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ABSTRACT

The success of deep generative models in scientific discovery requires not only the
ability to generate novel candidates but also reliable guarantees that these candi-
dates indeed satisfy desired properties. Recent conformal-prediction methods offer
a path to such guarantees, but its application to generative modeling in drug discov-
ery is limited by budget constraints, lack of oracle access, and distribution shift. To
address these challenges, we introduce CONFHIT, a model-agnostic framework
that provides validity guarantees under these conditions. CONFHIT formalizes two
central questions: (i) Certification: whether a generated batch can be guaranteed
to contain at least one hit with a user-specified confidence level, and (ii) Design:
whether the generation can be refined to a compact set without weakening this
guarantee. CONFHIT leverages weighted exchangeability between historical and
generated samples to eliminate the need for an experimental oracle, constructs
multiple-sample density-ratio weighted conformal p-value to quantify statistical
confidence in hits, and proposes a nested testing procedure to certify and refine
candidate sets of multiple generated samples while maintaining statistical guaran-
tees. Across representative generative molecule design tasks and a broad range
of methods, CONFHIT consistently delivers valid coverage guarantees at multiple
confidence levels while maintaining compact certified sets, thereby establishing a
principled and reliable framework for generative modeling.

1 INTRODUCTION

Deep generative modeling has demonstrated remarkable ability to explore high-dimensional spaces,
driving advances in various applications like text generation (Radford et al., 2018), image synthe-
sis (Ho et al., 2022), protein engineering (Madani et al., 2020), and molecular discovery (Gómez-
Bombarelli et al., 2018). In critical domains such as drug discovery, however, the success requires
more than generation: While powerful generative models have been developed to accelerate early-
stage discovery (Madani et al., 2021; Hoogeboom et al., 2022; Yim et al., 2023), their practical utility
depends on whether the generated candidates indeed satisfy key biochemical properties. Since these
properties can only be verified through costly wet-lab or in-vivo experiments, it is crucial to assess
and guarantee, in advance, the viability of the generated samples (hits), leading to a central question:

Given a generative model, how to construct batches of generated samples that can,
with high statistical confidence, be guaranteed to contain at least one valid hit?

Conformal prediction provides a model-agnostic framework for establishing statistical guarantees for
black-box prediction models (Vovk et al., 2005), and is recently extended to calibrate any generative
model to produce sets of generated samples that contain at least one high-quality instance with high
probability (Quach et al., 2023; Ulmer et al., 2024; Shahrokhi et al., 2025). While such guarantees
can be profoundly useful, direct application of the existing methods in resource-restricted problems
like drug discovery is limited by several challenges. (i) Certification: With limited generation budget
and no assumptions on the generative model, it is not always feasible to produce a valid hit; it is
therefore important to state clearly when a guarantee can be provided and when it cannot. On the
technical side, (ii) Lack of oracle access: Existing methods rely on an oracle that evaluates newly
generated samples for existing inputs (such as by comparing to a gold-standard output). In drug
discovery, this means one needs to synthesize and experimentally validate the generated samples,
which is infeasible in resource-limited settings alike (Kladny et al., 2024). (iii) Distribution shift:
The generated candidates may follow a distribution different from the calibration data, violating the
exchangeability assumption.
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Figure 1: (a) Problem setup: given an input, certify and generate a set of candidates that contains at least one “hit”
(green) with probability at least 1− α. (b) CONFHIT workflow. Given a nested sequence of candidate batches,
we estimate the density ratio between labeled data and generated samples, compute a conformal p-value for each
batch to quantify the confidence in it containing a hit, and return the smallest batch whose p-value falls below α.

We introduce CONFHIT, a model-agnostic framework that provides reliability guarantees for gen-
erative modeling in resource-constrained settings. To tackle the budget limitation, we expand the
generation problem into two connected fundamental questions:

1. Certification. Given an input X̄test, a batch C0(X̄test) of generated samples and an unknown
property indicatorA(·) ∈ {0, 1}, can we guarentee, at a given confidence level 1−α ∈ (0, 1),
that the batch C(X̄test) contains at least a hit?

2. Design. In cases with strong confidence, can we design a compact candidate set C(X̄test)
while preserving the guarantee that it contains a valid hit with probability at least 1− α?

Here A(·) ∈ {0, 1} is an oracle that returns 1 only when the sample satisfies a desired property. In
molecule design, it may indicate whether a molecule x improves upon a seed molecule X̄test in terms
of activity, and these questions ensure the experimental validation on C(X̄test) is unlikely to be wasted
effort (Figure 1a). We remark that, in resource-abundant settings, certification and refinement can be
combined: the generation budget may be enlarged until certification is achieved, after which the set is
pruned to a compact certified subset, leading to the same validity guarantees by existing methods.

To eliminate oracle access and handle the distribution shift, CONFHIT leverages the exchangeability
structure between historical (labeled) and generated samples, rather than among generated samples
for both existing and new model inputs as in earlier methods, and estimates their density ratio,
thereby inducing weighted exchangeability (Tibshirani et al., 2019; Jin & Candès, 2023a). For the
certification problem, given any viability-scoring function, we construct a weighted permutation
p-value that quantifies the evidence against the global null that none of the samples in the generated
batch are viable. For the design problem, CONFHIT then examines the certification confidence of a
nested sequence of candidate batches, and returns the smallest batch that can be certified at a given
confidence level α ∈ (0, 1). We show that this procedure bounds the probability of returning a batch
with no viable sample below α ∈ (0, 1), regardless of the scoring function and the generative model.

We demonstrate the robust guarantees of CONFHIT on two representative generative design tasks: (i)
Constrained molecule optimisation, which seeks a new molecule that satisfies a target property
while remaining similar to a given scaffold; (ii) Structure-based drug discovery, which aims to
generate molecules that are active against a given protein. We summarize our contributions below:

• We formalise the task of generative modeling in resource-constrained settings with a conformal
validity guarantee: given an input context (such as a lead molecule or protein pocket), certify and
produce a set of candidates that contains at least one hit at a pre-specified confidence level 1− α.

• We introduce a class of density-ratio-weighted, multiple-test-sample conformal p-values for the
certification problem, and show their validity for certifying the existence of at least one hit in a
given batch of generated samples under distribution shift.

• We propose a general nested testing framework that achieves the validity guarantees for the
design problem. In specific, we show that given a sequence of our p-values, stopping as soon as
the p-value drops below α achieves finite-sample error control.

• We develop practical strategies for two key elements in the method: score modelling and density
ratio estimation, and demonstrate the robust performance on two standard molecule design tasks:
constrained molecule optimisation and structure-based drug discovery.
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Related Work. Conformal prediction (CP) (Vovk et al., 2005) offers distribution-free uncertainty
quantification for any black-box model by constructing prediction sets from exchangeable calibration
data (Papadopoulos et al., 2002). Recent advances extend CP to generative tasks (Angelopoulos
et al., 2021; Quach et al., 2023; Shahrokhi et al., 2025; Kladny et al., 2024). However, these methods
require oracle access, which is impractical for resource-constrained scenarios like drug discovery.

In scientific/drug discovery tasks, conformal prediction has so far primarily been used in predictive
inference for regression and classification problems in property prediction (Sun et al., 2017; Svensson
et al., 2018; Cortés-Ciriano & Bender, 2018; 2019; Zhang et al., 2021) and their extension to
covariate-shift settings via importance-weight estimation (Fannjiang et al., 2022; Laghuvarapu et al.,
2023; Prinster et al., 2023; Fannjiang & Park, 2025). Beyond prediction-set construction, conformal
selection employs p-values to prioritize compounds with selective error control (Bai et al., 2024;
Jin & Candès, 2023b; Bai & Jin, 2024). As we address a distinct generative design problem, our
formulation, inference scheme, and methodology differ sharply from prior work.

Meanwhile, there is a growing literature on generative modelling in scientific design tasks, including
goal-directed small-molecule optimization (Gómez-Bombarelli et al., 2018; Jin et al., 2020), structure-
based ligand design (Corso et al., 2022; Guan et al., 2023), large-scale protein generators (Madani
et al., 2020; Ingraham et al., 2019; Strokach & Kim, 2022), and materials discovery (Xie et al., 2022;
Zeni et al., 2023). Our contributions are orthogonal to this literature as CONFHIT is model agnostic
and offers guarantees for building property-satisfying samples from these generative models.

To summarize, compared with existing works, CONFHIT is the first framework that (i) eliminates the
need for oracle access, (ii) corrects for covariate shift between historical and generated samples, and
(iii) provides finite-sample guarantees for both certification and compact design in generative design.

2 PROBLEM FORMULATION

For expositional convenience, we slightly override the notations in Section 1.

Data and distributions. We assume access to a set of i.i.d. labeled (calibration) samples Dcalib =
{(Xi, Yi)}ni=1 from an unknown distribution P , e.g., molecules from past campaigns with known
properties. Here Xi ∈ X is the feature, e.g., the chemical structure of a molecule, and Yi ∈ {0, 1}
is a binary label, e.g., oracle-judged Yi = A(Xi). A generative model M produces i.i.d. sam-
ples {Xn+j}j≥1 from another distribution Q with unknown labels {Yn+j}j≥1 (the properties
Yn+j = A(Xn+j) should they be judged by the oracle). Although Q’s density is, in principle,
computable, doing so is often costly. Instead, we assume a covariate shift between the two distri-
butions: dQ/dP (x, y) = w(x) for some function w : X → R+. It posits that X captures all the
information for predicting Y , which is especially sensible and standard in drug discovery contexts
where the biological property is determined by the structure (though in a highly complex fashion).

Guarantees. We now formalize our guarantees for (i) certifying the presence of a hit in a set of
generated candidates, and (ii) constructing a set of samples with at least a hit. For goal (i), given a
pre-specified confidence level α ∈ (0, 1) and a generated set Cnew

0 := {Xn+j}Nj=1 of budgetN ∈ N+,
we aim to propose a test ψ(Dcalib, Cnew

0 ) ∈ {0, 1} such that
(Certification) P

(
ψ(Dcalib, Cnew

0 ) = 1
∣∣A(Xn+j) = 0, ∀1 ≤ j ≤ N

)
≤ α, (1)

that is, the probability of falsely certifying a low-quality candidate set is upper bounded by α. For
goal (ii), we would like to find a (random) stopping point N̂ ≤ N such that

(Design) P
(
A(Xn+j) = 0, ∀1 ≤ j ≤ N̂

)
≤ α, (2)

outputing the list of samples Ĉnew := (Xn+1, . . . , Xn+N̂ ) which contains a hit while controlling the
error of vacuous declaration. We define N̂ = 0 to accommodate cases where we are not confident
enough to declare any positive sample within the generation budget (failure of certification).1

3 METHOD

We introduce our conformal nested testing framework to address the certification problem (Section 3.1)
and the design problem (Section 3.2), and prove their model-agnostic, finite-sample guarantees.

