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ABSTRACT

Linear Mode Connectivity (LMC) refers to the phenomenon that performance
remains consistent for linearly interpolated models in the parameter space. For in-
dependently optimized model pairs from different random initializations, achieving
LMC is considered crucial for understanding the stable success of the non-convex
optimization in modern machine learning models and for facilitating practical
parameter-based operations such as model merging. While LMC has been achieved
for neural networks by considering the permutation invariance of neurons in each
hidden layer, its attainment for other models remains an open question. In this
paper, we first achieve LMC for soft tree ensembles, which are tree-based differen-
tiable models extensively used in practice. We show the necessity of incorporating
two invariances: subtree flip invariance and splitting order invariance, which do
not exist in neural networks but are inherent to tree architectures, in addition to
permutation invariance of trees. Moreover, we demonstrate that it is even possible
to exclude such additional invariances while keeping LMC by designing decision
list-based tree architectures, where such invariances do not exist by definition. Our
findings indicate the significance of accounting for architecture-specific invariances
in achieving LMC.

1 INTRODUCTION

A non-trivial empirical characteristic of modern machine learning models trained using gradient
methods is that models trained from different random initializations could achieve nearly identical
performance, even though their parameter representations differ. If the outcomes of all training
sessions converge to the same local minima, this empirical phenomenon can be understood. However,
considering the complex non-convex nature of the loss surface, the optimization results are unlikely
to converge to the same local minima. In recent years, particularly within the context of neural
networks, the transformation of model parameters while preserving functional equivalence has been
explored by considering the permutation invariance of neurons in each hidden layer (Hecht-Nielsen,
1990; Chen et al., 1993). Notably, only a slight performance degradation has been observed when
using weights derived through linear interpolation between permuted parameters obtained from
different training processes (Entezari et al., 2022; Ainsworth et al., 2023). This demonstrates that the
trained models reside in different, yet equivalent, local minima. This situation is referred to as Linear
Mode Connectivity (LMC) (Frankle et al., 2020). From a theoretical perspective, LMC is crucial for
understanding the stable and successful application of non-convex optimization. As noted by Entezari
et al. (2022) and Ainsworth et al. (2023), achievement of LMC suggests that loss landscapes often
contain (nearly) a single basin after accounting for all possible invariances, which can be an intuitive
reason for the robustness of gradient methods to different random initialization and data batch orders.
In addition, LMC also holds significant practical importance, enabling techniques such as model
merging (Wortsman et al., 2022; Ortiz-Jimenez et al., 2023) by weight-space parameter averaging.

Although neural networks are most extensively studied among the models trained using gradient
methods, other models also thrive in real-world applications. A representative is decision tree ensem-
ble models, such as random forests (Breiman, 2001). A decision tree ensemble makes predictions by
combining the outputs of multiple trees that recursively split the data into subsets at each node and
make final predictions at their leaves. While they are originally trained by not gradient but greedy
algorithms, their differentiable variant, called soft tree ensembles, which learn parameters of the
entire model through gradient-based optimization, have recently been actively studied. Not only
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empirical studies regarding accuracy and interpretability (Popov et al., 2020; Hazimeh et al., 2020;
Chang et al., 2022), but also theoretical analyses have been performed (Kanoh & Sugiyama, 2022;
2023). Moreover, the differentiability of soft trees allows for integration with various deep learning
methodologies, including fine-tuning (Ke et al., 2019), dropout (Srivastava et al., 2014), and various
stochastic gradient descent methods (Kingma & Ba, 2015; Foret et al., 2021). Furthermore, the
soft tree represents the most elementary form of a hierarchical mixture of experts (Jordan & Jacobs,
1993; Shazeer et al., 2017; Lepikhin et al., 2021). Investigating soft tree models not only advances
our understanding of this particular structure but also contributes to broader research into essential
technological components critical for the development of large-scale models (Jiang et al., 2024).

22

Only Permutation

Ours

Target

Origin

Figure 1: A representative experimental result on
the MiniBooNE (Roe, 2010) dataset (left) and con-
ceptual diagram of LMC for tree ensembles (right).

A research question that we tackle in this paper
is: “Can LMC be achieved for soft tree ensem-
bles?”. While achieving LMC has advanced the
understanding of non-convex optimization and
the use of model merging in neural networks,
it has yet to be explored in tree ensemble mod-
els. The reasons behind achieving LMC, even in
neural networks, are not fully understood, and
whether LMC can be realized in soft tree ensem-
bles, given their distinct architectures, is also
unclear. Thus, our contribution of examining
LMC in soft tree ensembles provides not only
novel insights and techniques for tree ensemble
models but also broadens the understanding of
the LMC phenomenon by introducing perspec-
tives beyond neural networks for the first time.

Our results, which are highlighted with a green line in the top left panel of Figure 1, clearly show
that the answer to our research question is “Yes”. This plot shows the variation in test accuracy
when interpolating weights of soft oblivious trees, perfect binary soft trees with shared parameters at
each depth, trained from different random initializations. The green line is obtained by our method
introduced in this paper, where there is almost zero performance degradation. Furthermore, as shown
in the bottom left panel of Figure 1, the performance can even improve when interpolating between
models trained on split datasets.

The key insight is that, when performing interpolation between two model parameters, considering
only tree permutation invariance, which corresponds to the permutation invariance of neural networks,
is not sufficient to achieve LMC, as shown in the orange lines in the plots. An intuitive understanding
of this situation is also illustrated in the right panel of Figure 1. To achieve LMC, that is, the green
lines, we show that two additional invariances beyond tree permutation, subtree flip invariance and
splitting order invariance, which inherently exist for tree architectures, should be accounted for.

Moreover, we demonstrate that it is possible to exclude such additional invariances while preserving
LMC by modifying tree architectures. We realize such an architecture based on a decision list, a
binary tree structure where branches extend in only one direction. By designating one of the terminal
leaves as an empty node, we introduce a customized decision list that omits both subtree flip invariance
and splitting order invariance, and empirically show that this can achieve LMC by considering only
tree permutation invariance. Since incorporating additional invariances is computationally expensive,
we can efficiently perform weight-space averaging in model merging on our customized decision
lists.

Our contributions are summarized as follows:

• First achievement of LMC for tree ensembles with additional invariances beyond tree permutation.
• Development of a decision list-based architecture that does not involve additional invariances.
• A thorough empirical investigation of LMC across various tree architectures, invariances, and

real-world datasets.

2 PRELIMINARY

We prepare the basic concepts of LMC and soft tree ensembles.

2
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2.1 LINEAR MODE CONNECTIVITY

Let us consider two models, A and B, that have the same architecture. In the context of evaluating
LMC, the concept of a “barrier” is frequently used (Ainsworth et al., 2023; Guerrero Peña et al.,
2023). Let ΘA and ΘB be parameters of models A and B, respectively. Their shapes can be
defined arbitrarily. In this paper, for tree ensemble models, ΘA,ΘB ∈ RM×P for the number P
of parameters per tree and the number M of trees. Assume that C : RM×P → R measures the
performance of the model, such as accuracy. If higher values of C(·) mean better performance, the
barrier between two parameter vectors ΘA and ΘB is defined as:

B(ΘA,ΘB) = sup
λ∈[0,1]

[λC(ΘA) + (1− λ)C(ΘB)− C(λΘA + (1− λ)ΘB) ] . (1)

We can simply reverse the subtraction order if lower values of C(·) mean better performance like loss.

Several techniques have been developed to reduce barriers by transforming parameters while pre-
serving functional equivalence. Two main approaches are activation matching (AM) and weight
matching (WM). AM takes the behavior of model inference into account, while WM simply com-
pares two models using their parameters. The validity of both AM and WM has been theoretically
supported by Zhou et al. (2023). Numerous algorithms are available for implementing AM and WM.
For instance, Ainsworth et al. (2023) uses a formulation based on the Linear Assignment Problem
(LAP), also known as finding the minimum-cost matching in bipartite graphs, to determine suitable
permutations. Guerrero Peña et al. (2023) employs a differentiable formulation that allows for the
optimization of permutations using gradient-based methods.

Existing research has focused exclusively on neural networks such as multi-layer perceptrons (MLP)
and convolutional neural networks (CNN). No study has been conducted for soft tree ensembles.

