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Abstract

In most realistic sequential decision-making tasks, an agent only observes partial and
noisy information about the state of its environment, and must learn to summarize
its history for optimal decision-making. Past work has leveraged discrepancies over
different TD(λ) value function estimates to reveal and mitigate partial observability.
While effective in many cases, the so-called λ-discrepancy crucially relies on the reward
signal to gauge partial observability. We introduce the General Value Discrepancy (GVD),
a principled extension of the λ-discrepancy that computes discrepancies over arbitrary,
observable features using the frameworks of general value functions and successor
features. Our key theoretical contribution is a proof that—unlike the λ-discrepancy—
GVD can always detect partial observability if it exists, irrespective of the environment’s
reward structure. By minimizing GVD as an auxiliary objective in deep reinforcement
learning, we create a dense and robust learning signal that improves agent performance
in a range of challenging partially observable benchmarks.

1 Introduction

Sequential decision-making tasks in the real world typically involve partial observations, where an
agent does not directly perceive the underlying environment state but instead receives incomplete and
noisy information. Such an environment is most commonly modeled as a POMDP (Kaelbling et al.,
1998), the partially observable generalization of a Markov Decision Process (MDP; Puterman, 2014).

A common approach to solving a POMDP is for the agent to augment the observations it receives
with a suitable summary of its history—a memory. If it retains enough information about its past to
recover a Markov state representation, then the optimal memory-conditioned policy is guaranteed to
be as good as if it were allowed to condition on the full history (Puterman, 2014). A recent approach
to learning such memory functions, the λ-discrepancy (Allen et al., 2024), exploits the fact that
different ways of estimating a value function—e.g. through Monte-Carlo regression or temporal
difference learning—generally only coincide in fully observable settings, whereas discrepancies arise
in the presence of partial observability. Minimizing the λ-discrepancy (LD) as an auxiliary goal helps
the agent learn a memory function that mitigates the partial observability.

While effective in many environments, a weakness of the LD is its crucial reliance on the reward.
Its utility is limited in environments with sparse or no rewards, and even if rewards are dense it may
forego potentially informative learning signals from other observables. In this paper, we extend the
LD by introducing general value discrepancies (GVDs), which measure differences between value
functions defined over arbitrary observable features and, optionally, with observation-dependent
discounting.
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Our contributions are as follows.

(1) We introduce and formalize the general value discrepancy. We prove that, in contrast to the
λ-discrepancy, when partial observability exists, it can always be detected with general value
discrepancies, regardless of the reward structure.

(2) We empirically validate and test the efficacy of general value discrepancies in tabular, closed-form
experiments, as well as in a deep reinforcement learning setting. We show that, as predicted by our
theoretical results, GVDs can detect and mitigate partial observability in all of the tested tabular
environments, including those in which LD fails. We also present initial results showing that GVD
can improve deep RL algorithms in complex, partially observable tasks.

2 Background

A partially observable Markov decision process (POMDP) is a tuple (S,A,Ω, T,Φ, R, p0, γ), where
S,A, and Ω are the state, action, and observation spaces, T : S ×A → ∆S is the transition function,
Φ: S → ∆Ω is the observation function, R : Ω → R is the reward function, p0 ∈ ∆S is the initial
state distribution, and γ ∈ (0, 1) is the discount factor. We assume that rewards r = R(ω) are
contained in observations; this assumption does not restrict generality (Thrun, 1999; Sutton & Barto,
2018; Jiang et al., 2017; Liu et al., 2022), and in practice rewards can be appended to subsequent
observations before being passed to the policy. We further assume that S, A, and Ω are finite; this
assumption is for convenience, and is not essential. An agent following a policy π : Ω → ∆A starts
in s0 ∼ p0, and at each timestep t ∈ N0 receives observation ωt ∼ Φ(· | st) and reward rt = R(ωt),
chooses action at ∼ π(· | ωt), and transitions to state st+1 ∼ T (· | st, at), until reaching a designated
terminal state sH = sterminal. The timestep H is the length of the episode, which we set to H = ∞
if the terminal state is never reached. In this paper we assume that there exists some deterministic
Hmax ∈ N such that H ≤ Hmax almost-surely. If the agent has access to the underlying state1 then
we recover the well-known definition of a Markov decision process (MDP).

The agent seeks to select actions that maximize the expectation of the discounted cumulative reward,
called the return, gt =

∑∞
i=0 γ

irt+i, where ri := 0 for i > H . Choosing optimal actions in POMDPs
requires memory, because the full history (ω0, a0, . . . , at−1, ωt) generally contains more information
about the underlying state st than the current observation ωt alone. Let M be the memory space,
and let µ : M× Ω × A → ∆M be the memory update function. The agent maintains mt ∈ M,
selects actions at ∼ π(· | ωt,mt), and updates memory as mt+1 ∼ µ(· | mt, ωt, at+1). The
memory-augmented POMDP is the POMDP with augmented observations ω̃t = (mt, ωt).

Definition 1. We say that the memory resolves partial observability if (ω̃0, ω̃1, . . .) is a Markov
chain for all policies.

In that case, an optimal policy can be written as a deterministic function of ω̃t (Puterman, 2014),
where by optimal we mean as well as we could possibly do with access to (histories of) observations
alone. Moreover, if the memory does not resolve partial observability, then the observation trajectory
is not a Markov chain for all policies except those in a set of measure zero.

An idea motivated by this fact is to define a metric that is positive if the sequence of (memory-
augmented) observations encountered by an agent is non-Markovian, and using its minimization
as an auxiliary objective to learn a memory that resolves partial observability. Allen et al. (2024)
proposed the λ-discrepancy, a method based on this idea that improves deep RL performance in
partially observable settings. In the next section, we explain their approach in detail, analyze its
limitations, and introduce a generalization that rectifies these shortcomings.

1This could be formally achieved within the POMDP framework by setting Ω = S and Φ(s′ | s) = 1{s=s′}.
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3 Value Discrepancies

The idea behind λ-discrepancy is as follows: in an MDP, the value function V π(s) = Eπ[gt | st = s]
is the unique fixed point of the Bellman equation V π(s) = Eπ[rt + γV π(st+1) | st = s], so
two (theoretically) equivalent methods for estimating V π are Monte Carlo (MC) regression and
temporal-difference (TD) learning. In a POMDP, the MC estimator V π

MC still converges to the value
function, and the TD estimator V π

TD still converges to the fixed point of the Bellman equation, but
the two generally no longer coincide. Their difference, Λ = ∥V π

TD − V π
MC∥2, or more generally the

discrepancy between two TD(λ) value functions for different λ (with λ = 0 yielding V π
TD and λ = 1

yielding V π
MC), defines the λ-discrepancy (LD) introduced by Allen et al. (2024). We focus on the

case λ0 = 0, λ1 = 1 in our theoretical analysis for simplicity, but we expect our results to generalize,
and we conduct our experiments in the general setting (see Section 5).