1This is consistent with existing works on uncertainty quantification for generative models (Quach et al.,
2023), where a “null” option (i.e., the method fails to confidently generate good samples) is required.
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3.1 CERTIFICATION: JOINT WEIGHTED CONFORMAL P-VALUE

We begin by addressing the certification problem: Given a set of generated samples, how to quantify
the confidence in it containing a hit? Our key strategy is to construct a p-value based on conformal
inference ideas that test the presence of any hit in {Xn+j}Nj=1. Recall that there is a covariate shift
w(x) = dQ/dP (x, y) for the labeled calibration data and the new test samples. To fix ideas, we
assume the density ratio w(·) is known for now, and discuss estimated density ratio in Remark 3.3.

Our p-values leverage the inactive calibration data {Xi : i ∈ I0} where I0 := {i ∈ [n] : Yi = 0}.
We let X = (X1, . . . , Xn0 , Xn+1, . . . , Xn+N ) denote the vector of (inactive) calibration and test
covariates. Following split conformal prediction (Vovk et al., 2005), we let V : Xn0+N → R be
any function whose training process is independent of {(Xi, Yi)}i≥1, which is then viewed as fixed.
We call V the conformity score function, whose choice is discussed near the end of this subsection.
Without loss of generality, we assume a larger value of the conformity score indicates stronger
confidence in the presence of a positive value in {Yn+j}Nj=1.

To address multiple test points without introducing too much computational overhead, we leverage
randomization (see Appendix A.1 for the non-randomized version). Let ΠN be the collection of
all permutations of {1, . . . , n0, n + 1, . . . , n + N}, and denote the identity mapping as π(0), i.e.,
π(0)(i) = i for any i. Formally, fixing any B ∈ N+, we draw π(1), . . . , π(B) i.i.d.∼ Unif(ΠN ), the
uniform distribution over the permutation space. Define

prand
N =

∑B
b=0 w̄(π

(b);X)1{V (π0;X) ≤ V (π(b);X)}∑B
b=0 w̄(π

(b);X)
. (3)

Here, for any permutation π ∈ ΠN , we define the conformity score from the permuted data
V (π;X) = V (Xπ(1), . . . , Xπ(n0), Xπ(n+1), . . . , Xπ(n+k)), and w̄(π;X) =

∏k
j=1 w(Xπ(n+j)),

is the joint likelihood ratio after permutation π, where w(x) = dQ/dP (x, y) is the density ratio.

The construction of our p-value relies on an analysis of the exchangeability structure between the
inactive calibration data {Xi : i ∈ I0} and the test samples {Xn+j}Nj=1 under distribution shift,
detailed in Appendix A.2 due to limited space. It extends the conformal p-values in the literature via
an extended weighted exchangeability structure (Tibshirani et al., 2019) for multiple test samples (Hu
& Lei, 2024; Jin & Candès, 2023a); these connections are discussed in Appendix A.3.

The following theorem establishes the finite-sample validity of the randomization p-value (3). Notably,
this holds regardless of the number of sampled permutations. Its proof is in Appendix B.4.
Theorem 3.1. Under the covariate shift assumption, it holds for any fixed t ∈ [0, 1] that

P
(
prand
N ≤ t

∣∣max1≤j≤NYn+j = 0
)
≤ t.

Therefore, the certification test function ψ(Dcalib, {Xn+j}Nj=1) = 1{prand
N ≤ α} achieves (1).

Inheriting the model-free nature of conformal inference, the validity of pk and prand
k holds regardless

of the score function V , as long as its training process is independent of the calibration and test data.
Remark 3.2 (Outlier detection). Our p-values can also be viewed as testing for the presence of
at least one outlier in {Xn+j}mj=1 when {Xi}i∈I0

are viewed as calibration inliers. We refer the
readers to discussion on the connection to outlier detection under covariate shifts (Bates et al., 2023;
Jin & Candès, 2023a) in Appendix A.4.
Remark 3.3 (Estimated density ratio). In many practical scenarios, the density ratio w(·) is unknown
or difficult to evaluate. In such cases, we estimate the density ratio by ŵ(·), and use ŵ(·) instead
of w(·) in the construction of our p-values {pk}. For instance, we can train the density ratio
over a random subset of all the labeled data and independently generated test samples. We do
not write the exact formulas for such plug-in p-values for brevity. Recognizing that the success of
CONFHIT hinges on accurate density ratio estimation, we provide a thorough discussion on the
robustness of CONFHIT with estimated weights and several practical diagostics in Section 3.3.

Conformity score function. Because we certify the candidate set when pN is small, V must grow
when Xn+1:n+N contains a positive to indicate strong confidence. To this end, we assume access to
a pre-trained model µ̂ : X → R that predicts the unknown property Yn+j based on Xn+j , which will
be used in the score V . We suggest several natural choices: (i) Max-pooling: V (x1:n0 , xn+1:n+N ) =

4
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max1≤j≤N µ̂(xn+j), (ii) Sum-of-prediction: V (x1:n0
, xn+1:n+N ) =

∑N
j=1 µ̂(xn+j), (iii) Rank-

sum: V (x1:n0
, xn+1:n+N ) =

∑N
j=1Rn+j , where Rn+j is the rank among all scores, (iv) Likelihood

ratio: V (x1:n0 , xn+1:n+N ) =
∑N

j=1 log(
µ̂(xn+j)

1−µ̂(xn+j)
). We explain these scores in Appendix A.5. We

note that CONFHIT is model-agnostic: practitioners can choose any suitable model to build the score
V . The quality of the score/model affects the power, but not the error control of CONFHIT. Finally,
practitioners may want to avoid sample splitting when labeled data is limited; we provide such a
variant in Appendix A.6 where the labeled data are used for both training µ̂ and p-value construction.

3.2 DESIGN: CONFORMAL NESTED TESTING

Upon the valid p-value and certification test for a given candidate set, we proceed to address the
design problem: How to propose a compact set of generated samples that contains at least one hit
with high probability? To this end, we connect (2) to the problem of constructing a smaller subset of
candidates that can be certified by our procedure, and establish its statistical guarantee.

To be specific, for every 1 ≤ k ≤ N , we consider the null hypothesis

Hk : Yn+j = 0, ∀ 1 ≤ j ≤ k. (4)

That is, Hk posits that none of the first k generated instances obeys the desired property. From a
hypothesis testing perspective, rejecting Hk thus suggests sufficient confidence in declaring a hit in
{Xn+j}kj=1. The certification strategy in Section 3.1 is readily applicable to obtain a p-value pk for
certifying each subset {Xn+j}kj=1 indexed by k that obeys P(pk ≤ t |Hk is true) ≤ t for t ∈ [0, 1].

Our solution to the design problem appears simple: determine an index N̂ such that HN̂ can be
rejected (i.e., {Xn+j}kj=1 can be confidently declared as containing a hit). Specifically, suppose we
can construct a decreasing sequence of p-values pk ∈ [0, 1] for each fixed Hk. Then, we set

N̂ := inf
{
k : pk ≤ α

}
. (5)

That is, we take the first p-value that passes the significance level α ∈ (0, 1). Theorem 3.4 confirms
the validity of this nested testing strategy, whose proof is in Appendix B.1.
Theorem 3.4. Suppose the p-values pk ∈ [0, 1] obey: (i) Monotonicity: p1 ≥ p2 ≥ · · · pN . (ii)
Validity: For any fixed k ≥ 1 and t ∈ [0, 1], it holds that P(pk ≤ t |Hk is true) ≤ t. Then, we have

P(max1≤j≤N̂Yn+j = 0) ≤ α

for the generation threshold N̂ computed as in (5). Here Hk is defined in (4).

We note that any p-values {p̃k} obeying condition (ii) in Theorem 3.4, such as those constructed
in the certification problem, can be turned to pk = maxk≤j≤N p̃j which satisfy both conditions in
Theorem 3.4. Perhaps surprisingly, even though we are simultaneously examining multiple batches
of candidates, it turns out that using a monotone sequence of individually valid p-values suffices
to achieve our goal, and no adjustment for multiplicity is needed. We remark that the key to our
theoretical guarantee is the nested nature of the hypotheses: ifHk is true, then all “earlier” hypotheses
{Hℓ}ℓ≤k must also be true. We thus call our method “conformal nested testing”.

CONFHIT: Putting everything together. So far, we have completed all the elements of CONFHIT.
We summarize the entire procedure in Algorithm 1, including both certification (for every nested
subset) and design. Note that the input ŵ(·) denotes an estimated density ratio function, which
coincides with w(·) when the density ratio is known. When it fails to certify even the largest batch,
CONFHIT flags “not confident enough” to clearly communicate the difficulty of the generation task.
3.3 ROBUSTNESS AND DIAGNOSTICS FOR DENSITY RATIO ESTIMATION

The density ratio often needs to be estimated in practice and its quality naturally affects the perfor-
mance of CONFHIT. The difference between historical assay data and newly generated molecules
is a persistent issue in drug discovery and needs to be addressed in nearly all conformal prediction
methods in this domain (Krstajic, 2021; Laghuvarapu et al., 2023; Jin & Candès, 2023a; Fannjiang
& Park, 2025). Estimating the density ratio is a statistically standard problem used in many fields
including machine learning, statistics, and causal inference with rich existing toolboxes such as kernel
or classification-based methods beyond the kernel density estimation in our experiments (Horvitz &
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Algorithm 1 CONFHIT

Input: Calibration data {Xi}n0
i=1 for which Yi = 0, test data {Xn+j}Nj=1, conformity score V : Xn0+k → R,

(estimated) weight function ŵ : X → R+, confidence level α ∈ (0, 1), budget N ∈ N+, Monte Carlo size
B ∈ N+.