2.2 SOFT TREE ENSEMBLE

Unlike typical hard decision trees, which explicitly determine the data flow to the right or left at each
splitting node, soft trees represent the proportion of data flowing to the right or left as continuous
values between 0 and 1. This approach enables a differentiable formulation. We use a sigmoid
function, σ : R→ (0, 1) to formulate a function µm,ℓ(xi,wm, bm) : RF ×RF×N ×R1×N → (0, 1)
that represents the proportion of the ith data point xi flowing to the ℓth leaf of the mth tree as a result
of soft splittings:

µm,ℓ(xi,wm, bm)=

N∏
n=1

σ(w⊤
m,nxi + bm,n)︸ ︷︷ ︸
flow to the left

1ℓ↙n
(1− σ(w⊤

m,nxi + bm,n))︸ ︷︷ ︸
flow to the right

1n↘ℓ
, (2)

where N denotes the number of splitting nodes in each tree. The parameters wm,n ∈ RF and
bm,n ∈ R correspond to the feature selection mask and splitting threshold value for nth node in a
mth tree, respectively. The expression 1ℓ↙n (resp. 1n↘ℓ) is an indicator function that returns 1 if the
ℓth leaf is positioned to the left (resp. right) of a node n, and 0 otherwise.

If parameters are shared across all splitting nodes at the same depth, such perfect binary trees are
called oblivious trees. Mathematically, wm,n = wm,n′ and bm,n = bm,n′ for any nodes n and n′ at
the same depth in an oblivious tree. Oblivious trees can significantly reduce the number of parameters
from an exponential to a linear order of the tree depth, and they are actively used in practice (Popov
et al., 2020; Chang et al., 2022).
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Inner Node
 　

Leaf Leaf

Output

   Input

Figure 2: A soft decision tree with a
single inner node and two leaf nodes.

To classify C categories, the output of the mth tree is
computed by the function fm : RF × RF×N × R1×N ×
RC×L → RC as sum of the leaves πm,ℓ weighted by the
outputs of µm,ℓ(xi,wm, bm):

fm(xi,wm, bm,πm) =

L∑
ℓ=1

µm,ℓ(xi,wm, bm)πm,ℓ,

(3)
where L is the number of leaves in a tree. To facilitate
understanding, the formulation for tree depth is D = 1 is
illustrated in Figure 2.
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Reordering

Leaf Swap
Subtree Flip

Inequality Sign Flip

(b) Subtree flip invariance (c) Splitting order invariance(a) Tree permutation invariance

Tree Permutation

Figure 3: Invariances inherent to tree ensembles.

If µm,ℓ(xi,wm, bm) takes the value of 1.0 for one leaf and 0.0 for the others, the leaf value itself
becomes the prediction output, making the model behavior equivalent to that of a standard oblique
decision tree (Murthy et al., 1994).

By combining this function for M trees, we realize the function f : RF ×RM×F×N ×RM×1×N ×
RM×C×L → RC as an ensemble model consisting of M trees:

f(xi,w, b,π) =

M∑
m=1

fm(xi,wm, bm,πm), (4)

with the trainable parameters w = (w1, . . . ,wM ), b = (b1, . . . , bM ), and π = (π1, . . . ,πM ) being
randomly initialized.

As shown in Equation 4, tree ensembles exhibit permutation invariance when the order of the M
trees is rearranged, similar to the permutation invariance observed in the hidden neurons of neural
networks. However, as discussed in the next section, tree ensembles exhibit several other types of
invariance beyond permutation, setting their behavior apart from that of neural networks. In addition
to these invariances, there are several key differences between tree ensembles and neural networks.
Due to the hierarchical binary tree structure, the influence of each node parameter on the overall
model depends on its node position. Moreover, unlike neural networks, tree ensembles lack the
concept of activation and intermediate layers. These factors make it challenging to directly apply the
matching strategies used for neural networks to achieve LMC.

3 INVARIANCES INHERENT TO TREE ENSEMBLES

In this section, we discuss additional invariances inherent to trees (Section 3.1) and introduce a
matching strategy specifically for tree ensembles (Section 3.2). We also show that the presence of
additional invariances varies depending on the tree structure, and we present tree structures where no
additional invariances beyond tree permutation exist (Section 3.3).

3.1 PARAMETER MODIFICATION PROCESSES

When we consider perfect binary trees, there are three types of invariance:

• Tree permutation invariance. In Equation 4, the behavior of the function does not change even if
the order of the M trees is altered, as shown in Figure 3(a). This corresponds to the permutation of
hidden neurons in neural networks, which has been a subject in previous studies on LMC.

• Subtree flip invariance. When the left and right subtrees are swapped simultaneously with the
inversion of the inequality sign at the split, the functional behavior remains unchanged, which we
refer to subtree flip invariance. Figure 3(b) presents a schematic diagram of this invariance, which
is not found in neural networks but is unique to binary tree-based models. Since σ(−c) = 1− σ(c)
for c ∈ R due to the symmetry of sigmoid, the inversion of the inequality is achieved by inverting
the signs of wm,n and bm,n. Yadav et al. (2023) also focused on the sign of weights, but in a
different way from ours. They pay attention to the amount of change from the parameters at the
start of fine-tuning, rather than discussing the sign of the parameters.
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• Splitting order invariance. Oblivious trees share parameters at the same depth, which means
that the decision boundaries are straight lines without any bends. With this characteristic, even if
the splitting rules at different depths are swapped, functional equivalence can be achieved if the
positions of leaves are also swapped appropriately as shown in Figure 3(c). This invariance does
not exist for non-oblivious perfect binary trees without parameter sharing, as the behavior of the
decision boundary varies depending on the splitting order.

Note that MLPs also have an additional invariance beyond just permutation. Particularly in MLPs
that employ ReLU as an activation function, the output of each layer changes linearly with a zero
crossover. Therefore, it is possible to modify parameters without changing functional behavior by
multiplying the weights in one layer by a constant and dividing the weights in the previous layer
by the same constant. However, since the soft tree is based on the sigmoid function, this invariance
does not apply. Previous studies (Entezari et al., 2022; Ainsworth et al., 2023; Guerrero Peña et al.,
2023) have consistently achieved significant reductions in barriers without accounting for this scale
invariance. One potential reason is that changes in parameter scale are unlikely due to the nature of
optimization via gradient descent. Conversely, when we consider additional invariances inherent to
trees, the scale is equivalent to the original parameters.

3.2 MATCHING STRATEGY

1

8

4 4

2 2 2 2

4

3

2

Parameter Sharing Parameter Sharing

Figure 4: Weighting strategy.

When considering subtree flip invariance and
splitting order invariance, it is necessary to
compare multiple functionally equivalent trees
and select the most suitable one for achieving
LMC. Although comparing tree parameters is a
straightforward approach, since the contribution
of all the parameters in a tree is not equal, we
apply appropriate weighting for each node. By
interpreting a tree as a rule set with shared pa-
rameters as shown in Figure 4, we determine the
weight of each splitting node by counting the
number of leaves to which the node affects. For example, in the case of the left example in Figure 4,
the root node affects eight leaves, nodes at depth 2 affect four leaves, and nodes at depth 3 affect two
leaves. This strategy can apply to even trees other than perfect binary trees. For example, in the right
example of Figure 4, the root node affects four leaves, a node at depth 2 affects three leaves, and a
node at depth 3 affects two leaves.

Using the weighting operation described above, we present the straightforward matching procedure
in Algorithms 1 and 2. We perform an exhaustive search to explore all patterns with subtree flip
invariance and splitting order invariance, while handling tree permutation invariance with the LAP.
We treat the output of each individual tree like the activation value of a neural network in the case of
AM. Note that although it is necessary to solve the LAP multiple times for each layer in MLPs to
perform coordinate descent (Ainsworth et al., 2023), tree ensembles require only a single run of the
LAP since there is no concept of intermediate layers.

Notations used in Algorithms 1 and 2. Multidimensional array elements are accessed using square
brackets [·]. For example, for G ∈ RI×J , G[i] refers to the ith slice along the first dimension,
and G[:, j] refers to the jth slice along the second dimension, with sizes RJ and RI , respectively.
Furthermore, it can also accept a vector v ∈ Nl as an input. In this case, G[v] ∈ Rl×J . The
FLATTEN function converts multidimensional input into a one-dimensional vector format. As the
LINEARSUMASSIGNMENT function, scipy. optimize. linear_sum_assignment1 is used to solve the
LAP. In the ADJUSTTREE function, the parameters of a tree are modified according to the uth pattern
among the enumerated U ∈ N total additional invariances patterns. Additionally, in the WEIGHTING
function, parameters are multiplied by the square root of their weights to simulate the process of
assessing a rule set. If the first argument for the UPDATEBESTOPERATION function, the input inner
product, is larger than any previously input inner product values, then u′ is updated with u, the second
argument. If not, u′ remains unchanged.