We will now introduce a theoretical framework that allows us to (1) precisely analyze the limitations
of LD, (2) define a natural generalization, and (3) prove that this generalization overcomes the
limitations of LD. We start by analyzing the MC and TD value estimators in a POMDP.

Value estimators in POMDPs. The notion of a value function in a POMDP is ambiguous, since,
unlike in an MDP, Eπ [gt | ωt = ω] generally depends on t. One resolution is to let the value function
depend on t, but in practice this would require training a separate value function for every timestep.
A more practical approach is to consider the MC regression target

∑
(ωt,gt)∈D

∑H
t=0

∣∣V̂ (ωt)− gt
∣∣2

given a dataset D of episodes collected with a fixed policy π. This loss is minimized in the infinite-data
limit by

V π
MC(ω) =

∑
s,a

Wπ(s |ω)π(a |ω)Qπ(s, a), (1)

where Wπ(s |ω) = Eπ[
∑H

t=0 1{st=s,ωt=ω}]
Eπ[

∑H
t=0 1{st=s}]

is the probability that the state underlying an observation

ω drawn uniformly from D is s, and Qπ(s, a) = E[gt | st = s, at = a] (independent of t) is the
state-conditioned Q-function. Eq. (1) implies the following.
Lemma 1 (MC). V π

MC is the value function of the POMDP, in that V π
MC(ω) is the expected return of

an agent acting according to π that starts in a state sampled from Wπ(· | ω).

For TD learning, we would iteratively minimize
∑

D
∑H

t=1 |V̂ (i+1)(ωt) − [rt + γV̂ (i)(ωt+1)]|2,
which by Banach’s fixed point theorem converges in the infinite-data limit to the unique fixed point of

V π
TD(ω) =

∑
s,a,s′,ω′

Wπ(s |ω)π(a |ω)T (s′ | s, a)Φ(ω′ | s′)
(
R(ω) + γV π

TD(ω
′)
)
. (2)

Eq. (2) is the Bellman equation (and therefore V π
TD is the value function) of an MDP with state

space Ω that “forgets” the hidden state after every transition: after observing ω(t), we sample
s(t) ∼ Wπ(· | ω(t)), act, transition, obtain ω(t+1), and then resample s(t+1) ∼ Wπ(· | ω(t+1)) and
repeat (see Fig. 2a)2. Following Allen et al. (2024) we call this the effective MDP. Intuitively, the
effective MDP is the result of trying to “fit” an MDP to a dataset of transitions (ω, a, ω′) sampled
from the POMDP. An illustration for a simple environment called T-Maze is in Fig. 1. To summarise:
Lemma 2 (TD). V π

TD is the value function of the effective MDP.

Measuring Markovianity of observation trajectories. Denote by Pπ
MC(· | ω) and Pπ

TD(· | ω) the
distributions over observation trajectories (ω = ω(0), ω(1), . . .) in the POMDP and in the effective
MDP, respectively (see Fig. 2a for an illustration, and Appendix A for details).
Lemma 3. The observation trajectory (ω(t)) is Markov under π in the POMDP iff Pπ

MC = Pπ
TD.

Proof. By definition of the effective MDP, Pπ
TD(ω

(t) | ω(t−1), . . . , ω(0)) = Pπ
MC(ω

(t) | ω(t−1)), so
Pπ

MC = Pπ
TD iff Pπ

MC is itself already Markov.

2We use super- rather than subscripts because ω = ω(0) need not necessarily be the first observation ω0 of an episode.
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Figure 1: T-Maze (left) is an environment in which an agent receives a blue or red observation at
the beginning, depending on which it has to move up or down at the end of a corridor to receive a
positive reward. The colours of states in the illustration indicate the observation the agent receives.
The effective MDP of T-Maze does not depend on the agent’s policy and is illustrated on the right.
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Figure 2: (Left) Illustration of how observation trajectories (ω = ω(0), ω(1), ω(2), . . .) are sampled
from Pπ

MC(· |ω) (top) and Pπ
TD(· |ω) (bottom). (Right) Illustration of the POMDP in Example 1.

Hence, measuring the gap between Pπ
MC and Pπ

TD quantifies non-Markovianness of the observation
trajectory. We cannot access Pπ

TD and Pπ
MC directly, but we can estimate certain expectations (like

value functions). Therefore, a convenient family of measures for this task is the maximum mean
discrepancy (MMD; Gretton et al., 2012), MMDF (Pπ

TD, P
π
MC) = supF∈F

∥∥Eπ
MC[F | ·]−Eπ

TD[F | ·]
∥∥
2
,

where F is some class of functions on the domain Ω⋆ = {ω(0:H) : H ≤ Hmax} of variable-length
observation sequences, E[F | ·] abbreviates the function ω 7→ E[F | ω], and ∥ · ∥2 is the L2-norm.

The λ-discrepancy. We can recast LD from this perspective: by Lemmas 1 and 2, it can be written as

Λπ
γ = ∥V π

MC,γ − V π
TD,γ∥2 =

∥∥Eπ
MC[Fγ | ·]− Eπ

TD[Fγ | ·]
∥∥
2
, Fγ(ω

(0:H)) =

H∑
t=0

γtR(ω(t)),

where we make dependencies on γ explicit. That is, LD is exactly the mean discrepancy between
Pπ

MC and Pπ
TD for functions taken from the class F = {Fγ}γ∈(0,1) of discounted returns. In particular,

LD vanishes (for every choice of γ) exactly if MMDF (P
π
TD, P

π
MC) = 0. This observation can be used

to derive the following characterization, which we prove in Appendix A.

