Higgs

Interpolation

82

84

86
MagicTelescope

Interpolation

70

80

90

MiniBooNE

Interpolation
60

70

bank-marketing

Interpolation

80

85

california

Interpolation
50

60

70

covertype

Interpolation

60

70

A
cc

ur
ac

y

credit

Interpolation

60

65

70
default-of-credit-card-clients

Interpolation

70

80
electricity

Interpolation

56

58

eye_movements

Interpolation

65

70

heloc

Interpolation
80

85

house_16H

Interpolation

70

75
jannis

Interpolation

80

90

pol

Naive Tree Permutation Ours

Figure 19: Interpolation curves of test accuracy for non-oblivious trees with AM.

Interpolation

70

80

90

A
cc

ur
ac

y

Bioresponse

Interpolation
58

60

62
Diabetes130US

Interpolation
70

80

90

Higgs

Interpolation
80.0

82.5

85.0

MagicTelescope

Interpolation

80

90

100
MiniBooNE

Interpolation

70

80
bank-marketing

Interpolation
80

85

california

Interpolation
60

70

80
covertype

Interpolation
70

75

80

A
cc

ur
ac

y

credit

Interpolation
60

70

80
default-of-credit-card-clients

Interpolation

70

80

electricity

Interpolation

70

80

eye_movements

Interpolation
72.5

75.0

77.5

heloc

Interpolation

85

90

house_16H

Interpolation
80

90

100
jannis

Interpolation

80

90

pol

Naive Tree Permutation Ours

Figure 20: Interpolation curves of train accuracy for non-oblivious trees with WM.

Interpolation

70

75

A
cc

ur
ac

y

Bioresponse

Interpolation

55

60

Diabetes130US

Interpolation

62.5

65.0

Higgs

Interpolation

82

84

MagicTelescope

Interpolation
70

80

90

MiniBooNE

Interpolation
60

70

bank-marketing

Interpolation

80

85

california

Interpolation

60

70

covertype

Interpolation

70

75

A
cc

ur
ac

y

credit

Interpolation

60

65

70
default-of-credit-card-clients

Interpolation
70

75

80
electricity

Interpolation

54

56

58

eye_movements

Interpolation

66

68

70

heloc

Interpolation
75

80

85

house_16H

Interpolation
70

72

jannis

Interpolation

80

90

pol

Naive Tree Permutation Ours

Figure 21: Interpolation curves of test accuracy for non-oblivious trees with WM.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Interpolation
60

70

A
cc

ur
ac

y

Bioresponse

Interpolation
50

55

60

Diabetes130US

Interpolation

65

70

75
Higgs

Interpolation
70

80

MagicTelescope

Interpolation
70

80

90

MiniBooNE

Interpolation

70

80
bank-marketing

Interpolation75

80

85

california

Interpolation

60

70

covertype

Interpolation
50

60

70

A
cc

ur
ac

y

credit

Interpolation

60

70

default-of-credit-card-clients

Interpolation

70

80
electricity

Interpolation

55

60

65
eye_movements

Interpolation

65

70

75
heloc

Interpolation
84

86

88

house_16H

Interpolation
75

80

jannis

Interpolation
70

80

90

pol

Naive Tree Permutation Ours

Figure 22: Interpolation curves of train accuracy for non-oblivious trees with AM by use of split
dataset.

Interpolation

60

70

A
cc

ur
ac

y

Bioresponse

Interpolation
50

55

60
Diabetes130US

Interpolation

60

65

Higgs

Interpolation

70

80

MagicTelescope

Interpolation
70

80

90

MiniBooNE

Interpolation
65

70

75

bank-marketing

Interpolation
75

80

85

california

Interpolation

60

70

covertype

Interpolation

60

80

A
cc

ur
ac

y

credit

Interpolation

60

70
default-of-credit-card-clients

Interpolation

70

80
electricity

Interpolation
50

55

eye_movements

Interpolation

60

70

heloc

Interpolation
82

84

86

house_16H

Interpolation
65

70

jannis

Interpolation
70

80

90

pol

Naive Tree Permutation Ours

Figure 23: Interpolation curves of test accuracy for non-oblivious trees with AM by use of split
dataset.