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.
linear_sum_assignment.html
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Algorithm 1: Activation matching for soft tree ensembles

1 ACTIVATIONMATCHING(ΘA ∈ RM×P , ΘB ∈ RM×P , xsampled ∈ RF×Nsampled )
2 Initialize OA ∈ RM×Nsampled×C and OB ∈ RM×Nsampled×C to store outputs
3 for m = 1 to M do
4 for i = 1 to Nsampled do
5 Set the output of the mth tree with ΘA[m] using xsampled[:, i] to OA[m, i].
6 Set the output of the mth tree with ΘB [m] using xsampled[:, i] to OB [m, i].

7 Initialize similarity matrix S ∈ RM×M

8 for mA = 1 to M do
9 for mB = 1 to M do

10 S[mA,mB ]← FLATTEN(OA[mA]) · FLATTEN(OB [mB ])

11 p← LINEARSUMASSIGNMENT(S) // p ∈ NM : Optimal assignments
12 ΘA,ΘB ←WEIGHTING(ΘA,ΘB)
13 Initialize operation indices q ∈ NM

14 for m = 1 to M do
15 for u = 1 to U do // U ∈ N: Number of possible operations
16 u′ ← UPDATEBESTOPERATION(ADJUSTTREE(ΘA[m], u) ·ΘB [m], u)

17 Append u′ to q // q ∈ NM : Optimal operations
18 return p, q

Algorithm 2: Weight matching for soft tree ensembles

1 WEIGHTMATCHING(ΘA ∈ RM×P , ΘB ∈ RM×P )
2 ΘA,ΘB ←WEIGHTING(ΘA,ΘB)
3 Initialize similarity matrix for each operation S ∈ RU×M×M

4 for u = 1 to U do // U ∈ N: Number of possible operations
5 for mA = 1 to M do
6 θ ← ADJUSTTREE(ΘA[mA], u) // θ ∈ RP : Adjusted tree-wise parameters
7 for mB = 1 to M do
8 S[u,mA,mB ]← θ ·ΘB [mB ]

9 S′ ← max(S, axis=0) // S′ ∈ RM×M : Similarity matrix between trees
10 p← LINEARSUMASSIGNMENT(S′) // p ∈ NM : Optimal assignments
11 q ← argmax(S, axis=0)[p] // q ∈ NM : Optimal operations
12 return p, q

Complexity. The time complexity of solving the LAP is O(M3) using a modified Jonker-Volgenant
algorithm without initialization (Crouse, 2016), where M is the number of trees. This process needs
to be performed only once in both WM and AM to consider tree permutation invariance. However, the
number of additional invariance patterns U scales rapidly as D increases. In a non-oblivious perfect
binary tree with depth D, there are 2D − 1 splitting nodes, resulting in 22

D−1 possible combinations
of sign flips, giving total additional invariances pattern U = 22

D−1. Additionally, in the case of
oblivious trees with depth D, the number of splitting rules that consider sign flipping is reduced
from 22

D−1 to 2D due to the splitting rule sharing at the same depth, and considering the D! distinct
splitting order invariance patterns, we have U = 2DD!. Therefore, for large values of D, conducting
an exhaustive search to consider additional invariances becomes impractical.

In Section 3.3, we will discuss methods to eliminate additional invariance by adjusting the tree
structure. This enables efficient matching even for deep models. Additionally, in Section 4.2, we
will present numerical experiment results and discuss that the practical motivation to apply these
algorithms is limited when targeting deep perfect binary trees.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.3 ARCHITECTURE-DEPENDENCY OF THE INVARIANCES

6

Invariance exists Empty Node

Figure 5: Tree architecture where neither subtree
flip invariance nor splitting order invariance exists.

In Section 3.1, we focused on perfect binary
trees as they are most commonly used in soft
trees (Frosst & Hinton, 2017; Popov et al., 2020;
Hazimeh et al., 2020). However, tree architec-
tures can be flexible, and we show that we can
specifically design architecture that has neither
subtree flip nor splitting order invariances. This
allows efficient matching as considering such
two invariances is computationally expensive.

Table 1: Invariances inherent to each model archi-
tecture.

Perm Flip Order

Non-Oblivious Tree ✓ ✓ ×
Oblivious Tree ✓ ✓ ✓
Decision List ✓ (✓) ×

Decision List (Modified) ✓ × ×

Our idea is to modify a decision list shown on
the left side of Figure 5, which is a tree structure
where branches extend in only one direction.
Due to this asymmetric structure, the number of
parameters does not increase exponentially with
the depth, and the splitting order invariance does
not exist. Moreover, subtree flip invariance also
does not exist for any internal nodes except for
the terminal splitting node, as shown in the left
side of Figure 5. To completely remove this invariance, we virtually eliminate one of the terminal
leaves by leaving the node empty, that is, a fixed prediction value of zero, as shown on the right
side of Figure 5. Therefore only permutation invariance exists for our proposed architecture. We
summarize invariances inherent to each model architecture in Table 1.

4 EXPERIMENT

We empirically evaluate barriers in soft tree ensembles to examine LMC.

4.1 SETUP

Datasets. In our experiments, we employed Tabular-Benchmark (Grinsztajn et al., 2022), a collection
of tabular datasets suitable for evaluating tree ensembles. Details of datasets are provided in Section A
in Appendix. As proposed in Grinsztajn et al. (2022), we randomly sampled 10, 000 instances for
train and test data from each dataset. If the dataset contains fewer than 20, 000 instances, they are
randomly divided into halves for train and test data. We applied quantile transformation to each
feature and standardized it to follow a normal distribution.

Hyperparameters. We used three different learning rates η ∈ {0.01, 0.001, 0.0001} and adopted
the one that yields the highest training accuracy for each dataset. The batch size is set at 512. It is
known that the optimal settings for the learning rate and batch size are interdependent (Smith et al.,
2018). Therefore, it is reasonable to fix the batch size while adjusting the learning rate. During
AM, we set the amount of data used for random sampling to be the same as the batch size, thus
using 512 samples to measure the similarity of the tree outputs. As the number of trees M and their
depths D vary for each experiment, these details will be specified in the experimental results section.
During training, we minimized cross-entropy using Adam (Kingma & Ba, 2015) with its default
hyperparameters2. Training is conducted for 50 epochs. To measure the barrier using Equation 1,
experiments were conducted by interpolating between two models with λ ∈ {0, 1/24, . . . , 23/24, 1},
which has the same granularity as in Ainsworth et al. (2023).

Randomness. We conducted experiments with five different random seed pairs: rA ∈ {1, 3, 5, 7, 9}
and rB ∈ {2, 4, 6, 8, 10}. As a result, the initial parameters and the contents of the data mini-batches
during training are different in each training. In contrast to spawning (Frankle et al., 2020) that
branches off from the exact same model partway through, we used more challenging practical
conditions. The parameters w, b, and π were randomly initialized using a uniform distribution,
identical to the procedure for a fully connected layer in the MLP3.

2https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
3https://pytorch.org/docs/stable/generated/torch.nn.Linear.html
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Figure 6: Barriers averaged across 16 datasets with respect to considered invariances for non-
oblivious (top row) and oblivious (bottom row) trees. The error bars show the standard deviations of
5 executions.
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Figure 7: Interpolation curves of test accuracy for oblivious trees on 16 datasets from Tabular-
Benchmark (Grinsztajn et al., 2022). Two model pairs are trained on the same dataset. The error bars
show the standard deviations of 5 executions.

Resources. All experiments were conducted on a system equipped with an Intel Xeon E5-2698
CPU at 2.20 GHz, 252 GB of memory, and Tesla V100-DGXS-32GB GPU, running Ubuntu Linux
(version 4.15.0-117-generic). The reproducible PyTorch (Paszke et al., 2019) implementation is
provided in the supplementary material.