Theorem 4 (LD). The λ-discrepancy satisfies Λπ
γ = 0 for every γ ∈ (0, 1) if and only if the marginal

expected rewards at every timestep coincide in the effective MDP and the POMDP, that is

Eπ
MC

[
r(t)

∣∣∣ω(0) = ω
]
= Eπ

TD

[
r(t)

∣∣∣ω(0) = ω
]
, ∀ω ∈ Ω, t ∈ N0. (3)

Otherwise, Λπ
γ ̸= 0 for all γ ∈ (0, 1) except those in a set of measure zero.
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General Value Discrepancies. We can increase the discriminative power of the MMD by expanding
the underlying class F of functions F : Ω⋆ → R. An obvious first step is to replace the reward by an
arbitrary observable feature f : Ω → R, leading to the discounted “pseudo-return” Ff,γ(ω

(0:H)) =∑H
t=0 γ

tf(ω(t)). The resulting discrepancy

Λπ
f,γ :=

∥∥∥∥∥Eπ
MC

[
H∑
t=0

γtf(ω(t))t

∣∣∣∣∣ ·
]
− Eπ

TD

[
H∑
t=0

γtf(ω(t))t

∣∣∣∣∣ ·
]∥∥∥∥∥

2

(4)

generalizes LD (recovered with f = R) and we call it the general value discrepancy (GVD). There is
no reason to restrict to a single f ; given several functions f1, . . . , fn, we can consider the combined
discrepancy

∑n
i=1 Λ

π
fi,γ

. For example, the combined discrepancy of the functions of the form
f = 1{ω=·} for ω ∈ Ω equals the discrepancy between successor representations (Dayan, 1993;
Kulkarni et al., 2016) of the POMDP and the effective MDP, and we refer to it as the successor
representation discrepancy (SR-GVD). For general functions (features) f : Ω → R, we analogously
retrieve discrepancies between successor features (Barreto et al., 2017; 2019), which we call successor
feature discrepancies (SF-GVD).

Theorem 5 (GVD, I). The generalized value discrepancy satisfies Λπ
f,γ = 0 for all f : Ω → R

(equivalently, for all f of the form 1{ω=·}) and all γ ∈ (0, 1) if and only if the observation marginals
coincide in the effective MDP and the POMDP, that is

Pπ
MC

(
ω(t) = ·

∣∣∣ω) = Pπ
TD

(
ω(t) = ·

∣∣∣ω) , ∀ω ∈ Ω, t ∈ N0. (5)

Otherwise, Λπ
f,γ ̸= 0 for all f, γ except those in a set of measure zero.

See Appendix A for the statement and proof of a slightly stronger version of Theorem 5. Note
that Theorem 5 in particular implies that the SR-GVD has full discriminative power, and hence
should always be used if Ω is sufficiently small; see also Section 4, where we conduct closed-form
experiments in small tabular POMDPs using SR-GVD.

This form of the GVD is robust to settings with sparse or no rewards, but still fails in cases where
observations in Pπ

MC and Pπ
TD have the same marginals, and their difference only shows in correlations.

An example is the parity check environment of Allen et al. (2024), which we describe here.

Example 1 (Parity Check). Consider a POMDP in which the agent observes a sequence of three
fair coin flips c1, c2, c3, where c1 and c2 are independent, and c3 is the XOR of c1 and c2. After
seeing c2, the agent is asked to predict c3 and receives a reward of +1 (resp. −1) if it predicts c3
correctly (resp. incorrectly). Since c3 is independent of c2 (and of c1, but not of both together),
Pπ

TD is a sequence of three independent coin flips. Thus Pπ
TD ̸= Pπ

MC, but the marginals of c1, c2, c3
are fair coin flips under both. By Theorem 5, Λπ

f,γ = 0 for all f, γ, that is, both LD and GVD fail
to detect the partial observability.

The remedy proposed by Allen et al. (2024) for the parity check environment is to randomly initialize
memory to break symmetry. Our framework (1) explains precisely why this helps, and (2) reveals a
potential issue: the memory m3 is a random function of c1 and c2 that causes the memory-augmented
observation ω̃3 = (m3, c3) at timestep three to have different distributions under Pπ

MC and Pπ
TD, even

though c3 remains a coin flip under both. This allows GVD and LD to detect the partial observability.
However, if the memory is trained to minimize discrepancy after random initialization, it might either
learn to encode the XOR of c1 and c2 to resolve the partial observability, or collapse to a trivial
memory, as both LD and GVD are zero in the absence of memory. This is one explanation for the
non-trivial but poor performance of LD on parity check in our closed form experiments in Fig. 3.

Observation-dependent discounting. To further increase the discriminative power of the discrepancy
and remove aliasing completely, we must further expand the class of functions F : Ω⋆ → R while
keeping Eπ

MC[F | ω] and Eπ
TD[F | ω] tractable to estimate. Monte Carlo regression allows estimating
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Eπ
MC[F | ω] without restrictions on F , but Eπ

TD[F | ω] can only be estimated with TD, which requires
F to have a recursive structure: F (ω, ω′, . . .) = h(ω, F (ω′, . . .)) for some function h : Ω× R → R.
Then V π

F (ω) := Eπ
TD[F | ω] = Eπ

TD[h(ω, F (ω′, . . .)) | ω], and to pull the expectation inside the
second argument of h to allow bootstrapping, we further need h to be linear in its second argument.
The most general such form is h(ω, x) = f(ω) + γ(ω)x for some f, γ : Ω → R, which yields the
class of functions

Ff,γ(ω
(0:H)) =

H∑
t=0

γ(ω(0)) · · · γ(ω(t−1))f(ω(t)). (6)

Then the Bellman equation for V π
F is V π

F (ω) = Eπ
TD

[
f(ω)+γ(ω)V π

F (ω′)
∣∣∣ω], which can be used for

learning V π
F with TD. If γ only takes values in (0, 1), then Ff,γ is a discounted pseudo-return with

an observation-dependent discount factor, so V π
F is a general value function (GVF) in the language

of Sutton et al. (2011). Write

Λπ
f,γ :=

∥∥∥Eπ
MC [Ff,γ | · ]− Eπ

TD [Ff,γ | · ]
∥∥∥
2

(7)

for functions f : Ω → R and γ : Ω → (0, 1). We recover the earlier form of GVD from (4) when γ
is constant. Our main result is that the GVD with observation-dependent discounting is a perfect
discriminator.

Theorem 6 (GVD, II). The GVD satisfies Λπ
f,γ = 0 for all f : Ω → R (equivalently, for all f of the

form 1{ω=·}) and all γ : Ω → (0, 1) if and only if Pπ
MC = Pπ

TD.

That is, GVD can always detect a difference between Pπ
MC and Pπ

TD if there is one, and therefore—via
Lemma 3—provides a (theoretically) perfect signal for memory learning. We remark that, while
Theorems 4 and 5 are relatively elementary to prove, Theorem 6 is significantly more involved
and requires a mix of probabilistic and combinatorial arguments as well as abstract theorems from
measure theory and topology to prove. See Appendix A.

4 Memory Learning with General Value Discrepancies

The GVD measures how non-Markovian observation trajectories are in a given POMDP, and, much
like LD, we can use it as a signal to learn a memory function that makes the memory-augmented
trajectories Markov (and thereby resolves partial observability, recall Definition 1).