Interpolation
60

70

A
cc

ur
ac

y

Bioresponse

Interpolation
50

55

60

Diabetes130US

Interpolation

70

75
Higgs

Interpolation
70

80

MagicTelescope

Interpolation
80

90

MiniBooNE

Interpolation

70

80
bank-marketing

Interpolation

80

85

california

Interpolation
60

70

covertype

Interpolation
50

60

70

A
cc

ur
ac

y

credit

Interpolation
60

70

default-of-credit-card-clients

Interpolation

70

80
electricity

Interpolation

55

60

65
eye_movements

Interpolation

65

70

75
heloc

Interpolation

86

88

house_16H

Interpolation
75

80

jannis

Interpolation

80

90

pol

Naive Tree Permutation Ours

Figure 24: Interpolation curves of train accuracy for non-oblivious trees with WM by use of split
dataset.

Interpolation
60

70

A
cc

ur
ac

y

Bioresponse

Interpolation
50

55

60

Diabetes130US

Interpolation
60

65

Higgs

Interpolation

70

80

MagicTelescope

Interpolation
80

90

MiniBooNE

Interpolation
65

70

75

bank-marketing

Interpolation

80

85

california

Interpolation
60

70

covertype

Interpolation
50

60

70

A
cc

ur
ac

y

credit

Interpolation

60

70
default-of-credit-card-clients

Interpolation

70

80
electricity

Interpolation

52.5

55.0

57.5

eye_movements

Interpolation

60

70

heloc

Interpolation

82.5

85.0

87.5
house_16H

Interpolation
65

70

jannis

Interpolation

80

90

pol

Naive Tree Permutation Ours

Figure 25: Interpolation curves of test accuracy for non-oblivious trees with WM by use of split
dataset.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Interpolation

70

80

90

A
cc

ur
ac

y

Bioresponse

Interpolation

55

60

Diabetes130US

Interpolation

70

80

90

Higgs

Interpolation
75

80

85

MagicTelescope

Interpolation

80

100
MiniBooNE

Interpolation

70

80
bank-marketing

Interpolation

80

85

california

Interpolation
60

70

80
covertype

Interpolation

60

70

80

A
cc

ur
ac

y

credit

Interpolation

60

70

80
default-of-credit-card-clients

Interpolation

75

80

electricity

Interpolation
60

70

80

eye_movements

Interpolation

72.5

75.0

77.5

heloc

Interpolation

85

90

house_16H

Interpolation

80

90

100
jannis

Interpolation

80

100
pol

Naive Tree Permutation

Figure 26: Interpolation curves of train accuracy for decision lists with AM.

Interpolation

65

70

75

A
cc

ur
ac

y

Bioresponse

Interpolation

55

60

Diabetes130US

Interpolation

60

65

Higgs

Interpolation
75

80

85

MagicTelescope

Interpolation
70

80

90

MiniBooNE

Interpolation

65

70

75

bank-marketing

Interpolation

80

85

california

Interpolation

60

70

covertype

Interpolation

60

70

A
cc

ur
ac

y

credit

Interpolation

60

70
default-of-credit-card-clients

Interpolation

75

80
electricity

Interpolation
52.5

55.0

57.5

eye_movements

Interpolation

68

70

heloc

Interpolation

80

85

house_16H

Interpolation
65

70

jannis

Interpolation
70

80

90

pol

Naive Tree Permutation

Figure 27: Interpolation curves of test accuracy for decision lists with AM.

Interpolation

70

80

90

A
cc

ur
ac

y

Bioresponse

Interpolation

55

60

Diabetes130US

Interpolation

70

80

90

Higgs

Interpolation

80

85

MagicTelescope

Interpolation

80

90

100
MiniBooNE

Interpolation

70

80
bank-marketing

Interpolation

80

85

california

Interpolation

70

80
covertype

Interpolation
60

70

80

A
cc

ur
ac

y

credit

Interpolation
60

70

80
default-of-credit-card-clients

Interpolation

75

80

electricity

Interpolation
60

70

80

eye_movements

Interpolation
72.5

75.0

77.5

heloc

Interpolation

85

90

house_16H

Interpolation

80

90

100
jannis

Interpolation

80

100
pol

Naive Tree Permutation

Figure 28: Interpolation curves of train accuracy for decision lists with WM.