4.2 RESULTS FOR PERFECT BINARY TREES

Figure 6 shows how the barrier between two perfect binary tree model pairs changes in each operation.
The vertical axis of each plot in Figure 6 shows the averaged barrier over datasets for each considered
invariance. The results for both the oblivious and non-oblivious trees are plotted separately in a
vertical layout. The panels on the left display the results when the depth D of the tree varies, keeping
M = 256 constant. The panels on the right show the results when the number of trees M varies, with
D fixed at 2. For both oblivious and non-oblivious trees, we observed that the barrier significantly
decreases as the considered invariances increase. Focusing on the test data results, after accounting for
various invariances, the barrier is nearly zero, indicating that LMC has been achieved. In particular,
the difference between the case of only permutation and the case where additional invariances are
considered tends to be larger in the case of AM. This is because parameter values are not used during
the rearrangement of the tree in AM. Additionally, it has been observed that the barrier increases as
trees become deeper, and the barrier decreases as the number of trees increases. These behaviors
correspond to the changes observed in neural networks when the depth varies or when the width of
hidden layers increases (Entezari et al., 2022; Ainsworth et al., 2023). Figure 7 shows interpolation
curves for AM in oblivious trees with D = 2 and M = 256. In our figures and tables, “Naive” refers
to a straightforward parameter interpolation without any specific optimization; “Tree Permutation”
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Figure 8: Interpolation curves of test accuracy for oblivious trees on 16 datasets from Tabular-
Benchmark (Grinsztajn et al., 2022). Two model pairs are trained on split datasets with different class
ratios. The error bars show the standard deviations of 5 executions. Performance of a model trained
with the full dataset is shown in the red dashed horizontal lines as a reference.

or “Perm” considers only the permutation invariance; and “Ours” incorporates both the permutation
of the trees and tree-inherent invariances. Other details, such as performance for each dataset, are
provided in Section B in Appendix.

Furthermore, we conducted experiments with split data following the protocol in Ainsworth et al.
(2023) and Jordan et al. (2023), where the initial split consists of randomly sampled 80% negative
and 20% positive instances, and the second split inverts these ratios. There is no overlap between the
two split datasets. We trained two model pairs using these separately split datasets and observed an
improvement in performance by interpolating their parameters. Figure 8 illustrates the interpolation
curves under AM in oblivious trees with parameters D = 2 and M = 256. Through model merging,
it demonstrates similar performance to full data training even with split data training for the majority
of datasets. Note that the data split is configured to remain consistent even when the training random
seeds differ. Detailed results for each dataset using WM or AM are provided in Section B in Appendix.

Table 2: Barriers, accuracies, and model sizes for
MLP, non-oblivious trees, and oblivious trees.

MLP

BarrierDepth

Naive Perm
Accuracy Size

1 8.755 ± 0.877 0.491 ± 0.062 76.286 ± 0.094 12034
2 15.341± 1.125 2.997 ± 0.709 75.981 ± 0.139 77826
3 15.915 ± 2.479 5.940 ± 2.153 75.935 ± 0.117 143618

Non-Oblivious Tree

BarrierDepth

Naive Perm Ours
Accuracy Size

1 8.965 ± 0.963 0.449 ± 0.235 0.181 ± 0.078 76.464 ± 0.167 12544
2 6.801 ± 0.464 0.811 ± 0.333 0.455 ± 0.105 76.631 ± 0.052 36608
3 5.602 ± 0.926 1.635 ± 0.334 0.740 ± 0.158 76.339 ± 0.115 84736

Oblivious Tree

BarrierDepth

Naive Perm Ours
Accuracy Size

1 8.965 ± 0.963 0.449 ± 0.235 0.181 ± 0.078 76.464 ± 0.167 12544
2 7.881 ± 0.866 0.918 ± 0.092 0.348 ± 0.172 76.623 ± 0.042 25088
3 7.096 ± 0.856 1.283 ± 0.139 0.484 ± 0.049 76.535 ± 0.063 38656

Table 2 compares the average test barriers of an
MLP with a ReLU activation function, whose
width is equal to the number of trees, M = 256.
The procedure for MLPs follows that described
in Section 4.1. The permutation for MLPs
is optimized using the method described in
Ainsworth et al. (2023). Since Ainsworth et al.
(2023) indicated that WM outperforms AM in
neural networks, WM was used for the com-
parison. Overall, tree models exhibit smaller
barriers compared to MLPs while keeping sim-
ilar accuracy levels. It is important to note that
MLPs with D > 1 tend to have more parameters
at the same depth compared to trees, leading to
more complex optimization landscapes. Nev-
ertheless, the barrier for the non-oblivious tree
at D = 3 is smaller than that for the MLP at
D = 2, even with more parameters. Further-
more, at the same depth of D = 1, tree models
have a smaller barrier. Here, the model size is
evaluated using F = 44, the average input feature size of 16 datasets used in the experiments.

In Section 3.2, we have shown that considering additional invariances for deep perfect binary trees
is computationally challenging, which may suggest developing heuristic algorithms for deep trees.
However, we consider it is rather a low priority, supported by our observations that the barrier tends
to increase as trees deepen even if we consider invariances. This trend indicates that deep models
are fundamentally less important for model merging considerations. Furthermore, deep perfect
binary trees are rarely used in practical scenarios. Kanoh & Sugiyama (2022) have demonstrated
that generalization performance degrades with increasing depth in perfect binary trees due to the
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Table 3: Barriers averaged for 16 datasets under WM with D = 2 and M = 256.
Train Test

Barrier BarrierArchitecture

Naive Perm Ours
Accuracy

Naive Perm Ours
Accuracy

Non-Oblivious Tree 13.079 ± 0.755 4.707 ± 0.332 3.303 ± 0.104 85.646 ± 0.090 6.801 ± 0.464 0.811 ± 0.333 0.455 ± 0.105 76.631 ± 0.052
Oblivious Tree 14.580 ± 1.108 4.834 ± 0.176 2.874 ± 0.108 85.808 ± 0.146 7.881 ± 0.866 0.919 ± 0.093 0.348 ± 0.172 76.623 ± 0.042
Decision List 13.835 ± 0.788 3.687 ± 0.230 — 85.337 ± 0.134 7.513 ± 0.944 0.436 ± 0.120 — 76.629 ± 0.119

Decision List (Modified) 12.922 ± 1.131 3.328 ± 0.204 — 85.563 ± 0.141 6.734 ± 1.096 0.468 ± 0.150 — 76.773 ± 0.051

Table 4: Barriers averaged for 16 datasets under AM with D = 2 and M = 256.
Train Test

Barrier BarrierArchitecture

Naive Perm Ours
Accuracy

Naive Perm Ours
Accuracy

Non-Oblivious Tree 13.079 ± 0.755 14.963 ± 1.520 4.500 ± 0.527 85.646 ± 0.090 6.801 ± 0.464 8.631 ± 1.444 0.943 ± 0.435 76.631 ± 0.052
Oblivious Tree 14.580 ± 1.108 17.380 ± 0.509 3.557 ± 0.201 85.808 ± 0.146 7.881 ± 0.866 10.349 ± 0.476 0.395 ± 0.185 76.623 ± 0.042
Decision List 13.835 ± 0.788 12.785 ± 1.924 — 85.337 ± 0.134 7.513 ± 0.944 7.452 ± 1.840 — 76.629 ± 0.119

Decision List (Modified) 12.922 ± 1.131 6.364 ± 0.194 — 85.563 ± 0.141 6.734 ± 1.096 2.114 ± 0.243 — 76.773 ± 0.051

degeneracy of the Neural Tangent Kernel (NTK) (Jacot et al., 2018). This evidence further supports
the preference for shallow perfect binary trees, and increasing the number of trees can enhance the
expressive power while reducing barriers.

4.3 RESULTS FOR DECISION LISTS
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Figure 9: Averaged barrier for 16 datasets as a
function of tree depth. The error bars show the
standard deviations of 5 executions. The solid line
represents the barrier in train accuracy, while the
dashed line represents the barrier in test accuracy.

We present empirical results of the original de-
cision lists and our modified decision lists, as
shown in Figure 5. As we have shown in Table 1,
they have fewer invariances.

Figure 9 illustrates barriers as a function of
depth, considering only permutation invariance,
with M fixed at 256. In this experiment, we
have excluded non-oblivious trees from compar-
ison as the number of their parameters exponen-
tially increases as trees deepen, making them
infeasible computation. Our proposed modified
decision lists reduce the barrier more effectively
than both oblivious trees and the original deci-
sion lists. However, barriers of the modified decision lists are still larger than those obtained by
considering additional invariances with perfect binary trees. Tables 3 and 4 show the averaged
barriers for 16 datasets, with D = 2 and M = 256. Although barriers of modified decision lists are
small when considering only permutations (Perm), perfect binary trees such as oblivious trees with
additional invariances (Ours) exhibit smaller barriers, which supports the validity of using oblivious
trees as in Popov et al. (2020) and Chang et al. (2022). To summarize, when considering the practical
use of model merging, if the goal is to prioritize efficient computation, we recommend using our
proposed decision list. Conversely, if the goal is to prioritize barriers, it would be preferable to use
perfect binary trees, which have a greater number of invariances that maintain the functional behavior.