Consider an agent in a POMDP P = (S,A,Ω, T,Φ, R, p0, γ) with memory states M, initialized at
m0 and updated via mt+1 ∼ µ(· | mt, ωt, at+1), which induces a memory-augmented POMDP Pµ

with observations ω̃t = (ωt,mt). Applying GVD to Pµ gives a measure for how close the memory
µ is to inducing Markov trajectories. If we can compute gradients of the GVD of Pµ with respect to
the memory µ, then we can learn a memory µ by descending those gradients.

We demonstrate this in a range of small tabular POMDPs, where the full successor representation
discrepancy (SR-GVD) and its gradients are analytically tractable. This allows us to evaluate GVD in
isolation, without confounding factors like approximation error or sampling variance. Experimental
details are in Appendix B; results in Figure 3 show that, as predicted by our theory, GVD performs
consistently across all tested environments, while LD fails in parity check (Example 1). Somewhat
surprisingly, GVD also performs significantly better than LD in T-Maze (recall Fig. 1), even though
LD is theoretically capable of solving this environment. An explanation might be that, in this
particular environment, GVD provides a more stable signal and/or has a smoother loss landscape.

5 Learning in Sparse, Partially Observable Domains

Since GVD is defined using only observable quantities, it can be estimated from samples via function
approximation with deep neural networks. Like LD, GVD can then be used as an auxiliary loss to
train a recurrent policy, e.g., with PPO (Schulman et al., 2017). In most deep RL environments,
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successor representations are intractable, so we use the successor feature discrepancy (SF-GVD)
instead. We experimented with different features, and found that random projections of observation
differences (Achlioptas, 2003; Jaderberg et al., 2017) worked best (see Appendix C). We further use
the version of GVD with fixed γ, as observation-dependent discounting slightly degraded performance.
This is likely because these environments do not have any parity issues to overcome, so observation-
dependent discounting is not required but makes the GVD signal noiser because the associated general
value function is harder to learn.

We augment the recurrent PPO algorithm with two additional losses. The first is a successor feature
learning loss for two TD(λ) successor feature heads, parameterized by θF,0 and θF,1:

LSF(θ) = Eπ

[
n∑

i=1

(
V π,λ=0
θF,0

(zt)−Gπ,λ=0
t,F

)2

i
+

(
V π,λ=1
θF,1

(zt)−Gπ,λ=1
t,F

)2

i

]
, (8)

where Gπ,λ
t,F is the successor feature target for TD(λ) at timestep t, and zt is the hidden state output of

the RNN, zt = µθRNN(ωt, zt−1). θ represents all parameters, and the sum is taken over the number n
of features. The second loss is the approximation of the SF-GVD based on the SF value heads:

LGVD(θ) = Eπ

[
n∑

i=1

(
V π,λ=0
θF,0

(zt)− V π,λ=1
θF,1

(zt)
)2

i

]
. (9)

We started by testing the performance of (PPO augmented with) GVD in environments that do have a
dense reward signal, where LD provides a strong baseline that GVD should be able to match. We
use a subset of partially observable environments from the POBAX benchmark (Tao et al., 2025),
specifically RockSample, Velocity-Only Walker, and DMLab Minigrid. Figure 4 shows the results for
GVD-augmented PPO (RNN + GVD) in comparison with baselines standard recurrent PPO (RNN),
LD-augmented PPO (RNN + LD), and PPO with successor features but no GVD (RNN + SF; see
Equation 8), allowing us to isolate the effect of the GVD loss from that of the SF auxiliary task.
We also include a memoryless policy as a floor and a state-conditioned policy as a ceiling. Full
experimental details are in Appendix C. Across all environments, GVD matches or outperforms
LD and SF, and even reaches ceiling-level performance in velocity-only Walker. This confirms
empirically that GVD performs at least as well as LD in settings where the latter is applicable.
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However, the core strength of GVD lies in the fact that, unlike LD, it can be used for memory learning
in environments were rewards are very sparse or completely absent. For example, GVD could be
integrated into an exploration phase in which an agent learns to navigate a partially observable
environment without extrinsic reward; the memory learned with GVD during this phase could then
be used to “warm-start” the learning phase of arbitrary downstream tasks. Experiments of this kind
are currently in progress.

6 Related Work

Memory Learning in RL. Memory learning has been a long-studied problem in reinforcement
learning. Whereas early approaches were based on classical methods for hidden state approximation
such as finite state controllers (Meuleau et al., 1999), most modern techniques rely on variants
of recurrent deep neural networks (RNN; Amari, 1972) trained with backpropagation through
time (Mozer, 1995). One common and successful approach is to train an agent with a large RNN
“end-to-end” to maximize reward (Bakker, 2001; Hausknecht & Stone, 2015; Ni et al., 2022; Lee
et al., 2025). The λ-discrepancy introduced by Allen et al. (2024), which we generalize, offers
an alternative approach that resolves partial observability by explicitly minimizing a measure of
non-Markovianity as an auxiliary task.

Successor Features. A key ingredient in using GVD in a deep RL setting is successor features (SFs),
which must be learned as an intermediate step. There is a large body of work on successor features
in deep RL (Hoffman et al., 2024; Chua et al., 2024; Machado et al., 2020; Hansen et al., 2020). A
known issue with learning SFs is representation collapse (Hoffman et al., 2024; Chua et al., 2024),
remedies for which include adding a reconstruction penalty (Machado et al., 2020) or an entropy
maximizing loss (Hansen et al., 2020). Another approach, which we use in this work, is to learn
successor features directly over differences of subsequent observations (Jaderberg et al., 2017).

Self-Supervised Auxiliary Tasks. Auxiliary losses such as next-step prediction (Oh et al., 2015),
inverse dynamics (Pathak et al., 2017), pixel control and reward prediction (Jaderberg et al., 2017),
or contrastive predictive coding (van den Oord et al., 2018) enrich latent representations but do
not directly test the Markov property. GVD is complementary: it evaluates whether the current
representation is already Markovian and provides a targeted objective to fix deficiencies.

Summary. GVD unifies ideas from successor features, discrepancy-based memory learning, and
auxiliary self-supervision. Unlike prior approaches that rely on rewards or handcrafted reconstruction
signals, GVD offers a principled, reward-agnostic criterion that provably detects and mitigates partial
observability while avoiding representation collapse.

7 Conclusion

We introduced the General Value Discrepancy (GVD), an extension of the λ-discrepancy designed to
effectively detect and mitigate partial observability even when rewards are sparse or non-existent.
We give a proof that GVD is capable of detecting partial observability under all circumstances, and
demonstrate its effectiveness empirically both in a closed-form analytical setting as well as in large
and complex deep RL environments.
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Appendix A. Proof Details

This appendix includes formalizations and proofs of the material in Sections 2 and 3.