Interpolation

65

70

75

A
cc

ur
ac

y

Bioresponse

Interpolation

55

60

Diabetes130US

Interpolation

62.5

65.0

67.5
Higgs

Interpolation

80

85

MagicTelescope

Interpolation

80

90

MiniBooNE

Interpolation

65

70

75

bank-marketing

Interpolation

80

85

california

Interpolation

65

70

75

covertype

Interpolation
60

70

A
cc

ur
ac

y

credit

Interpolation
60

65

70
default-of-credit-card-clients

Interpolation

75

80
electricity

Interpolation

56

58

eye_movements

Interpolation
68

69

70

heloc

Interpolation
80

85

house_16H

Interpolation

70

75
jannis

Interpolation
70

80

90

pol

Naive Tree Permutation

Figure 29: Interpolation curves of test accuracy for decision lists with WM.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Interpolation
60

70

A
cc

ur
ac

y

Bioresponse

Interpolation
50

55

60
Diabetes130US

Interpolation

65

70

Higgs

Interpolation
70

80

MagicTelescope

Interpolation
80

90

MiniBooNE

Interpolation
65

70

75

bank-marketing

Interpolation

80

85

california

Interpolation
60

70

covertype

Interpolation

60

80

A
cc

ur
ac

y

credit

Interpolation

60

70

default-of-credit-card-clients

Interpolation

70

80
electricity

Interpolation

55

60

eye_movements

Interpolation

65

70

heloc

Interpolation

82.5

85.0

87.5

house_16H

Interpolation

76

78

jannis

Interpolation

70

80

90

pol

Naive Tree Permutation

Figure 30: Interpolation curves of train accuracy for decision lists with AM by use of split dataset.

Interpolation
60

70

A
cc

ur
ac

y

Bioresponse

Interpolation
50

55

60
Diabetes130US

Interpolation

60

65

Higgs

Interpolation
70

80

MagicTelescope

Interpolation

80

90

MiniBooNE

Interpolation

70

75

bank-marketing

Interpolation

80

85

california

Interpolation
60

70

covertype

Interpolation

60

80

A
cc

ur
ac

y

credit

Interpolation

60

65

default-of-credit-card-clients

Interpolation
65

70

75

electricity

Interpolation

52.5

55.0

57.5

eye_movements

Interpolation

60

65

70

heloc

Interpolation

82.5

85.0

house_16H

Interpolation

65

70

jannis

Interpolation

70

80

90

pol

Naive Tree Permutation

Figure 31: Interpolation curves of test accuracy for decision lists with AM by use of split dataset.

Interpolation
60

70

A
cc

ur
ac

y

Bioresponse

Interpolation
50

55

60
Diabetes130US

Interpolation

65

70

Higgs

Interpolation
70

80

MagicTelescope

Interpolation
80

90

MiniBooNE

Interpolation
65

70

75

bank-marketing

Interpolation

80

85

california

Interpolation

65

70

75

covertype

Interpolation

50

60

70

A
cc

ur
ac

y

credit

Interpolation

60

70

default-of-credit-card-clients

Interpolation

70

80
electricity

Interpolation

55

60

eye_movements

Interpolation

65

70

heloc

Interpolation

82.5

85.0

87.5

house_16H

Interpolation

75

80

jannis

Interpolation
70

80

90

pol

Naive Tree Permutation

Figure 32: Interpolation curves of train accuracy for decision lists with WM by use of split dataset.

Interpolation
60

70

A
cc

ur
ac

y

Bioresponse

Interpolation
50

55

60
Diabetes130US

Interpolation

60

65

Higgs

Interpolation
70

80

MagicTelescope

Interpolation
80

90

MiniBooNE

Interpolation

70

75

bank-marketing

Interpolation

80

85

california

Interpolation
60

70

covertype

Interpolation

60

80

A
cc

ur
ac

y

credit

Interpolation

60

70
default-of-credit-card-clients

Interpolation

70

80
electricity

Interpolation

52.5

55.0

57.5

eye_movements

Interpolation

60

65

70

heloc

Interpolation

82.5

85.0

house_16H

Interpolation

65

70

jannis

Interpolation
70

80

90

pol

Naive Tree Permutation

Figure 33: Interpolation curves of test accuracy for decision lists with WM by use of split dataset.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Interpolation

