

CONFHIT: CONFORMAL GENERATIVE DESIGN VIA NESTED TESTING

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

The success of deep generative models in scientific discovery requires not only the ability to generate novel candidates but also reliable guarantees that these candidates indeed satisfy desired properties. Recent conformal-prediction methods offer a path to such guarantees, but its application to generative modeling in drug discovery is limited by budget constraints, lack of oracle access, and distribution shift. To address these challenges, we introduce CONFHIT, a model-agnostic framework that provides validity guarantees under these conditions. CONFHIT formalizes two central questions: (i) Certification: whether a generated batch can be guaranteed to contain at least one hit with a user-specified confidence level, and (ii) Design: whether the generation can be refined to a compact set without weakening this guarantee. CONFHIT leverages weighted exchangeability between historical and generated samples to eliminate the need for an experimental oracle, constructs multiple-sample density-ratio weighted conformal p-value to quantify statistical confidence in hits, and proposes a nested testing procedure to certify and refine candidate sets of multiple generated samples while maintaining statistical guarantees. Across representative generative molecule design tasks and a broad range of methods, CONFHIT consistently delivers valid coverage guarantees at multiple confidence levels while maintaining compact certified sets, thereby establishing a principled and reliable framework for generative modeling.

1 INTRODUCTION

Deep generative modeling has demonstrated remarkable ability to explore high-dimensional spaces, driving advances in various applications like text generation (Radford et al., 2018), image synthesis (Ho et al., 2022), protein engineering (Madani et al., 2020), and molecular discovery (Gómez-Bombarelli et al., 2018). In critical domains such as drug discovery, however, the success requires more than generation: While powerful generative models have been developed to accelerate early-stage discovery (Madani et al., 2021; Hoogeboom et al., 2022; Yim et al., 2023), their practical utility depends on whether the generated candidates indeed satisfy key biochemical properties. Since these properties can only be verified through costly wet-lab or in-vivo experiments, it is crucial to assess and guarantee, in advance, the viability of the generated samples (hits), leading to a central question:

Given a generative model, how to construct batches of generated samples that can, with high statistical confidence, be guaranteed to contain at least one valid hit?

Conformal prediction provides a model-agnostic framework for establishing statistical guarantees for black-box prediction models (Vovk et al., 2005), and is recently extended to calibrate any generative model to produce sets of generated samples that contain at least one high-quality instance with high probability (Quach et al., 2023; Ulmer et al., 2024; Shahrokhi et al., 2025). While such guarantees can be profoundly useful, direct application of the existing methods in resource-restricted problems like drug discovery is limited by several challenges. (i) *Certification*: With limited generation budget and no assumptions on the generative model, it is not always feasible to produce a valid hit; it is therefore important to state clearly when a guarantee can be provided and when it cannot. On the technical side, (ii) *Lack of oracle access*: Existing methods rely on an oracle that evaluates newly generated samples for existing inputs (such as by comparing to a gold-standard output). In drug discovery, this means one needs to synthesize and experimentally validate the generated samples, which is infeasible in resource-limited settings alike (Kladny et al., 2024). (iii) *Distribution shift*: The generated candidates may follow a distribution different from the calibration data, violating the exchangeability assumption.

Figure 1: (a) Problem setup: given an input, certify and generate a set of candidates that contains at least one “hit” (green) with probability at least $1 - \alpha$. (b) CONFHIT workflow. Given a nested sequence of candidate batches, we estimate the density ratio between labeled data and generated samples, compute a conformal p-value for each batch to quantify the confidence in it containing a hit, and return the smallest batch whose p-value falls below α .

We introduce CONFHIT, a model-agnostic framework that provides reliability guarantees for generative modeling in resource-constrained settings. To tackle the budget limitation, we expand the generation problem into two connected fundamental questions:

1. *Certification.* Given an input \bar{X}_{test} , a batch $C_0(\bar{X}_{test})$ of generated samples and an unknown property indicator $A(\cdot) \in \{0, 1\}$, can we guarantee, at a given confidence level $1 - \alpha \in (0, 1)$, that the batch $C(\bar{X}_{test})$ contains at least a hit?
2. *Design.* In cases with strong confidence, can we design a compact candidate set $C(\bar{X}_{test})$ while preserving the guarantee that it contains a valid hit with probability at least $1 - \alpha$?

Here $A(\cdot) \in \{0, 1\}$ is an oracle that returns 1 only when the sample satisfies a desired property. In molecule design, it may indicate whether a molecule x improves upon a seed molecule \bar{X}_{test} in terms of activity, and these questions ensure the experimental validation on $C(\bar{X}_{test})$ is unlikely to be wasted effort (Figure 1a). We remark that, in resource-abundant settings, certification and refinement can be combined: the generation budget may be enlarged until certification is achieved, after which the set is pruned to a compact certified subset, leading to the same validity guarantees by existing methods.

To eliminate oracle access and handle the distribution shift, CONFHIT leverages the exchangeability structure between historical (labeled) and generated samples, rather than among generated samples for both existing and new model inputs as in earlier methods, and estimates their density ratio, thereby inducing *weighted* exchangeability (Tibshirani et al., 2019; Jin & Candès, 2023a). For the certification problem, given any viability-scoring function, we construct a weighted permutation p-value that quantifies the evidence against the global null that none of the samples in the generated batch are viable. For the design problem, CONFHIT then examines the certification confidence of a nested sequence of candidate batches, and returns the smallest batch that can be certified at a given confidence level $\alpha \in (0, 1)$. We show that this procedure bounds the probability of returning a batch with no viable sample below $\alpha \in (0, 1)$, regardless of the scoring function and the generative model.

We demonstrate the robust guarantees of CONFHIT on two representative generative design tasks: (i) **Constrained molecule optimisation**, which seeks a new molecule that satisfies a target property while remaining similar to a given scaffold; (ii) **Structure-based drug discovery**, which aims to generate molecules that are active against a given protein. We summarize our contributions below:

- We formalise the task of generative modeling in resource-constrained settings with a conformal validity guarantee: given an input context (such as a lead molecule or protein pocket), certify and produce a set of candidates that contains at least one hit at a pre-specified confidence level $1 - \alpha$.
- We introduce a class of density-ratio-weighted, multiple-test-sample conformal p-values for the certification problem, and show their validity for certifying the existence of at least one hit in a given batch of generated samples under distribution shift.
- We propose a general nested testing framework that achieves the validity guarantees for the design problem. In specific, we show that given a sequence of our p-values, stopping as soon as the p-value drops below α achieves finite-sample error control.
- We develop practical strategies for two key elements in the method: score modelling and density ratio estimation, and demonstrate the robust performance on two standard molecule design tasks: constrained molecule optimisation and structure-based drug discovery.

108 **Related Work.** Conformal prediction (CP) (Vovk et al., 2005) offers distribution-free uncertainty
 109 quantification for any black-box model by constructing prediction sets from exchangeable calibration
 110 data (Papadopoulos et al., 2002). Recent advances extend CP to generative tasks (Angelopoulos
 111 et al., 2021; Quach et al., 2023; Shahrokhi et al., 2025; Kladny et al., 2024). However, these methods
 112 require oracle access, which is impractical for resource-constrained scenarios like drug discovery.

113 In scientific/drug discovery tasks, conformal prediction has so far primarily been used in predictive
 114 inference for regression and classification problems in property prediction (Sun et al., 2017; Svensson
 115 et al., 2018; Cortés-Ciriano & Bender, 2018; 2019; Zhang et al., 2021) and their extension to
 116 covariate-shift settings via importance-weight estimation (Fannjiang et al., 2022; Laghuvarapu et al.,
 117 2023; Prinster et al., 2023; Fannjiang & Park, 2025). Beyond prediction-set construction, conformal
 118 selection employs p-values to prioritize compounds with selective error control (Bai et al., 2024;
 119 Jin & Candès, 2023b; Bai & Jin, 2024). As we address a distinct generative design problem, our
 120 formulation, inference scheme, and methodology differ sharply from prior work.

121 Meanwhile, there is a growing literature on generative modelling in scientific design tasks, including
 122 goal-directed small-molecule optimization (Gómez-Bombarelli et al., 2018; Jin et al., 2020), structure-
 123 based ligand design (Corso et al., 2022; Guan et al., 2023), large-scale protein generators (Madani
 124 et al., 2020; Ingraham et al., 2019; Strokach & Kim, 2022), and materials discovery (Xie et al., 2022;
 125 Zeni et al., 2023). Our contributions are orthogonal to this literature as CONFHIT is model agnostic
 126 and offers guarantees for building property-satisfying samples from these generative models.

127 To summarize, compared with existing works, CONFHIT is the first framework that (i) eliminates the
 128 need for oracle access, (ii) corrects for covariate shift between historical and generated samples, and
 129 (iii) provides finite-sample guarantees for both certification and compact design in generative design.

131 2 PROBLEM FORMULATION

132 For expositional convenience, we slightly override the notations in Section 1.

133 **Data and distributions.** We assume access to a set of i.i.d. labeled (calibration) samples $\mathcal{D}_{\text{calib}} =$
 134 $\{(X_i, Y_i)\}_{i=1}^n$ from an unknown distribution P , e.g., molecules from past campaigns with known
 135 properties. Here $X_i \in \mathcal{X}$ is the feature, e.g., the chemical structure of a molecule, and $Y_i \in \{0, 1\}$
 136 is a binary label, e.g., oracle-judged $Y_i = A(X_i)$. A generative model \mathcal{M} produces i.i.d. samples
 137 $\{X_{n+j}\}_{j \geq 1}$ from another distribution Q with unknown labels $\{Y_{n+j}\}_{j \geq 1}$ (the properties
 138 $Y_{n+j} = A(X_{n+j})$ should they be judged by the oracle). Although Q ’s density is, in principle,
 139 computable, doing so is often costly. Instead, we assume a covariate shift between the two distri-
 140 butions: $dQ/dP(x, y) = w(x)$ for some function $w: \mathcal{X} \rightarrow \mathbb{R}^+$. It posits that X captures all the
 141 information for predicting Y , which is especially sensible and standard in drug discovery contexts
 142 where the biological property is determined by the structure (though in a highly complex fashion).

143 **Guarantees.** We now formalize our guarantees for (i) certifying the presence of a hit in a set of
 144 generated candidates, and (ii) constructing a set of samples with at least a hit. For goal (i), given a
 145 pre-specified confidence level $\alpha \in (0, 1)$ and a generated set $\mathcal{C}_0^{\text{new}} := \{X_{n+j}\}_{j=1}^N$ of budget $N \in \mathbb{N}^+$,
 146 we aim to propose a test $\psi(\mathcal{D}_{\text{calib}}, \mathcal{C}_0^{\text{new}}) \in \{0, 1\}$ such that

$$147 \text{(Certification)} \quad \mathbb{P}(\psi(\mathcal{D}_{\text{calib}}, \mathcal{C}_0^{\text{new}}) = 1 \mid A(X_{n+j}) = 0, \forall 1 \leq j \leq N) \leq \alpha, \quad (1)$$

148 that is, the probability of falsely certifying a low-quality candidate set is upper bounded by α . For
 149 goal (ii), we would like to find a (random) stopping point $\hat{N} \leq N$ such that

$$150 \text{(Design)} \quad \mathbb{P}(A(X_{n+j}) = 0, \forall 1 \leq j \leq \hat{N}) \leq \alpha, \quad (2)$$

151 outputing the list of samples $\hat{\mathcal{C}}^{\text{new}} := (X_{n+1}, \dots, X_{n+\hat{N}})$ which contains a hit while controlling the
 152 error of vacuous declaration. We define $\hat{N} = 0$ to accommodate cases where we are not confident
 153 enough to declare any positive sample within the generation budget (failure of certification).¹

154 3 METHOD

155 We introduce our conformal nested testing framework to address the certification problem (Section 3.1)
 156 and the design problem (Section 3.2), and prove their model-agnostic, finite-sample guarantees.

157 ¹This is consistent with existing works on uncertainty quantification for generative models (Quach et al.,
 158 2023), where a “null” option (i.e., the method fails to confidently generate good samples) is required.

162 3.1 CERTIFICATION: JOINT WEIGHTED CONFORMAL P-VALUE
163

164 We begin by addressing the certification problem: *Given a set of generated samples, how to quantify*
 165 *the confidence in it containing a hit?* Our key strategy is to construct a p-value based on conformal
 166 inference ideas that test the presence of any hit in $\{X_{n+j}\}_{j=1}^N$. Recall that there is a covariate shift
 167 $w(x) = dQ/dP(x, y)$ for the labeled calibration data and the new test samples. To fix ideas, we
 168 assume the density ratio $w(\cdot)$ is known for now, and discuss estimated density ratio in Remark 3.3.
 169

170 Our p-values leverage the inactive calibration data $\{X_i : i \in \mathcal{I}_0\}$ where $\mathcal{I}_0 := \{i \in [n] : Y_i = 0\}$.
 171 We let $\mathbf{X} = (X_1, \dots, X_{n_0}, X_{n+1}, \dots, X_{n+N})$ denote the vector of (inactive) calibration and test
 172 covariates. Following split conformal prediction (Vovk et al., 2005), we let $V: \mathcal{X}^{n_0+N} \rightarrow \mathbb{R}$ be
 173 any function whose training process is independent of $\{(X_i, Y_i)\}_{i \geq 1}$, which is then viewed as fixed.
 174 We call V the *conformity score* function, whose choice is discussed near the end of this subsection.
 175 Without loss of generality, we assume a larger value of the conformity score indicates stronger
 176 confidence in the presence of a positive value in $\{Y_{n+j}\}_{j=1}^N$.
 177

178 To address multiple test points without introducing too much computational overhead, we leverage
 179 randomization (see Appendix A.1 for the non-randomized version). Let Π_N be the collection of
 180 all permutations of $\{1, \dots, n_0, n+1, \dots, n+N\}$, and denote the identity mapping as $\pi^{(0)}$, i.e.,
 181 $\pi^{(0)}(i) = i$ for any i . Formally, fixing any $B \in \mathbb{N}^+$, we draw $\pi^{(1)}, \dots, \pi^{(B)} \stackrel{\text{i.i.d.}}{\sim} \text{Unif}(\Pi_N)$, the
 182 uniform distribution over the permutation space. Define

$$183 p_N^{\text{rand}} = \frac{\sum_{b=0}^B \bar{w}(\pi^{(b)}; \mathbf{X}) \mathbb{1}\{V(\pi_0; \mathbf{X}) \leq V(\pi^{(b)}; \mathbf{X})\}}{\sum_{b=0}^B \bar{w}(\pi^{(b)}; \mathbf{X})}. \quad (3)$$

184 Here, for any permutation $\pi \in \Pi_N$, we define the conformity score from the permuted data
 185 $V(\pi; \mathbf{X}) = V(X_{\pi(1)}, \dots, X_{\pi(n_0)}, X_{\pi(n+1)}, \dots, X_{\pi(n+k)})$, and $\bar{w}(\pi; \mathbf{X}) = \prod_{j=1}^k w(X_{\pi(n+j)})$,
 186 is the joint likelihood ratio after permutation π , where $w(x) = dQ/dP(x, y)$ is the density ratio.
 187

188 The construction of our p-value relies on an analysis of the exchangeability structure between the
 189 inactive calibration data $\{X_i : i \in \mathcal{I}_0\}$ and the test samples $\{X_{n+j}\}_{j=1}^N$ under distribution shift,
 190 detailed in Appendix A.2 due to limited space. It extends the conformal p-values in the literature via
 191 an extended weighted exchangeability structure (Tibshirani et al., 2019) for multiple test samples (Hu
 192 & Lei, 2024; Jin & Candès, 2023a); these connections are discussed in Appendix A.3.
 193

194 The following theorem establishes the finite-sample validity of the randomization p-value (3). Notably,
 195 this holds regardless of the number of sampled permutations. Its proof is in Appendix B.4.

196 **Theorem 3.1.** *Under the covariate shift assumption, it holds for any fixed $t \in [0, 1]$ that*

$$197 \mathbb{P}(p_N^{\text{rand}} \leq t \mid \max_{1 \leq j \leq N} Y_{n+j} = 0) \leq t.$$

198 Therefore, the certification test function $\psi(\mathcal{D}_{\text{calib}}, \{X_{n+j}\}_{j=1}^N) = \mathbb{1}\{p_N^{\text{rand}} \leq \alpha\}$ achieves (1).