5 CONCLUSION

We have presented the first investigation of LMC for soft tree ensembles. We have identified additional
invariances inherent in tree architectures and empirically demonstrated the importance of considering
these factors. Achieving LMC is crucial not only for understanding the behavior of non-convex
optimization from a learning theory perspective but also for implementing practical techniques such as
model merging. By arithmetically combining parameters of differently trained models, a wide range
of applications such as federated-leanning (McMahan et al., 2017) and continual-learning (Mirzadeh
et al., 2021) have been explored. Our research extends these techniques to soft tree ensembles. We
will leave these empirical investigations for future work.
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A DATASET

Details of datasets used in experiments are provided in Table 5.

Table 5: Summary of the datasets used in the experiments.
Dataset N F Link

Bioresponse 3434 419 https://www.openml.org/d/45019
Diabetes130US 71090 7 https://www.openml.org/d/45022

Higgs 940160 24 https://www.openml.org/d/44129
MagicTelescope 13376 10 https://www.openml.org/d/44125

MiniBooNE 72998 50 https://www.openml.org/d/44128
bank-marketing 10578 7 https://www.openml.org/d/44126

california 20634 8 https://www.openml.org/d/45028
covertype 566602 10 https://www.openml.org/d/44121

credit 16714 10 https://www.openml.org/d/44089
default-of-credit-card-clients 13272 20 https://www.openml.org/d/45020

electricity 38474 7 https://www.openml.org/d/44120
eye_movements 7608 20 https://www.openml.org/d/44130

heloc 10000 22 https://www.openml.org/d/45026
house_16H 13488 16 https://www.openml.org/d/44123

jannis 57580 54 https://www.openml.org/d/45021
pol 10082 26 https://www.openml.org/d/44122

B ADDITIONAL EMPIRICAL RESULTS

Tables 6, 7, 8 and 9 present the barrier for each dataset with D = 2 and M = 256. By incorporating
additional invariances, it has been possible to consistently reduce the barriers.

Tables 10 and 11 detail the characteristics of the barriers in the decision lists for each dataset with
D = 2 and M = 256. The barriers in the modified decision lists tend to be smaller.

Tables 12 and 13 show the barrier for each model when only considering permutations with D = 2
and M = 256. It is evident that focusing solely on permutations leads to smaller barriers in the
modified decision lists compared to other architectures.

Figures 10, 11, 12, 13, 14, 15, 16 and 17 show the interpolation curves of oblivious trees with D = 2
and M = 256 across various datasets and configurations. Significant improvements are particularly
noticeable in AM, but improvements are also observed in WM. These characteristics are also apparent
in the non-oblivious trees, as shown in Figures 18, 19, 20, 21, 22, 23, 24 and 25. Regarding split data
training, the dataset for each of the two classes is initially complete (100%). It is then divided into
splits of 80% and 20%, and 20% and 80%, respectively. Each model is trained using these splits.
Figures 14, 16, 22, and 24 show the training accuracy evaluated using the full dataset (100% for each
class). In split data training, the performance reference of full data training is shown only for the
performance on the test data. This is because, in split data training, even the training dataset used
for evaluation includes portions that are not used for training each model, which differs from the
conditions in full data training. In contrast, when evaluating performance on the test data, all of the
test data has not been used equally for the training of each model, which allows for a fair comparison
between the two approaches. Figures 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 and 41
visualize the same to that of perfect binary trees for the decision lists.

Figures 42 and 43 show the interpolation curves for MNIST (LeCun & Cortes, 2010) with various
tree architectures where D = 2 and M = 256. Although MNIST consists of 2-dimensional image
data, it is input as a 1-dimensional vector.
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Table 6: Accuracy barrier for non-oblivious trees with WM.
Train Test

Dataset
Naive Perm Perm&Flip Naive Perm Perm&Flip

Bioresponse 18.944 ± 10.076 5.876 ± 1.477 4.132 ± 0.893 8.235 ± 6.456 1.285 ± 0.635 0.314 ± 0.432
Diabetes130US 2.148 ± 0.601 1.388 ± 1.159 0.947 ± 0.888 1.014 ± 0.959 0.540 ± 0.999 0.784 ± 0.840

Higgs 27.578 ± 1.742 18.470 ± 0.769 14.772 ± 1.419 4.055 ± 1.089 0.662 ± 0.590 0.292 ± 0.421
MagicTelescope 2.995 ± 1.198 0.576 ± 0.556 0.307 ± 0.346 2.096 ± 1.055 0.361 ± 0.618 0.229 ± 0.348

MiniBooNE 18.238 ± 4.570 2.272 ± 0.215 1.506 ± 0.211 12.592 ± 4.190 0.231 ± 0.314 0.000 ± 0.000
bank-marketing 13.999 ± 4.110 2.711 ± 1.183 1.521 ± 0.463 13.593 ± 4.567 1.843 ± 1.001 0.953 ± 0.688

california 6.396 ± 2.472 0.873 ± 0.551 0.520 ± 0.327 5.226 ± 2.377 0.224 ± 0.248 0.206 ± 0.131
covertype 16.823 ± 4.159 1.839 ± 0.336 0.914 ± 0.546 14.900 ± 4.016 1.035 ± 0.106 0.376 ± 0.333

credit 7.317 ± 2.425 3.172 ± 2.636 2.615 ± 0.831 5.861 ± 2.064 2.202 ± 3.103 1.830 ± 0.588
default-of-credit-card-clients 14.318 ± 4.509 5.419 ± 1.318 3.273 ± 0.793 6.227 ± 4.205 0.937 ± 1.036 0.243 ± 0.172

electricity 10.090 ± 2.930 1.035 ± 0.543 0.221 ± 0.192 9.422 ± 2.795 0.771 ± 0.478 0.130 ± 0.071
eye_movements 18.743 ± 1.994 11.605 ± 1.927 7.866 ± 1.301 1.495 ± 0.467 0.463 ± 0.183 0.180 ± 0.206

heloc 4.434 ± 1.611 1.652 ± 0.475 1.012 ± 0.481 0.830 ± 0.727 0.475 ± 0.447 0.322 ± 0.338
house_16H 8.935 ± 2.504 3.362 ± 0.482 2.660 ± 1.208 4.230 ± 2.189 0.219 ± 0.224 0.404 ± 0.782

jannis 17.756 ± 3.322 10.442 ± 1.404 7.362 ± 0.219 3.205 ± 2.849 0.029 ± 0.064 0.007 ± 0.016
pol 20.542 ± 2.873 4.612 ± 0.912 3.225 ± 1.080 15.830 ± 2.562 1.708 ± 0.599 1.012 ± 0.859

Table 7: Accuracy barrier for non-oblivious trees with AM.
Train Test

Dataset
Naive Perm Perm&Flip Naive Perm Perm&Flip

Bioresponse 18.944 ± 10.076 14.066 ± 7.045 5.710 ± 0.915 8.235 ± 6.456 5.037 ± 3.141 0.966 ± 0.316
Diabetes130US 2.148 ± 0.601 3.086 ± 2.566 0.574 ± 0.365 1.014 ± 0.959 1.936 ± 2.878 0.105 ± 0.152

Higgs 27.578 ± 1.742 30.704 ± 2.899 18.435 ± 1.599 4.055 ± 1.089 7.272 ± 1.089 1.044 ± 0.483
MagicTelescope 2.995 ± 1.198 3.309 ± 1.486 0.778 ± 0.515 2.096 ± 1.055 2.693 ± 1.190 0.428 ± 0.327

MiniBooNE 18.238 ± 4.570 34.934 ± 8.157 2.332 ± 0.383 12.592 ± 4.190 28.721 ± 7.869 0.074 ± 0.081
bank-marketing 13.999 ± 4.110 13.598 ± 7.638 3.098 ± 0.539 13.593 ± 4.567 12.810 ± 7.605 2.643 ± 0.704

california 6.396 ± 2.472 5.800 ± 2.036 0.697 ± 0.535 5.226 ± 2.377 4.858 ± 2.017 0.261 ± 0.285
covertype 16.823 ± 4.159 19.708 ± 6.392 1.420 ± 0.619 14.900 ± 4.016 17.765 ± 6.400 0.758 ± 0.540

credit 7.317 ± 2.425 10.556 ± 8.753 3.640 ± 1.624 5.861 ± 2.064 9.378 ± 9.083 2.551 ± 1.987
default-of-credit-card-clients 14.318 ± 4.509 14.166 ± 2.297 4.247 ± 1.678 6.227 ± 4.205 6.514 ± 2.049 0.885 ± 1.852

electricity 10.090 ± 2.930 12.955 ± 4.558 0.762 ± 0.332 9.422 ± 2.795 12.261 ± 4.554 0.499 ± 0.260
eye_movements 18.743 ± 1.994 18.757 ± 1.273 10.957 ± 1.019 1.495 ± 0.467 1.583 ± 1.011 0.146 ± 0.167

heloc 4.434 ± 1.611 6.564 ± 2.404 1.774 ± 0.672 0.830 ± 0.727 2.179 ± 2.100 0.385 ± 0.370
house_16H 8.935 ± 2.504 10.184 ± 2.667 3.908 ± 0.863 4.230 ± 2.189 5.664 ± 2.461 1.056 ± 0.693

jannis 17.756 ± 3.322 19.004 ± 1.246 9.890 ± 1.036 3.205 ± 2.849 4.047 ± 1.415 0.346 ± 0.443
pol 20.542 ± 2.873 16.267 ± 3.914 7.967 ± 3.208 15.830 ± 2.562 12.863 ± 3.983 4.539 ± 2.727