80

90

A
cc

ur
ac

y

Bioresponse

Interpolation

58

60

Diabetes130US

Interpolation

70

80

90

Higgs

Interpolation

80

85

MagicTelescope

Interpolation

90

100
MiniBooNE

Interpolation

70

80
bank-marketing

Interpolation

80

85

california

Interpolation

70

80
covertype

Interpolation
60

70

80

A
cc

ur
ac

y

credit

Interpolation
65

70

75

default-of-credit-card-clients

Interpolation

70

75

80

electricity

Interpolation
60

70

80

eye_movements

Interpolation
72.5

75.0

77.5

heloc

Interpolation

85

90

house_16H

Interpolation
80

90

100
jannis

Interpolation

80

90

100
pol

Naive Tree Permutation

Figure 34: Interpolation curves of train accuracy for modified decision lists with AM.

Interpolation

65

70

75

A
cc

ur
ac

y

Bioresponse

Interpolation

58

60

Diabetes130US

Interpolation
60

65

Higgs

Interpolation

80

85

MagicTelescope

Interpolation

85

90

MiniBooNE

Interpolation
65

70

75

bank-marketing

Interpolation

80

85

california

Interpolation
65

70

75

covertype

Interpolation
60

70

A
cc

ur
ac

y

credit

Interpolation

65.0

67.5

70.0
default-of-credit-card-clients

Interpolation

70

75

80
electricity

Interpolation

56

58

eye_movements

Interpolation

68

70

heloc

Interpolation

82.5

85.0

87.5
house_16H

Interpolation
67.5

70.0

72.5

jannis

Interpolation

80

90

pol

Naive Tree Permutation

Figure 35: Interpolation curves of test accuracy for modified decision lists with AM.

Interpolation

80

90

A
cc

ur
ac

y

Bioresponse

Interpolation

58

60

Diabetes130US

Interpolation

70

80

90

Higgs

Interpolation

80

85

MagicTelescope

Interpolation

90

100
MiniBooNE

Interpolation

70

80
bank-marketing

Interpolation

80

85

california

Interpolation

70

80
covertype

Interpolation
60

70

80

A
cc

ur
ac

y

credit

Interpolation
65

70

75

default-of-credit-card-clients

Interpolation

70

75

80

electricity

Interpolation
60

70

80

eye_movements

Interpolation
72.5

75.0

77.5

heloc

Interpolation

85

90

house_16H

Interpolation
80

90

100
jannis

Interpolation

80

90

100
pol

Naive Tree Permutation

Figure 36: Interpolation curves of train accuracy for modified decision lists with WM.

Interpolation

65

70

75

A
cc

ur
ac

y

Bioresponse

Interpolation

58

60

Diabetes130US

Interpolation
60

65

Higgs

Interpolation

80

85

MagicTelescope

Interpolation

85

90

MiniBooNE

Interpolation
65

70

75

bank-marketing

Interpolation

80

85

california

Interpolation
65

70

75

covertype

Interpolation
60

70

A
cc

ur
ac

y

credit

Interpolation

65.0

67.5

70.0
default-of-credit-card-clients

Interpolation

70

75

80
electricity

Interpolation

56

58

eye_movements

Interpolation

68

70

heloc

Interpolation

82.5

85.0

87.5
house_16H

Interpolation
67.5

70.0

72.5

jannis

Interpolation

80

90

pol

Naive Tree Permutation

Figure 37: Interpolation curves of test accuracy for modified decision lists with WM.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Interpolation

60

70

A
cc

ur
ac

y

Bioresponse

Interpolation

55

60
Diabetes130US

Interpolation
65

70

Higgs

Interpolation
70

75

80

MagicTelescope

Interpolation

85

90

95
MiniBooNE

Interpolation
65

70

75

bank-marketing

Interpolation

80

85

california

Interpolation

65

70

75

covertype

Interpolation

50

60

70

A
cc

ur
ac

y

credit

Interpolation

60

70

default-of-credit-card-clients

Interpolation

70

75

electricity

Interpolation

57.5

60.0

62.5

eye_movements

Interpolation

65

70

heloc

Interpolation

82.5

85.0

87.5

house_16H

Interpolation

75

80

jannis

Interpolation

80

90

pol

Naive Tree Permutation

Figure 38: Interpolation curves of train accuracy for modified decision lists with AM by use of split
dataset.