199 Inheriting the model-free nature of conformal inference, the validity of p_k and p_k^{rand} holds regardless
 200 of the score function V , as long as its training process is independent of the calibration and test data.
 201

202 **Remark 3.2** (Outlier detection). *Our p-values can also be viewed as testing for the presence of*
 203 *at least one outlier in $\{X_{n+j}\}_{j=1}^m$ when $\{X_i\}_{i \in \mathcal{I}_0}$ are viewed as calibration inliers. We refer the*
 204 *readers to discussion on the connection to outlier detection under covariate shifts (Bates et al., 2023;*
 205 *Jin & Candès, 2023a) in Appendix A.4.*

206 **Remark 3.3** (Estimated density ratio). *In many practical scenarios, the density ratio $w(\cdot)$ is unknown*
 207 *or difficult to evaluate. In such cases, we estimate the density ratio by $\hat{w}(\cdot)$, and use $\hat{w}(\cdot)$ instead*
 208 *of $w(\cdot)$ in the construction of our p-values $\{p_k\}$. For instance, we can train the density ratio*
 209 *over a random subset of all the labeled data and independently generated test samples. We do*
 210 *not write the exact formulas for such plug-in p-values for brevity. Recognizing that the success of*
 211 *CONFHit hinges on accurate density ratio estimation, we provide a thorough discussion on the*
 212 *robustness of CONFHit with estimated weights and several practical diagnostics in Section 3.3.*

213 **Conformity score function.** Because we certify the candidate set when p_N is small, V must grow
 214 when $X_{n+1:n+N}$ contains a positive to indicate strong confidence. To this end, we assume access to
 215 a pre-trained model $\hat{\mu}: \mathcal{X} \rightarrow \mathbb{R}$ that predicts the unknown property Y_{n+j} based on X_{n+j} , which will
 be used in the score V . We suggest several natural choices: (i) Max-pooling: $V(x_{1:n_0}, x_{n+1:n+N}) =$

216 $\max_{1 \leq j \leq N} \hat{\mu}(x_{n+j})$, (ii) Sum-of-prediction: $V(x_{1:n_0}, x_{n+1:n+N}) = \sum_{j=1}^N \hat{\mu}(x_{n+j})$, (iii) Rank-
 217 sum: $V(x_{1:n_0}, x_{n+1:n+N}) = \sum_{j=1}^N R_{n+j}$, where R_{n+j} is the rank among all scores, (iv) Likelihood
 218 ratio: $V(x_{1:n_0}, x_{n+1:n+N}) = \sum_{j=1}^N \log\left(\frac{\hat{\mu}(x_{n+j})}{1-\hat{\mu}(x_{n+j})}\right)$. We explain these scores in Appendix A.5. We
 219 note that CONFHIT is model-agnostic: practitioners can choose any suitable model to build the score
 220 V . The quality of the score/model affects the power, but not the error control of CONFHIT. Finally,
 221 practitioners may want to avoid sample splitting when labeled data is limited; we provide such a
 222 variant in Appendix A.6 where the labeled data are used for both training $\hat{\mu}$ and p-value construction.
 223

224 3.2 DESIGN: CONFORMAL NESTED TESTING

225 Upon the valid p-value and certification test for a given candidate set, we proceed to address the
 226 design problem: *How to propose a compact set of generated samples that contains at least one hit*
 227 *with high probability?* To this end, we connect (2) to the problem of constructing a smaller subset of
 228 candidates that can be certified by our procedure, and establish its statistical guarantee.
 229

230 To be specific, for every $1 \leq k \leq N$, we consider the null hypothesis

$$231 \quad H_k: Y_{n+j} = 0, \forall 1 \leq j \leq k. \quad (4)$$

232 That is, H_k posits that none of the first k generated instances obeys the desired property. From a
 233 hypothesis testing perspective, rejecting H_k thus suggests sufficient confidence in declaring a hit in
 234 $\{X_{n+j}\}_{j=1}^k$. The certification strategy in Section 3.1 is readily applicable to obtain a p-value p_k for
 235 certifying each subset $\{X_{n+j}\}_{j=1}^k$ indexed by k that obeys $\mathbb{P}(p_k \leq t \mid H_k \text{ is true}) \leq t$ for $t \in [0, 1]$.
 236

237 Our solution to the design problem appears simple: determine an index \hat{N} such that $H_{\hat{N}}$ can be
 238 rejected (i.e., $\{X_{n+j}\}_{j=1}^k$ can be confidently declared as containing a hit). Specifically, suppose we
 239 can construct a *decreasing* sequence of p-values $p_k \in [0, 1]$ for each fixed H_k . Then, we set
 240

$$241 \quad \hat{N} := \inf \{k: p_k \leq \alpha\}. \quad (5)$$

242 That is, we take the first p-value that passes the significance level $\alpha \in (0, 1)$. Theorem 3.4 confirms
 243 the validity of this nested testing strategy, whose proof is in Appendix B.1.

244 **Theorem 3.4.** *Suppose the p-values $p_k \in [0, 1]$ obey: (i) Monotonicity: $p_1 \geq p_2 \geq \dots \geq p_N$. (ii)
 245 Validity: For any fixed $k \geq 1$ and $t \in [0, 1]$, it holds that $\mathbb{P}(p_k \leq t \mid H_k \text{ is true}) \leq t$. Then, we have*

$$246 \quad \mathbb{P}(\max_{1 \leq j \leq \hat{N}} Y_{n+j} = 0) \leq \alpha$$

247 for the generation threshold \hat{N} computed as in (5). Here H_k is defined in (4).

248 We note that any p-values $\{\tilde{p}_k\}$ obeying condition (ii) in Theorem 3.4, such as those constructed
 249 in the certification problem, can be turned to $p_k = \max_{k \leq j \leq N} \tilde{p}_j$ which satisfy both conditions in
 250 Theorem 3.4. Perhaps surprisingly, even though we are simultaneously examining multiple batches
 251 of candidates, it turns out that using a *monotone* sequence of *individually* valid p-values suffices
 252 to achieve our goal, and no adjustment for multiplicity is needed. We remark that the key to our
 253 theoretical guarantee is the nested nature of the hypotheses: if H_k is true, then all “earlier” hypotheses
 254 $\{H_\ell\}_{\ell \leq k}$ must also be true. We thus call our method “conformal nested testing”.

255 **CONFHIT: Putting everything together.** So far, we have completed all the elements of CONFHIT.
 256 We summarize the entire procedure in Algorithm 1, including both certification (for every nested
 257 subset) and design. Note that the input $\hat{w}(\cdot)$ denotes an estimated density ratio function, which
 258 coincides with $w(\cdot)$ when the density ratio is known. When it fails to certify even the largest batch,
 259 CONFHIT flags “not confident enough” to clearly communicate the difficulty of the generation task.

260 3.3 ROBUSTNESS AND DIAGNOSTICS FOR DENSITY RATIO ESTIMATION

261 The density ratio often needs to be estimated in practice and its quality naturally affects the performance
 262 of CONFHIT. The difference between historical assay data and newly generated molecules
 263 is a persistent issue in drug discovery and needs to be addressed in nearly all conformal prediction
 264 methods in this domain (Krstajic, 2021; Laghuvarapu et al., 2023; Jin & Candès, 2023a; Fannjiang
 265 & Park, 2025). Estimating the density ratio is a statistically standard problem used in many fields
 266 including machine learning, statistics, and causal inference with rich existing toolboxes such as kernel
 267 or classification-based methods beyond the kernel density estimation in our experiments (Horvitz &
 268

324 autoregressive transformers, diffusion models, and Bayesian Flow Networks. For *evaluation* purposes,
 325 we use computational oracles to judge the property of generated samples since wet-lab evaluation is
 326 infeasible (Jin et al., 2020); the oracle is not used in running CONFHIT.

327 **App. 1: Constrained Molecule Optimisation (CMO).** Given a seed molecule \bar{X} that *fails* a target
 328 property, the goal is to generate a molecule X that is close in Tanimoto distance to \bar{X} and satisfies
 329 the property. This task reflects lead-optimisation workflows where *experimental* assays provide
 330 ground-truth. Following the standard practice of using a computational oracle, in our experiments,
 331 we use the property *DRD2 receptor binding (DRD2)*, with success ($Y = 1$) if $\text{DRD2}(x) > 0.5$.
 332 Additional comprehensive results on Quantitative Estimate of Drug-likeness improvement (QED)
 333 reported in the Appendix E.2.

334 To demonstrate the compatibility of CONFHIT with general generative models, we employ two
 335 state-of-the-art CMO models: 1. *HGRAPH2GRAPH*, a hierarchical VAE editing scaffold-level motifs
 336 while preserving validity (Jin et al., 2020); 2. *SELF-EDIT*, an autoregressive transformer generating
 337 SELFIES strings to optimise the property while maintaining similarity to the seed (Jiao et al., 2023).

338 We take a subset of the training split in Chemprop (Yang et al., 2019) of ChEMBL data (Gaulton
 339 et al., 2012) as the labeled calibration data $\{\bar{X}_i, X_i, Y_i\}_{i=1}^n$ (seed input, sample from past campaigns,
 340 and oracle property), following Jin et al. (2020). Inactive molecules in the test split serve as test
 341 inputs $\{\bar{X}^{(\ell)}\}_{\ell=1}^L$. For each $\bar{X}^{(\ell)}$, the model generates $\{X_{n+j}^{(\ell)}\}_{j=1}^m$.

343 **App. 2: Structure-Based Drug Discovery (SBDD).** Here the input \bar{X} is a 3D protein binding pocket,
 344 and the task is to generate ligands X that bind to it, so the label Y depends on (\bar{X}, X) . Following
 345 standard practice, for evaluation purposes only, we use AutoDock Vina (Trott & Olson, 2010) as
 346 computation oracle and label a ligand as a hit if its score is below $-7.5 \text{ kcal mol}^{-1}$; such a threshold
 347 captures about 75% of known active samples in CrossDock (Francoeur et al., 2020a).

348 In this task, we apply CONFHIT with three state-of-the-art SBDD models: *TargetDiff* (Guan et al.,
 349 2023), an $SE(3)$ -equivariant diffusion model conditioned on pocket meshes; *DecompDiff* (Guan et al.,
 350 2024), using decomposed priors to separate structural components; *MolCRAFT* (Qu et al., 2024), a
 351 Bayesian Field Network operating fully in continuous parameter space.

352 The calibration data are protein-ligand pairs $\{(\bar{X}_i, X_i)\}_{i=1}^n$ from CrossDocked (Francoeur et al.,
 353 2020b). Following the same split in Guan et al. (2023), we use the proteins in the test split as inputs
 354 $\{\bar{X}^{(\ell)}\}_{\ell=1}^L$, and the model generates candidate ligands $\{X_{n+j}\}_{j=1}^N$ given each input $\bar{X}^{(\ell)}$.

356 4.2 IMPLEMENTATION DETAILS

357 **Conformity Score Function.** We define V using a property prediction model $\hat{\mu}(\cdot)$:

- 358 • **CMO.** For both properties (QED and DRD2) we train a binary classifier $\hat{\mu}(\cdot)$ with molecular graph
 359 inputs using the Chemprop library (Yang et al., 2019) and ChEMBL data splits in Jin et al. (2020).
- 360 • **SBDD.** We train an EGNN $\hat{\mu}(\cdot)$ (Satorras et al., 2021) on PDBBind crystal structure data (Wang
 361 et al., 2005) to predict binding affinity, using TARGETDIFF (Guan et al., 2023) codebase.

362 In both tasks, $\hat{\mu}$ is trained on data independent of calibration and test sets. Training details, hyperpa-
 363 rameters, and compute for $\hat{\mu}$ and the generative models are given in Appendix C. For conciseness,
 364 we present most results with the Max-pooling score $V(x_{1:n_0}, x_{n+1:n+k}) = \max_{1 \leq j \leq k} \hat{\mu}(x_{n+j})$.
 365 Comparisons to other score functions appear in Figure 4.

367 **Density Ratio Estimation.** We leverage kernel density estimation (KDE) for constructing the weights
 368 in our p-values. Following the discussion in Lemma A.2 in Appendix A.2, the desired weight $w(\cdot)$
 369 equals the *marginal* density ratio of generated samples, regardless of hit status. Also, plugging in the
 370 densities for the joint distribution of input/generation pairs, denoted as $\tilde{q}(\bar{x}, x)$ and $\tilde{p}(\bar{x}, x)$, yields the
 371 same p-value due to normalization. Thus, we directly estimate $\tilde{p}(\cdot)$ and $\tilde{q}(\cdot)$ to ensure sufficient data
 372 for estimation. Following CoDRUG (Laghavarapu et al., 2023), we extract latent features $g(\bar{x}, x)$
 373 from the penultimate layer of the property model, and fit Gaussian KDEs $\hat{p}(\bar{x}, x)$ and $\hat{q}(g(\bar{x}, x))$ on
 374 calibration and test samples, forming weights $\tilde{w}(\bar{x}, x) = \hat{q}(g(\bar{x}, x)) / \hat{p}(g(\bar{x}, x))$.

375 4.3 RESULTS: CERTIFICATION

376 In this section, we present results of the certification experiment, where the goal (1) is to certify the
 377 presence of a hit in a batch of fixed size N at level α . Our evaluation focuses on (i) error control, and
 (ii) power, i.e., the frequency of successfully certifying hits. Results for both CMO and SBDD tasks

Figure 2: **Certification results.** Left: realized error rates at fixed N for different models and error levels α in SBDD (upper) and CMO (lower). Middle: average error rates while varying budget N . Right: power, i.e., the fraction of actives certified at various error level α and budget N values. The dashed line denotes the ideal $y = x$ error bound. Our method consistently achieves valid coverage across scenarios. Results are averaged over 5 random runs; error bars and additional results for other values of N are in Appendix E.2

Figure 3: **Design results.** Error rate at fixed N for different methods (left), mean set sizes averaged across methods at different values of N (middle), and empty set percentage at different values of N (right) across target levels α . The top row shows results for SBDD and the bottom for CMO. Dashed black line in the error plots indicates the ideal $y = x$ bound. CONFHIT achieves tight error control while producing substantially smaller sets. Results are averaged over 5 random runs; additional results are provided in the Appendix E.2.

across different generative models are shown in Figure 2. The left panel reports the empirical error rate, i.e. the frequency of certifying sets that contain no hit. Across all settings, we observe tight error control. The middle panel shows the error rates (averaged across methods for visualization) for different budgets N , and we observe that the error stays below the target error levels. Finally, the right panel plots the fraction of sets containing an active that are certified as a function of α at different, where CONFHIT is able to detect true hits with satisfactory power. As expected, this fraction increases with the significance level and set size N .

4.4 RESULTS: DESIGN

In this section, we present experiments for the design problem in (2), where we prune a generated batch to obtain compact subsets while preserving tight error control. As summarized in Figure 3, our nested procedure refines candidate sets while preserving statistical guarantees.

As we address a novel problem under unique constraints, there are no directly comparable baselines (existing methods in conformal generative modeling (Quach et al., 2023; Kladny et al., 2024) are not comparable due to the unavailable oracle). Instead, we consider two baselines to demonstrate the benefits of CONFHIT: **(i) Bonferroni correction.** Given N test samples, we threshold the one-test-sample p-value (set each candidate as the test set in (3)) at α/N . It provides a stronger guarantee of no false certification for any test sample, but can be conservative. **(ii) Certification-only.** The certification procedure from Section 4.3, which serves as a baseline without pruning.

432 **Compared with Bonferroni**, our approach substantially outperforms in both CMO and SBDD
 433 tasks. At stringent levels ($\alpha = 0.1$), Bonferroni yields empty sets for nearly 100% of SBDD inputs,
 434 while CONFHIT leads to empty set frequency as low as 16% for $N = 15$ ². Moreover, in the rare
 435 cases where Bonferroni is able to make discoveries, it usually exhaust the full budget, whereas
 436 CONFHIT consistently prunes to 2-5 molecules (30-50% of the full budget). Due to conservativeness,
 437 Bonferroni has low or near zero error rates, whereas CONFHIT achieves adaptive and tight coverage.

438 **Compared with certification-only** whose results are in Figure 2, the nested procedure successfully
 439 prunes promising initial large sets to smaller ones. For example, in SBDD at $\alpha = 0.1$ with $N = 15$,
 440 the nested procedure reduces the mean set size to about 4 molecules without compromising the error
 441 control. Similar improvements hold in CMO, where nested pruning typically halves the certified set
 442 size while delivering tighter agreement between realized and nominal error.

443 In summary, CONFHIT delivers compact certified sets with strict error control. It largely avoids
 444 vacuous results and yields smaller, more actionable shortlists with higher coverage for subsequent
 445 experimental validation. This makes our framework particularly valuable in scientific discovery
 446 workflows, where experimental budgets require both statistical confidence and practical tractability.

447 4.5 ADDITIONAL INVESTIGATIONS

449 **Choice of test statistic.** While we report the results with the Max-pool conformity score, Figure 4
 450 evaluate CONFHIT with five choices of the conformity score $V(\cdot)$ —*min*, *mean*, likelihood-ratio
 451 (*LR*), rank-sum, and *max*—on the SBDD task with TARGETDIFF at a budget of $N = 5$; results
 452 for other tasks and budgets show similar patterns and are provided in the Appendix E.2. Across
 453 the board, CONFHIT consistently keeps the realised error rate close to the target α , confirming the
 454 model-agnostic validity. However, the choice of the score does affect power: *max* certifies most often
 455 (e.g., 73 % of seeds at $\alpha = 0.1$), while rank-sum is the most conservative.