1: for k = 1, . . . , N do
2: Set Π = { all permutations of {1, . . . , n0, n+ 1, . . . , n+ k} }. // Sequential conformal p-values
3: Draw π(b) i.i.d.∼ Unif(Π) for b = 1, . . . , B.
4: Compute p-value pk as in (3) with w(x) := ŵ(x).
5: end for
6: Set pk = maxk′≥k pk′ iteratively for k = N − 1, . . . , 1 // Monotonize p-values
7: Compute N̂ = argmax{k ∈ [N ] : pk ≤ α}, with N̂ = 0 if pN > α

Output: Confident shortlist C := {Xn+j}N̂j=1 or “not confident enough” when N̂ = 0.

Thompson, 1952; Shimodaira, 2000; Sugiyama et al., 2007; Nguyen et al., 2010; Sugiyama et al.,
2012; Shapiro, 2003). Below, we elaborate on (i) a theoretical analysis of CONFHIT’s robustness to
the estimation error, followed by (ii) three diagnostic approaches for the estimation quality.

Theorem 3.5 shows that with estimated density ratio, the error inflation depends on how aggressive
(resp. conservative) the weights are for small (resp. large) p-values; its proof is in Appendix B.5.
Theorem 3.5 (Robustness to estimation error). Let p̂N be the p-value (3) using any estimated weights
ŵ(·). Define the positive/negative parts of the estimation error δ̂±(π;X) = [ ˆ̄w(π;X)− w̄(π;X)]±,
with ˆ̄w(π;X) =

∏N
j=1 ŵ(Xπ(n+j)). Then, for any fixed t ∈ (0, 1), we have

P
(
p̂rand
N ≤ t

∣∣∣ max
1≤j≤N

Yn+j = 0
)
≤ t+ E

[
t̂·∆̂++(1−t̂)·∆̂−∑B

b=0 w̄(π(b);X)

∣∣∣ max1≤j≤N Yn+j = 0

]
,

where, setting p̂N (v) :=
∑B

b=0
ˆ̄w(π(b);X) 1{v≤V (π(b);X)}∑B

b=0
ˆ̄w(π(b);X)} , we define v̂ = argmax{V (π(b);X) : π ∈

Π, p̂N (V (π(b);X)) ≤ t} as the score cutoff, and the corresponding p-value as t̂ := p̂N (v̂), and

∆̂+ =
∑B

b=0δ̂
+(π(b);X)1{V (π(b);X) < v̂}, ∆̂− =

∑B
b=0δ̂

−(π(b);X)1{V (π(b);X) ≥ v̂}.

While Theorem 3.5 offers insights on how the guarantees degrade with the (unknown) estimation
error, it is often useful to perform robustness diagnostics in practice. The three approaches below are
demonstrated in our experiments in “Robustness check” Section 4.5.
(1) Balance check. Following the balancing idea in causal inference (Ben-Michael et al., 2021),
reweighting via the correct density ratio will bring the empirical mean of any function of the covariates
in the calibration data close to that of the test data (under the null with no hits). A natural diagnostic
is to check the imbalance | 1n0

∑n0

i=1 ŵ(Xi)f(Xi)− 1
k

∑k
j=1 f(Xn+j)| for some f : X → R.

(2) Validation shift. A second approach is to examine the reliability of estimation via synthetic shift.
One may create artificial distribution shifts in the labeled data, such as by scaffold splitting; with one
fold as the calibration data and the other as the test data, one can use the known labels to examine the
uniformity of p-values and the quality of the density ratio estimation algorithm.
(3) Sensitivity analysis. Finally, one may conduct sensitivity analysis to probe the robustness of
CONFHIT to perturbations of estimated weights. Similar to causal inference (Rosenbaum, 2005), we
may assume the correct weights are within a distance from the estimated weights, and examine the
worst-case p-values and testing results while varying the weights within the assumed range.

While generative models do not naturally provide a built-in notion of reliability, CONFHIT augments
them with new capabilities for practical deployment; it is model-agnostic and only relies on a scalar
quantity, the density ratio, that can be validated and stress-tested, thereby making the uncertainty
measurable and more robust than trusting the raw model alone (Section 4.5, “Additional baselines”).

4 EXPERIMENTS

4.1 TASKS, MODELS, AND DATASETS

We evaluate our framework on two representative conditional molecule-generation tasks and highlight
the model-agnostic nature of our approach by employing five generative models spanning VAE,
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autoregressive transformers, diffusion models, and Bayesian Flow Networks. For evaluation purposes,
we use computational oracles to judge the property of generated samples since wet-lab evaluation is
infeasible (Jin et al., 2020); the oracle is not used in running CONFHIT.

App. 1: Constrained Molecule Optimisation (CMO). Given a seed molecule X̄ that fails a target
property, the goal is to generate a molecule X that is close in Tanimoto distance to X̄ and satisfies
the property. This task reflects lead-optimisation workflows where experimental assays provide
ground-truth. Following the standard practice of using a computational oracle, in our experiments,
we use the property DRD2 receptor binding (DRD2), with success (Y = 1) if DRD2(x) > 0.5.
Additional comphrehensive results on Quantitative Estimate of Drug-likeness improvement (QED)
reported in the Appendix E.2.

To demonstrate the compatibility of CONFHIT with general generative models, we employ two
state-of-the-art CMO models: 1. HGRAPH2GRAPH, a hierarchical VAE editing scaffold-level motifs
while preserving validity (Jin et al., 2020); 2. SELF-EDIT, an autoregressive transformer generating
SELFIES strings to optimise the property while maintaining similarity to the seed (Jiao et al., 2023).

We take a subset of the training split in Chemprop (Yang et al., 2019) of ChEMBL data (Gaulton
et al., 2012) as the labeled calibration data {X̄i, Xi, Yi}ni=1 (seed input, sample from past campaigns,
and oracle property), following Jin et al. (2020). Inactive molecules in the test split serve as test
inputs {X̄(ℓ)}Lℓ=1. For each X̄(ℓ), the model generates {X(ℓ)

n+j}mj=1.

App. 2: Structure-Based Drug Discovery (SBDD). Here the input X̄ is a 3D protein binding pocket,
and the task is to generate ligands X that bind to it, so the label Y depends on (X̄,X). Following
standard practice, for evaluation purposes only, we use AutoDock Vina (Trott & Olson, 2010) as
computation oracle and label a ligand as a hit if its score is below −7.5 kcal mol−1; such a threshold
captures about 75% of known active samples in CrossDock (Francoeur et al., 2020a).

In this task, we apply CONFHIT with three state-of-the-art SBDD models: TargetDiff (Guan et al.,
2023), an SE(3)-equivariant diffusion model conditioned on pocket meshes; DecompDiff (Guan et al.,
2024), using decomposed priors to separate structural components; MolCRAFT (Qu et al., 2024), a
Bayesian Field Network operating fully in continuous parameter space.

The calibration data are protein-ligand pairs {(X̄i, Xi)}ni=1 from CrossDocked (Francoeur et al.,
2020b). Following the same split in Guan et al. (2023), we use the proteins in the test split as inputs
{X̄(ℓ)}Lℓ=1, and the model generates candidate ligands {Xn+j}Nj=1 given each input X̄(ℓ).

4.2 IMPLEMENTATION DETAILS

Conformity Score Function. We define V using a property prediction model µ̂(·):
• CMO. For both properties (QED and DRD2) we train a binary classifier µ̂(·) with molecular graph

inputs using the Chemprop library (Yang et al., 2019) and ChEMBL data splits in Jin et al. (2020).
• SBDD. We train an EGNN µ̂(·) (Satorras et al., 2021) on PDBBind crystal structure data (Wang

et al., 2005) to predict binding affinity, using TARGETDIFF (Guan et al., 2023) codebase.
In both tasks, µ̂ is trained on data independent of calibration and test sets. Training details, hyperpa-
rameters, and compute for µ̂ and the generative models are given in Appendix C. For conciseness,
we present most results with the Max-pooling score V (x1:n0

, xn+1:n+k) = max1≤j≤k µ̂(xn+j).
Comparisons to other score functions appear in Figure 4.

Density Ratio Estimation. We leverage kernel density estimation (KDE) for constructing the weights
in our p-values. Following the discussion in Lemma A.2 in Appendix A.2, the desired weight w(·)
equals the marginal density ratio of generated samples, regardless of hit status. Also, plugging in the
densities for the joint distribution of input/generation pairs, denoted as q̃(x̄, x) and p̃(x̄, x), yields the
same p-value due to normalization. Thus, we directly estimate p̃(·) and q̃(·) to ensure sufficient data
for estimation. Following CODRUG (Laghuvarapu et al., 2023), we extract latent features g(x̄, x)
from the penultimate layer of the property model, and fit Gaussian KDEs p̂(x̄, x) and q̂(g(x̄, x)) on
calibration and test samples, forming weights w̃(x̄, x) = q̂(g(x̄, x))/p̂(g(x̄, x)).

4.3 RESULTS: CERTIFICATION

In this section, we present results of the certification experiment, where the goal (1) is to certify the
presence of a hit in a batch of fixed size N at level α. Our evaluation focuses on (i) error control, and
(ii) power, i.e., the frequency of successfully certifying hits. Results for both CMO and SBDD tasks
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Figure 2: Certification results. Left: realized error rates at fixed N for different models and error levels α in
SBDD (upper) and CMO (lower). Middle: average error rates while varying budget N . Right: power, i.e., the
fraction of actives certified at various error level α and budget N values. The dashed line denotes the ideal
y = x error bound. Our method consistently achieves valid coverage across scenarios. Results are averaged over
5 random runs; error bars and additional results for other values of N are in Appendix E.2

Figure 3: Design results. Error rate at fixed N for different methods (left), mean set sizes averaged across
methods at different values of N (middle), and empty set percentage at different values of N (right) across target
levels α. The top row shows results for SBDD and the bottom for CMO. Dashed black line in the error plots
indicates the ideal y = x bound. CONFHIT achieves tight error control while producing substantially smaller
sets. Results are averaged over 5 random runs; additional results are provided in the Appendix E.2.

across different generative models are shown in Figure 2. The left panel reports the empirical error
rate, i.e. the frequency of certifying sets that contain no hit. Across all settings, we observe tight
error control. The middle panel shows the error rates (averaged across methods for visualization)
for different budgets N , and we observe that the error stays below the target error levels. Finally,
the right panel plots the fraction of sets containing an active that are certified as a function of α
at different, where CONFHIT is able to detect true hits with satisfactory power. As expected, this
fraction increases with the significance level and set size N .