A.1 Setup

Fix a POMDP (S,A,Ω, T,Φ, R, p0, γ), and a policy π : Ω → ∆A. Recall that we assume S, A,
and Ω to be finite, and that the length H of every episode is almost-surely bounded by some fixed
Hmax ∈ N. Then Wπ(s | ω), the probability that the true state underlying an observation ω at a
randomly sampled timestep of an episode is equal to s, is well-defined and given by

Wπ(s | ω) = Pπ
(
st = s

∣∣∣ωt = ω, t ∼ Unif({0, . . . ,H})
)
=

Eπ
[∑H

t=0 1{st=s,ωt=ω}

]
Eπ

[∑H
t=0 1{st=s}

] .

Next, we give a precise definition of Pπ
MC(· | ω) and Pπ

TD(· | ω), which are probability distributions
on the space

Ω⋆ =
{
ω(0:H) = (ω(0), . . . , ω(H)) : H ≤ Hmax, ω

(i) ∈ Ω
}

of observation trajectories of length at most Hmax. Intuitively, Pπ
MC(·) is the distribution over observa-

tion trajectories that we get in a dataset D when we repeatedly sample full episodes (ω0, ω1, . . . , ωH)
from the POMDP, and then add all of their partial truncations, (ωt, . . . , ωH), for t = 0, . . . ,H , to
D, as Monte-Carlo training targets for (general) value functions. Equivalently, Pπ

MC(· | ω) is the
distribution over observation trajectories experienced by an agent that starts in a state sampled from
Wπ(· | ω). Fig. 2a contains a good visualisation of this distribution: s(0) ∼ Wπ(· | ω(0)) and
a(0) ∼ π(· | ω(0)) are sampled conditional on ω(0) = ω, and from thereon out, all transitions are
sampled in the (hidden) state space, and observations are sampled given states using Φ.

In Pπ
TD(· | ω), the distribution of observation trajectories in the effective MDP, a single tran-

sition ω(0) → ω(1) is sampled just as in the true underlying POMDP—s(0) ∼ W (· |ω(0)),
a(0) ∼ π(· |ω(0)), s(1) ∼ T (· | s(0), a(0)), and ω(1) ∼ Φ(· | s(1))—but then we forget about s(1)

and repeat, that is we resample s̃(1) ∼ W (· |ω(1)) and continue as previously. See Fig. 2a. We can
think of Pπ

TD(· | ω) as the “Markovianization” of Pπ
MC(· | ω) that is being forced to forget its entire

history except for the most recent observation after every transition. In that light, Lemma 3 makes
intuitive sense: Pπ

MC is equal to its Markovianization iff it is already Markov.

Separating classes Most of our theoretical results use the notion of separating classes of functions.
We will use X to denote a generic Polish space—a topological space for which it is possible to
choose a metric with respect to which it is complete and separable. This may seem awfully abstract
and specific, but it is a natural assumption in the relevant measure theory literature, and suffice it to
say that finite sets and Rk are Polish, and if Ω is Polish then so is Ω⋆. For a probability measure P
and a function f on the same domain, we write P [f ] as short-hand for the integral

∫
f dP , if it exists.

Definition 2. A separating class in a Polish space X is a set F of bounded measurable functions
X → R such that, for any two probability measures P and Q on X ,

P [f ] = Q[f ]∀f ∈ F =⇒ P = Q.

Equivalently, if MMDF (P,Q) = 0 implies P = Q.
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An excellent reference for this topic is chapter III.4 of Ethier & Kurtz (1986). In particular, the follow-
ing two simple but useful examples follow directly from Theorem III.4.5 in that book.

Example 2. (i) The class of bounded and continuous functions is always separating.

(ii) If X is finite, then the class FSR =
{
1{x=·}

}
x∈X

of functions underlying successor repre-
sentations is separating.

A.2 Proof of Theorems 4 and 5

We start by proving Theorems 4 and 5, which are relatively elementary to prove. To keep the appendix
self-contained, we restate them here.

Theorem 4 (LD). The λ-discrepancy satisfies Λπ
γ = 0 for every γ ∈ (0, 1) if and only if the marginal

expected rewards at every timestep coincide in the effective MDP and the POMDP, that is

Eπ
MC

[
r(t)

∣∣∣ω(0) = ω
]
= Eπ

TD

[
r(t)

∣∣∣ω(0) = ω
]
, ∀ω ∈ Ω, t ∈ N0. (3)

Otherwise, Λπ
γ ̸= 0 for all γ ∈ (0, 1) except those in a set of measure zero.

Proof. First note that for any γ ∈ (0, 1), and any ω ∈ Ω,

V π
MC,γ(ω) = Eπ

MC

[
Hmax∑
t=0

γtr(t)

∣∣∣∣∣ω
]
=

Hmax∑
t=0

γtEπ
MC

[
r(t)

∣∣∣ω(0) = ω
]
, (10)

and similarly for V π
TD,γ . This is a polynomial in γ, which is uniquely determined by its coefficients,

hence (3) is equivalent to V π
MC,γ(ω) = V π

TD,γ(ω) for all ω and γ, that is to Λπ
γ = 0 for all γ.

It remains to show that if (3) does not hold, then Λπ
γ ̸= 0 for almost-all (that is, all outside of a

Lebesgue-null set) γ ∈ (0, 1). Recall that by (10), V π
MC,γ(ω) for fixed ω as a function of γ is a

polynomial and therefore real analytic (Krantz & Parks, 1992). Since Ω is finite,

(Λπ
γ )

2 =
∑
ω∈Ω

(
V π

MC,γ(ω)− V π
TD,γ(ω)

)2
is a sum of finitely many real analytic functions and therefore also real analytic in γ. Finally, the
fact that real analytic functions are either zero everywhere or only on a set of Lebesgue measure
zero (Mityagin, 2020) implies that, if Λπ

γ ̸= 0 for at least one γ (equivalently if (3) doesn’t hold),
then Λπ

γ ̸= 0 for almost-all γ.

Using the notion of a separating class, we can prove a slightly stronger version of Theorem 5.