464 Figure 4: Comparison of score statistics on TargetDiff (SBDD, $N=5$). Left: rejection (power) at $\alpha = 0.1, 0.3$.
 465 Right: error vs. α . All remain valid; the *max* statistic shows the highest power.

466 **Choice of property prediction model.** As we discussed in the end of Section 3.1, the choice of the
 467 property prediction model only affects the power. We performed an ablation study with weak property
 468 prediction models by adding noninformative perturbations to the predictions. CONFHIT maintains
 469 robust error rate control despite that the weaker predictor decreases the power; see Appendix F.

470 **Distribution shift adjustment.** The guarantees of CONFHIT in both certification and design rely
 471 on valid p-values, which further hinges on distribution shift adjustment. As an ablation study, we
 472 compare CONFHIT with the version without distribution shift adjustment, i.e., taking $w(\cdot) \equiv 1$.
 473 We observe that running CONFHIT without distribution shift adjustment can violate the coverage
 474 guarantee especially for stringent target error rates, for example, using the TARGETDIFF model in the
 475 SBDD task, and the SELFEDIT model in the CMO task. The differences are highlighted in Figure
 476 5a. In addition, we plot the distribution of p-values computed with negative samples across different
 477 datasets and observe that they are approximately uniform; see Appendix E.3.

478 **Robustness check.** We exemplify the robustness diagnostics in Section 3.3, with a sensitivity-analysis
 479 in Appendix H.1, synthetic validation with a realistic scaffold split in Appendix H.2 and a balance
 480 check based on key features in Appendix H.3. First, by perturbing the weights via a power law,
 481 we showcase how to examine the robustness of CONFHIT’s output, with additional evaluation to
 482 show the mild degradation of error control. Meanwhile, CONFHIT achieves tight error control under
 483 synthetic scaffold splits, and the estimated density ratio improves the balance in key features.

484 ²Returning empty sets means no enough confidence under the generation budget N , which is inevitable
 485 without strong assumptions on the generative power.

Figure 5: (a) **Distribution shift adjustment** (left). Coverage violations when CONFHIT is run without density correction. (b) **Budget analysis** (middle and right). Fraction of inputs with at least one hit under increasing generation budget. Solid lines: fraction of actual hits; dashed lines: predicted fraction of hits.

Additional baselines. We additionally evaluate two baselines. (i) **A heuristic baseline** which uses an estimated probability to calibrate the generation batch size (Appendix G.1). It violates error control when the estimation quality moderately degrades; in contrast, CONFHIT is model-agnostic and maintains validity under the same degradation (Appendix F), showing that principled uncertainty quantification provides robust guarantees. (ii) **An oracle baseline** which (unrealistically) labels generated samples (Quach et al., 2023) yet without covariate shift adjustment (Appendix G.2). Even with oracle access, ignoring the distribution shift leads to both high errors and high frequency of empty sets (perhaps since it relies on exchangeability between *inputs*, which reduces the sample size).

4.6 WORKING UNDER AN OVERALL BUDGET

Finally, we demonstrate the utility of CONFHIT for allocating a fixed budget across multiple tasks. In drug discovery campaigns, scientists often work with multiple generation inputs but can only validate a limited number of samples experimentally. In this setting, the confidence in valid hits provided by CONFHIT serves as a practical heuristic for budget allocation—deciding how many candidates to synthesize per task. Given K inputs (tasks) and a total budget B , we fix a maximum size N for each input; then, CONFHIT suggests the smallest subset which contains a hit for each input at a confidence level α . We then vary the value of α until the budget is exhausted. Finally, we estimate the fraction of tasks whose output set contains a hit via $(1 - \alpha)$ minus the fraction of empty sets (i.e., when CONFHIT fails to certify a hit at level α). The exact procedure is described in Appendix D.

In Figure 5b, we compare predicted and realized positives under different budget levels (measured as multiples of the number K of inputs). Across both CMO and SBDD, the realized fraction of actives consistently exceeds our estimates, showing the reliability and practical utility of CONFHIT. Complementing the certification and design results, this budget allocation perspective confirms the robust empirical performance of CONFHIT when coupled with more complex, albeit heuristic, applications. Of course, we acknowledge that this is only a heuristic approach without formal theoretical guarantees, and the application of CONFHIT in such tasks warrants careful future study.

5 CONCLUSION

In this work, we introduced CONFHIT, a model-agnostic framework that delivers finite-sample guarantees for conditional generative models. By re-weighting calibration data with density ratios, CONFHIT corrects the distributional shift from historical compounds to model-generated candidates, thereby removing the need for an external experimental oracle, an assumption required by all existing conformal-prediction approaches in generative modeling. Building on these adjusted weights, we derive a nested conformal p-value that certifies the probability of sampling at least one viable molecule. Across two standard benchmarks for optimization of constrained molecules and structure-based design, and across a wide range of methods and budget regimes, CONFHIT consistently provides valid coverage guarantees while maintaining compact certified sets. Our results establish CONFHIT as a principled and practical framework for both certification and design, enabling reliable generative modeling under stringent resource constraints.

Limitations The coverage guarantee relies on density-ratio estimates, which can be noisy when the calibration set is small or the feature extractor is poorly aligned with the target domain. Our experiments focus on small molecules; extending the approach to proteins or other macromolecules with larger, more structured generative space will require additional work. Validation currently relies on in-silico oracles; without wet-lab confirmation, transferability remains to be seen. Demonstrating robustness across broader chemical and experimental settings is a key direction for future research.

540

6 ETHICS STATEMENT

541
 542 Because the framework is model-agnostic and targets conditional molecule generation, we expect
 543 it to benefit diverse discovery pipelines in chemistry, biology, and materials science. The work
 544 builds on long-standing practices in molecular modeling, so we do not anticipate negative societal
 545 consequences. However, we acknowledge potential dual use, such as designing harmful compounds,
 546 and responsible use will require oversight and access controls.

547 **LLM Usage** The use of LLMs in this work is limited to polishing the writing and assisting with
 548 code-related tasks.
 549

550

551 7 REPRODUCIBILITY STATEMENT

552
 553 All experimental settings are described in Section 4.1, with an extended discussion of implementation
 554 details in Appendix C. Information on compute resources and runtime is provided in Section C.4.
 555 The code, datasets along with the config files used for experiments in this work are included with the
 556 supplementary material, along with installation instructions, and are further detailed in Appendix C.5.
 557

558

559 REFERENCES

560 Anastasios N. Angelopoulos, Stephen Bates, Emmanuel J. Candès, Michael I. Jordan, and Lihua
 561 Lei. Learn then test: Calibrating predictive algorithms to achieve risk control. *arXiv preprint*
 562 *arXiv:2110.01052*, 2021.

563 Tian Bai and Ying Jin. Optimized conformal selection: Powerful selective inference after conformity
 564 score optimization. *arXiv preprint arXiv:2411.17983*, 2024.

565 Tianyu Bai, Puchen Tang, Yifan Xu, Vladimir Svetnik, Abbass Khalili, Xusheng Yu, and Andrew
 566 Yang. Conformal selection for efficient and accurate compound screening in drug discovery. *arXiv*
 567 *preprint arXiv:2402.12345*, 2024.

568 Stephen Bates, Emmanuel Candès, Lihua Lei, Yaniv Romano, and Matteo Sesia. Testing for outliers
 569 with conformal p-values. *The Annals of Statistics*, 51(1):149–178, 2023.

570 Eli Ben-Michael, Avi Feller, David A Hirshberg, and José R Zubizarreta. The balancing act in causal
 571 inference. *arXiv preprint arXiv:2110.14831*, 2021.

572 Gabriele Corso, Hannes Stärk, Bowen Jing, Regina Barzilay, and Tommi Jaakkola. Diffdock:
 573 Diffusion steps, twists, and turns for molecular docking. *arXiv preprint arXiv:2210.01776*, 2022.

574 Isidro Cortés-Ciriano and Andreas Bender. Deep confidence: A computationally efficient framework
 575 for calculating reliable prediction errors for deep neural networks. *Journal of Chemical Information*
 576 *and Modeling*, 59(3):1269–1281, 2018.

577 Isidro Cortés-Ciriano and Andreas Bender. Concepts and applications of conformal prediction in
 578 computational drug discovery. *arXiv preprint arXiv:1908.03569*, 2019.

580 Clara Fannjiang and Ji Won Park. Reliable algorithm selection for machine learning-guided design.
 581 *arXiv preprint arXiv:2503.20767*, 2025.

582 Clara Fannjiang, Stephen Bates, Anastasios N. Angelopoulos, Jennifer Listgarten, and Michael I.
 583 Jordan. Conformal prediction under feedback covariate shift for biomolecular design. *Proceedings*
 584 *of the National Academy of Sciences*, 119(43):e2204569119, 2022.

585 Ronald Aylmer Fisher and Ronald A Fisher. *The design of experiments*. Springer, 1971.

586 Patrick Francoeur, Ruben J. Gomez-Bombarelli, Jianfeng Pei, and Rohit Singh. Three-dimensional
 587 convolutional neural networks and a crossdocked dataset for structure-based drug design. *Journal*
 588 *of Chemical Information and Modeling*, 60(9):4200–4215, 2020a. doi: 10.1021/acs.jcim.0c00411.

594 Paul G Francoeur, Tomohide Masuda, Jocelyn Sunseri, Andrew Jia, Richard B Iovanisci, Ian Snyder,
 595 and David R Koes. Three-dimensional convolutional neural networks and a cross-docked data set
 596 for structure-based drug design. *Journal of chemical information and modeling*, 60(9):4200–4215,
 597 2020b.

598 Anna Gaulton, Louisa J Bellis, A Patricia Bento, Jon Chambers, Mark Davies, Anne Hersey, Yvonne
 599 Light, Shaun McGlinchey, David Michalovich, Bissan Al-Lazikani, et al. Chemb3l: a large-scale
 600 bioactivity database for drug discovery. *Nucleic acids research*, 40(D1):D1100–D1107, 2012.

602 Jiaqi Guan, Wesley Wei Qian, Xingang Peng, Yufeng Su, Jian Peng, and Jianzhu Ma. 3d equivariant
 603 diffusion for target-aware molecule generation and affinity prediction. In *International Conference
 604 on Learning Representations (ICLR)*, 2023. URL <https://openreview.net/forum?id=kJqXEPXMsE0>.

606 Jiaqi Guan, Xiangxin Zhou, Yuwei Yang, Yu Bao, Jian Peng, Jianzhu Ma, Qiang Liu, Liang Wang,
 607 and Quanquan Gu. Decomppdiff: diffusion models with decomposed priors for structure-based
 608 drug design. *arXiv preprint arXiv:2403.07902*, 2024.

610 Rafael Gómez-Bombarelli, Jennifer N. Wei, David Duvenaud, and et al. Automatic chemical design
 611 using a data-driven continuous representation of molecules. *ACS Central Science*, 4(2):268–276,
 612 2018.

613 Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim Salimans.
 614 Cascaded diffusion models for high fidelity image generation. *Journal of Machine Learning
 615 Research*, 23(47):1–33, 2022.

617 Emiel Hoogeboom, Victor Garcia Satorras, and et al. Equivariant diffusion for molecular generation
 618 in 3d. In *International Conference on Machine Learning*, 2022.

620 Daniel G Horvitz and Donovan J Thompson. A generalization of sampling without replacement from
 621 a finite universe. *Journal of the American statistical Association*, 47(260):663–685, 1952.

623 Xiaoyu Hu and Jing Lei. A two-sample conditional distribution test using conformal prediction and
 624 weighted rank sum. *Journal of the American Statistical Association*, 119(546):1136–1154, 2024.

625 John Ingraham, Vikas K. Garg, Regina Barzilay, and Tommi Jaakkola. Generative models for
 626 graph-based protein design. In *Advances in Neural Information Processing Systems*, 2019.

628 Miao Jiao, Yiqing Wang, Xiufeng Chen, and Tien Huynh. Self-edit: Structure-constrained molecular
 629 optimisation using selfies editing transformer. *Applied Intelligence*, 53(18):21455–21471, 2023.
 630 doi: 10.1007/s10489-023-04915-8.

631 Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Hierarchical generation of molecular graphs
 632 using structural motifs. In *Proceedings of the 37th International Conference on Machine Learn-
 633 ing (ICML)*, pp. 4839–4848, 2020. URL <https://proceedings.mlr.press/v119/jin20a.html>.

636 Ying Jin and Emmanuel J Candès. Model-free selective inference under covariate shift via weighted
 637 conformal p-values. *arXiv preprint arXiv:2307.09291*, 2023a.

638 Ying Jin and Emmanuel J Candès. Selection by prediction with conformal p-values. *Journal of
 639 Machine Learning Research*, 24(244):1–41, 2023b.

641 Klaus-Rudolf Kladny, Bernhard Schölkopf, and Michael Muehlebach. Conformal generative
 642 modeling with improved sample efficiency through sequential greedy filtering. *arXiv preprint
 643 arXiv:2410.01660*, 2024.

645 Damjan Krstajic. Critical assessment of conformal prediction methods applied in binary classification
 646 settings. *Journal of Chemical Information and Modeling*, 61(10):4823–4826, 2021. doi: 10.
 647 1021/acs.jcim.1c00549. URL <https://doi.org/10.1021/acs.jcim.1c00549>. PMID:
 34550693.

648 Siddhartha Laghuvarapu, Zhen Lin, and Jimeng Sun. Codrug: Conformal drug property prediction
 649 with density estimation under covariate shift. *Advances in Neural Information Processing Systems*,
 650 36:37728–37747, 2023.

651

652 Ali Madani, Bryan McCann, Nikhil Naik, Nitish Shirish Keskar, Namrata Anand, Raphael R. Eguchi,
 653 Po-Ssu Huang, and Richard Socher. Progen: Language modeling for protein generation. *arXiv*
 654 *preprint arXiv:2004.03497*, 2020.

655 Ali Madani, Bryan McCann, Nikhil Naik, and et al. Progen: Language modeling for protein
 656 generation. *arXiv preprint arXiv:2004.03497*, 2021.

657

658 XuanLong Nguyen, Martin J Wainwright, and Michael I Jordan. Estimating divergence functionals
 659 and the likelihood ratio by convex risk minimization. *IEEE Transactions on Information Theory*,
 660 56(11):5847–5861, 2010.

661 Harris Papadopoulos, Kostas Proedrou, Vassilis Vovk, and Alex Gammerman. Inductive confidence
 662 machines for regression. In *Proceedings of the 13th European Conference on Machine Learning*
 663 (*ECML*), pp. 345–356, 2002.

664

665 Drew Prinster, Suchi Saria, and Anqi Liu. Jaws-x: Addressing efficiency bottlenecks of conformal
 666 prediction under standard and feedback covariate shift. In *Proceedings of the 40th International*
 667 *Conference on Machine Learning (ICML)*, 2023.

668

669 Yanru Qu, Keyue Qiu, Yuxuan Song, Jingjing Gong, Jiawei Han, Mingyue Zheng, Hao Zhou, and
 670 Wei-Ying Ma. Molcraft: structure-based drug design in continuous parameter space. *arXiv preprint*
 671 *arXiv:2404.12141*, 2024.

672

673 Victor Quach, Adam Fisch, Tal Schuster, Adam Yala, Jae Ho Sohn, Tommi S Jaakkola, and Regina
 674 Barzilay. Conformal language modeling. *arXiv preprint arXiv:2306.10193*, 2023.

675

676 Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
 677 understanding by generative pre-training. 2018.

678

679 Paul R Rosenbaum. Sensitivity analysis in observational studies. *Encyclopedia of statistics in*
 680 *behavioral science*, 4:1809–1814, 2005.

681

682 Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural networks.
 683 In *International conference on machine learning*, pp. 9323–9332. PMLR, 2021.

684

685 Hooman Shahrokhi, Devjeet Raj Roy, Yan Yan, Venera Arnaoudova, and Janaradhan Rao Doppa.
 686 Conformal prediction sets for deep generative models via reduction to conformal regression. *arXiv*
 687 *preprint arXiv:2503.10512*, 2025.

688

689 Alexander Shapiro. Monte carlo sampling methods. *Handbooks in operations research and manage-*
 690 *ment science*, 10:353–425, 2003.

691

692 Hidetoshi Shimodaira. Improving predictive inference under covariate shift by weighting the log-
 693 likelihood function. *Journal of statistical planning and inference*, 90(2):227–244, 2000.

694

695 Alexey Strokach and Philip M. Kim. Deep generative modeling for protein design. *Current Opinion*
 696 *in Structural Biology*, 72:226–236, 2022. doi: 10.1016/j.sbi.2021.11.008.

697

698 Masashi Sugiyama, Shinichi Nakajima, Hisashi Kashima, Paul Buenau, and Motoaki Kawanabe.
 699 Direct importance estimation with model selection and its application to covariate shift adaptation.
 700 *Advances in neural information processing systems*, 20, 2007.