4.4 RESULTS: DESIGN

In this section, we present experiments for the design problem in (2), where we prune a generated
batch to obtain compact subsets while preserving tight error control. As summarized in Figure 3, our
nested procedure refines candidate sets while preserving statistical guarantees.

As we address a novel problem under unique constraints, there are no directly comparable baselines
(existing methods in conformal generative modeling (Quach et al., 2023; Kladny et al., 2024) are
not comparable due to the unavailable oracle). Instead, we consider two baselines to demonstrate
the benefits of CONFHIT: (i) Bonferroni correction. Given N test samples, we threshold the
one-test-sample p-value (set each candidate as the test set in (3)) at α/N . It provides a stronger
guarantee of no false certification for any test sample, but can be conservative. (ii) Certification-only.
The certification procedure from Section 4.3, which serves as a baseline without pruning.
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Compared with Bonferroni, our approach substantially outperforms in both CMO and SBDD
tasks. At stringent levels (α = 0.1), Bonferroni yields empty sets for nearly 100% of SBDD inputs,
while CONFHITleads to empty set frequency as low as 16% for N = 152. Moreover, in the rare
cases where Bonferroni is able to make discoveries, it usually exhaust the full budget, whereas
CONFHIT consistently prunes to 2-5 molecules (30-50% of the full budget). Due to conservativeness,
Bonferroni has low or near zero error rates, whereas CONFHIT achieves adaptive and tight coverage.

Compared with certification-only whose results are in Figure 2, the nested procedure successfully
prunes promising initial large sets to smaller ones. For example, in SBDD at α = 0.1 with N = 15,
the nested procedure reduces the mean set size to about 4 molecules without compromising the error
control. Similar improvements hold in CMO, where nested pruning typically halves the certified set
size while delivering tighter agreement between realized and nominal error.

In summary, CONFHIT delivers compact certified sets with strict error control. It largely avoids
vacuous results and yields smaller, more actionable shortlists with higher coverage for subsequent
experimental validation. This makes our framework particularly valuable in scientific discovery
workflows, where experimental budgets require both statistical confidence and practical tractability.

4.5 ADDITIONAL INVESTIGATIONS

Choice of test statistic. While we report the results with the Max-pool conformity score, Figure 4
evaluate CONFHIT with five choices of the conformity score V (·)—min, mean, likelihood-ratio
(LR), rank-sum, and max—on the SBDD task with TARGETDIFF at a budget of N = 5; results
for other tasks and budgets show similar patterns and are provided in the Appendix E.2. Across
the board, CONFHIT consistently keeps the realised error rate close to the target α, confirming the
model-agnostic validity. However, the choice of the score does affect power: max certifies most often
(e.g., 73 % of seeds at α = 0.1), while rank-sum is the most conservative.

Figure 4: Comparison of score statistics on TargetDiff (SBDD, N=5). Left: rejection (power) at α = 0.1, 0.3.
Right: error vs. α. All remain valid; the max statistic shows the highest power.

Choice of property prediction model. As we discussed in the end of Section 3.1, the choice of the
property prediction model only affects the power. We performed an ablation study with weak property
prediction models by adding noninformative perturbations to the predictions. CONFHIT maintains
robust error rate control despite that the weaker predictor decreases the power; see Appendix F.

Distribution shift adjustment. The guarantees of CONFHIT in both certification and design rely
on valid p-values, which further hinges on distribution shift adjustment. As an ablation study, we
compare CONFHIT with the version without distribution shift adjustment, i.e., taking w(·) ≡ 1.
We observe that running CONFHIT without distribution shift adjustment can violate the coverage
guarantee especially for stringent target error rates, for example, using the TARGETDIFF model in the
SBDD task, and the SELFEDIT model in the CMO task. The differences are highlighted in Figure
5a. In addition, we plot the distribution of p-values computed with negative samples across different
datasets and observe that they are approximately uniform; see Appendix E.3.

Robustness check. We exemplify the robustness diagnostics in Section 3.3, with a sensitivity-analysis
in Appendix H.1, synthetic validation with a realistic scaffold split in Appendix H.2 and a balance
check based on key features in Appendix H.3. First, by perturbing the weights via a power law,
we showcase how to examine the robustness of CONFHIT’s output, with additional evaluation to
show the mild degradation of error control. Meanwhile, CONFHIT achieves tight error control under
synthetic scaffold splits, and the estimated density ratio improves the balance in key features.

2Returning empty sets means no enough confidence under the generation budget N , which is inevitable
without strong assumptions on the generative power.
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Figure 5: (a) Distribution shift adjustment (left). Coverage violations when CONFHIT is run without density
correction. (b) Budget analysis (middle and right). Fraction of inputs with at least one hit under increasing
generation budget. Solid lines: fraction of actual hits; dashed lines: predicted fraction of hits.

Additional baselines. We additionally evaluate two baselines. (i) A heuristic baseline which uses
an estimated probability to calibrate the generation batch size (Appendix G.1). It violates error
control when the estimation quality moderately degrades; in contrast, CONFHIT is model-agnostic
and maintains validity under the same degradation (Appendix F), showing that principled uncertainty
quantification provides robust guarantees. (ii) An oracle baseline which (unrealistically) labels
generated samples (Quach et al., 2023) yet without covariate shift adjustment (Appendix G.2). Even
with oracle access, ignoring the distribution shift leads to both high errors and high frequency of
empty sets (perhaps since it relies on exchangeability between inputs, which reduces the sample size).

4.6 WORKING UNDER AN OVERALL BUDGET

Finally, we demonstrate the utility of CONFHIT for allocating a fixed budget across multiple tasks. In
drug discovery campaigns, scientists often work with multiple generation inputs but can only validate
a limited number of samples experimentally. In this setting, the confidence in valid hits provided by
CONFHIT serves as a practical heuristic for budget allocation—deciding how many candidates to
synthesize per task. Given K inputs (tasks) and a total budget B, we fix a maximum size N for each
input; then, CONFHIT suggests the smallest subset which contains a hit for each input at a confidence
level α. We then vary the value of α until the budget is exhausted. Finally, we estimate the fraction
of tasks whose output set contains a hit via (1 − α) minus the fraction of empty sets (i.e., when
CONFHIT fails to certify a hit at level α). The exact procedure is described in Appendix D.

In Figure 5b, we compare predicted and realized positives under different budget levels (measured
as multiples of the number K of inputs). Across both CMO and SBDD, the realized fraction of
actives consistently exceeds our estimates, showing the reliability and practical utility of CONFHIT.
Complementing the certification and design results, this budge allocation perspective confirms the
robust empirical performance of CONFHIT when coupled with more complex, albeit heuristic,
applications. Of course, we acknowledge that this is only a heuristic approach without formal
theoretical guarantees, and the application of CONFHIT in such tasks warrants careful future study.

5 CONCLUSION

In this work, we introduced CONFHIT, a model-agnostic framework that delivers finite-sample
guarantees for conditional generative models. By re-weighting calibration data with density ratios,
CONFHIT corrects the distributional shift from historical compounds to model-generated candidates,
thereby removing the need for an external experimental oracle, an assumption required by all existing
conformal-prediction approaches in generative modeling. Building on these adjusted weights, we
derive a nested conformal p-value that certifies the probability of sampling at least one viable
molecule. Across two standard benchmarks for optimization of constrained molecules and structure-
based design, and across a wide range of methods and budget regimes, CONFHIT consistently
provides valid coverage guarantees while maintaining compact certified sets. Our results establish
CONFHIT as a principled and practical framework for both certification and design, enabling reliable
generative modeling under stringent resource constraints.

Limitations The coverage guarantee relies on density-ratio estimates, which can be noisy when
the calibration set is small or the feature extractor is poorly aligned with the target domain. Our
experiments focus on small molecules; extending the approach to proteins or other macromolecules
with larger, more structured generative space will require additional work. Validation currently relies
on in-silico oracles; without wet-lab confirmation, transferability remains to be seen. Demonstrating
robustness across broader chemical and experimental settings is a key direction for future research.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

Because the framework is model-agnostic and targets conditional molecule generation, we expect
it to benefit diverse discovery pipelines in chemistry, biology, and materials science. The work
builds on long-standing practices in molecular modeling, so we do not anticipate negative societal
consequences. However, we acknowledge potential dual use, such as designing harmful compounds,
and responsible use will require oversight and access controls.

LLM Usage The use of LLMs in this work is limited to polishing the writing and assisting with
code-related tasks.

7 REPRODUCIBILITY STATEMENT

All experimental settings are described in Section 4.1, with an extended discussion of implementation
details in Appendix C. Information on compute resources and runtime is provided in Section C.4.
The code, datasets along with the config files used for experiments in this work are included with the
supplementary material, along with installation instructions, and are further detailed in Appendix C.5.
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A ADDITIONAL DISCUSSION

A.1 NON-RANDOMIZED CONFORMAL P-VALUE

Let Π be the collection of all permutations of {1, . . . , n0, n+ 1, . . . , n+ k}. For any permutation
π ∈ Π, we denote the score obtained by permuting the observed features by π as

V (π;X) = V (Xπ(1), . . . , Xπ(n0), Xπ(n+1), . . . , Xπ(n+k)).

We additionally denote the identity mapping as π0, i.e., π0(i) = i for any i. Finally, we define

pk =

∑
π∈Π w̄(π;X)1{V (π0;X) ≤ V (π;X)}∑

π∈Π w̄(π;X)
. (6)

Here, w̄(π;X) =
∏k

j=1 w(Xπ(n+j)), the joint likelihood ratio after permutation π, where w(x) is
the density ratio. In a nutshell, pk considers all permutations of the inactive calibration samples
and the test samples, and compute the weighted rank of the score computed with observed data,
V (π0;X), among all scores with permuted data.

The validity of the deterministic p-value is established in the following theorem, whose proof is in
Appendix B.3.
Theorem A.1. Under the covariate shift assumption, it holds for any fixed t ∈ [0, 1] that

P
(
pk ≤ t

∣∣max1≤j≤kYn+j = 0
)
≤ t.
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A.2 JOINT WEIGHTED EXCHANGEABILITY

In this part, we characterize the exchangeability structure of the inactive calibration data {Xi}i∈I0

and the test samples {Xn+j}kj=1 under the null case

Hk : max
1≤j≤k

Yn+j = 0.