Theorem 5* (GVD, I). The generalized value discrepancy satisfies Λπ
f,γ = 0 for all f : Ω → R in a

separating class F of Ω and all γ ∈ (0, 1) if and only if the observation marginals coincide in the
effective MDP and the POMDP, that is

Pπ
MC

(
ω(t) = ·

∣∣∣ω) = Pπ
TD

(
ω(t) = ·

∣∣∣ω) , ∀ω ∈ Ω, t ∈ N0. (5)

Otherwise, if (5) doesn’t hold, then

(i) There exists an f ∈ F such that Λπ
f,γ ̸= 0 for almost-all γ ∈ (0, 1).

(ii) Λπ
f,γ ̸= 0 for almost-all pairs (f, γ).

This implies Theorem 5 because, if Ω is finite, then the functions of the form 1{ω=·} form a separating
class by Example 2.
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Proof of Theorem 5*. For any given f ∈ F , we can show exactly as in the proof of Theorem 4, by
replacing r(t) = R(ω(t)) with f(ω(t)), that Λπ

γ,f = 0 for all γ ∈ (0, 1) if and only if

Eπ
MC

[
f(ω(t))

∣∣∣ω] = Eπ
TD

[
f(ω(t))

∣∣∣ω] , ∀ω ∈ Ω, t ∈ N0. (11)

Now it is precisely the definition of a separating class that, for fixed ω and t, (11) holds for all f in
that class of functions if and only if (5) holds (for that ω and t).

Now suppose that (5) doesn’t hold. We can proceed as in the proof of Theorem 4 to show that
γ 7→ Λπ

γ,f is real analytic for any fixed f ∈ F , which again implies that either Λπ
f,γ = 0 for all γ, or

Λπ
f,γ ̸= 0 for almost all γ (Mityagin, 2020). There has to be at least one f ∈ F for which the latter

is the case, otherwise Λπ
f,γ = 0 for all f ∈ F and all γ ∈ (0, 1), contradicting the first part of the

theorem.

For (ii), note that since Ω is finite, a function f : Ω → R can be identified with an |Ω|-dimensional
vector, and we can prove similarly to before that (Λπ

f,γ)
2 is real analytic jointly in γ and f (or more

precisely the entries of the vector that defines f ). The statement then follows with another application
of (Mityagin, 2020).

A.3 Proof of Theorem 6

Unlike Theorems 4 and 5, Theorem 6 has an involved proof that requires a number of technical
lemmas. We begin by restating it.

Theorem 6 (GVD, II). The GVD satisfies Λπ
f,γ = 0 for all f : Ω → R (equivalently, for all f of the

form 1{ω=·}) and all γ : Ω → (0, 1) if and only if Pπ
MC = Pπ

TD.

To motivate how we might proceed, consider for a moment our task: we have given two probability
measures P = Pπ

MC and Q = Pπ
TD on Ω⋆, and wish to show that P = Q must follow from equalities

of the form

P
[
γ(ω(0)) . . . γ(ω(t))f(ω(t+1))

]
= Q

[
γ(ω(0)) . . . γ(ω(t))f(ω(t+1))

]
. (12)

(At first we only have equality of sums of such terms, but it is relatively straight-forward to show that
we also have (12).) The left-hand side is equal to

P
[
γ(ω(0)) . . . γ(ω(t))P

[
f(ω(t+1)

∣∣∣ω(0:t)
]]

,

and similarly for the right-hand side. Since the product of γ’s is invariant under a permutation of
ω(0), . . . , ω(t), the very best we could hope to deduce from (12) is that

P
(
ω(t+1) = ·

∣∣∣ {{ω(0), . . . , ω(t)}}
)
= Q

(
ω(t+1) = ·

∣∣∣ {{ω(0), . . . , ω(t)}}
)

(13)

where {{ω(0), . . . , ω(t)}} is the unordered (multi-)set of the first t+ 1 observations in the trajectory,
that is we condition on the “bag” of observations seen thus far, without their ordering. Luckily,
and somewhat surprisingly, it turns out that the “very best” case is indeed the one our universe
has elected to satisfy, and the first step in showing this is to prove that functions of the form
(x1, . . . , xn) 7→ γ(x1) . . . γ(xn) are separating “modulo permutations”. Once (13) is established, we
will blessed by fortune for a second time because it turns out, again to our surprise, that (13) for all t
already implies P = Q (in the specific case where P = Pπ

MC and Q = Pπ
TD; the first surprising fact

holds generally).

We start with some technical lemmas. For n ∈ N, denote by Sn the set of bijections from [n]
to [n], where [n] = {1, . . . , n}. Let X again be a generic Polish space. Then for a vector x =
(x1, . . . , xn) ∈ Xn, and σ ∈ Sn, we write x ◦ σ for the vector (xσ(1), . . . , xσ(n)). We define an
equivalence relation on Xn by

x ∼ y ⇐⇒ ∃σ ∈ Sn : x = y ◦ σ,
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that is x ∼ y if the entries of x are a permutation of the entries of y. We can thus think of the quotient
Xn/ ∼ as the set of multi-sets {{x1, . . . , xn}} of size n.

Lemma 8. The quotient Xn/ ∼ is a Polish space, and if d is a metric that generates the topology on
X , and we denote by d again the associated Lp-distance on Xn (where p ∈ [1,∞] does not matter),
then the topology on Xn/ ∼ is generated by the metric

d([x], [y]) := inf{d(x′, y′) : x′ ∈ [x], y′ ∈ [y]} = inf{d(x, y ◦ σ) : σ ∈ Sn}.

Proof. We first show that the given function is a metric (with this choice of metric that is not true for a
general quotient metric space!). We have d([x], [x]) = 0, and d([x], [y]) ≥ 0. Suppose d([x], [y]) = 0,
then it means that x is a permutation of y so [x] = [y]. For the triangle inequality, let x, y, z ∈ Xn,
and let σ, τ ∈ Sn such that

d([x], [y]) = d(x, y ◦ σ), d([y], [z]) = d(y, z ◦ τ) = d(y ◦ σ, z ◦ τ ◦ σ),

so

d([x], [z]) ≤ d(x, z ◦ τ ◦ σ) ≤ d(x, y ◦ σ) + d(y ◦ σ, z ◦ σ ◦ τ) = d([x], [y]) + d([y], [z]).

Separability is inherited from Xn. For completeness, suppose ([xn])n∈N is a Cauchy sequence. We
can extract a subsequence ([xk(n)])n∈N such that d([xk(n)], [xk(n+1)]) ≤ 2−n. Then we can choose
an arbitrary representative for xk(1), and then iteratively, given the representative xk(n) that we’ve
chosen, we can choose the representative xk(n+1) such that d(xk(n), xk(n+1)) is the same as the
distance of their equivalence classes, which is no larger than 2−n. This means that the sequence is
Cauchy in Xn and hence converges, so this subsequence also converges on the level of equivalence
classes, which implies that, in fact, the entire sequence converges to the same limit in Xn/ ∼.