701

702 Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. *Density ratio estimation in machine*
 703 *learning*. Cambridge University Press, 2012.

704

705 Jiangming Sun, Lars Carlsson, Ernst Ahlberg, Ulf Norinder, Ola Engkvist, and Hongming Chen. Ap-
 706 plying mondrian cross-conformal prediction to estimate prediction confidence on large imbalanced
 707 bioactivity data sets. *Journal of Chemical Information and Modeling*, 57(7):1591–1598, 2017.

702 Fredrik Svensson, Natalia Aniceto, Ulf Norinder, Isidro Cortés-Ciriano, Ola Spjuth, Lars Carlsson,
 703 and Andreas Bender. Conformal regression for quantitative structure–activity relationship model-
 704 ing—quantifying prediction uncertainty. *Journal of Chemical Information and Modeling*, 58(5):
 705 1132–1140, 2018.

706 Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candes, and Aaditya Ramdas. Conformal
 707 prediction under covariate shift. *Advances in neural information processing systems*, 32, 2019.

708 Oleg Trott and Arthur J Olson. Autodock vina: improving the speed and accuracy of docking with
 709 a new scoring function, efficient optimization, and multithreading. *Journal of computational
 710 chemistry*, 31(2):455–461, 2010.

711 Dennis Ulmer, Chrysoula Zerva, and André F. T. Martins. Non-exchangeable conformal language
 712 generation with nearest neighbors. 2024. URL <https://arxiv.org/abs/2402.00707>.
 713 arXiv:2402.00707.

714 Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. *Algorithmic learning in a random world*,
 715 volume 29. Springer, 2005.

716 Renxiao Wang, Xueliang Fang, Yipin Lu, Chao-Yie Yang, and Shaomeng Wang. The pdbsbind
 717 database: methodologies and updates. *Journal of medicinal chemistry*, 48(12):4111–4119, 2005.

718 Tian Xie, Xiang Fu, Octavian-Eugen Ganea, Regina Barzilay, and Tommi Jaakkola. Crystal diffusion
 719 variational autoencoder for periodic material generation. In *International Conference on Learning
 720 Representations*, 2022.

721 Kevin Yang, Kyle Swanson, Wenhao Jin, Connor Coley, and Philipp Eiden et al. Analyzing learned
 722 molecular representations for property prediction. *Journal of Chemical Information and Modeling*,
 723 59(8):3370–3388, 2019. doi: 10.1021/acs.jcim.9b00237.

724 Jason Yim, Andrew Campbell, Andrew YK Foong, Michael Gastegger, José Jiménez-Luna, Sarah
 725 Lewis, Victor Garcia Satorras, Bastiaan S Veeling, Regina Barzilay, Tommi Jaakkola, et al. Fast
 726 protein backbone generation with se (3) flow matching, 2023.

727 Claudio Zeni, Robert Pinsler, Daniel Zügner, Andrew Fowler, Matthew Horton, et al. Mattergen: A
 728 generative model for inorganic materials design. *arXiv preprint arXiv:2312.03687*, 2023.

729 Jin Zhang, Ulf Norinder, and Fredrik Svensson. Deep learning–based conformal prediction of toxicity.
 730 *Journal of Chemical Information and Modeling*, 61(6):2648–2657, 2021.

731

A ADDITIONAL DISCUSSION

A.1 NON-RANDOMIZED CONFORMAL P-VALUE

732 Let Π be the collection of all permutations of $\{1, \dots, n_0, n+1, \dots, n+k\}$. For any permutation
 733 $\pi \in \Pi$, we denote the score obtained by permuting the observed features by π as

$$734 V(\pi; \mathbf{X}) = V(X_{\pi(1)}, \dots, X_{\pi(n_0)}, X_{\pi(n+1)}, \dots, X_{\pi(n+k)}).$$

735 We additionally denote the identity mapping as π_0 , i.e., $\pi_0(i) = i$ for any i . Finally, we define

$$736 p_k = \frac{\sum_{\pi \in \Pi} \bar{w}(\pi; \mathbf{X}) \mathbf{1}\{V(\pi_0; \mathbf{X}) \leq V(\pi; \mathbf{X})\}}{\sum_{\pi \in \Pi} \bar{w}(\pi; \mathbf{X})}. \quad (6)$$

737 Here, $\bar{w}(\pi; \mathbf{X}) = \prod_{j=1}^k w(X_{\pi(n+j)})$, the joint likelihood ratio after permutation π , where $w(x)$ is
 738 the density ratio. In a nutshell, p_k considers all permutations of the inactive calibration samples
 739 and the test samples, and compute the weighted rank of the score computed with observed data,
 740 $V(\pi_0; \mathbf{X})$, among all scores with permuted data.

741 The validity of the deterministic p-value is established in the following theorem, whose proof is in
 742 Appendix B.3.

743 **Theorem A.1.** *Under the covariate shift assumption, it holds for any fixed $t \in [0, 1]$ that*

$$744 \mathbb{P}(p_k \leq t \mid \max_{1 \leq j \leq k} Y_{n+j} = 0) \leq t.$$

756 A.2 JOINT WEIGHTED EXCHANGEABILITY
757758 In this part, we characterize the exchangeability structure of the inactive calibration data $\{X_i\}_{i \in \mathcal{I}_0}$
759 and the test samples $\{X_{n+j}\}_{j=1}^k$ under the null case

760
$$H_k: \max_{1 \leq j \leq k} Y_{n+j} = 0.$$

761

762 Here for generality, we use the index k to indicate that $\{X_{n+j}\}_{j=1}^k$ might be a subset of the original
763 proposal. The following lemma characterizes the distribution of these data conditional on the labels.
764 Its proof simply applies the Bayes' rule, whose proof is deferred to Appendix B.2 for completeness.
765766 **Lemma A.2.** *Conditional on $\{Z_i\}_{i=1}^n \cup \{Z_{n+j}\}_{j \geq 1}$ as well as $\max_{1 \leq j \leq k} Y_{n+j} = 0$, the features
767 $\{X_i\}_{i \in \mathcal{I}_0}$ are i.i.d. from $P_0 := P_{X|Y=0}$, whereas $\{X_{n+j}\}_{j=1}^k$ are i.i.d. from $Q_0 := Q_{X|Y=0}$.
768 Furthermore, $dQ_0/dP_0(x) = w(x)$, where $w(x) = \frac{dQ}{dP}(x, y) = \frac{dQ_X}{dP_X}(x)$ is the density ratio.*
769770 Lemma A.2 states that, conditional on all labels, on the “null” event that H_k is true, the “marginal”
771 density ratio $w(x)$ suffices to adjust for distribution shifts between the inactive calibration data in \mathcal{I}_0
772 and the newly generated data. We discuss its implications on density ratio estimation below.773 **Remark A.3.** *When $w(\cdot)$ is unknown, Lemma A.2 justifies using a random subset of the labeled data
774 and an independent set of generated samples (no matter whether they are active) to estimate $w(\cdot)$.
775 An alternative approach is to directly estimate the density ratio between $\{X_i\}_{i \in \mathcal{I}_0}$ and $\{X_{n+j}\}_{j=1}^k$.
776 However, this approach leads to quite limited sample sizes when k is small.*777 Lemma A.2 allows to characterize the exchangeability structure among calibration and test points,
778 extending the weighted exchangeability notion (Tibshirani et al., 2019) to multiple test points. It
779 is a consequence of a conditional permutation-style result which extends foundational results in
780 conformal prediction (Vovk et al., 2005; Tibshirani et al., 2019).781 Let $[\mathbf{X}] = [X_1, \dots, X_{n_0}, X_{n+1}, \dots, X_k]$ be the unordered set of the features, and fix any value
782 $[\mathbf{x}] = [x_1, \dots, x_{n_0}, x_{n_0+1}, \dots, x_{n_0+k}]$. Then, given $[\mathbf{X}] = [\mathbf{x}]$, the only randomness that remains
783 lies in which value in \mathbf{x} corresponds to each X_i . Proposition A.4 is a direct implication of Lemma A.2,
784 extending the weighted exchangeability notion in Tibshirani et al. (2019) to multiple test points.785 **Proposition A.4.** *Let Π be the collection of all permutations of $[n_0 + k]$. Then, for any fixed values
786 $x_1, \dots, x_{n_0}, x_{n_0+1}, \dots, x_{n_0+k}$, and any permutation $\pi: [n_0 + k] \rightarrow [n_0 + k]$,*

787
$$\mathbb{P}^{\text{cond}}\left(X_1 = x_{\pi(1)}, \dots, X_{n_0+k} = x_{\pi(n_0+k)} \mid [\mathbf{X}] = [\mathbf{x}]\right) = \frac{\bar{w}(\pi; x_{1:n_0+k})}{\sum_{\pi' \in \Pi} \bar{w}(\pi'; x_{1:n_0+k})},$$

788

789 where we define $\bar{w}(\pi; x_{1:n_0+k}) := \prod_{j=1}^k w(x_{\pi(n_0+j)})$, and $\mathbb{P}^{\text{cond}}(\cdot)$ denotes the distribution after
790 conditioning on $\{Z_i\}_{i=1}^n \cup \{Z_{n+j}\}_{j \geq 1}$ as well as $\max_{1 \leq j \leq k} Y_{n+j} = 0$.791 Proposition A.4 describes the probability of (X_1, \dots, X_{n_0+k}) taking on the value of any permutation
792 of \mathbf{x} conditional on the unordered set of their realized values. Such a conditional permutation-style
793 result is foundational for many results in conformal inference, thereby connecting our p-value to
794 existing conformal p-values. Specifically, when $w(\cdot) \equiv 1$ and $m = 1$, it reduces to the standard
795 exchangeability condition, and the p-value (6) coincides with the classical conformal p-value. In
796 general with $m = 1$, it reduces to the weighted exchangeability studied in (Tibshirani et al., 2019),
797 and our p-value (6) coincides with the weighted conformal p-value (Tibshirani et al., 2019; Jin &
798 Candès, 2023a). We discuss the connections in the next subsection.801 A.3 CONFORMAL P-VALUE FOR ONE TEST POINT
802803 Our p-values build on conformal prediction ideas (Vovk et al., 2005). To provide more contexts, we
804 briefly discuss the widely used conformal p-value for one test point, the key concept in deriving
805 conformal prediction sets. Given any function $s: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ (often referred to as “nonconformity
806 score”) whose training process is independent of the calibration data $\{(X_i, Y_i)\}_{i=1}^n$ and a new test
807 point X_{n+1} , the conformal p-value is defined as

808
$$p(y) = \frac{1 + \sum_{i=1}^n \mathbb{1}\{s(X_i, Y_i) \leq s(X_{n+1}, y)\}}{n+1}. \quad (7)$$

809

When $\{(X_i, Y_i)\}_{i=1}^{n+1}$ are exchangeable (such as i.i.d.) across $i \in [n+1]$, one can show that $p(Y_{n+1})$ is dominated by $\text{Unif}[0, 1]$. This property is key in constructing prediction sets for the unknown Y_{n+1} . Recently, conformal p-values based on exchangeability are used in the context of multiple testing for detecting outliers (Bates et al., 2023) and identifying test instances with desirable label values (Jin & Candès, 2023b). Extensions to covariate shift settings are also studied for individual p-value (Tibshirani et al., 2019) and multiple testing (Jin & Candès, 2023a).

Here we briefly discuss Remark 3.2. Note that when $m = 1$, $n := n_0$ and $w(x) \equiv 1$ in (7), setting

$$V(x_1, \dots, x_{n_0}, x_{n+1}) = s(x_{n+1}, 0),$$

where we use $y = 0$ as a placeholder, our p-value (6) reduces to $p(0)$ in (7).

A.4 CONNECTION TO OUTLIER DETECTION UNDER COVARIATE SHIFT

A more explicit connection is that of our p-value to the outlier detection p-value. Formally, for a test point X_{n+1} independent of calibration ‘‘inliers’’ $\{X_i\}_{i=1}^n \stackrel{\text{i.i.d.}}{\sim} P$, Bates et al. (2023) proposes using the conformal p-value (the signs are flipped to be consistent with the current notations)

$$p = \frac{1 + \sum_{i=1}^n \mathbb{1}\{s(X_i) \leq s(X_{n+1})\}}{n+1}$$

to test the null hypothesis $H_0: X_{n+1} \sim P$, where $s: \mathcal{X} \rightarrow \mathbb{R}$ is a score indicating how likely a value x is an outlier compared with the normal values under P . Under the null hypothesis H_0 , it can be shown that the p-value p is dominated by $\text{Unif}[0, 1]$.

Jin & Candès (2023a) extend this problem to outlier detection under covariate shift, where $H_0: X_{n+1} \sim Q$ for some distribution Q obeying $dQ/dP(x) = w(x)$ for a known density ratio $w(\cdot)$. The corresponding weighted conformal p-value is

$$p_w = \frac{w(X_{n+1}) + \sum_{i=1}^n w(X_i) \mathbb{1}\{s(X_i) \leq s(X_{n+1})\}}{\sum_{i=1}^{n+1} w(X_i)}. \quad (8)$$

In this case, our p-value (6) reduces to (8) by setting

$$V(x_1, \dots, x_{n_0}, x_{n+1}) = s(x_{n+1}).$$

That is, the score function in our setting can be viewed as an ‘‘outlier’’ score for the new test point.

Again for generality, we use the index k (instead of N) to indicate that $\{X_{n+j}\}_{j=1}^k$ might be a subset of the original proposal. Finally, we remark that by Lemma A.2, our null hypotheses $H_k: \max_{1 \leq j \leq k} Y_{n+j} = 0$ implies $X_{n+j} \stackrel{\text{i.i.d.}}{\sim} Q_0$ where $dQ_0/dP_0(x) = w(x)$ and $\{X_i\}_{i \in \mathcal{I}_0} \stackrel{\text{i.i.d.}}{\sim} P_0$. Thus, our p-value p_k can be viewed as testing the global null hypotheses

$$\tilde{H}_k: \{X_{n+j}\}_{j=1}^k \stackrel{\text{i.i.d.}}{\sim} Q_0$$

using calibration ‘‘inliers’’ $\{X_i\}_{i \in \mathcal{I}_0} \stackrel{\text{i.i.d.}}{\sim} P_0$. Therefore, p_k can be viewed as extending p_w in (8) to simultaneous inference for multiple test points.

A.5 CHOICE OF SCORE FUNCTION

Drawing inspirations from classical permutation tests, we suggest several natural choices:

- *Max-pooling*. Since we aim to judge whether *any one* of the test samples is promising enough, a natural choice is $V(x_{1:n_0}, x_{n+1:n+k}) = \max_{1 \leq j \leq k} \hat{\mu}(x_{n+j})$, the maximum predicted test score.
- *Sum-of-prediction*. Inspired by Fisher’s randomization test in causal inference (Fisher & Fisher, 1971), we can compare the average predicted values between test and calibration data. Up to permutations, it is equivalent to setting $V(x_{1:n_0}, x_{n+1:n+k}) = \sum_{j=1}^k \hat{\mu}(x_{n+j})$.
- *Rank-sum statistic*. Inspired by Wilcoxon’s rank-sum test, we compare the sum of ranks of the test points. Up to permutations, we set $V(x_{1:n_0}, x_{n+1:n+k}) = \sum_{j=1}^k R_{n+j}$, where R_{n+j} is the rank of $\hat{\mu}(X_{n+j})$ among $\{\hat{\mu}(X_i)\}_{i=1}^{n_0} \cup \{\hat{\mu}(X_{n+\ell})\}_{\ell=1}^k$ (in an ascending order).