Here for generality, we use the index k to indicate that {Xn+j}kj=1 might be a subset of the original
proposal. The following lemma characterizes the distribution of these data conditional on the labels.
Its proof simply applies the Bayes’ rule, whose proof is deferred to Appendix B.2 for completeness.
Lemma A.2. Conditional on {Zi}ni=1 ∪ {Zn+j}j≥1 as well as max1≤j≤k Yn+j = 0, the features
{Xi}i∈I0

are i.i.d. from P0 := PX |Y=0, whereas {Xn+j}kj=1 are i.i.d. from Q0 := QX |Y=0.
Furthermore, dQ0/ dP0(x) = w(x), where w(x) = dQ

dP (x, y) = dQX

dPX
(x) is the density ratio.

Lemma A.2 states that, conditional on all labels, on the “null” event that Hk is true, the “marginal”
density ratio w(x) suffices to adjust for distribution shifts between the inactive calibration data in I0
and the newly generated data. We discuss its implications on density ratio estimation below.
Remark A.3. When w(·) is unknown, Lemma A.2 justifies using a random subset of the labeled data
and an independent set of generated samples (no matter whether they are active) to estimate w(·).
An alternative approach is to directly estimate the density ratio between {Xi}i∈I0 and {Xn+j}kj=1.
However, this approach leads to quite limited sample sizes when k is small.

Lemma A.2 allows to characterize the exchangeability structure among calibration and test points,
extending the weighted exchangeability notion (Tibshirani et al., 2019) to multiple test points. It
is a consequence of a conditional permutation-style result which extends foundational results in
conformal prediction (Vovk et al., 2005; Tibshirani et al., 2019).

Let [X] = [X1, . . . , Xn0
, Xn+1, . . . , Xk] be the unordered set of the features, and fix any value

[x] = [x1, . . . , xn0
, xn0+1, . . . , xn0+k]. Then, given [X] = [x], the only randomness that remains

lies in which value in x corresponds to eachXi. Proposition A.4 is a direct implication of Lemma A.2,
extending the weighted exchangeability notion in Tibshirani et al. (2019) to multiple test points.
Proposition A.4. Let Π be the collection of all permutations of [n0 + k]. Then, for any fixed values
x1, . . . , xn0

, xn0+1, . . . , xn0+k, and any permutation π : [n0 + k]→ [n0 + k],

Pcond
(
X1 = xπ(1), . . . , Xn0+k = xπ(n0+k)

∣∣∣ [X] = [x]
)
=

w̄(π;x1:n0+k)∑
π′∈Π w̄(π

′;x1:n0+k)
,

where we define w̄(π;x1:n0+k) :=
∏k

j=1 w(xπ(n0+j)), and Pcond(·) denotes the distribution after
conditioning on {Zi}ni=1 ∪ {Zn+j}j≥1 as well as max1≤j≤k Yn+j = 0.

Proposition A.4 describes the probability of (X1, . . . , Xn0+k) taking on the value of any permutation
of x conditional on the unordered set of their realized values. Such a conditional permutation-style
result is foundational for many results in conformal inference, thereby connecting our p-value to
existing conformal p-values. Specifically, when w(·) ≡ 1 and m = 1, it reduces to the standard
exchangeability condition, and the p-value (6) coincides with the classical conformal p-value. In
general with m = 1, it reduces to the weighted exchangeablity studied in (Tibshirani et al., 2019),
and our p-value (6) coincides with the weighted conformal p-value (Tibshirani et al., 2019; Jin &
Candès, 2023a). We discuss the connections in the next subsection.

A.3 CONFORMAL P-VALUE FOR ONE TEST POINT

Our p-values build on conformal prediction ideas (Vovk et al., 2005). To provide more contexts, we
briefly discuss the widely used conformal p-value for one test point, the key concept in deriving
conformal prediction sets. Given any function s : X × Y → R (often referred to as “nonconformity
score”) whose training process is independent of the calibration data {(Xi, Yi)}ni=1 and a new test
point Xn+1, the conformal p-value is defined as

p(y) =
1 +

∑n
i=1 1{s(Xi, Yi) ≤ s(Xn+1, y)}

n+ 1
. (7)
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When {(Xi, Yi)}n+1
i=1 are exchangeable (such as i.i.d.) across i ∈ [n+ 1], one can show that p(Yn+1)

is dominated by Unif[0, 1]. This property is key in constructing prediction sets for the unknown
Yn+1. Recently, conformal p-values based on exchangeability are used in the context of multiple
testing for detecting outliers (Bates et al., 2023) and identifying test instances with desirable label
values (Jin & Candès, 2023b). Extensions to covariate shift settings are also studied for individual
p-value (Tibshirani et al., 2019) and multiple testing (Jin & Candès, 2023a).

Here we briefly discuss Remark 3.2. Note that when m = 1, n := n0 and w(x) ≡ 1 in (7), setting

V (x1, . . . , xn0 , xn+1) = s(xn+1, 0),

where we use y = 0 as a placeholder, our p-value (6) reduces to p(0) in (7).

A.4 CONNECTION TO OUTLIER DETECTION UNDER COVARIATE SHIFT

A more explicit connection is that of our p-value to the outlier detection p-value. Formally, for a test
point Xn+1 independent of calibration “inliers” {Xi}ni=1

i.i.d.∼ P , Bates et al. (2023) proposes using
the conformal p-value (the signs are flipped to be consistent with the current notations)

p =
1 +

∑n
i=1 1{s(Xi) ≤ s(Xn+1)}

n+ 1

to test the null hypothesis H0 : Xn+1 ∼ P , where s : X → R is a score indicating how likely a value
x is an outlier compared with the normal values under P . Under the null hypothesis H0, it can be
shown that the p-value p is dominated by Unif[0, 1].

Jin & Candès (2023a) extend this problem to outlier detection under covariate shift, where
H0 : Xn+1 ∼ Q for some distribution Q obeying dQ/dP (x) = w(x) for a known density ra-
tio w(·). The corresponding weighted conformal p-value is

pw =
w(Xn+1) +

∑n
i=1 w(Xi)1{s(Xi) ≤ s(Xn+1)}∑n+1

i=1 w(Xi)
. (8)

In this case, our p-value (6) reduces to (8) by setting

V (x1, . . . , xn0 , xn+1) = s(xn+1).

That is, the score function in our setting can be viewed as an “outlier” score for the new test point.

Again for generality, we use the index k (instead of N ) to indicate that {Xn+j}kj=1 might be
a subset of the original proposal. Finally, we remark that by Lemma A.2, our null hypotheses
Hk : max1≤j≤k Yn+j = 0 implies Xn+j

i.i.d.∼ Q0 where dQ0/ dP0(x) = w(x) and {Xi}i∈I0

i.i.d.∼
P0. Thus, our p-value pk can be viewed as testing the global null hypotheses

H̃k : {Xn+j}kj=1
i.i.d.∼ Q0

using calibration “inliers” {Xi}i∈I0

i.i.d.∼ P0. Therefore, pk can be viewed as extending pw in (8) to
simultaneous inference for multiple test points.

A.5 CHOICE OF SCORE FUNCTION

Drawing inspirations from classical permutation tests, we suggest several natural choices:

• Max-pooling. Since we aim to judge whether any one of the test samples is promising enough, a
natural choice is V (x1:n0 , xn+1:n+k) = max1≤j≤k µ̂(xn+j), the maximum predicted test score.

• Sum-of-prediction. Inspired by Fisher’s randomization test in causal inference (Fisher & Fisher,
1971), we can compare the average predicted values between test and calibration data. Up to
permutations, it is equivalent to setting V (x1:n0

, xn+1:n+k) =
∑k

j=1 µ̂(xn+j).

• Rank-sum statistic. Inspired by Wilcoxon’s rank-sum test, we compare the sum of ranks of the
test points. Up to permutations, we set V (x1:n0

, xn+1:n+k) =
∑k

j=1Rn+j , where Rn+j is the
rank of µ̂(Xn+j) among {µ̂(Xi)}n0

i=1 ∪ {µ̂(Xn+ℓ)}kℓ=1 (in an ascending order).
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• Likelihood ratio statistic. Inspired by the likelihood ratio test, we observe that µ̂(x) can be viewed
as an estimator P(Y = 1 |X = x), thus µ̂(x)/(1 − µ̂(Xn+j)) serves as an estimator for the
likelihood ratio for testing Yn+j = 0 given Xn+j . Accordingly, we consider the joint likelihood
ratio for the test points and set V (x1:n0

, xn+1:n+k) =
∑k

j=1 log(µ̂(xn+j)/(1− µ̂(xn+j)).

A.6 NON-SPLIT VERSION OF CONFHIT

In the main text, we discuss CONFHIT when the conformity score is based on a pre-trained model
µ̂ : X → R, as standard in split conformal prediction (Vovk et al., 2005). This makes our framework
naturally compatible with any pre-trained prediction models in the literature (such as those in our
experiments). However, practitioners may want to involve all the labeled data in both model training
and calibration of p-values. In this part, we present an extension of CONFHIT where the labeled
inactive data are used in both training and calibration, yet still maintaining type-I error control.
Notably, this feature is unique to our problem (since we condition on the labels on the null event).

Formally, we letA be any generic training algorithm that produces a prediction modelA(Z1, . . . , ZN )
based on labeled input data (Z1, . . . , ZN ) with Zi = (Xi, Yi). We assume that the training process
of A is permutation invariant to its input data, which is satisfied by many commonly used algorithms.

We first consider the certification problem. Recall that the inactive labeled data is {(Xi, 0)}n0
i=1, the

active labeled data, without loss of generality, is {(Xi, 1)}ni=n0+1, and the test data is {Xn+j}kj=1.
We consider the imputed data Z̃n+j = (Xn+j , 0) for 1 ≤ j ≤ k, and

D̃ = (Z1, . . . , Zn, Z̃n+1, . . . , Z̃n+k).

Then, we let µ̂(·) = A(D̃), i.e., the trained model with the imputed data. Finally, we define the
conformity scores V as well as the p-value in the same way as in Section 3.1. These p-values for
each k ∈ N+ can then be combined in the same way as in Section 3.2 to address the design problem.

It is straightforward to see that our p-value remains valid conditional on max1≤j≤k{Yn+j} = 0:
Since the trained model µ̂ is invariant to the permutation of data in D̃, under any permutation over
{1, . . . , n0, n+1, . . . , n+ k}, the trained model remains the same, and the weighted exchangeability
between the conformity scores follows exactly the same arguments.