To show that this metric generates the quotient topology, we show that closed sets are the same. A set
S ⊂ Xn/ ∼ is closed in the quotient topology iff the set of S′ = {x : [x] ∈ S} is closed in Xn (in
the topology and w.r.t. the metric, which are the same here). If that’s the case, and [xn] → [x] for
[xn] ∈ S, then we can choose any representative x ∈ [x], and a sequence of representatives such that
xn → x in Xn, so x ∈ S′, so [x] ∈ S. Conversely, if S is closed in the metric topology in Xn/ ∼,
and if xn ∈ S′ and xn → x, then [xn] → [x], so [x] ∈ S, so x ∈ S′.

Lemma 9. Let X be a Polish space, and n ∈ N. Then the set of functions of the form

[x] 7→ γ(x1) · . . . · γ(xn)

for γ : X → R continuous and bounded, is a separating class of Xn/ ∼.

Proof. It is a well-known fact in probability theory that a sufficient condition for a set F of bounded
and continuous functions Y → R on some Polish space Y to be separating, is for F to be closed
under pairwise multiplication (i.e. f, g ∈ F implies fg ∈ F), and for F to separate points (i.e. if
x ̸= y then there is some f ∈ F with f(x) ̸= f(y)). See for example Theorem 3.4.5(a) of Ethier &
Kurtz (1986), or page 2 of Blount & Kouritzin (2010) for a more recent discussion.

Firstly, the set of functions under consideration is closed under pairwise multiplication, since(
γ(x1) . . . γ(xn)

)
·
(
ν(x1) . . . ν(xn)

)
= γ(x1)ν(x1) · . . . · γ(xn)ν(xn),

so it remains to show it also separates points. Indeed, supoose that [x] ̸= [y], i.e. x and y are different
as multi-sets. If they are also different as sets, i.e. there is some z ∈ X that appears as an entry in
say x but not in y, then we can find a γ : X → R such that γ(z) = 0 but γ(y1) = . . . = γ(yn) = 1
(where y = (y1, . . . , yn)); indeed we can prescribe values of γ on any finite number of isolated points
and extend it to a continuous bounded function on all of X by Tietze’s extension theorem (Tietze,
1915). Then γ(x1) . . . γ(xn) = 0 but γ(y1) . . . γ(yn) = 1. If x, y are the same as sets but different
as multi-sets, then we can choose γ : X → R in such a way that it attains a different prime number
on each of the elements of the two (identical) sets, and, since prime factorizations are unique, we can
infer the multiplicity of each element from the product, and therefore distinguish x and y.
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Now we can prove surprising fact number one. In accordance with (6), write

Ff,γ : X
⋆ → R; (x1:n) 7→

n∑
k=1

γ(x1) . . . γ(xk−1)f(xk)

for bounded and continuous functions f, γ : X → R.
Lemma 10. If P,Q are probability measures on X⋆, then P [Ff,γ ] = Q[Ff,γ ] for all bounded and
continuous f : X → R and γ : X → (0, 1) if and only if P (x1 = ·) = Q(x1 = ·) and

P (xn+1 | {{x1, . . . , xn}}) = Q (xn+1 | {{x1, . . . , xn}}) (14)

for all n ∈ N0 and x1, . . . , xn ∈ X .

Proof. For a function γ : X → R, denote by γ× : X⋆/ ∼→ R the function {{x1, . . . , xn}} 7→
γ(x1) . . . γ(xn).

Suppose first that (14) holds. Then, by induction,

P ({{x1, . . . , xn}}) = Q({{x1, . . . , xn}}) (15)

for all n ∈ N and x1, . . . , xn ∈ X . Now fix f and γ, then

P [γ(x1) . . . γ(xn)f(xn+1)] = P
[
γ×({{x1, . . . , xn}})f(xn+1)

]
(16)

=

∫
γ×({{x1, . . . , xn}})

(∫
f(xn+1)P (dxn+1 | {{x1, . . . , xn}})

)
P (d{{x1, . . . , xn}}),

which equals the same expression with Q substituted for P by (14) and (15), and hence we proved
P [Ff,γ ] = Q[Ff,γ ].

Now suppose that P [Ff,γ ] = Q[Ff,γ ] for all f, γ. Firstly by choosing γ ≡ 0 we get P [f(x1)] =
Q[f(x2)] for all f , which implies P (x1 = ·) = Q(x1 = ·). Now for any fixed f, γ, we have
P [Ff,εγ ] = Q[Ff,εγ ] for any ε > 0, which reads

n∑
k=0

εkP [γ(x1) . . . γ(xk)f(xk+1)] =

n∑
k=0

εkQ [γ(x1) . . . γ(xk)f(xk+1)] .

Taking the k’th derivative with respect to ε and letting ε → 0 gives

P [γ(x1) . . . γ(xk)f(xk+1)] = Q [γ(x1) . . . γ(xk)f(xk+1)] ,

so this holds for all k ∈ N, f , and γ. We already proved P (x1) = Q(x1), which is just (14) for
n = 0, so we may assume by means of induction that we have proved (14) up until some fixed
k ∈ N0. In particular, as argued before, we have (15) up until the same value of k. We can use (16)
again to obtain∫

γ×({{x1, . . . , xk}})
(∫

f(xk+1)P (dxk+1 | {{x1, . . . , xk}})
)
P (d{{x1, . . . , xk}})

= P [γ(x1) . . . γ(xk)f(xk+1)] = Q [γ(x1) . . . γ(xk)f(xk+1)]

=

∫
γ×({{x1, . . . , xk}})

(∫
f(xk+1)Q(dxk+1 | {{x1, . . . , xk}})

)
Q(d{{x1, . . . , xk}})

=

∫
γ×({{x1, . . . , xk}})

(∫
f(xk+1)Q(dxk+1 | {{x1, . . . , xk}})

)
P (d{{x1, . . . , xk}}),

where we used (15) in the final step. Varying γ for fixed f then implies by Lemma 9 that∫
f(xk+1)P (dxk+1 | {{x1, . . . , xk}}) =

∫
f(xk+1)Q(dxk+1 | {{x1, . . . , xk}})

for P -almost all {{x1, . . . , xk}}, for every f . Since there exists a countable separating system for the
f ’s (X is Polish) we can choose a common set of exceptions for all the f ’s, which yields the claim
for k + 1.
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Now for the second surprising fact, which is that, in the particular case that we are interested in,
X = Ω, P = Pπ

MC, and Q = Pπ
TD, (14) already implies P = Q.