864 • *Likelihood ratio statistic.* Inspired by the likelihood ratio test, we observe that $\hat{\mu}(x)$ can be viewed
 865 as an estimator $\mathbb{P}(Y = 1 | X = x)$, thus $\hat{\mu}(x)/(1 - \hat{\mu}(X_{n+j}))$ serves as an estimator for the
 866 likelihood ratio for testing $Y_{n+j} = 0$ given X_{n+j} . Accordingly, we consider the joint likelihood
 867 ratio for the test points and set $V(x_{1:n_0}, x_{n+1:n+k}) = \sum_{j=1}^k \log(\hat{\mu}(x_{n+j})/(1 - \hat{\mu}(x_{n+j})))$.
 868
 869

870 **A.6 NON-SPLIT VERSION OF CONFHIT**
 871

872 In the main text, we discuss CONFHIT when the conformity score is based on a pre-trained model
 873 $\hat{\mu}: \mathcal{X} \rightarrow \mathbb{R}$, as standard in split conformal prediction (Vovk et al., 2005). This makes our framework
 874 naturally compatible with any pre-trained prediction models in the literature (such as those in our
 875 experiments). However, practitioners may want to involve all the labeled data in both model training
 876 and calibration of p-values. In this part, we present an extension of CONFHIT where the labeled
 877 inactive data are used in both training and calibration, yet still maintaining type-I error control.
 878 Notably, this feature is unique to our problem (since we condition on the labels on the null event).
 879

880 Formally, we let \mathcal{A} be any generic training algorithm that produces a prediction model $\mathcal{A}(Z_1, \dots, Z_N)$
 881 based on labeled input data (Z_1, \dots, Z_N) with $Z_i = (X_i, Y_i)$. We assume that the training process
 882 of \mathcal{A} is permutation invariant to its input data, which is satisfied by many commonly used algorithms.
 883

884 We first consider the certification problem. Recall that the inactive labeled data is $\{(X_i, 0)\}_{i=1}^{n_0}$, the
 885 active labeled data, without loss of generality, is $\{(X_i, 1)\}_{i=n_0+1}^n$, and the test data is $\{X_{n+j}\}_{j=1}^k$.
 886 We consider the imputed data $\tilde{Z}_{n+j} = (X_{n+j}, 0)$ for $1 \leq j \leq k$, and
 887

$$\tilde{\mathcal{D}} = (Z_1, \dots, Z_n, \tilde{Z}_{n+1}, \dots, \tilde{Z}_{n+k}).$$

888 Then, we let $\hat{\mu}(\cdot) = \mathcal{A}(\tilde{\mathcal{D}})$, i.e., the trained model with the imputed data. Finally, we define the
 889 conformity scores V as well as the p-value in the same way as in Section 3.1. These p-values for
 890 each $k \in \mathbb{N}^+$ can then be combined in the same way as in Section 3.2 to address the design problem.
 891

892 It is straightforward to see that our p-value remains valid conditional on $\max_{1 \leq j \leq k} \{Y_{n+j}\} = 0$:
 893 Since the trained model $\hat{\mu}$ is invariant to the permutation of data in $\tilde{\mathcal{D}}$, under any permutation over
 894 $\{1, \dots, n_0, n+1, \dots, n+k\}$, the trained model remains the same, and the weighted exchangeability
 895 between the conformity scores follows exactly the same arguments.
 896

897 **B TECHNICAL PROOF**
 898

899 **B.1 PROOF OF THEOREM 3.4**
 900

901 *Proof of Theorem 3.4.* We define $K_0 = \max\{k \leq N : \max_{1 \leq j \leq k} Y_{n+j} = 0\}$, i.e., the last instance
 902 where all earlier molecules are non-positive. We also let $K_0 = 0$ when $Z_{n+1} = 1$ so that K_0 is
 903 well-defined. Note that K_0 is measurable with respect to $\{Y_{n+j}\}_{j \geq 1}$. Conditional on $\{Y_{n+j}\}_{j \geq 1}$,
 904 K_0 thus becomes deterministic, and by the definition of \hat{N} , we have
 905

$$\begin{aligned} \mathbb{P}\left(\max_{1 \leq j \leq \hat{N}} Y_{n+j} = 0 \mid \{Y_{n+j}\}_{j \geq 1}\right) &= \mathbb{P}\left(\hat{N} > 0, \max_{j \leq \hat{N}} Z_{n+j} = 0 \mid \{Y_{n+j}\}_{j \geq 1}\right) \\ &= \mathbb{P}\left(0 < \hat{N} \leq K_0 \mid \{Z_{n+j}\}_{j \geq 1}\right) \mathbb{1}\{K_0 > 0\}. \end{aligned} \quad (*)$$

910 Since the p-values are monotone, we know $\hat{N} \leq K_0$ is equivalent to $p_{K_0} \leq \alpha$, hence
 911

$$\begin{aligned} (*) &= \mathbb{P}\left(p_{K_0} \leq \alpha \mid \{Z_{n+j}\}_{j \geq 1}\right) \mathbb{1}\{K_0 > 0\} \\ &= \mathbb{P}\left(p_{K_0} \leq \alpha \mid \{Z_{n+j}\}_{j \geq 1}, \max_{j \leq K_0} Z_{n+j} = 0\right) \mathbb{1}\{K_0 > 0\} \leq \alpha. \end{aligned}$$

912 Here the second line uses the fact that $\max_{j \leq K_0} Z_{n+j}$ is measurable with respect to $\{Z_{n+j}\}_{j \geq 1}$, as
 913 well as the validity condition (ii). Finally, by the tower property, we obtain the desired result. \square
 914

918 B.2 PROOF OF LEMMA A.2
919

920 *Proof of Lemma A.2.* Conditional on all calibration and test labels as well as $\max_{1 \leq j \leq k} Y_{n+j} = 0$,
921 it is clear that the features in \mathcal{I}_0 are i.i.d. from $P_0 := P_{X \mid Y=0}$, whereas the features $\{X_{n+j}\}_{j=1}^k$ are
922 i.i.d. from $Q_0 := Q_{X \mid Y=0}$. By the Bayes' rule, the two distributions are related by
923

$$924 \frac{dQ_0}{dP_0}(x) = \frac{Q(Y=0 \mid X=x)}{P(Y=0 \mid X=x)} \frac{dQ_X}{dP_X}(x) = w(x), \\ 925$$

926 where P_X, Q_X are the distribution of X under P and Q , respectively. Here, we used the fact that
927 $Q(Y=0 \mid X=x) = P(Y=0 \mid X=x)$ due to the covariate shift assumption. \square
928

929 B.3 PROOF OF THEOREM A.1
930

931 *Proof of Theorem A.1.* Throughout we condition on $\{Z_i\}_{i \geq 1}$ and $\max_{j \leq k} Z_{n+j} = 0$, and let \mathbb{P}^{cond}
932 denote the distribution conditional on these information. For any fixed vector $\mathbf{x} \in \mathcal{X}^{n_0+k}$,
933 conditional on $[\mathbf{X}] = [\mathbf{x}]$, we let $p_k(\pi; \mathbf{x})$ be the p-value obtained when the data is realized
934 as $(X_1, \dots, X_{n_0}, X_{n+1}, \dots, X_{n+k}) = (x_{\pi(1)}, \dots, x_{\pi(n_0)}, x_{\pi(n+1)}, \dots, x_{\pi(n+k)})$. We assume
935 $V(\pi; \mathbf{X})$'s have no ties almost surely for simplicity, but all the arguments go through in general.
936

937 Under the conditions of Lemma A.2, Proposition A.4 implies that

$$938 \mathbb{P}^{\text{cond}}(p_k = p_k(\pi; \mathbf{x}) \mid [\mathbf{X}] = [\mathbf{x}]) \\ 939 \\ 940 = \mathbb{P}^{\text{cond}}(\mathbf{X} = (x_{\pi(1)}, \dots, x_{\pi(n+k)}) \mid [\mathbf{X}] = [\mathbf{x}]) = \frac{\bar{w}(\pi; \mathbf{x})}{\sum_{\pi' \in \Pi} \bar{w}(\pi'; \mathbf{x})}. \\ 941$$

942 Therefore, noting that by definition
943

$$944 p_k(\pi; \mathbf{x}) = \frac{\sum_{\tilde{\pi} \in \Pi} \bar{w}(\tilde{\pi} \circ \pi; \mathbf{x}) \mathbb{1}\{V(\tilde{\pi} \circ \pi; \mathbf{x}) \geq V(\pi; \mathbf{x})\}}{\sum_{\tilde{\pi} \in \Pi} \bar{w}(\tilde{\pi}; \mathbf{x})} = \frac{\sum_{\tilde{\pi} \in \Pi} \bar{w}(\tilde{\pi}; \mathbf{x}) \mathbb{1}\{V(\tilde{\pi}; \mathbf{x}) \geq V(\pi; \mathbf{x})\}}{\sum_{\tilde{\pi} \in \Pi} \bar{w}(\tilde{\pi}; \mathbf{x})}, \\ 945$$

946 and letting π_t be the permutation with the largest $V(\pi_t; \mathbf{x})$ such that $p_k(\pi_t; \mathbf{x}) \leq t$, we have
947

$$948 \mathbb{P}^{\text{cond}}(p_k \leq t \mid [\mathbf{X}] = [\mathbf{x}]) = \sum_{\pi \in \Pi} \mathbb{1}\{p_k(\pi; \mathbf{x}) \leq t\} \cdot \mathbb{P}^{\text{cond}}(p_k = p_k(\pi; \mathbf{x}) \mid [\mathbf{X}] = [\mathbf{x}]) \\ 949 \\ 950 = \sum_{\pi \in \Pi} \mathbb{1}\{p_k(\pi; \mathbf{x}) \leq t\} \cdot \frac{\bar{w}(\pi; \mathbf{x})}{\sum_{\pi' \in \Pi} \bar{w}(\pi'; \mathbf{x})} \\ 951 \\ 952 = \sum_{\pi \in \Pi} \mathbb{1}\{V(\pi; \mathbf{x}) \geq V(\pi_t; \mathbf{x})\} \cdot \frac{\bar{w}(\pi; \mathbf{x})}{\sum_{\pi' \in \Pi} \bar{w}(\pi'; \mathbf{x})} = p_k(\pi_t; \mathbf{x}) \leq t. \\ 953$$

954 Here the first equality uses the conditional distribution described above, the third equality uses the
955 monotonicity of $p_k(\pi; \mathbf{x})$ in $V(\pi; \mathbf{x})$ and the definition of π_t , and the last equality holds by definition.
956 Marginalizing over $[\mathbf{X}]$ (but still conditional on $\{Z_i\}_{i=1}^{n+k}$ and $\max_{1 \leq j \leq k} Y_{n+j} = 0$) then leads to
957 the desired result. \square
958

959 B.4 PROOF OF THEOREM 3.1
960

961 *Proof of Theorem 3.1.* As usual, throughout, we condition on $\{Y_i\}_{i \geq 1}$ and $\max_{1 \leq j \leq k} Y_{n+j} = 0$,
962 and use \mathbb{P}^{cond} to denote the distribution given these information. We condition on the event that
963 the unordered set $[\mathbf{x}] = [\mathbf{x}]$ for any fixed vector $\mathbf{x} = (x_1, \dots, x_{n_0}, x_{n+1}, \dots, x_{n+k})$. The labels
964 $\{Z_i\}_{i=1}^{n+k}$ are also conditioned on as usual. The randomness then comes from (i) which values in $[\mathbf{x}]$
965 correspond to each data point, and (ii) the randomly sampled permutations.
966

967 Let $\hat{\pi}$ be the unique permutation of $\{1, \dots, n_0, n+1, \dots, n+k\}$ such that $\mathbf{X} = (x_{\hat{\pi}(1)}, \dots, x_{\hat{\pi}(n+k)})$.
968 Then for any permutation $\pi \in \Pi$, we have
969

$$970 V(\pi; \mathbf{X}) = V(\pi \circ \pi^{(0)}; \mathbf{X}) = V(\pi \circ \hat{\pi}; \mathbf{x}),$$

972 and similarly for $\bar{w}(\pi; \mathbf{X}) = \bar{w}(\pi \circ \hat{\pi}; \mathbf{x})$. By Proposition A.4, we know that $\mathbb{P}(\hat{\pi} = \pi \mid [\mathbf{X}] = [\mathbf{x}]) \propto \bar{w}(\pi; \mathbf{x})$, where we recall the definition of $\bar{w}(\pi; \mathbf{x}) = \prod_{j=1}^k w(x_{\pi(n+j)})$. In addition, we
973 have
974
975

$$976 p_k^{\text{rand}} = \frac{\bar{w}(\hat{\pi}; \mathbf{x}) + \sum_{b=1}^B \bar{w}(\hat{\pi} \circ \pi^{(b)}; \mathbf{x}) \mathbb{1}\{V(\hat{\pi}; \mathbf{x}) \leq V(\hat{\pi} \circ \pi^{(b)}; \mathbf{x})\}}{w(\hat{\pi}; \mathbf{x}) + \sum_{b=1}^B w(\hat{\pi} \circ \pi^{(b)}; \mathbf{x})},$$

977 where \mathbf{x} is the fixed vector, and the randomness comes from $\hat{\pi}$ and $\{\pi^{(b)}\}_{b=1}^B$.
978
979

980 For notational simplicity, we denote $\hat{\pi}^{(0)} = \hat{\pi}$, and $\hat{\pi}^{(b)} = \hat{\pi} \circ \pi^{(b)}$ for $b = 1, \dots, B$. We now study
981 the joint distribution of $(\hat{\pi}^{(0)}, \hat{\pi}^{(1)}, \dots, \hat{\pi}^{(B)})$. For any fixed permutations $\pi_0, \dots, \pi_B \in \Pi$, we note
982
983

$$\begin{aligned} 984 \mathbb{P}^{\text{cond}}\left(\hat{\pi}^{(0)} = \pi_0, \hat{\pi}^{(1)} = \pi_1, \dots, \hat{\pi}^{(B)} = \pi_B \mid [\mathbf{X}] = [\mathbf{x}]\right) \\ 985 = \mathbb{P}^{\text{cond}}\left(\hat{\pi} = \pi_0, \pi^{(1)} = \pi_0^{-1} \circ \pi_1, \dots, \hat{\pi}^{(B)} = \pi_0^{-1} \circ \pi_B \mid [\mathbf{X}] = [\mathbf{x}]\right) \\ 986 \\ 987 = \frac{1}{|\Pi|^B} \cdot \mathbb{P}^{\text{cond}}(\hat{\pi} = \pi_0 \mid [\mathbf{X}] = [\mathbf{x}]) \propto \bar{w}(\pi_0; \mathbf{x}), \\ 988 \end{aligned}$$

989 where π_0^{-1} is the inverse permutation of π_0 . Above, the last equality uses the fact that $\pi^{(1)}, \dots, \pi^{(B)}$
990 are i.i.d. uniformly sampled from Π and independent of everything. Therefore, when we further
991 conditional on the unordered set of realized values of the permutations $[\hat{\pi}^{(0)}, \hat{\pi}^{(1)}, \dots, \hat{\pi}^{(B)}] =$
992 $[\pi_0, \dots, \pi_B]$ for any (fixed) value of π_0, \dots, π_B , we know that
993
994

$$\begin{aligned} 995 \mathbb{P}^{\text{cond}}\left((\hat{\pi}^{(0)}, \hat{\pi}^{(1)}, \dots, \hat{\pi}^{(B)}) = (\pi_{\sigma(0)}, \dots, \pi_{\sigma(B)}) \mid [\hat{\pi}^{(0)}, \hat{\pi}^{(1)}, \dots, \hat{\pi}^{(B)}] = [\pi_0, \dots, \pi_B], [\mathbf{X}] = [\mathbf{x}]\right) \\ 996 = \frac{\bar{w}(\pi_{\sigma(0)}; \mathbf{x})}{\sum_{\sigma \in \tilde{\Pi}} \bar{w}(\pi_{\sigma(0)}; \mathbf{x})}, \\ 997 \end{aligned}$$

998 where $\tilde{\Pi}$ is the collection of all permutations of $\{0, 1, \dots, B\}$. This also means that for every
999 $b \in \{0, 1, \dots, B\}$,
1000

$$1001 \mathbb{P}^{\text{cond}}\left(\hat{\pi}^{(0)} = \pi_b \mid [\hat{\pi}^{(0)}, \hat{\pi}^{(1)}, \dots, \hat{\pi}^{(B)}] = [\pi_0, \dots, \pi_B]\right) = \frac{\bar{w}(\pi_b; \mathbf{x})}{\sum_{b'=0}^B \bar{w}(\pi_{b'}; \mathbf{x})}. \quad (9)$$

1002 On the other hand, for any $\sigma \in \tilde{\Pi}$, when $(\hat{\pi}^{(0)}, \hat{\pi}^{(1)}, \dots, \hat{\pi}^{(B)}) = (\pi_{\sigma(0)}, \dots, \pi_{\sigma(B)})$, we have
1003
1004

$$\begin{aligned} 1005 p_k^{\text{cond}} &= \frac{\bar{w}(\pi_{\sigma(0)}; \mathbf{x}) + \sum_{b=1}^B \bar{w}(\pi_{\sigma(b)}; \mathbf{x}) \mathbb{1}\{V(\pi_{\sigma(0)}; \mathbf{x}) \leq V(\pi_{\sigma(b)}; \mathbf{x})\}}{\bar{w}(\pi_{\sigma(0)}; \mathbf{x}) + \sum_{b=1}^B \bar{w}(\pi_{\sigma(b)}; \mathbf{x})} \\ 1006 \\ 1007 &= \frac{\sum_{b=0}^B \bar{w}(\pi_b; \mathbf{x}) \mathbb{1}\{V(\pi_{\sigma(0)}; \mathbf{x}) \leq V(\pi_b; \mathbf{x})\}}{\sum_{b=0}^B \bar{w}(\pi_b; \mathbf{x})}. \quad (10) \\ 1008 \\ 1009 \end{aligned}$$