Table 8: Accuracy barrier for oblivious trees with WM.
Train Test

Dataset
Naive Perm Perm&Order&Flip Naive Perm Perm&Order&Flip

Bioresponse 16.642 ± 4.362 4.800 ± 0.895 3.289 ± 0.680 7.165 ± 2.547 1.069 ± 1.020 0.299 ± 0.247
Diabetes130US 3.170 ± 3.304 1.120 ± 1.123 0.246 ± 0.177 2.831 ± 3.476 0.882 ± 1.309 0.181 ± 0.155

Higgs 28.640 ± 0.914 19.754 ± 1.023 13.689 ± 0.814 4.648 ± 0.966 1.270 ± 0.808 0.266 ± 0.232
MagicTelescope 2.659 ± 1.637 0.473 ± 0.632 0.077 ± 0.110 2.012 ± 1.343 0.534 ± 0.565 0.093 ± 0.144

MiniBooNE 22.344 ± 7.001 2.388 ± 0.194 1.628 ± 0.208 16.454 ± 6.706 0.075 ± 0.086 0.012 ± 0.019
bank-marketing 13.512 ± 6.416 2.998 ± 1.582 0.925 ± 0.688 12.856 ± 6.609 2.324 ± 1.618 0.634 ± 0.433

california 8.281 ± 4.253 0.874 ± 0.524 0.351 ± 0.267 6.578 ± 4.264 0.342 ± 0.209 0.034 ± 0.024
covertype 23.977 ± 2.565 2.073 ± 0.657 0.976 ± 0.523 21.790 ± 2.253 0.992 ± 0.496 0.422 ± 0.319

credit 6.912 ± 4.083 2.369 ± 0.887 0.662 ± 0.606 5.739 ± 4.502 1.324 ± 0.674 0.350 ± 0.522
default-of-credit-card-clients 16.301 ± 4.462 4.512 ± 1.033 2.902 ± 0.620 7.618 ± 3.873 0.728 ± 0.331 0.531 ± 0.557

electricity 8.835 ± 1.824 1.060 ± 0.684 0.279 ± 0.266 7.952 ± 1.995 0.731 ± 0.383 0.285 ± 0.200
eye_movements 22.604 ± 1.486 12.687 ± 1.645 7.826 ± 1.822 2.884 ± 1.646 0.825 ± 0.711 0.607 ± 0.259

heloc 6.282 ± 2.351 2.517 ± 1.156 1.507 ± 0.498 1.625 ± 1.480 0.869 ± 0.957 0.727 ± 0.785
house_16H 13.600 ± 5.135 3.302 ± 0.376 1.950 ± 0.346 8.055 ± 4.429 0.330 ± 0.441 0.158 ± 0.098

jannis 19.390 ± 1.013 11.358 ± 0.377 7.140 ± 0.538 1.999 ± 1.237 0.305 ± 0.409 0.214 ± 0.235
pol 20.125 ± 2.902 5.059 ± 1.482 2.544 ± 1.005 15.887 ± 3.061 2.100 ± 1.358 0.751 ± 0.892

Table 9: Accuracy barrier for oblivious trees with AM.
Train Test

Dataset
Naive Perm Perm&Order&Flip Naive Perm Perm&Order&Flip

Bioresponse 16.642 ± 4.362 19.033 ± 8.533 6.358 ± 1.915 7.165 ± 2.547 6.904 ± 5.380 1.038 ± 0.591
Diabetes130US 3.170 ± 3.304 5.473 ± 3.260 0.703 ± 0.517 2.831 ± 3.476 5.290 ± 3.486 0.390 ± 0.291

Higgs 28.640 ± 0.914 33.234 ± 3.164 15.678 ± 0.713 4.648 ± 0.966 8.113 ± 2.614 0.415 ± 0.454
MagicTelescope 2.659 ± 1.637 3.902 ± 1.931 0.224 ± 0.256 2.012 ± 1.343 3.687 ± 1.876 0.334 ± 0.434

MiniBooNE 22.344 ± 7.001 41.022 ± 3.398 2.184 ± 0.425 16.454 ± 6.706 34.452 ± 3.161 0.033 ± 0.056
bank-marketing 13.512 ± 6.416 12.248 ± 6.748 1.330 ± 0.806 12.856 ± 6.609 11.356 ± 7.168 0.695 ± 0.464

california 8.281 ± 4.253 9.539 ± 4.798 0.371 ± 0.365 6.578 ± 4.264 8.354 ± 4.648 0.112 ± 0.181
covertype 23.977 ± 2.565 27.590 ± 2.172 1.051 ± 0.407 21.790 ± 2.253 25.289 ± 1.787 0.403 ± 0.236

credit 6.912 ± 4.083 9.839 ± 6.698 1.169 ± 0.839 5.739 ± 4.502 8.291 ± 7.268 0.549 ± 0.751
default-of-credit-card-clients 16.301 ± 4.462 21.746 ± 7.075 3.646 ± 0.520 7.618 ± 3.873 12.183 ± 5.954 0.285 ± 0.372

electricity 8.835 ± 1.824 18.177 ± 5.979 0.472 ± 0.507 7.952 ± 1.995 17.396 ± 5.809 0.405 ± 0.356
eye_movements 22.604 ± 1.486 23.221 ± 3.024 8.588 ± 2.248 2.884 ± 1.646 2.761 ± 1.628 0.398 ± 0.435

heloc 6.282 ± 2.351 9.074 ± 3.894 2.541 ± 0.471 1.625 ± 1.480 3.891 ± 2.655 0.485 ± 0.397
house_16H 13.600 ± 5.135 17.963 ± 5.099 2.841 ± 0.543 8.055 ± 4.429 12.192 ± 4.635 0.292 ± 0.157

jannis 19.390 ± 1.013 22.482 ± 3.113 9.570 ± 0.316 1.999 ± 1.237 4.292 ± 2.509 0.069 ± 0.154
pol 20.125 ± 2.902 19.558 ± 5.785 3.056 ± 0.510 15.887 ± 3.061 14.858 ± 5.523 0.961 ± 0.722

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 10: Accuracy barrier for decision lists with WM.
Train Test

Dataset
Naive Perm Naive (Modified) Perm (Modified) Naive Perm Naive (Modified) Perm (Modified)

Bioresponse 21.323 ± 6.563 4.259 ± 0.698 14.578 ± 3.930 4.641 ± 0.918 9.325 ± 3.988 0.346 ± 0.277 7.346 ± 4.261 1.309 ± 0.827
Diabetes130US 5.182 ± 3.745 1.483 ± 1.006 2.754 ± 1.098 1.088 ± 0.608 4.910 ± 4.244 1.293 ± 1.332 1.476 ± 1.308 0.849 ± 0.885

Higgs 27.778 ± 1.036 16.110 ± 0.518 28.915 ± 1.314 14.071 ± 0.395 4.777 ± 0.803 0.106 ± 0.203 5.136 ± 0.946 0.039 ± 0.083
MagicTelescope 4.855 ± 3.388 0.355 ± 0.682 5.138 ± 2.655 0.182 ± 0.141 4.137 ± 3.763 0.280 ± 0.519 4.534 ± 2.588 0.157 ± 0.162