Interpolation

60

70

A
cc

ur
ac

y

Bioresponse

Interpolation
50

55

60
Diabetes130US

Interpolation

60

65

Higgs

Interpolation
70

80

MagicTelescope

Interpolation

85

90

MiniBooNE

Interpolation

70

75

bank-marketing

Interpolation

80

85

california

Interpolation

65

70

75

covertype

Interpolation

50

60

70

A
cc

ur
ac

y

credit

Interpolation

60

65

default-of-credit-card-clients

Interpolation

70

75

80
electricity

Interpolation

52.5

55.0

57.5

eye_movements

Interpolation
60

65

70
heloc

Interpolation
80

85

house_16H

Interpolation
65

70

jannis

Interpolation

80

90

pol

Naive Tree Permutation

Figure 39: Interpolation curves of test accuracy for modified decision lists with AM by use of split
dataset.

Interpolation

60

70

A
cc

ur
ac

y

Bioresponse

Interpolation

55

60
Diabetes130US

Interpolation
65

70

Higgs

Interpolation
70

80

MagicTelescope

Interpolation

85

90

95
MiniBooNE

Interpolation
65

70

75

bank-marketing

Interpolation

80

85

california

Interpolation

65

70

75

covertype

Interpolation

50

60

70

A
cc

ur
ac

y

credit

Interpolation

60

70

default-of-credit-card-clients

Interpolation

70

75

80
electricity

Interpolation

57.5

60.0

62.5

eye_movements

Interpolation

65

70

heloc

Interpolation

82.5

85.0

87.5

house_16H

Interpolation

75

80

jannis

Interpolation

80

90

pol

Naive Tree Permutation

Figure 40: Interpolation curves of train accuracy for modified decision lists with WM by use of split
dataset.

Interpolation

60

70

A
cc

ur
ac

y

Bioresponse

Interpolation
50

55

60
Diabetes130US

Interpolation

60

65

Higgs

Interpolation
70

80

MagicTelescope

Interpolation

85

90

MiniBooNE

Interpolation

70

75

bank-marketing

Interpolation

80

85

california

Interpolation

65

70

75

covertype

Interpolation

50

60

70

A
cc

ur
ac

y

credit

Interpolation

60

70
default-of-credit-card-clients

Interpolation

70

75

80
electricity

Interpolation

52.5

55.0

57.5

eye_movements

Interpolation
60

65

70
heloc

Interpolation80.0

82.5

85.0

house_16H

Interpolation
65

70

jannis

Interpolation

80

90

pol

Naive Tree Permutation

Figure 41: Interpolation curves of test accuracy for modified decision lists with WM by use of split
dataset.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Interpolation90

92

94

96

98

100
Non-Oblivious

Interpolation90

92

94

96

98

100
Oblivious

Naive Tree Permutation Ours

Interpolation90

92

94

96

98

100
Decision List

Interpolation90

92

94

96

98

100
Decision List (Modified)

Figure 42: Interpolation curves of test accuracy with WM for MNIST (LeCun & Cortes, 2010)
dataset.

Interpolation90

92

94

96

98

100
Non-Oblivious

Interpolation90

92

94

96

98

100
Oblivious

Naive Tree Permutation Ours

Interpolation90

92

94

96

98

100
Decision List

Interpolation90

92

94

96

98

100
Decision List (Modified)

Figure 43: Interpolation curves of test accuracy with AM for MNIST (LeCun & Cortes, 2010) dataset.

25

	Introduction
	Preliminary
	Linear Mode Connectivity
	Soft Tree Ensemble

	Invariances Inherent to Tree Ensembles
	Parameter Modification Processes
	Matching Strategy
	Architecture-dependency of the Invariances

	Experiment
	Setup
	Results for Perfect Binary Trees
	Results for Decision Lists

	Conclusion
	Dataset
	Additional Empirical Results