Lemma 11. If (14) holds for X = Ω, P = Pπ
MC, and Q = Pπ

TD, then Pπ
MC = Pπ

TD.

Proof. We will show by contradiction that for both Pπ
MC and Pπ

TD, any multi-set {{ω(0), . . . , ω(H)}}
has either probability zero or a unique representative (i.e. ordering) with positive probability. Given
that, there is no aliasing in (14) and we immediately get

Pπ
MC(ω

(t+1) | ω(0:t)) = Pπ
TD(ω

(t+1) | ω(0:t))

for all t, that is Pπ
MC = Pπ

TD.

Now assume for contradiction that at least one of the two has aliasing in the sense that there exists
some multiset {{ω(0), . . . , ω(k)}}, two different orderings of which are possible in, say, Pπ

MC. Now
define a directed graph on the vertex set {0, . . . , k} in which an edge from i to j is present if and only
if Pπ

MC(ω
(j) | ω(i)) > 0 (since one-step transition probabilities are the same for Pπ

MC and Pπ
TD, the

graph would look the same if we had used Pπ
TD). Then our assumption implies that this graph has a

cycle. Indeed, suppose without loss of generality that the first possible ordering is (ω(0), . . . , ω(k)),
implying edges 0 → 1 → . . . → k, and let the second possible ordering be (ω(σ(0)), . . . , ω(σ(k))),
implying edges σ(0) → σ(1) → . . . → σ(k). Now if we assume that this does not induce a cycle,
then that must mean that σ(i + 1) > σ(i) for all i, but that could only happen if σ(i) = i for all i
which is not true. But since Pπ

TD is Markov, any directed path in this graph is a trajectory with positive
probability in Pπ

TD, and the existence of a cycle implies that arbitrarily long trajectories are possible
in Pπ

TD. But by assumption, trajectories in the real POMDP, and therefore in Pπ
MC are bounded by

Hmax, so if (ω(0:t)) is some trajectory that is possible in Pπ
TD with t > Hmax, then, using (14),

0 < Pπ
TD({{ω(0), . . . , ω(t)}}) = Pπ

MC({{ω(0), . . . , ω(t)}}) = 0,

a contradiction.

Putting things together, we obtain a proof of Theorem 6.

Proof of Theorem 6. If Pπ
MC = Pπ

TD then Λπ
f,γ = 0 for all f, γ. If, conversely, the latter holds, then

Lemma 10 implies (14), which by Lemma 11 implies Pπ
MC = Pπ

TD.

Appendix B. Closed-Form Gradient Optimization Details

Closed-form experiments were conducted with the JAX (Bradbury et al., 2018) library, largely
following the same closed-form iterative optimization set up as Allen et al. (2024) with the following
hyperparameters:

Hyperparameter

Step size 0.01
nsteps 50K
Optimizer Adam
λ0 0
λ1 (LD & GVD) 1
γmin (GVD) 0.8
γmax (GVD) 0.99

Table 1: Hyperparameters used for all closed-form experiments

where LD and GVD stand for optimization hyperparameters for the λ-discrepancy and general value
discrepancy respectively. The optimization was done between nsteps of policy optimization, memory
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improvement, and a final round of policy optimization. For T-Maze and Parity Check environments,
our agents are trained on 100K steps, with an additional hyperparameter sweep for both LD and GVD
algorithms. We sweep the following hyperparameters for both algorithms:

Hyperparameter Values

λ0 [0.0, 0.2, 0.4]
λ1 [0.6, 0.8, 1.0]

(a) Hyperparameters swept for closed-form λ-
discrepancy minimization

Hyperparameter Values

nγ [1, 3, 5]
γmin [0.3, 0.6, 0.9]

(b) Hyperparameters swept for closed-form general
value discrepancy minimization.

Table 2: Hyperparameters swept for both closed-firm λ-discrepancy and general value discrepancy
minimization.

In the GVD settings for T-Maze and parity, we considered multiple γ parameters, as well as multiple
minimum γ parameters for varying γ. Overall, we swept the same number of hyperparameters
between our λ-discrepancy baseline, and our GVD algorithm. While our closed-form optimization
uses the same optimization procedure as in Allen et al. (2024), the memory_improvement
procedure was altered for minimizing the general value discrepancy Λπ

f,γ .
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Appendix C. Deep Reinforcement Learning Experimental De-
tails

We elucidate experimental details in our deep reinforcement learning experiments. All base algorithms
are variations of the recurrent PPO algorithm with added auxiliary losses. We describe both the
successor feature auxiliary loss and general value discrepancy auxiliary loss below.

C.1 Successor Feature Learning

Learning successor features in deep reinforcement learning has shown to be unstable, since the trivial
representation (mapping everything to a single point) reduces successor feature losses to 0. Previous
work has shown that the differences between two subsequent observations act as a stable learning
signal for successor features (Jaderberg et al., 2017). To extend for large observation spaces, we
consider successor features over fixed random projections (Achlioptas, 2003) of our observations.
Random projections are apt for auxiliary task learning because of a few useful properties. They
almost always preserve distances, which means that discrepancies over a function of randomly
projected observations also almost always preserve distances, and are usually much smaller than raw
observations. We use the following fixed linear random projection:

Fi,j =
√
3/k ×


1 w.p. 1

6

0 w.p. 2
3

−1 w.p. 1
6

(17)

where F is a k × nproj randomly initialized matrix. k is the size of the original feature vector, and
nproj is the size of the randomly projected feature vector.

We ran experiments on different basis features for successor feature learning, and found that the
difference between features across two subsequent time steps (Jaderberg et al., 2017) were best for
voth successor feature learning and general value discrepancy learning.

C.2 Deep General Value Discrepancy

In order to learn the auxiliary task of general value discrepancy minimization, we are required to
learn two successor feature heads, each corresponding to a λ. This means that our overall architecture
has a policy head, a value prediction head, and two successor feature prediction heads. We sweep the
following hyperparameters for the algorithms we compare:

Hyperparameter

Step size [2.5× 10−3, 2.5× 10−4, 2.5× 10−5, 2.5× 10−6]
λ1 [0.1, 0.5, 0.7, 0.9, 0.95]
λ2 (LD & GVD) [0.1, 0.5, 0.7, 0.9, 0.95]
β (LD & GVD) [0, 0.25, 0.5]

Table 3: Hyperparameters swept across all algorithms. Rows labelled with λ-discrepancy are
hyperparameters swept specific to our algorithm.

We weight the LGVD loss by the β parameter, and also have a separate weight for the LSF loss,
which we keep fixed at 0.25 for all runs involving successor features for general value discrepancy
minimization.
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