MiniBooNE 23.059 ± 1.479 1.911 ± 0.138 14.916 ± 3.616 1.580 ± 0.178 17.248 ± 1.683 0.025 ± 0.036 9.340 ± 3.585 0.035 ± 0.042
bank-marketing 11.952 ± 3.794 0.979 ± 0.478 11.589 ± 2.167 0.373 ± 0.448 11.387 ± 4.113 0.536 ± 0.472 10.540 ± 2.067 0.349 ± 0.348

california 6.522 ± 3.195 0.621 ± 0.363 8.435 ± 3.273 0.538 ± 0.214 5.167 ± 2.962 0.236 ± 0.146 6.844 ± 3.087 0.151 ± 0.147
covertype 13.408 ± 3.839 1.341 ± 0.433 11.114 ± 2.689 1.257 ± 0.904 11.162 ± 3.620 0.472 ± 0.340 8.826 ± 2.729 0.477 ± 0.889

credit 11.238 ± 8.115 1.968 ± 0.990 14.626 ± 5.448 1.390 ± 0.423 10.880 ± 9.040 1.421 ± 1.046 13.667 ± 5.951 0.940 ± 0.612
default-of-credit-card-clients 12.513 ± 5.116 3.107 ± 1.123 11.378 ± 2.123 3.793 ± 0.881 5.161 ± 4.304 0.328 ± 0.512 3.197 ± 1.916 0.666 ± 0.651

electricity 6.524 ± 1.863 0.725 ± 0.451 9.101 ± 2.685 0.944 ± 0.557 5.834 ± 1.838 0.420 ± 0.354 8.487 ± 2.460 0.543 ± 0.511
eye_movements 19.125 ± 1.791 9.433 ± 1.385 19.738 ± 1.490 8.755 ± 1.391 1.990 ± 1.623 0.329 ± 0.102 1.916 ± 1.492 0.277 ± 0.302

heloc 4.513 ± 1.826 1.564 ± 0.617 5.116 ± 0.793 1.574 ± 0.154 0.725 ± 0.598 0.155 ± 0.190 1.263 ± 0.711 0.359 ± 0.346
house_16H 9.195 ± 2.408 2.520 ± 0.446 8.693 ± 1.302 2.222 ± 0.730 4.629 ± 2.314 0.063 ± 0.129 4.192 ± 1.517 0.185 ± 0.296

jannis 20.766 ± 2.097 9.484 ± 0.371 20.520 ± 1.017 7.400 ± 0.324 3.947 ± 2.605 0.006 ± 0.013 4.451 ± 1.300 0.004 ± 0.009
pol 23.401 ± 5.448 3.137 ± 1.038 20.137 ± 4.200 3.435 ± 0.675 18.933 ± 5.249 0.952 ± 0.925 16.522 ± 3.502 1.143 ± 0.565

Table 11: Accuracy barrier for decision lists with AM.
Train Test

Dataset
Naive Perm Naive (Modified) Perm (Modified) Naive Perm Naive (Modified) Perm (Modified)

Bioresponse 21.323 ± 6.563 13.349 ± 5.943 14.578 ± 3.930 10.363 ± 7.256 9.325 ± 3.988 4.817 ± 2.825 7.346 ± 4.261 3.871 ± 4.608
Diabetes130US 5.182 ± 3.745 5.590 ± 3.328 2.754 ± 1.098 1.371 ± 0.507 4.910 ± 4.244 4.926 ± 3.796 1.476 ± 1.308 0.694 ± 0.649

Higgs 27.778 ± 1.036 28.910 ± 2.132 28.915 ± 1.314 20.131 ± 1.693 4.777 ± 0.803 6.722 ± 1.231 5.136 ± 0.946 1.755 ± 1.403
MagicTelescope 4.855 ± 3.388 3.349 ± 3.273 5.138 ± 2.655 1.451 ± 0.705 4.137 ± 3.763 3.001 ± 3.478 4.534 ± 2.588 1.090 ± 0.437

MiniBooNE 23.059 ± 1.479 18.149 ± 7.500 14.916 ± 3.616 3.870 ± 1.168 17.248 ± 1.683 13.868 ± 7.222 9.340 ± 3.585 0.797 ± 0.860
bank-marketing 11.952 ± 3.794 9.782 ± 6.722 11.589 ± 2.167 2.815 ± 0.957 11.387 ± 4.113 9.151 ± 7.204 10.540 ± 2.067 2.521 ± 1.055

california 6.522 ± 3.195 5.812 ± 2.365 8.435 ± 3.273 2.254 ± 0.813 5.167 ± 2.962 4.899 ± 2.018 6.844 ± 3.087 1.186 ± 0.643
covertype 13.408 ± 3.839 14.727 ± 7.029 11.114 ± 2.689 4.036 ± 1.450 11.162 ± 3.620 13.352 ± 7.056 8.826 ± 2.729 2.656 ± 1.302

credit 11.238 ± 8.115 18.620 ± 9.806 14.626 ± 5.448 8.979 ± 6.919 10.880 ± 9.040 18.606 ± 10.015 13.667 ± 5.951 8.113 ± 6.633
default-of-credit-card-clients 12.513 ± 5.116 12.880 ± 5.070 11.378 ± 2.123 6.055 ± 1.178 5.161 ± 4.304 6.465 ± 5.062 3.197 ± 1.916 0.533 ± 0.239

electricity 6.524 ± 1.863 4.988 ± 2.732 9.101 ± 2.685 3.041 ± 0.676 5.834 ± 1.838 4.361 ± 2.532 8.487 ± 2.460 2.637 ± 0.730
eye_movements 19.125 ± 1.791 18.694 ± 1.774 19.738 ± 1.490 13.408 ± 1.196 1.990 ± 1.623 3.046 ± 1.625 1.916 ± 1.492 1.807 ± 1.312

heloc 4.513 ± 1.826 5.504 ± 1.650 5.116 ± 0.793 3.287 ± 0.758 0.725 ± 0.598 1.711 ± 1.278 1.263 ± 0.711 0.528 ± 0.147
house_16H 9.195 ± 2.408 8.591 ± 3.370 8.693 ± 1.302 3.937 ± 0.816 4.629 ± 2.314 4.547 ± 2.726 4.192 ± 1.517 0.751 ± 0.508

jannis 20.766 ± 2.097 20.768 ± 2.200 20.520 ± 1.017 12.008 ± 0.892 3.947 ± 2.605 6.472 ± 2.342 4.451 ± 1.300 0.106 ± 0.162
pol 23.401 ± 5.448 17.384 ± 6.441 20.137 ± 4.200 10.339 ± 2.743 18.933 ± 5.249 13.285 ± 5.863 16.522 ± 3.502 6.492 ± 2.536

Table 12: Training accuracy barrier for permuted models with WM. The numbers in parentheses
represent the original accuracy.

Dataset Non-Oblivious Tree Oblivious Tree Decision List Decision List (Modified)

Bioresponse 5.876 ± 1.477 (93.005) 4.800 ± 0.895 (91.753) 4.259 ± 0.698 (91.771) 4.641 ± 0.918 (90.489)
Diabetes130US 1.388 ± 1.159 (60.686) 1.120 ± 1.123 (60.567) 1.483 ± 1.006 (60.425) 1.088 ± 0.608 (61.178)

Higgs 18.470 ± 0.769 (97.232) 19.754 ± 1.023 (97.616) 16.110 ± 0.518 (95.838) 14.071 ± 0.395 (95.831)
MagicTelescope 0.576 ± 0.556 (84.963) 0.473 ± 0.632 (84.460) 0.355 ± 0.682 (84.999) 0.182 ± 0.141 (85.411)

MiniBooNE 2.272 ± 0.215 (99.980) 2.388 ± 0.194 (99.980) 1.911 ± 0.138 (99.977) 1.580 ± 0.178 (99.976)
bank-marketing 2.711 ± 1.183 (79.490) 2.998 ± 1.582 (79.351) 0.979 ± 0.478 (79.166) 0.373 ± 0.448 (79.709)

california 0.873 ± 0.551 (87.897) 0.874 ± 0.524 (87.909) 0.621 ± 0.363 (88.012) 0.538 ± 0.214 (88.054)
covertype 1.839 ± 0.336 (79.445) 2.073 ± 0.657 (79.754) 1.341 ± 0.433 (79.618) 1.257 ± 0.904 (79.550)

credit 3.172 ± 2.636 (78.679) 2.369 ± 0.887 (78.231) 1.968 ± 0.990 (78.166) 1.390 ± 0.423 (78.905)
default-of-credit-card-clients 5.419 ± 1.318 (78.017) 4.512 ± 1.033 (78.657) 3.107 ± 1.123 (77.315) 3.793 ± 0.881 (78.308)

electricity 1.035 ± 0.543 (80.375) 1.060 ± 0.684 (80.861) 0.725 ± 0.451 (80.396) 0.944 ± 0.557 (80.651)
eye_movements 11.605 ± 1.927 (81.693) 12.687 ± 1.645 (83.730) 9.433 ± 1.385 (81.075) 8.755 ± 1.391 (81.451)

heloc 1.652 ± 0.475 (77.430) 2.517 ± 1.156 (78.370) 1.564 ± 0.617 (77.968) 1.574 ± 0.154 (78.550)
house_16H 3.362 ± 0.482 (93.093) 3.302 ± 0.376 (93.351) 2.520 ± 0.446 (92.783) 2.222 ± 0.730 (93.058)

jannis 10.442 ± 1.404 (100.000) 11.358 ± 0.377 (100.000) 9.484 ± 0.371 (100.000) 7.400 ± 0.324 (100.000)
pol 4.612 ± 0.912 (98.348) 5.059 ± 1.482 (98.340) 3.137 ± 1.038 (97.883) 3.435 ± 0.675 (97.881)

Table 13: Training accuracy barrier for permuted models with AM. The numbers in parentheses
represent the original accuracy.