1010 That is, the value of p_k^{cond} only depends on which value among (π_0, \dots, π_B) the data permutation
1011 $\hat{\pi}^{(0)}$ takes on. Thus,
1012
1013

$$\begin{aligned} 1014 \mathbb{P}^{\text{cond}}\left(p_k^{\text{rand}} \leq t \mid [\hat{\pi}^{(0)}, \hat{\pi}^{(1)}, \dots, \hat{\pi}^{(B)}] = [\pi_0, \dots, \pi_B], [\mathbf{X}] = [\mathbf{x}]\right) \\ 1015 = \sum_{\sigma \in \tilde{\Pi}} \mathbb{P}\left((\hat{\pi}^{(0)}, \hat{\pi}^{(1)}, \dots, \hat{\pi}^{(B)}) = (\pi_{\sigma(0)}, \dots, \pi_{\sigma(B)}) \mid [\hat{\pi}^{(0)}, \hat{\pi}^{(1)}, \dots, \hat{\pi}^{(B)}] = [\pi_0, \dots, \pi_B]\right) \\ 1016 \\ 1017 \times \mathbb{1}\left\{\frac{\sum_{b=0}^B \bar{w}(\pi_b; \mathbf{x}) \mathbb{1}\{V(\pi_{\sigma(0)}; \mathbf{x}) \leq V(\pi_b; \mathbf{x})\}}{\sum_{b=0}^B \bar{w}(\pi_b; \mathbf{x})} \leq t\right\} \\ 1018 \\ 1019 = \sum_{b^*=0}^B \mathbb{P}\left(\hat{\pi}^{(0)} = \pi_{b^*} \mid [\hat{\pi}^{(0)}, \hat{\pi}^{(1)}, \dots, \hat{\pi}^{(B)}] = [\pi_0, \dots, \pi_B]\right) \\ 1020 \\ 1021 \times \mathbb{1}\left\{\frac{\sum_{b=0}^B \bar{w}(\pi_b; \mathbf{x}) \mathbb{1}\{V(\pi_{b^*}; \mathbf{x}) \leq V(\pi_b; \mathbf{x})\}}{\sum_{b=0}^B \bar{w}(\pi_b; \mathbf{x})} \leq t\right\} \\ 1022 \\ 1023 \end{aligned}$$

$$= \sum_{b^*=0}^B \frac{\bar{w}(\pi_{b^*}; \mathbf{x})}{\sum_{b'=0}^B \bar{w}(\pi_{b'}; \mathbf{x})} \mathbb{1} \left\{ \frac{\sum_{b=0}^B \bar{w}(\pi_b; \mathbf{x}) \mathbb{1}\{V(\pi_{b^*}; \mathbf{x}) \leq V(\pi_b; \mathbf{x})\}}{\sum_{b=0}^B \bar{w}(\pi_b; \mathbf{x})} \leq t \right\} \leq t.$$

Here, the first equality follows from (10), the third equality follows from (9), and the last inequality is by definition. Finally, marginalizing over $[\mathbf{X}]$ and $[\hat{\pi}^{(0)}, \dots, \hat{\pi}^{(B)}]$ yields the desired result. \square

B.5 PROOF OF THEOREM 3.5

In this part, we prove the robustness of joint weighted conformal p-value with estimated density ratio. For generality, we use a general index k instead of the total budget N , to indicate that $\{X_{n+j}\}_{j=1}^k$ can be a subset of the original samples (as in Section 3.2). For conceptual simplicity, we present the detailed proof for deterministic p-values (Appendix A.1), and the result for randomized p-values in the main text naturally follows with the same ideas.

Proof of Theorem 3.5. Let $\mathbb{P}^{\text{cond}}(\cdot)$ denote the distribution conditional on all the labels $\{Y_i\}_{i \geq 1}$ and the event $\max_{1 \leq j \leq k} Y_{n+j} = 0$. Following the arguments in the proof of Theorem A.1, for any fixed value \mathbf{x} , we let $p_k(\pi; \mathbf{x})$ be the p-value with the correct weights $w(\cdot)$ obtained when the data is realized as $(X_1, \dots, X_{n_0}, X_{n+1}, \dots, X_{n+k}) = (x_{\pi(1)}, \dots, x_{\pi(n_0)}, x_{\pi(n+1)}, \dots, x_{\pi(n+k)})$, and similarly we define $\hat{p}_k(\pi; \mathbf{x})$. Then we have $\hat{p}_k(V(\pi; \mathbf{x})) = \hat{p}_k(\pi; \mathbf{x})$ where $\hat{p}_k(v)$ is defined in Theorem 3.5, and by definition, we have

$$\sum_{\pi \in \Pi} \mathbb{1}\{\hat{p}_k(\pi; \mathbf{x}) \leq \hat{t}\} \cdot \frac{\hat{w}(\pi; \mathbf{x})}{\sum_{\pi' \in \Pi} \hat{w}(\pi'; \mathbf{x})} = \hat{p}_k(\hat{v}) \leq \hat{t} \leq t.$$

In addition, by the definition of \hat{t} , we have $\hat{p}_k(\pi; \mathbf{x}) \leq \hat{t}$ if and only if $\hat{p}_k(\pi; \mathbf{x}) \leq t$ for any $\pi \in \Pi$. As a result, we have

$$\begin{aligned} \mathbb{P}^{\text{cond}}(\hat{p}_k \leq t \mid [\mathbf{X} = \mathbf{x}]) &= \sum_{\pi \in \Pi} \mathbb{1}\{\hat{p}_k(\pi; \mathbf{x}) \leq t\} \cdot \frac{\bar{w}(\pi; \mathbf{x})}{\sum_{\pi' \in \Pi} \bar{w}(\pi'; \mathbf{x})} \\ &= \sum_{\pi \in \Pi} \mathbb{1}\{\hat{p}_k(\pi; \mathbf{x}) \leq \hat{t}\} \cdot \frac{\bar{w}(\pi; \mathbf{x})}{\sum_{\pi' \in \Pi} \bar{w}(\pi'; \mathbf{x})} \\ &\leq \hat{t} + \sum_{\pi \in \Pi} \mathbb{1}\{\hat{p}_k(\pi; \mathbf{x}) \leq \hat{t}\} \left(\frac{\bar{w}(\pi; \mathbf{x})}{\sum_{\pi' \in \Pi} \bar{w}(\pi'; \mathbf{x})} - \frac{\hat{w}(\pi; \mathbf{x})}{\sum_{\pi' \in \Pi} \hat{w}(\pi'; \mathbf{x})} \right) \\ &\leq \hat{t} + \sum_{\pi \in \Pi} \mathbb{1}\{V(\pi; \mathbf{x}) \geq \hat{v}\} \left(\frac{\bar{w}(\pi; \mathbf{x})}{\sum_{\pi' \in \Pi} \bar{w}(\pi'; \mathbf{x})} - \frac{\hat{w}(\pi; \mathbf{x})}{\sum_{\pi' \in \Pi} \hat{w}(\pi'; \mathbf{x})} \right) \\ &\leq t + \frac{\sum_{\pi \in \Pi} \bar{w}(\pi; \mathbf{x}) \mathbb{1}\{V(\pi; \mathbf{x}) \geq \hat{v}\}}{\sum_{\pi' \in \Pi} \bar{w}(\pi'; \mathbf{x})} - \frac{\sum_{\pi \in \Pi} \hat{w}(\pi; \mathbf{x}) \mathbb{1}\{V(\pi; \mathbf{x}) \geq \hat{v}\}}{\sum_{\pi' \in \Pi} \hat{w}(\pi'; \mathbf{x})} =: t + \hat{\Delta}. \end{aligned}$$

Rearranging the terms, we have

$$\begin{aligned} \hat{\Delta} &= \frac{(\sum_{\pi \in \Pi} \bar{w}(\pi; \mathbf{x}) \mathbb{1}\{V(\pi; \mathbf{x}) \geq \hat{v}\})(\sum_{\pi \in \Pi} \hat{w}(\pi; \mathbf{x}) \mathbb{1}\{V(\pi; \mathbf{x}) < \hat{v}\})}{(\sum_{\pi' \in \Pi} \bar{w}(\pi'; \mathbf{x}))(\sum_{\pi' \in \Pi} \hat{w}(\pi'; \mathbf{x}))} \\ &\quad - \frac{(\sum_{\pi \in \Pi} \bar{w}(\pi; \mathbf{x}) \mathbb{1}\{V(\pi; \mathbf{x}) < \hat{v}\})(\sum_{\pi \in \Pi} \hat{w}(\pi; \mathbf{x}) \mathbb{1}\{V(\pi; \mathbf{x}) \geq \hat{v}\})}{(\sum_{\pi' \in \Pi} \bar{w}(\pi'; \mathbf{x}))(\sum_{\pi' \in \Pi} \hat{w}(\pi'; \mathbf{x}))} \\ &\leq \frac{(\sum_{\pi \in \Pi} [\hat{w}(\pi; \mathbf{x}) + \hat{\delta}^-(\pi; \mathbf{x})] \mathbb{1}\{V(\pi; \mathbf{x}) \geq \hat{v}\})(\sum_{\pi \in \Pi} \hat{w}(\pi; \mathbf{x}) \mathbb{1}\{V(\pi; \mathbf{x}) < \hat{v}\})}{(\sum_{\pi' \in \Pi} \bar{w}(\pi'; \mathbf{x}))(\sum_{\pi' \in \Pi} \hat{w}(\pi'; \mathbf{x}))} \\ &\quad - \frac{(\sum_{\pi \in \Pi} [\hat{w}(\pi; \mathbf{x}) - \hat{\delta}^+(\pi; \mathbf{x})] \mathbb{1}\{V(\pi; \mathbf{x}) < \hat{v}\})(\sum_{\pi \in \Pi} \hat{w}(\pi; \mathbf{x}) \mathbb{1}\{V(\pi; \mathbf{x}) \geq \hat{v}\})}{(\sum_{\pi' \in \Pi} \bar{w}(\pi'; \mathbf{x}))(\sum_{\pi' \in \Pi} \hat{w}(\pi'; \mathbf{x}))} \\ &\leq \frac{(\sum_{\pi \in \Pi} \hat{\delta}^-(\pi; \mathbf{x}) \mathbb{1}\{V(\pi; \mathbf{x}) \geq \hat{v}\})(\sum_{\pi \in \Pi} \hat{w}(\pi; \mathbf{x}) \mathbb{1}\{V(\pi; \mathbf{x}) < \hat{v}\})}{(\sum_{\pi' \in \Pi} \bar{w}(\pi'; \mathbf{x}))(\sum_{\pi' \in \Pi} \hat{w}(\pi'; \mathbf{x}))} \\ &\quad + \frac{(\sum_{\pi \in \Pi} \hat{\delta}^+(\pi; \mathbf{x}) \mathbb{1}\{V(\pi; \mathbf{x}) < \hat{v}\})(\sum_{\pi \in \Pi} \hat{w}(\pi; \mathbf{x}) \mathbb{1}\{V(\pi; \mathbf{x}) \geq \hat{v}\})}{(\sum_{\pi' \in \Pi} \bar{w}(\pi'; \mathbf{x}))(\sum_{\pi' \in \Pi} \hat{w}(\pi'; \mathbf{x}))}, \end{aligned}$$

1080 where we used the non-negativity of the weights and the definition of $\hat{\delta}^\pm(\pi; \mathbf{x})$. Further, noting that
 1081 $\hat{t} = \frac{\sum_{\pi \in \Pi} \hat{w}(\pi; \mathbf{X}) \mathbb{1}\{\hat{v} \leq V(\pi; \mathbf{X})\}}{\sum_{\pi \in \Pi} \hat{w}(\pi; \mathbf{X})}$, we thus have
 1082

$$1083 \hat{\Delta} \leq \frac{(1 - \hat{t}) \cdot (\sum_{\pi \in \Pi} \hat{\delta}^-(\pi; \mathbf{x}) \mathbb{1}\{V(\pi; \mathbf{x}) \geq \hat{v}\}) + \hat{t} \cdot (\sum_{\pi \in \Pi} \hat{\delta}^+(\pi; \mathbf{x}) \mathbb{1}\{V(\pi; \mathbf{x}) < \hat{v}\})}{\sum_{\pi' \in \Pi} \bar{w}(\pi'; \mathbf{x})},$$

1085 which completes our proof for the results of p_k .

1086 Finally, all the arguments still go through (following some arguments in the proof of Theorem 3.1)
 1087 for \hat{p}_k after replacing Π by $\{\pi^{(b)}\}_{b=0}^B$ and additionally conditioning on the unordered set of
 1088 $\{\hat{\pi}, \pi^{(1)}, \dots, \pi^{(B)}\}$, where $\hat{\pi}$ is the permutation such that $\mathbf{X} = (x_{\pi(1)}, \dots, x_{\pi(n+k)})$. We omit
 1089 the details here for brevity. \square

1090

1093 C EXPERIMENTAL SETTING DETAILS

1094

1095 C.1 CONSTRAINED MOLECULE OPTIMIZATION

1096

1097 For training the generator, we used the publicly available training code from the HGRAPH2GRAPH
 1098 ([Jin et al., 2020](#)) repository. We retained the default training/test splits and randomly held out 20% of
 1099 the training set for calibration. The test set contains 800 samples and is also sourced from the same
 1100 repository.

1101 For the SELF-EDIT ([Jiao et al., 2023](#)) baseline, we used the same data splits and obtained the training
 1102 code from its official repository. Both models were trained with their default configurations, without
 1103 modification.

1104 In all cases, we sampled up to 50 candidate molecules per input until a sufficient number of *eligible*
 1105 candidates were obtained. We defined *ineligible* candidates as those that were invalid (e.g., chemically
 1106 invalid), duplicates, or out-of-distribution (OOD) with respect to the training data. We retained only
 1107 those test samples for which at least $N \in \{5, 10\}$ valid candidates could be generated.

1108 The property oracles were sourced from RDKit for QED and from the Therapeutics Data Commons
 1109 library for DRD2.

1110 **Density Estimation and Scoring Function.** We trained a molecular property predictor using
 1111 the Chemprop([Yang et al., 2019](#)) library for both QED and DRD2 tasks. The model used a
 1112 3-layer Message passing Neural Network with a final hidden dimension of 4 for feature extrac-
 1113 tion and was trained for 5 epochs using the default Chemprop trainer settings. We used the
 1114 MulticomponentMessagePassing module without any modification.

1115 For density estimation, we followed the CODRUG approach by extracting penultimate layer features
 1116 and fitting a Gaussian kernel density estimator (KDE) using the `scipy` library with a bandwidth of 1.
 1117 To filter OOD samples, we computed the 95th percentile density on the calibration set and removed
 1118 test-time generated molecules falling below this threshold. Additional samples were drawn until the
 1119 target number N of valid candidates was met.

1120 For sequential p-value computation, we used 2000 Monte Carlo samples per test instance.

1121

1123 C.2 HYPERPARAMETER CHOICES AND DESIGN JUSTIFICATIONS

1124

1125 **Density ratio model and feature selection.** For density estimation, we follow the CODRUG pro-
 1126 cedure, which has been shown to be robust for small-molecule density estimation under covariate shift.
 1127 We use the penultimate-layer representation of the property predictor, which yields a 4-dimensional
 1128 feature vector that is expressive yet low-dimensional enough to enable stable kernel density es-
 1129 timation. For bandwidth selection, we adopt the same strategy as CODRUG: we perform a 5-fold
 1130 cross-validation over bandwidths $\{0.1, 1, 10\}$, compute the KDE likelihood on each held-out split,
 1131 and choose the bandwidth with the highest average likelihood. This avoids post-hoc tuning and
 1132 ensures that the KDE matches the calibration distribution as closely as possible.

1133

Predictive model selection. Conformal validity does not depend on the complexity of the predictive
 1134 model, but the power of the method improves when better predictors and more discriminative score

1134 functions are used. To avoid unnecessary tuning, we select models with strong reported performance
 1135 and publicly available implementations. For the CMO tasks (QED/DRD2), we train a standard
 1136 Chemprop MPNN. For the SBDD task, we use the default EGNN predictor from the TARGETDIFF
 1137 implementation. These choices are simple, stable, and sufficient for producing informative conformity
 1138 scores.

1139 **Choice of test statistic.** Since the procedure operates on a *set* of generated molecules, the choice of
 1140 score statistic affects the power but not the validity. We use the **maximum** score across the set, which
 1141 is a natural heuristic in this context: if at least one strong candidate is present, the max-score captures
 1142 this evidence immediately, whereas statistics such as the mean or min dilute the signal with weaker
 1143 candidates. Empirically, we found the max statistic to produce higher power and lower rejection rates
 1144 than alternatives.

1145 **Number of permutations (B).** We set $B = 2000$ Monte Carlo permutations, which we found
 1146 sufficient for stable performance while maintaining modest computational cost. Running the full
 1147 CONFHIT procedure with $B = 2000$ takes only **4 minutes for 800 samples** (see Fig. 6). We also
 1148 evaluated $B \in \{500, 1000, 2000, 5000\}$ and observed negligible variance in empirical coverage
 1149 across these values, confirming that the Monte Carlo approximation converges quickly. Runtime
 1150 scales linearly with B , and 2000 provides an effective balance between statistical stability and
 1151 efficiency.