B TECHNICAL PROOF

B.1 PROOF OF THEOREM 3.4

Proof of Theorem 3.4. We define K0 = max{k ≤ N : max1≤j≤k Yn+j = 0}, i.e., the last instance
where all earlier molecules are non-positive. We also let K0 = 0 when Zn+1 = 1 so that K0 is
well-defined. Note that K0 is measurable with respect to {Yn+j}j≥1. Conditional on {Yn+j}j≥1,
K0 thus becomes deterministic, and by the definition of N̂ , we have

P
(

max
1≤j≤N̂

Yn+j = 0
∣∣∣ {Yn+j}j≥1

)
= P

(
N̂ > 0, max

j≤N̂
Zn+j = 0

∣∣∣ {Yn+j}j≥1

)
= P

(
0 < N̂ ≤ K0

∣∣∣ {Zn+j}j≥1

)
1{K0 > 0}. (*)

Since the p-values are monotone, we know N̂ ≤ K0 is equivalent to pK0
≤ α, hence

(*) = P
(
pK0 ≤ α

∣∣∣ {Zn+j}j≥1

)
1{K0 > 0}

= P
(
pK0 ≤ α

∣∣∣ {Zn+j}j≥1, max
j≤K0

Zn+j = 0
)
1{K0 > 0} ≤ α.

Here the second line uses the fact that maxj≤K0
Zn+j is measurable with respect to {Zn+j}j≥1, as

well as the validity condition (ii). Finally, by the tower property, we obtain the desired result.
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B.2 PROOF OF LEMMA A.2

Proof of Lemma A.2. Conditional on all calibration and test labels as well as max1≤j≤k Yn+j = 0,
it is clear that the features in I0 are i.i.d. from P0 := PX |Y=0, whereas the features {Xn+j}kj=1 are
i.i.d. from Q0 := QX |Y=0. By the Bayes’ rule, the two distributions are related by

dQ0

dP0
(x) =

Q(Y = 0 |X = x)

P (Y = 0 |X = x)

dQX

dPX
(x) = w(x),

where PX , QX are the distribution of X under P and Q, respectively. Here, we used the fact that
Q(Y = 0 |X = x) = P (Y = 0 |X = x) due to the covariate shift assumption.

B.3 PROOF OF THEOREM A.1

Proof of Theorem A.1. Throughout we condition on {Zi}i≥1 and maxj≤k Zn+j = 0, and let Pcond

denote the distribution conditional on these information. For any fixed vector x ∈ Xn0+k,
conditional on [X] = [x], we let pk(π;x) be the p-value obtained when the data is realized
as (X1, . . . , Xn0 , Xn+1, . . . , Xn+k) = (xπ(1), . . . , xπ(n0), xπ(n+1), . . . , xπ(n+k)). We assume
V (π;X)’s have no ties almost surely for simplicity, but all the arguments go through in general.

Under the conditions of Lemma A.2, Proposition A.4 implies that

Pcond(pk = pk(π;x) | [X] = [x])

= Pcond(X = (xπ(1), . . . , xπ(n+k)) | [X] = [x]) =
w̄(π;x)∑

π′∈Π w̄(π
′;x)

.

Therefore, noting that by definition

pk(π;x) =

∑
π̃∈Π w̄(π̃ ◦ π;x)1{V (π̃ ◦ π;x) ≥ V (π;x)}∑

π̃∈Π w̄(π̃;x)
=

∑
π̃∈Π w̄(π̃;x)1{V (π̃;x) ≥ V (π;x)}∑

π̃∈Π w̄(π̃;x)
,

and letting πt be the permutation with the largest V (πt;x) such that pk(πt;x) ≤ t, we have

Pcond(pk ≤ t | [X] = [x]) =
∑
π∈Π

1{pk(π;x) ≤ t} · Pcond(pk = pk(π;x)
∣∣ [X] = [x]

)
=

∑
π∈Π

1{pk(π;x) ≤ t} ·
w̄(π;x)∑

π′∈Π w̄(π
′;x)

=
∑
π∈Π

1{V (π;x) ≥ V (πt;x)} ·
w̄(π;x)∑

π′∈Π w̄(π
′;x)

= pk(πt;x) ≤ t.

Here the first equality uses the conditional distribution described above, the third equality uses the
monotonicity of pk(π;x) in V (π;x) and the definition of πt, and the last equality holds by definition.
Marginalizing over [X] (but still conditional on {Zi}n+k

i=1 and max1≤j≤k Yn+j = 0) then leads to
the desired result.

B.4 PROOF OF THEOREM 3.1

Proof of Theorem 3.1. As usual, throughout, we condition on {Yi}i≥1 and max1≤j≤k Yn+j = 0,
and use Pcond to denote the distribution given these information. We condition on the event that
the unordered set [x] = [x] for any fixed vector x = (x1, . . . , xn0 , xn+1, . . . , xn+k). The labels
{Zi}n+k

i=1 are also conditioned on as usual. The randomness then comes from (i) which values in [x]
correspond to each data point, and (ii) the randomly sampled permutations.

Let π̂ be the unique permutation of {1, . . . , n0, n+1, . . . , n+k} such that X = (xπ̂(1), . . . , xπ̂(n+k)).
Then for any permutation π ∈ Π, we have

V (π;X) = V (π ◦ π(0);X) = V (π ◦ π̂;x),
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and similarly for w̄(π;X) = w̄(π ◦ π̂;x). By Proposition A.4, we know that P(π̂ = π | [X] =

[x]) ∝ w̄(π;x), where we recall the definition of w̄(π;x) =
∏k

j=1 w(xπ(n+j)). In addition, we
have

prand
k =

w̄(π̂;x) +
∑B

b=1 w̄(π̂ ◦ π(b);x)1{V (π̂;x) ≤ V (π̂ ◦ π(b);x)}
w(π̂;x) +

∑B
b=1 w(π̂ ◦ π(b);x)

,

where x is the fixed vector, and the randomness comes from π̂ and {π(b)}Bb=1.

For notational simplicity, we denote π̂(0) = π̂, and π̂(b) = π̂ ◦ π(b) for b = 1, . . . , B. We now study
the joint distribution of (π̂(0), π̂(1), . . . , π̂(B)). For any fixed permutations π0, . . . , πB ∈ Π, we note

Pcond
(
π̂(0) = π0, π̂

(1) = π1, . . . , π̂
(B) = πB

∣∣∣ [X] = [x]
)

= Pcond
(
π̂ = π0, π

(1) = π−1
0 ◦ π1, . . . , π̂(B) = π−1

0 ◦ πB
∣∣∣ [X] = [x]

)
=

1

|Π|B
· Pcond(π̂ = π0 | [X] = [x]) ∝ w̄(π0;x),

where π−1
0 is the inverse permutation of π0. Above, the last equality uses the fact that π(1), . . . , π(B)

are i.i.d. uniformly sampled from Π and independent of everything. Therefore, when we further
conditional on the unordered set of realized values of the permutations [π̂(0), π̂(1), . . . , π̂(B)] =
[π0, . . . , πB ] for any (fixed) value of π0, . . . , πB , we know that

Pcond
(
(π̂(0), π̂(1), . . . , π̂(B)) = (πσ(0), . . . , πσ(B))

∣∣∣ [π̂(0), π̂(1), . . . , π̂(B)] = [π0, . . . , πB ], [X] = [x]
)

=
w̄(πσ(0);x)∑

σ∈Π̃ w̄(πσ(0);x)
,

where Π̃ is the collection of all permutations of {0, 1, . . . , B}. This also means that for every
b ∈ {0, 1, . . . , B},

Pcond
(
π̂(0) = πb

∣∣∣ [π̂(0), π̂(1), . . . , π̂(B)] = [π0, . . . , πB ]
)
=

w̄(πb;x)∑B
b′=0 w̄(πb′ ;x)

. (9)

On the other hand, for any σ ∈ Π̃, when (π̂(0), π̂(1), . . . , π̂(B)) = (πσ(0), . . . , πσ(B)), we have

pcond
k =

w̄(πσ(0);x) +
∑B

b=1 w̄(πσ(b);x)1{V (πσ(0);x) ≤ V (πσ(b);x)}
w̄(πσ(0);x) +

∑B
b=1 w̄(πσ(b);x)

=

∑B
b=0 w̄(πb;x)1{V (πσ(0);x) ≤ V (πb;x)}∑B

b=0 w̄(πb;x)
. (10)

That is, the value of pcond
k only depends on which value among (π0, . . . , πB) the data permutation

π̂(0) takes on. Thus,

Pcond
(
prand
k ≤ t

∣∣∣ [π̂(0), π̂(1), . . . , π̂(B)] = [π0, . . . , πB ], [X] = [x]
)

=
∑
σ∈Π̃

P
(
(π̂(0), π̂(1), . . . , π̂(B)) = (πσ(0), . . . , πσ(B))

∣∣∣ [π̂(0), π̂(1), . . . , π̂(B)] = [π0, . . . , πB ]
)

× 1

{∑B
b=0 w̄(πb;x)1{V (πσ(0);x) ≤ V (πb;x)}∑B

b=0 w̄(πb;x)
≤ t

}

=

B∑
b∗=0

P
(
π̂(0) = πb∗

∣∣∣ [π̂(0), π̂(1), . . . , π̂(B)] = [π0, . . . , πB ]
)

× 1

{∑B
b=0 w̄(πb;x)1{V (πb∗ ;x) ≤ V (πb;x)}∑B

b=0 w̄(πb;x)
≤ t

}
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=

B∑
b∗=0

w̄(πb∗ ;x)∑B
b′=0 w̄(πb′ ;x)

1

{∑B
b=0 w̄(πb;x)1{V (πb∗ ;x) ≤ V (πb;x)}∑B

b=0 w̄(πb;x)
≤ t

}
≤ t.

Here, the first equality follows from (10), the third equality follows from (9), and the last inequality
is by definition. Finally, marginalizing over [X] and [π̂(0), . . . , π̂(B)] yields the desired result.

B.5 PROOF OF THEOREM 3.5

In this part, we prove the robustness of joint weighted conformal p-value with estimated density ratio.
For generality, we use a general index k instead of the total budget N , to indicate that {Xn+j}kj=1
can be a subset of the original samples (as in Section 3.2). For conceptual simplicity, we present the
detailed proof for deterministic p-values (Appendix A.1), and the result for randomized p-values in
the main text naturally follows with the same ideas.