Dataset Non-Oblivious Oblivious Decision List Decision List (Modified)

Bioresponse 14.066 ± 7.045 (93.005) 19.033 ± 8.533 (91.753) 13.349 ± 5.943 (91.771) 10.363 ± 7.256 (90.489)
Diabetes130US 3.086 ± 2.566 (60.686) 5.473 ± 3.260 (60.567) 5.590 ± 3.328 (60.425) 1.371 ± 0.507 (61.178)

Higgs 30.704 ± 2.899 (97.232) 33.234 ± 3.164 (97.616) 28.910 ± 2.132 (95.838) 20.131 ± 1.693 (95.831)
MagicTelescope 3.309 ± 1.486 (84.963) 3.902 ± 1.931 (84.460) 3.349 ± 3.273 (84.999) 1.451 ± 0.705 (85.411)

MiniBooNE 34.934 ± 8.157 (99.980) 41.022 ± 3.398 (99.980) 18.149 ± 7.500 (99.977) 3.870 ± 1.168 (99.976)
bank-marketing 13.598 ± 7.638 (79.490) 12.248 ± 6.748 (79.351) 9.782 ± 6.722 (79.166) 2.815 ± 0.957 (79.709)

california 5.800 ± 2.036 (87.897) 9.539 ± 4.798 (87.909) 5.812 ± 2.365 (88.012) 2.254 ± 0.813 (88.054)
covertype 19.708 ± 6.392 (79.445) 27.590 ± 2.172 (79.754) 14.727 ± 7.029 (79.618) 4.036 ± 1.450 (79.550)

credit 10.556 ± 8.753 (78.679) 9.839 ± 6.698 (78.231) 18.620 ± 9.806 (78.166) 8.979 ± 6.919 (78.905)
default-of-credit-card-clients 14.166 ± 2.297 (78.017) 21.746 ± 7.075 (78.657) 12.880 ± 5.070 (77.315) 6.055 ± 1.178 (78.308)

electricity 12.955 ± 4.558 (80.375) 18.177 ± 5.979 (80.861) 4.988 ± 2.732 (80.396) 3.041 ± 0.676 (80.651)
eye_movements 18.757 ± 1.273 (81.693) 23.221 ± 3.024 (83.730) 18.694 ± 1.774 (81.075) 13.408 ± 1.196 (81.451)

heloc 6.564 ± 2.404 (77.430) 9.074 ± 3.894 (78.370) 5.504 ± 1.650 (77.968) 3.287 ± 0.758 (78.550)
house_16H 10.184 ± 2.667 (93.093) 17.963 ± 5.099 (93.351) 8.591 ± 3.370 (92.783) 3.937 ± 0.816 (93.058)

jannis 19.004 ± 1.246 (100.000) 22.482 ± 3.113 (100.000) 20.768 ± 2.200 (100.000) 12.008 ± 0.892 (100.000)
pol 16.267 ± 3.914 (98.348) 19.558 ± 5.785 (98.340) 17.384 ± 6.441 (97.883) 10.339 ± 2.743 (97.881)
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Figure 10: Interpolation curves of train accuracy for oblivious trees with AM.
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Figure 11: Interpolation curves of test accuracy for oblivious trees with AM.
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Figure 12: Interpolation curves of train accuracy for oblivious trees with WM.
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Figure 13: Interpolation curves of test accuracy for oblivious trees with WM.
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Figure 14: Interpolation curves of train accuracy for oblivious trees with AM by use of split dataset.
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Figure 15: Interpolation curves of test accuracy for oblivious trees with AM by use of split dataset.

Interpolation
60

70

A
cc

ur
ac

y

Bioresponse

Interpolation50

55

60
Diabetes130US

Interpolation

65

70

Higgs

Interpolation

75

80

85
MagicTelescope

Interpolation

80

90

MiniBooNE

Interpolation

70

75

bank-marketing

Interpolation

80

85

california

Interpolation

60

70

covertype

Interpolation

60

70

A
cc

ur
ac

y

credit

Interpolation
60

65

70

default-of-credit-card-clients

Interpolation

70

80
electricity

Interpolation
55

60

65
eye_movements

Interpolation
60

70

heloc

Interpolation80

85

house_16H

Interpolation
75

80

jannis

Interpolation
70

80

90

pol

Naive Tree Permutation Ours

Figure 16: Interpolation curves of train accuracy for oblivious trees with WM by use of split dataset.
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Figure 17: Interpolation curves of test accuracy for oblivious trees with WM by use of split dataset.
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Figure 18: Interpolation curves of train accuracy for non-oblivious trees with AM.
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Figure 19: Interpolation curves of test accuracy for non-oblivious trees with AM.
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Figure 20: Interpolation curves of train accuracy for non-oblivious trees with WM.

Interpolation

70

75

A
cc

ur
ac

y

Bioresponse

Interpolation

55

60

Diabetes130US

Interpolation

62.5

65.0

Higgs

Interpolation

82

84

MagicTelescope

Interpolation
70

80

90

MiniBooNE

Interpolation
60

70

bank-marketing

Interpolation

80

85

california

Interpolation

60

70

covertype

Interpolation

70

75

A
cc

ur
ac

y

credit

Interpolation

60

65

70
default-of-credit-card-clients

Interpolation
70

75

80
electricity

Interpolation

54

56

58

eye_movements

Interpolation

66

68

70

heloc

Interpolation
75

80

85

house_16H

Interpolation
70

72

jannis

Interpolation

80

90

pol

Naive Tree Permutation Ours

Figure 21: Interpolation curves of test accuracy for non-oblivious trees with WM.
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Figure 22: Interpolation curves of train accuracy for non-oblivious trees with AM by use of split
dataset.
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Figure 23: Interpolation curves of test accuracy for non-oblivious trees with AM by use of split
dataset.
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Figure 24: Interpolation curves of train accuracy for non-oblivious trees with WM by use of split
dataset.
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Figure 25: Interpolation curves of test accuracy for non-oblivious trees with WM by use of split
dataset.
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Figure 26: Interpolation curves of train accuracy for decision lists with AM.
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Figure 27: Interpolation curves of test accuracy for decision lists with AM.
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Figure 28: Interpolation curves of train accuracy for decision lists with WM.
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Figure 29: Interpolation curves of test accuracy for decision lists with WM.
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Figure 30: Interpolation curves of train accuracy for decision lists with AM by use of split dataset.
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Figure 31: Interpolation curves of test accuracy for decision lists with AM by use of split dataset.
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Figure 32: Interpolation curves of train accuracy for decision lists with WM by use of split dataset.
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Figure 33: Interpolation curves of test accuracy for decision lists with WM by use of split dataset.
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Figure 34: Interpolation curves of train accuracy for modified decision lists with AM.
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Figure 35: Interpolation curves of test accuracy for modified decision lists with AM.
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Figure 36: Interpolation curves of train accuracy for modified decision lists with WM.
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Figure 37: Interpolation curves of test accuracy for modified decision lists with WM.
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Figure 38: Interpolation curves of train accuracy for modified decision lists with AM by use of split
dataset.
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Figure 39: Interpolation curves of test accuracy for modified decision lists with AM by use of split
dataset.
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Figure 40: Interpolation curves of train accuracy for modified decision lists with WM by use of split
dataset.
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Figure 41: Interpolation curves of test accuracy for modified decision lists with WM by use of split
dataset.
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Figure 42: Interpolation curves of test accuracy with WM for MNIST (LeCun & Cortes, 2010)
dataset.

Interpolation90

92

94

96

98

100
Non-Oblivious

Interpolation90

92

94

96

98

100
Oblivious

Naive Tree Permutation Ours

Interpolation90

92

94

96

98

100
Decision List

Interpolation90

92

94

96

98

100
Decision List (Modified)

Figure 43: Interpolation curves of test accuracy with AM for MNIST (LeCun & Cortes, 2010) dataset.
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