C.3 STRUCTURE-BASED DRUG DISCOVERY

1173 For this task, we used a pre-trained generative model checkpoint obtained from the official TARGET-
 1174 DIFF (Guan et al., 2023) repository, along with their corresponding test set.

1175 To estimate scores and extract features, we trained an EGNN-based model using their provided
 1176 codebase. We modified the final hidden layer to output an 8-dimensional embedding. For validation
 1177 data, we used protein-ligand complexes from the CrossDocked2020 (Francoeur et al., 2020a) dataset,
 1178 excluding all training and test set entries to avoid data leakage.

1179 Density estimation was performed as above, using Gaussian KDE with a bandwidth of 1.

C.4 COMPUTE RESOURCES

1183 All experiments were conducted on a single NVIDIA A100 GPU. The approximate runtime per
 1184 component is as follows:

- 1186 • Property predictor training (QED/DRD2): 20 minutes
- 1187 • HGRAPH2GRAPH generator training: 10 hours

- 1188 • SELF-EDIT training: 48 hours
- 1189
- 1190 • Density estimator training for SBDD: 24 hours
- 1191
- 1192 • Inference using TARGETDIFF: 30 minutes
- 1193
- 1194 • **CONFHIT** procedure per test batch: 30 minutes (over 800 samples; ≈ 2.25 seconds/sample)
 - 1195 – Candidate generation (CMO task): 14 minutes (≈ 1.05 seconds/sample)
 - 1196 – Predictor feature extraction: 6 minutes (≈ 0.45 seconds/sample)
 - 1197 – KDE computation: 3 minutes (≈ 0.23 seconds/sample)
 - 1198 – Running the conformal procedure: 4 minutes (≈ 0.30 seconds/sample)
- 1199

1200 C.5 CODE AND DATA AVAILABILITY

1201 We include with supplementary material the following to ensure reproducibility:

- 1203 • Model checkpoints for QED and DRD2 property and density estimators.
- 1204
- 1205 • Extracted features and CrossDocked identifiers used for calibration in SBDD.
- 1206
- 1207 • Calibration and test splits for all tasks.
- 1208
- 1209 • Scripts to generate candidate molecule sets and compute all reported metrics.
- 1210
- 1211 • Configuration files for reproducing results across datasets and models.
- 1212 • Installation instructions.

1213 Due to limitations in the supplementary data size, we omit the generative models and SBDD scoring
1214 model. We will include them in a public repository upon acceptance.

1216 D WORKING UNDER AN OVERALL BUDGET

1218 In Section 4.6, we discussed the application of CONFHIT in providing practically useful heuristics
1219 while constructing predicting sets when a fixed total budget B is available. The detailed algorithm is
1220 provided in Algorithm 2.

1222 Algorithm 2 Working under an overall budget

1224 **Input:** Calibration data $\{X_i\}_{i=1}^{n_0}$ with $Y_i = 0$, test batches $\{X^{(t)}\}_{t=1}^T$ of size N , conformity score V , weight
1225 function \hat{w} , grid of confidence levels $\mathcal{A} \subset (0, 1)$, total budget $B \in \mathbb{N}^+$.

- 1226 1: Initialize $\hat{P}_{\max} \leftarrow 0$, $\mathcal{C}^* \leftarrow \emptyset$, $\alpha^* \leftarrow 0$.
- 1227 2: **for** each $\alpha \in \mathcal{A}$ **do**
- 1228 3: For each test batch $t = 1, \dots, T$, run Algorithm 1 with level α to obtain pruned prediction sets $\mathcal{C}_t^{(\alpha)}$.
- 1229 4: Compute total cost $C = \sum_{t=1}^T |\mathcal{C}_t^{(\alpha)}|$.
- 1230 5: Record number of empty sets $E = |\{t : \mathcal{C}_t^{(\alpha)} = \emptyset\}|$.
- 1231 6: **if** $C > B$ **then**
- 1232 7: Sort $\mathcal{C}_t^{(\alpha)}$ in descending order of size.
- 1233 8: Iteratively delete sets until total cost $C \leq B$.
- 1234 9: Let D be the number of deleted sets.
- 1235 10: **else**
- 1236 11: Set $D \leftarrow 0$.
- 1237 12: **end if**
- 1238 13: Estimate positives as $\hat{P}(\alpha) = (1 - \alpha) - E - D$.
- 1239 14: **if** $\hat{P}(\alpha) > \hat{P}_{\max}$ **then**
- 1240 15: Update $\hat{P}_{\max} \leftarrow \hat{P}(\alpha)$, $\mathcal{C}^* \leftarrow \{\mathcal{C}_t^{(\alpha)}\}$, $\alpha^* \leftarrow \alpha$.
- 1241 16: **end if**
- 17: **end for**

Output: Best estimated positives \hat{P}_{\max} with corresponding sets \mathcal{C}^* at significance level α^* .

1242
1243

E ADDITIONAL EXPERIMENTS

1244
1245

E.1 DETAILED RESULTS

1246
1247

In this section, we provide error bars for the plots in Sections 4.3 and 4.4. The tables include Error Rate, fraction certified, empty set fraction and mean set size depicted in 4.3 and 4.4 along with standard deviation computed over 5 random runs, across different methods. Further, we report metrics on the Constrained Molecule Optimization (CMO) task, using the Qualitative Estimate of Drug-Likeness (QED) property with success ($Y = 1$) if $\text{QED}(x) > 0.9$, following [Jin et al. \(2020\)](#).

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296 E.1.1 CERTIFICATION RESULTS
12971298 Table 1: DRD2_HGRAPH Certification Results
1299

N	α	Error Rate (%)	Certified Fraction (%)
3	0.1	6.5 ± 1.1	22.6 ± 2.4
3	0.2	9.6 ± 1.4	33.2 ± 4.1
3	0.3	18.5 ± 1.9	39.8 ± 4.7
3	0.4	26.8 ± 2.1	47.6 ± 3.5
3	0.5	26.0 ± 2.0	57.5 ± 6.8
5	0.1	7.3 ± 2.0	43.0 ± 4.3
5	0.2	9.3 ± 1.2	53.0 ± 4.6
5	0.3	12.2 ± 3.2	68.8 ± 6.2
5	0.4	21.8 ± 2.6	65.1 ± 4.6
5	0.5	21.6 ± 2.2	70.2 ± 6.1
7	0.1	5.5 ± 0.6	51.5 ± 5.1
7	0.2	8.1 ± 1.2	60.6 ± 2.5
7	0.3	11.8 ± 3.1	66.2 ± 5.2
7	0.4	19.7 ± 3.2	70.4 ± 3.6
7	0.5	20.6 ± 2.2	74.5 ± 6.2

1317 Table 2: DRD2_SELFEDIT Certification Results
1318

N	α	Error Rate (%)	Certified Fraction (%)
3	0.1	7.1 ± 0.4	19.1 ± 2.1
3	0.2	8.7 ± 1.7	21.5 ± 3.1
3	0.3	19.8 ± 1.2	28.2 ± 3.2
3	0.4	19.8 ± 1.6	39.3 ± 4.1
3	0.5	28.3 ± 3.3	42.5 ± 5.2
5	0.1	7.0 ± 1.0	22.8 ± 3.1
5	0.2	7.4 ± 1.3	25.9 ± 2.5
5	0.3	16.4 ± 2.2	30.2 ± 4.1
5	0.4	17.4 ± 2.6	41.7 ± 4.6
5	0.5	26.9 ± 3.2	45.7 ± 5.1
7	0.1	6.3 ± 0.9	29.0 ± 2.2
7	0.2	9.8 ± 1.6	38.3 ± 3.1
7	0.3	16.8 ± 2.1	42.3 ± 4.7
7	0.4	17.1 ± 2.2	47.6 ± 4.9
7	0.5	26.4 ± 4.2	51.6 ± 5.6

1350

1351

1352

Table 3: QED_HGRAPH Certification Results

<i>N</i>	α	Error Rate (%)	Certified Fraction (%)
3	0.1	7.8 ± 1.2	49.3 ± 2.0
	0.2	13.4 ± 1.6	47.8 ± 1.8
	0.3	16.3 ± 2.1	54.0 ± 1.0
	0.4	19.4 ± 2.7	56.8 ± 1.0
	0.5	21.8 ± 3.2	60.8 ± 3.4
7	0.1	7.9 ± 0.5	52.2 ± 3.2
	0.2	14.6 ± 1.6	56.5 ± 2.0
	0.3	17.9 ± 2.1	56.7 ± 2.2
	0.4	20.3 ± 1.2	65.5 ± 3.1
	0.5	22.5 ± 3.4	72.0 ± 2.7

1365

1366

1367

Table 4: QED_SELFEDIT Certification Results

<i>N</i>	α	Error Rate (%)	Certified Fraction (%)
3	0.1	7.6 ± 1.2	42.6 ± 6.1
	0.2	10.4 ± 0.6	54.6 ± 3.9
	0.3	14.2 ± 1.3	52.2 ± 2.7
	0.4	15.7 ± 2.1	57.0 ± 3.6
	0.5	17.2 ± 3.7	62.7 ± 4.1
7	0.1	11.9 ± 1.4	52.2 ± 3.5
	0.2	21.6 ± 2.1	62.3 ± 4.0
	0.3	29.7 ± 2.5	61.2 ± 2.9
	0.4	30.8 ± 1.2	77.9 ± 4.3
	0.5	32.9 ± 3.2	78.4 ± 1.6

1381

1382

1383

1384

Table 5: TARGETDIFF Certification Results

<i>N</i>	α	Error Rate (%)	Certified Fraction (%)
5	0.1	8.4 ± 2.6	42.9 ± 2.5
	0.2	10.8 ± 3.0	52.1 ± 2.9
	0.3	11.4 ± 2.3	57.7 ± 3.8
	0.4	14.9 ± 4.4	64.3 ± 3.6
	0.5	17.1 ± 3.0	68.5 ± 3.4
10	0.1	5.3 ± 2.5	57.8 ± 4.3
	0.2	8.2 ± 3.3	63.9 ± 3.6
	0.3	9.3 ± 2.0	68.8 ± 2.6
	0.4	11.5 ± 2.7	72.4 ± 4.0
	0.5	12.8 ± 3.9	76.6 ± 3.7
15	0.1	10.1 ± 1.1	69.5 ± 3.3
	0.2	7.6 ± 1.2	70.0 ± 4.6
	0.3	8.7 ± 1.5	73.1 ± 5.1
	0.4	9.8 ± 2.0	74.5 ± 2.5
	0.5	12.0 ± 1.8	79.7 ± 2.3

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

Table 6: MOLCRAFT Certification Results

N	α	Error Rate (%)	Certified Fraction (%)
5	0.1	7.0 ± 1.2	40.1 ± 2.7
5	0.2	11.0 ± 1.8	47.9 ± 3.5
5	0.3	12.7 ± 1.0	55.5 ± 4.9
5	0.4	15.1 ± 1.2	63.1 ± 4.9
5	0.5	16.6 ± 1.2	68.1 ± 3.8
10	0.1	5.2 ± 1.6	58.3 ± 5.8
10	0.2	6.7 ± 1.1	64.2 ± 5.8
10	0.3	7.5 ± 1.4	67.6 ± 4.9
10	0.4	9.0 ± 1.6	71.1 ± 7.1
10	0.5	9.0 ± 2.9	73.5 ± 7.5
15	0.1	7.3 ± 1.0	55.4 ± 4.1
15	0.2	9.1 ± 2.0	59.8 ± 5.8
15	0.3	9.1 ± 3.6	68.7 ± 5.9
15	0.4	9.5 ± 3.0	69.1 ± 7.2
15	0.5	11.5 ± 4.9	76.2 ± 7.8

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

Table 7: DECOMPDIFF Certification Results

N	α	Error Rate (%)	Certified Fraction (%)
5	0.1	3.2 ± 2.2	56.6 ± 1.4
5	0.2	3.1 ± 1.9	63.5 ± 1.2
5	0.3	4.7 ± 2.0	69.0 ± 2.4
5	0.4	5.2 ± 2.4	73.4 ± 0.8
5	0.5	5.4 ± 2.6	77.0 ± 1.2
10	0.1	2.1 ± 1.6	74.4 ± 4.0
10	0.2	3.1 ± 2.5	76.4 ± 3.5
10	0.3	5.2 ± 3.1	79.6 ± 3.4
10	0.4	6.2 ± 2.8	82.7 ± 3.6
10	0.5	5.9 ± 3.0	82.7 ± 2.1
15	0.1	2.6 ± 3.2	83.2 ± 5.7
15	0.2	2.5 ± 3.2	83.9 ± 5.0
15	0.3	1.6 ± 2.7	85.8 ± 5.3
15	0.4	1.6 ± 2.8	85.1 ± 6.2
15	0.5	2.5 ± 3.1	87.1 ± 5.2

1454

1455

1456

1457

1458 E.1.2 DESIGN RESULTS
14591460 DRD2_HGRAPH
14611462 Table 8: DRD2_HGRAPH Design Results
1463

N	α	Error Rate (%)	Mean Set Size	Empty Set (%)
3	0.1	4.2 ± 0.3	1.9 ± 0.0	68.8 ± 1.3
	0.2	6.6 ± 0.5	1.8 ± 0.0	46.1 ± 1.3
	0.3	9.1 ± 0.6	1.8 ± 0.0	25.3 ± 1.8
	0.4	11.0 ± 0.8	1.6 ± 0.0	15.0 ± 1.3
	0.5	13.0 ± 0.8	1.5 ± 0.0	9.9 ± 0.8
5	0.1	5.4 ± 1.6	2.4 ± 0.7	47.9 ± 2.6
	0.2	7.9 ± 2.5	2.1 ± 0.7	28.7 ± 2.8
	0.3	10.4 ± 3.3	1.8 ± 0.6	15.8 ± 2.1
	0.4	12.4 ± 4.0	1.6 ± 0.5	11.3 ± 1.9
	0.5	13.9 ± 4.4	1.4 ± 0.5	8.8 ± 1.5
7	0.1	3.6 ± 0.8	3.1 ± 0.1	53.0 ± 1.2
	0.2	6.3 ± 0.7	2.6 ± 0.1	30.0 ± 1.4
	0.3	9.0 ± 1.0	2.1 ± 0.0	15.8 ± 0.7
	0.4	11.2 ± 1.1	1.8 ± 0.0	9.2 ± 0.5
	0.5	12.9 ± 1.2	1.7 ± 0.0	5.9 ± 0.6

1483 DRD2_SELFEDIT
14841485 Table 9: DRD2_SELFEDIT Design Results
1486

N	α	Error Rate (%)	Mean Set Size	Empty Set (%)
3	0.1	9.8 ± 1.3	2.0 ± 0.0	64.5 ± 0.5
	0.2	14.6 ± 2.2	1.9 ± 0.1	42.3 ± 0.2
	0.3	19.6 ± 3.2	1.7 ± 0.0	24.0 ± 0.9
	0.4	22.5 ± 3.2	1.6 ± 0.0	12.3 ± 0.1
	0.5	24.5 ± 4.0	1.5 ± 0.0	7.3 ± 0.6
5	0.1	9.5 ± 1.2	2.6 ± 0.1	53.0 ± 1.5
	0.2	14.0 ± 2.4	2.3 ± 0.1	33.3 ± 2.6
	0.3	20.7 ± 2.1	2.0 ± 0.0	14.9 ± 0.6
	0.4	25.8 ± 2.6	1.7 ± 0.1	8.1 ± 1.1
	0.5	28.8 ± 3.1	1.6 ± 0.0	4.2 ± 0.4
7	0.1	11.8 ± 1.3	3.1 ± 0.1	46.6 ± 0.8
	0.2	19.5 ± 3.3	2.6 ± 0.0	22.9 ± 3.5
	0.3	24.8 ± 6.3	2.1 ± 0.1	12.2 ± 1.9
	0.4	28.6 ± 7.1	1.8 ± 0.1	7.4 ± 1.7
	0.5	31.6 ± 6.3	1.7 ± 0.0	4.0 ± 0.6

1508 QED_HGRAPH
1509
1510
1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

QED_SELFEDIT

1537

1538

1539

1540

1541

1542

1543

1544

Table 10: QED_HGRAPH Design Results

N	α	Error Rate (%)	Mean Set Size	Empty Set (%)
3	0.1	10.1 ± 0.7	1.2 ± 0.0	70.7 ± 1.9
	0.2	17.0 ± 0.6	1.3 ± 0.0	45.4 ± 1.6
	0.3	21.2 ± 1.4	1.3 ± 0.1	26.8 ± 0.9
	0.4	25.2 ± 1.5	1.3 ± 0.0	13.2 ± 1.2
	0.5	28.2 ± 1.7	1.2 ± 0.0	6.9 ± 0.6
	5	12.2 ± 0.7	2.6 ± 0.0	27.2 ± 0.2
5	0.2	18.8 ± 1.1	2.3 ± 0.1	7.1 ± 0.2
	0.3	24.4 ± 1.2	1.8 ± 0.0	0.0 ± 0.0
	0.4	27.7 ± 1.3	1.6 ± 0.1	0.0 ± 0.0
	0.5	29.9 ± 1.0	1.5 ± 0.1	0.0 ± 0.0
	7	10.4 ± 1.2	2.5 ± 0.1	56.6 ± 0.8
	0.2	17.5 ± 1.2	2.0 ± 0.0	31.7 ± 1.8
7	0.3	22.0 ± 1.4	1.7 ± 0.1	18.9 ± 1.6
	0.4	26.1 ± 1.5	1.4 ± 0.0	9.4 ± 1.5
	0.5	29.1 ± 1.6	1.3 ± 0.0	4.9 ± 1.1