Proof of Theorem 3.5. Let Pcond(·) denote the distribution conditional on all the labels {Yi}i≥1 and
the event max1≤j≤k Yn+j = 0. Following the arguments in the proof of Theorem A.1, for any
fixed value x, we let pk(π;x) be the p-value with the correct weights w(·) obtained when the data
is realized as (X1, . . . , Xn0

, Xn+1, . . . , Xn+k) = (xπ(1), . . . , xπ(n0), xπ(n+1), . . . , xπ(n+k)), and
similarly we define p̂k(π;x). Then we have p̂k(V (π;x)) = p̂k(π;x) where p̂k(v) is defined in
Theorem 3.5, and by definition, we have∑

π∈Π

1{p̂k(π;x) ≤ t̂} ·
ˆ̄w(π;x)∑

π′∈Π
ˆ̄w(π′;x)

= p̂k(v̂) ≤ t̂ ≤ t.

In addition, by the definition of t̂, we have p̂k(π;x) ≤ t̂ if and only if p̂k(π;x) ≤ t for any π ∈ Π.
As a result, we have

Pcond(p̂k ≤ t ∣∣ [X = x]
)
=

∑
π∈Π

1{p̂k(π;x) ≤ t} ·
w̄(π;x)∑

π′∈Π w̄(π
′;x)

=
∑
π∈Π

1{p̂k(π;x) ≤ t̂} ·
w̄(π;x)∑

π′∈Π w̄(π
′;x)

≤ t̂+
∑
π∈Π

1{p̂k(π;x) ≤ t̂}
(

w̄(π;x)∑
π′∈Π w̄(π

′;x)
−

ˆ̄w(π;x)∑
π′∈Π

ˆ̄w(π′;x)

)

≤ t̂+
∑
π∈Π

1{V (π;x) ≥ v̂}
(

w̄(π;x)∑
π′∈Π w̄(π

′;x)
−

ˆ̄w(π;x)∑
π′∈Π

ˆ̄w(π′;x)

)

≤ t+
∑

π∈Π w̄(π;x)1{V (π;x) ≥ v̂}∑
π′∈Π w̄(π

′;x)
−

∑
π∈Π

ˆ̄w(π;x)1{V (π;x) ≥ v̂}∑
π′∈Π

ˆ̄w(π′;x)
=: t+ ∆̂.

Rearranging the terms, we have

∆̂ =

(∑
π∈Π w̄(π;x)1{V (π;x) ≥ v̂}

)(∑
π∈Π

ˆ̄w(π;x)1{V (π;x) < v̂}
)(∑

π′∈Π w̄(π
′;x)

)(∑
π′∈Π

ˆ̄w(π′;x)
)

−
(∑

π∈Π w̄(π;x)1{V (π;x) < v̂}
)(∑

π∈Π
ˆ̄w(π;x)1{V (π;x) ≥ v̂}

)(∑
π′∈Π w̄(π

′;x)
)(∑

π′∈Π
ˆ̄w(π′;x)

)
≤

(∑
π∈Π[ ˆ̄w(π;x) + δ̂−(π;x)]1{V (π;x) ≥ v̂}

)(∑
π∈Π

ˆ̄w(π;x)1{V (π;x) < v̂}
)(∑

π′∈Π w̄(π
′;x)

)(∑
π′∈Π

ˆ̄w(π′;x)
)

−
(∑

π∈Π[ ˆ̄w(π;x)− δ̂+(π;x)]1{V (π;x) < v̂}
)(∑

π∈Π
ˆ̄w(π;x)1{V (π;x) ≥ v̂}

)(∑
π′∈Π w̄(π

′;x)
)(∑

π′∈Π
ˆ̄w(π′;x)

)
≤

(∑
π∈Π δ̂

−(π;x)1{V (π;x) ≥ v̂}
)(∑

π∈Π
ˆ̄w(π;x)1{V (π;x) < v̂}

)(∑
π′∈Π w̄(π

′;x)
)(∑

π′∈Π
ˆ̄w(π′;x)

)
+

(∑
π∈Π δ̂

+(π;x)1{V (π;x) < v̂}
)(∑

π∈Π
ˆ̄w(π;x)1{V (π;x) ≥ v̂}

)(∑
π′∈Π w̄(π

′;x)
)(∑

π′∈Π
ˆ̄w(π′;x)

) ,
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where we used the non-negativity of the weights and the definition of δ̂±(π;x). Further, noting that

t̂ =
∑

π∈Π
ˆ̄w(π;X) 1{v̂≤V (π;X)}∑

π∈Π
ˆ̄w(π;X)} , we thus have

∆̂ ≤
(1− t̂) ·

(∑
π∈Π δ̂

−(π;x)1{V (π;x) ≥ v̂}
)
+ t̂ ·

(∑
π∈Π δ̂

+(π;x)1{V (π;x) < v̂}
)∑

π′∈Π w̄(π
′;x)

,

which completes our proof for the results of pk.

Finally, all the arguments still go through (following some arguments in the proof of Theorem 3.1)
for p̂k after replacing Π by {π(b)}Bb=0 and additionally conditioning on the unordered set of
{π̂, π(1), . . . , π(B)}, where π̂ is the permutation such that X = (xπ(1), . . . , xπ(n+k)). We omit
the details here for brevity.

C EXPERIMENTAL SETTING DETAILS

C.1 CONSTRAINED MOLECULE OPTIMIZATION

For training the generator, we used the publicly available training code from the HGRAPH2GRAPH
(Jin et al., 2020) repository. We retained the default training/test splits and randomly held out 20% of
the training set for calibration. The test set contains 800 samples and is also sourced from the same
repository.

For the SELF-EDIT (Jiao et al., 2023) baseline, we used the same data splits and obtained the training
code from its official repository. Both models were trained with their default configurations, without
modification.

In all cases, we sampled up to 50 candidate molecules per input until a sufficient number of eligible
candidates were obtained. We defined ineligible candidates as those that were invalid (e.g., chemically
invalid), duplicates, or out-of-distribution (OOD) with respect to the training data. We retained only
those test samples for which at least N ∈ {5, 10} valid candidates could be generated.

The property oracles were sourced from RDKit for QED and from the Therapeutics Data Commons
library for DRD2.

Density Estimation and Scoring Function. We trained a molecular property predictor using
the Chemprop(Yang et al., 2019) library for both QED and DRD2 tasks. The model used a
3-layer Message passing Neural Network with a final hidden dimension of 4 for feature extrac-
tion and was trained for 5 epochs using the default Chemprop trainer settings. We used the
MulticomponentMessagePassing module without any modification.

For density estimation, we followed the CODRUG approach by extracting penultimate layer features
and fitting a Gaussian kernel density estimator (KDE) using the scipy library with a bandwidth of 1.
To filter OOD samples, we computed the 95th percentile density on the calibration set and removed
test-time generated molecules falling below this threshold. Additional samples were drawn until the
target number N of valid candidates was met.

For sequential p-value computation, we used 2000 Monte Carlo samples per test instance.

C.2 HYPERPARAMETER CHOICES AND DESIGN JUSTIFICATIONS

Density ratio model and feature selection. For density estimation, we follow the CODRUG proce-
dure, which has been shown to be robust for small-molecule density estimation under covariate shift.
We use the penultimate-layer representation of the property predictor, which yields a 4-dimensional
feature vector that is expressive yet low-dimensional enough to enable stable kernel density esti-
mation. For bandwidth selection, we adopt the same strategy as CODRUG: we perform a 5-fold
cross-validation over bandwidths {0.1, 1, 10}, compute the KDE likelihood on each held-out split,
and choose the bandwidth with the highest average likelihood. This avoids post-hoc tuning and
ensures that the KDE matches the calibration distribution as closely as possible.

Predictive model selection. Conformal validity does not depend on the complexity of the predictive
model, but the power of the method improves when better predictors and more discriminative score
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functions are used. To avoid unnecessary tuning, we select models with strong reported performance
and publicly available implementations. For the CMO tasks (QED/DRD2), we train a standard
Chemprop MPNN. For the SBDD task, we use the default EGNN predictor from the TARGETDIFF
implementation. These choices are simple, stable, and sufficient for producing informative conformity
scores.

Choice of test statistic. Since the procedure operates on a set of generated molecules, the choice of
score statistic affects the power but not the validity. We use the maximum score across the set, which
is a natural heuristic in this context: if at least one strong candidate is present, the max-score captures
this evidence immediately, whereas statistics such as the mean or min dilute the signal with weaker
candidates. Empirically, we found the max statistic to produce higher power and lower rejection rates
than alternatives.

Number of permutations (B). We set B = 2000 Monte Carlo permutations, which we found
sufficient for stable performance while maintaining modest computational cost. Running the full
CONFHIT procedure with B = 2000 takes only 4 minutes for 800 samples (see Fig. 6). We also
evaluated B ∈ {500, 1000, 2000, 5000} and observed negligible variance in empirical coverage
across these values, confirming that the Monte Carlo approximation converges quickly. Runtime
scales linearly with B, and 2000 provides an effective balance between statistical stability and
efficiency.

Figure 6: Error rate as a function of the number of Monte Carlo permutations B for DRD2 with HGraph2Graph
(N = 5). The empirical error rate remains stable with minimal variance.

C.3 STRUCTURE-BASED DRUG DISCOVERY

For this task, we used a pre-trained generative model checkpoint obtained from the official TARGET-
DIFF (Guan et al., 2023) repository, along with their corresponding test set.

To estimate scores and extract features, we trained an EGNN-based model using their provided
codebase. We modified the final hidden layer to output an 8-dimensional embedding. For validation
data, we used protein-ligand complexes from the CrossDocked2020 (Francoeur et al., 2020a) dataset,
excluding all training and test set entries to avoid data leakage.

Density estimation was performed as above, using Gaussian KDE with a bandwidth of 1.

C.4 COMPUTE RESOURCES

All experiments were conducted on a single NVIDIA A100 GPU. The approximate runtime per
component is as follows:

• Property predictor training (QED/DRD2): 20 minutes

• HGRAPH2GRAPH generator training: 10 hours
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• SELF-EDIT training: 48 hours

• Density estimator training for SBDD: 24 hours

• Inference using TARGETDIFF: 30 minutes

• CONFHIT procedure per test batch: 30 minutes (over 800 samples; ≈2.25 seconds/sample)

– Candidate generation (CMO task): 14 minutes (≈1.05 seconds/sample)
– Predictor feature extraction: 6 minutes (≈0.45 seconds/sample)
– KDE computation: 3 minutes (≈0.23 seconds/sample)
– Running the conformal procedure: 4 minutes (≈0.30 seconds/sample)

C.5 CODE AND DATA AVAILABILITY

We include with supplementary material the following to ensure reproducibility:

• Model checkpoints for QED and DRD2 property and density estimators.