TARGETDIFF

1566

Table 12: TARGETDIFF Design Results

1567

1568

N	α	Error Rate (%)	Mean Set Size	Empty Set (%)
5	0.1	10.0 ± 1.5	2.5 ± 0.1	37.9 ± 2.6
	0.2	17.4 ± 1.5	2.2 ± 0.1	21.4 ± 3.1
	0.3	27.2 ± 3.5	2.0 ± 0.1	8.6 ± 0.0
	0.4	34.2 ± 2.9	1.7 ± 0.1	2.1 ± 1.4
	0.5	37.0 ± 1.2	1.6 ± 0.0	0.4 ± 0.7
10	0.1	9.4 ± 2.7	3.7 ± 0.1	21.9 ± 8.0
	0.2	22.5 ± 3.5	2.9 ± 0.0	6.2 ± 3.5
	0.3	29.4 ± 0.9	2.3 ± 0.0	1.2 ± 0.0
	0.4	35.6 ± 0.9	1.8 ± 0.0	0.0 ± 0.0
	0.5	37.5 ± 3.5	1.6 ± 0.1	0.0 ± 0.0
15	0.1	11.2 ± 1.8	4.7 ± 0.1	15.0 ± 5.3
	0.2	21.9 ± 2.7	3.5 ± 0.0	3.8 ± 1.8
	0.3	31.9 ± 0.9	2.4 ± 0.0	1.2 ± 1.8
	0.4	36.9 ± 2.7	1.8 ± 0.0	0.6 ± 0.9
	0.5	38.1 ± 2.7	1.6 ± 0.1	0.0 ± 0.0

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

MOLCRAFT

1591

1592

1593

1594

1595

1596

Table 13: MOLCRAFT Design Results

1597

N	α	Error Rate (%)	Mean Set Size	Empty Set (%)
5	0.1	9.8 ± 1.2	2.6 ± 0.1	40.7 ± 1.9
	0.2	18.7 ± 1.4	2.3 ± 0.2	20.7 ± 5.6
	0.3	26.0 ± 3.1	2.0 ± 0.1	7.7 ± 0.7
	0.4	29.3 ± 5.3	1.7 ± 0.0	2.4 ± 0.0
	0.5	32.9 ± 4.2	1.6 ± 0.0	1.2 ± 1.2
10	0.1	9.9 ± 1.3	3.6 ± 0.3	22.2 ± 3.3
	0.2	18.2 ± 2.0	3.0 ± 0.2	9.9 ± 2.1
	0.3	25.1 ± 0.7	2.2 ± 0.1	2.9 ± 1.4
	0.4	28.0 ± 1.4	1.8 ± 0.1	2.1 ± 0.7
	0.5	29.6 ± 2.5	1.7 ± 0.1	0.4 ± 0.7
15	0.1	11.1 ± 0.0	4.3 ± 0.0	16.0 ± 0.0
	0.2	19.8 ± 0.0	3.2 ± 0.0	1.2 ± 0.0
	0.3	23.5 ± 0.0	2.2 ± 0.0	1.2 ± 0.0
	0.4	27.2 ± 0.0	1.8 ± 0.0	1.2 ± 0.0
	0.5	28.4 ± 0.0	1.6 ± 0.0	1.2 ± 0.0

1614

1615

1616

1617

1618

1619

DECOMPDIFF

Table 14: DECOMPDIFF Design Results

<i>N</i>	α	Error Rate (%)	Mean Set Size	Empty Set (%)
5	0.1	9.6 ± 2.6	2.6 ± 0.3	25.0 ± 2.2
5	0.2	16.7 ± 4.7	2.3 ± 0.2	11.7 ± 0.7
5	0.3	24.2 ± 0.7	2.0 ± 0.0	2.5 ± 2.2
5	0.4	26.7 ± 0.7	1.7 ± 0.1	1.2 ± 0.0
5	0.5	28.8 ± 1.2	1.6 ± 0.1	0.8 ± 0.7
10	0.1	11.2 ± 0.5	3.4 ± 0.1	13.5 ± 0.9
10	0.2	19.2 ± 0.1	2.7 ± 0.0	2.6 ± 0.0
10	0.3	24.4 ± 3.6	2.1 ± 0.1	0.0 ± 0.0
10	0.4	26.3 ± 0.9	1.7 ± 0.1	0.0 ± 0.0
10	0.5	27.6 ± 0.9	1.6 ± 0.1	0.0 ± 0.0
15	0.1	9.6 ± 0.9	4.3 ± 0.4	8.3 ± 2.7
15	0.2	19.2 ± 3.6	2.9 ± 0.1	1.3 ± 1.8
15	0.3	23.7 ± 4.5	2.3 ± 0.1	0.0 ± 0.0
15	0.4	26.9 ± 3.6	1.8 ± 0.0	0.0 ± 0.0
15	0.5	27.6 ± 2.7	1.7 ± 0.1	0.0 ± 0.0

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

1674
1675

E.2 COMPARING DIFFERENT TEST STATISTICS

1676
1677
1678

In this section, we include additional results for Section 4.5 comparing different test statistics. While the power varies based on the choice of the test statistic, CONFHIT attains valid coverage across statistics.

1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
16891690
1691
1692
1693

Figure 7: Comparison of score statistics on DRD2 (HGRAPH2GRAPH, N=3). Left: rejection (power) at $\alpha = 0.1, 0.3$. Right: error vs. α

1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Figure 8: Comparison of score statistics on DRD2 (HGRAPH2GRAPH, N=5). Left: rejection (power) at $\alpha = 0.1, 0.3$. Right: error vs. α

Figure 9: Comparison of score statistics on DRD2 (HGRAPH2GRAPH, N=7). Left: rejection (power) at $\alpha = 0.1, 0.3$. Right: error vs. α

1728

1729

1730

1731

1732

1733

1734

1735

1746 Figure 10: Comparison of score statistics on SBDD (TARGETDIFF, N=5). Left: rejection (power) at $\alpha = 0.1, 0.3$.
 1747 Right: error vs. α

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1773 Figure 11: Comparison of score statistics on SBDD (TARGETDIFF, N=10). Left: rejection (power) at $\alpha = 0.1, 0.3$. Right: error vs. α

1774

1775

1776

1777

1778

1779

1780

1781

1782 E.3 P-VALUES
1783

1784 In this section, we show the validity of conformal p-value plots described in section 4.5, across tasks
1785 and datasets. In each panel, the distribution remains close to the uniform (dashed line; see also the
1786 reported KL divergence from uniformity), confirming approximate validity of our p-values (albeit
1787 slightly conservative).

1796 Figure 12: Density of conformal nested p-values for QED using SELFEDIT at set sizes $k = 3, 5, 7$.
1797

1805 Figure 13: Density of conformal nested p-values for DRD2 using HGRAPH at set sizes $k = 3, 5, 7$.
1806

1815 Figure 14: Density of conformal nested p-values for SBDD using TARGETDIFF at set sizes $k = 1, 5, 10$.
1816

1818 F EFFECT OF PREDICTOR QUALITY
1819

1820 In this section, we investigate how the accuracy of the predictor affects the performance of CONFHIT.
1821 We consider three scenarios:

1. Normal predictor where the calibrated classifier outputs $p = \Pr(\text{active} \mid x)$.
2. Noisy predictor obtained by adding uniform Gaussian noise, giving

$$\tilde{p} = \frac{p + \mathcal{N}(0, 1)}{2}.$$

3. Inverse predictor obtained by replacing p with $1 - p$.

1830 Figure 15 illustrates how CONFHIT behaves under these perturbation settings. Even when the
1831 predictor is corrupted or inverted, the method maintains valid error control, with empirical error rates
1832 remaining below the target line $y = 100\alpha$. This demonstrates that the statistical validity of CONFHIT
1833 does not rely on predictor accuracy.

1834 Predictor quality affects only the power. As the predictor becomes less informative, the conformal sets
1835 become less efficient, which leads to a higher frequency of empty sets or larger sets depending on the
task. Despite this expected degradation, the method consistently preserves its coverage guarantees.

Figure 15: Effect of predictor quality on CONFHit’s error rate on the CMO task. In both DRD2 (top) and QED (bottom) using the Hgraph model, noisy and inverse predictors exhibit reduced power but maintain valid error control across all values of α .

Figure 16: Results for heuristic baseline with predicted probabilities (while varying predictor quality), showing rejection rates and error rates for QED with $N = 5$ using the Hgraph model. As predictor quality deteriorates, the performance quickly drops with severe violation of the error control.

G ADDITIONAL BASELINES

G.1 HEURISTIC BASELINE

We evaluate a simple confidence based heuristic. Given a predicted probability \hat{p} of success, the heuristic selects the smallest n such that $(1 - \hat{p})^n \leq \alpha$. This provides a natural baseline that depends only on classifier scores without any uncertainty calibration.

The results in Figures 16 and show that this heuristic does not reliably control the error rate. When the predictor is accurate, the error rates sometimes follow the target line, but under noisy or inverted predictors the error increases sharply and often surpasses the desired level. The degradation is visible across both DRD2 and QED: the error curves drift upward as the predictor worsens, and the rejection rates fluctuate significantly, indicating unstable behavior.

In contrast, ConfHit remains below the target line in all cases. The predictor quality affects only the power, whereas the heuristic baseline loses error control as soon as the predictor becomes unreliable.

Figure 17: Conformal LM baseline for molecule optimization. Error rate (left) and empty-set percentage (right) versus α for QED and DRD2 at $N = 5$ using the Hgraph model. The method breaks coverage and underperforms CONFHIT despite relying on an oracle that is unavailable in real-world settings.

The empirical curves highlight that the heuristic transitions from reasonable to poor performance, while ConfHit maintains stable guarantees across all predictor settings.

G.2 COMPARISON TO ORACLE BASED METHODS

We adapt an oracle-based CLM (Quach et al., 2023) baseline as depicted in Algorithm 3 to use the *sum* of prediction scores as the total confidence of a candidate set, without performing any density correction or filtering of low-quality samples. As shown in Figure 17, this baseline fails to maintain valid guarantees: the empirical error rate systematically exceeds the target level, and the empty-set percentages deviate sharply from expected behavior across all α . Despite relying on an idealized oracle, this approach also exhibits *lower power* than CONFHIT, whereas CONFHIT attains both higher detection power *and* valid coverage due to its calibrated scoring rule and density-aware correction. Finally, we emphasize that this baseline is not directly comparable to CONFHIT, since it assumes access to a perfect oracle predictor—an unrealistic requirement in practical molecular design workflows.

Algorithm 3 Conformal Sampling for Constrained Molecular Optimization

Input: Input molecule x ; generator $p_\theta(\cdot | x)$; scoring function \mathcal{F} ; calibrated threshold λ ; sampling budget k_{\max}
Output: Candidate set C_λ certified to contain at least one improved molecule

- 1: $C_\lambda \leftarrow \emptyset$ {Initialize output set}
- 2: **for** $k = 1$ to k_{\max} **do**
- 3: Sample $y_k \sim p_\theta(\cdot | x)$ {Generate candidate}
- 4: $C_\lambda \leftarrow C_\lambda \cup \{y_k\}$ {Add to set}
- 5: **if** $\mathcal{F}(x, C_\lambda) \geq \lambda$ **then**
- 6: **break** {Set certified}
- 7: **end if**
- 8: **end for**
- 9: **return** C_λ

H ROBUSTNESS AND DIAGNOSTICS FOR DENSITY RATIO ESTIMATION

H.1 SENSITIVITY ANALYSIS

We study the effect of misspecifying the likelihood ratios by applying power transformations w^γ across a range of exponents γ . Figure 18 shows how such transformations affect the KL divergence of the p-values of the negative samples, together with the resulting error rate and rejection (empty set) rate. In practice, such results can be used to judge whether the analysis is robust enough. Here, we

Figure 18: Effect of power transformations w^γ of likelihood-ratio weights on QED and DRD2 using the HGraph2Graph model at $N = 5$ at different α . Across all transformations, CONFHIT maintains a graceful degradation of error control with major changes in terms of the rejection rate.

additionally evaluate the error control performance under such perturbation to also show the robust performance of CONFHIT.

The KL divergence here measures the deviation of the empirical p-value distribution from the Uniform(0,1) distribution. Smaller values indicate that the transformed likelihood ratios still produce p-values close to uniform, while larger values reflect increasing distortion away from the ideal uniform shape. In both the datasets, we see that the KL divergence is only moderately affected under moderate misspecification. Only on amplifying the weights ($\gamma > 3$) causes the KL divergence to rise sharply in the QED case we notice substantial deviation from uniformity.

The error rate consistently stays near the target level across all transformations for $\alpha = 0.1$ and below the target level for $\alpha = 0.3$. Only the rejection rate is affected, with lower rejection occurring when the KL divergence is small and higher rejection when the p-values deviate more strongly from uniform. This shows that mild misspecification primarily adjusts the conservativeness of the method without affecting its validity.

A similar pattern appears for DRD2. Flattened weights reduce the KL divergence, while large values of γ inflate it. Error control remains stable throughout, whereas the rejection rate increases in the high-KL regime corresponding to more severe distortions of the p-value distribution. Overall, these results demonstrate that ConfHit is robust to moderate incorrect specification of the likelihood ratios.

H.2 SCAFFOLD SPLITTING ON CALIBRATION SET

To assess the robustness of the calibration procedure, we perform a scaffold split on the calibration negatives. We select the top 30 scaffolds that also appear in the test set, producing a nontrivial distribution shift that reflects realistic drug discovery scenarios where scaffold diversity plays an important role. This setting provides a diagnostic test: if the calibration procedure is effective, the resulting p-values on this shifted split should remain close to uniform.

(a) QED + Hgraph: Calibration significantly reduces deviation of p-value distribution from uniformity.

(b) DRD2 + Hgraph: Calibrated p-values closely match the uniform distribution.

Figure 19: P-value distributions on scaffold-split calibration negatives for QED (left) and DRD2 (right). In both cases, calibration produces p-values that closely follow the uniform distribution, indicating that the density correction remains reliable under scaffold-based distribution shift.

Figures 19a and 19b show the p-value distributions before and after applying the density ratio correction. In both QED and DRD2, the uncalibrated p-values deviate substantially from the ideal uniform distribution, as indicated by large KL divergences. After calibration, the p-values become significantly closer to uniform, with much lower KL divergences and a visibly more homogeneous density across the interval.

The close match between the calibrated p-values and the uniform reference suggests that the calibration procedure successfully corrects for distributional differences tied to scaffold variation. This indicates that the method is likely to remain well calibrated on the test set, even when the chemical space differs from the training distribution. In practical applications, having partial knowledge of the test set's chemical space enables a simple sanity check: if the p-values on the corresponding scaffolds appear close to uniform, one can be confident that the method will behave reliably on the actual test compounds.

H.3 BALANCE CHECKS

Finally, To diagnose the effect of density correction, we compare the feature means of the calibration set with the test set before and after reweighting as discussed in Section 3.3. Figures 20 and 21 show the mean and standard deviation of each feature dimension, where post-calibration test features are weighted by the likelihood ratio $p_{\text{cal}}(x)/p_{\text{test}}(x)$.

For QED (Figure 20), the pre-calibration test features differ substantially from the calibration distribution, especially in the first dimension. After applying density correction, the weighted test features align much more closely with the calibration means across all dimensions. The cosine distance between the mean feature vectors decreases from 0.0623 to 0.0105, indicating a strong improvement in distributional matching.

A similar trend appears for DRD2 (Figure 21), where large discrepancies in several dimensions are substantially reduced after reweighting. The cosine distance drops from 0.0491 to 0.0075, confirming that the corrected test distribution becomes much closer to the calibration distribution.

These balance checks provide a practical diagnostic: given an unlabeled test set, one can evaluate whether density correction brings its feature distribution closer to the calibration set, indicating that the calibration procedure is likely to remain valid.

2052
2053
2054
2055
2056
2057

Figure 20: Feature means for QED using the Hgraph model at $N = 5$. Density correction aligns the test features more closely with the calibration distribution.

2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084

2099 Figure 21: Feature means for DRD2 using the Hgraph model at $N = 5$. Density correction reduces the
2100 discrepancy between calibration and test distributions.

2101
2102
2103
2104
2105