• Extracted features and CrossDocked identifiers used for calibration in SBDD.

• Calibration and test splits for all tasks.

• Scripts to generate candidate molecule sets and compute all reported metrics.

• Configuration files for reproducing results across datasets and models.

• Installation instructions.

Due to limitations in the supplementary data size, we omit the generative models and SBDD scoring
model. We will include them in a public repository upon acceptance.

D WORKING UNDER AN OVERALL BUDGET

In Section 4.6, we discussed the application of CONFHIT in providing practically useful heuristics
while constructing predicting sets when a fixed total budget B is available. The detailed algorithm is
provided in Algorithm 2.

Algorithm 2 Working under an overall budget

Input: Calibration data {Xi}n0
i=1 with Yi = 0, test batches {X(t)}Tt=1 of size N , conformity score V , weight

function ŵ, grid of confidence levels A ⊂ (0, 1), total budget B ∈ N+.
1: Initialize P̂max ← 0, C⋆ ← ∅, α⋆ ← 0.
2: for each α ∈ A do
3: For each test batch t = 1, . . . , T , run Algorithm 1 with level α to obtain prunded prediction sets C(α)

t .
4: Compute total cost C =

∑T
t=1 |C

(α)
t |.

5: Record number of empty sets E = |{t : C(α)
t = ∅}|.

6: if C > B then
7: Sort C(α)

t in descending order of size.
8: Iteratively delete sets until total cost C ≤ B.
9: Let D be the number of deleted sets.

10: else
11: Set D ← 0.
12: end if
13: Estimate positives as P̂ (α) = (1− α)− E −D.
14: if P̂ (α) > P̂max then
15: Update P̂max ← P̂ (α), C⋆ ← {C(α)

t }, α⋆ ← α.
16: end if
17: end for
Output: Best estimated positives P̂max with corresponding sets C⋆ at significance level α⋆.
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E ADDITIONAL EXPERIMENTS

E.1 DETAILED RESULTS

In this section, we provide error bars for the plots in Sections 4.3 and 4.4. The tables include Error
Rate, fraction certified, empty set fraction and mean set size depicted in 4.3 and 4.4 along with
standard deviation computed over 5 random runs, across different methods. Further, we report
metrics on the Constrained Molecule Optimization (CMO) task, using the Qualitative Estimate of
Drug-Likeness (QED) property with success (Y = 1) if QED(x) > 0.9, following Jin et al. (2020).
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E.1.1 CERTIFICATION RESULTS

Table 1: DRD2_HGRAPH Certification Results

N α Error Rate (%) Certified Fraction (%)

3 0.1 6.5± 1.1 22.6± 2.4
3 0.2 9.6± 1.4 33.2± 4.1
3 0.3 18.5± 1.9 39.8± 4.7
3 0.4 26.8± 2.1 47.6± 3.5
3 0.5 26.0± 2.0 57.5± 6.8

5 0.1 7.3± 2.0 43.0± 4.3
5 0.2 9.3± 1.2 53.0± 4.6
5 0.3 12.2± 3.2 68.8± 6.2
5 0.4 21.8± 2.6 65.1± 4.6
5 0.5 21.6± 2.2 70.2± 6.1

7 0.1 5.5± 0.6 51.5± 5.1
7 0.2 8.1± 1.2 60.6± 2.5
7 0.3 11.8± 3.1 66.2± 5.2
7 0.4 19.7± 3.2 70.4± 3.6
7 0.5 20.6± 2.2 74.5± 6.2

Table 2: DRD2_SELFEDIT Certification Results

N α Error Rate (%) Certified Fraction (%)

3 0.1 7.1± 0.4 19.1± 2.1
3 0.2 8.7± 1.7 21.5± 3.1
3 0.3 19.8± 1.2 28.2± 3.2
3 0.4 19.8± 1.6 39.3± 4.1
3 0.5 28.3± 3.3 42.5± 5.2

5 0.1 7.0± 1.0 22.8± 3.1
5 0.2 7.4± 1.3 25.9± 2.5
5 0.3 16.4± 2.2 30.2± 4.1
5 0.4 17.4± 2.6 41.7± 4.6
5 0.5 26.9± 3.2 45.7± 5.1

7 0.1 6.3± 0.9 29.0± 2.2
7 0.2 9.8± 1.6 38.3± 3.1
7 0.3 16.8± 2.1 42.3± 4.7
7 0.4 17.1± 2.2 47.6± 4.9
7 0.5 26.4± 4.2 51.6± 5.6
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Table 3: QED_HGRAPH Certification Results

N α Error Rate (%) Certified Fraction (%)

3 0.1 7.8± 1.2 49.3± 2.0
3 0.2 13.4± 1.6 47.8± 1.8
3 0.3 16.3± 2.1 54.0± 1.0
3 0.4 19.4± 2.7 56.8± 1.0
3 0.5 21.8± 3.2 60.8± 3.4

7 0.1 7.9± 0.5 52.2± 3.2
7 0.2 14.6± 1.6 56.5± 2.0
7 0.3 17.9± 2.1 56.7± 2.2
7 0.4 20.3± 1.2 65.5± 3.1
7 0.5 22.5± 3.4 72.0± 2.7

Table 4: QED_SELFEDIT Certification Results

N α Error Rate (%) Certified Fraction (%)

3 0.1 7.6± 1.2 42.6± 6.1
3 0.2 10.4± 0.6 54.6± 3.9
3 0.3 14.2± 1.3 52.2± 2.7
3 0.4 15.7± 2.1 57.0± 3.6
3 0.5 17.2± 3.7 62.7± 4.1

7 0.1 11.9± 1.4 52.2± 3.5
7 0.2 21.6± 2.1 62.3± 4.0
7 0.3 29.7± 2.5 61.2± 2.9
7 0.4 30.8± 1.2 77.9± 4.3
7 0.5 32.9± 3.2 78.4± 1.6

Table 5: TARGETDIFF Certification Results

N α Error Rate (%) Certified Fraction (%)

5 0.1 8.4± 2.6 42.9± 2.5
5 0.2 10.8± 3.0 52.1± 2.9
5 0.3 11.4± 2.3 57.7± 3.8
5 0.4 14.9± 4.4 64.3± 3.6
5 0.5 17.1± 3.0 68.5± 3.4

10 0.1 5.3± 2.5 57.8± 4.3
10 0.2 8.2± 3.3 63.9± 3.6
10 0.3 9.3± 2.0 68.8± 2.6
10 0.4 11.5± 2.7 72.4± 4.0
10 0.5 12.8± 3.9 76.6± 3.7

15 0.1 10.1± 1.1 69.5± 3.3
15 0.2 7.6± 1.2 70.0± 4.6
15 0.3 8.7± 1.5 73.1± 5.1
15 0.4 9.8± 2.0 74.5± 2.5
15 0.5 12.0± 1.8 79.7± 2.3
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Table 6: MOLCRAFT Certification Results

N α Error Rate (%) Certified Fraction (%)

5 0.1 7.0± 1.2 40.1± 2.7
5 0.2 11.0± 1.8 47.9± 3.5
5 0.3 12.7± 1.0 55.5± 4.9
5 0.4 15.1± 1.2 63.1± 4.9
5 0.5 16.6± 1.2 68.1± 3.8

10 0.1 5.2± 1.6 58.3± 5.8
10 0.2 6.7± 1.1 64.2± 5.8
10 0.3 7.5± 1.4 67.6± 4.9
10 0.4 9.0± 1.6 71.1± 7.1
10 0.5 9.0± 2.9 73.5± 7.5

15 0.1 7.3± 1.0 55.4± 4.1
15 0.2 9.1± 2.0 59.8± 5.8
15 0.3 9.1± 3.6 68.7± 5.9
15 0.4 9.5± 3.0 69.1± 7.2
15 0.5 11.5± 4.9 76.2± 7.8

Table 7: DECOMPDIFF Certification Results

N α Error Rate (%) Certified Fraction (%)

5 0.1 3.2± 2.2 56.6± 1.4
5 0.2 3.1± 1.9 63.5± 1.2
5 0.3 4.7± 2.0 69.0± 2.4
5 0.4 5.2± 2.4 73.4± 0.8
5 0.5 5.4± 2.6 77.0± 1.2

10 0.1 2.1± 1.6 74.4± 4.0
10 0.2 3.1± 2.5 76.4± 3.5
10 0.3 5.2± 3.1 79.6± 3.4
10 0.4 6.2± 2.8 82.7± 3.6
10 0.5 5.9± 3.0 82.7± 2.1

15 0.1 2.6± 3.2 83.2± 5.7
15 0.2 2.5± 3.2 83.9± 5.0
15 0.3 1.6± 2.7 85.8± 5.3
15 0.4 1.6± 2.8 85.1± 6.2
15 0.5 2.5± 3.1 87.1± 5.2
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E.1.2 DESIGN RESULTS

DRD2_HGRAPH

Table 8: DRD2_HGRAPH Design Results

N α Error Rate (%) Mean Set Size Empty Set (%)

3 0.1 4.2± 0.3 1.9± 0.0 68.8± 1.3
3 0.2 6.6± 0.5 1.8± 0.0 46.1± 1.3
3 0.3 9.1± 0.6 1.8± 0.0 25.3± 1.8
3 0.4 11.0± 0.8 1.6± 0.0 15.0± 1.3
3 0.5 13.0± 0.8 1.5± 0.0 9.9± 0.8

5 0.1 5.4± 1.6 2.4± 0.7 47.9± 2.6
5 0.2 7.9± 2.5 2.1± 0.7 28.7± 2.8
5 0.3 10.4± 3.3 1.8± 0.6 15.8± 2.1
5 0.4 12.4± 4.0 1.6± 0.5 11.3± 1.9
5 0.5 13.9± 4.4 1.4± 0.5 8.8± 1.5

7 0.1 3.6± 0.8 3.1± 0.1 53.0± 1.2
7 0.2 6.3± 0.7 2.6± 0.1 30.0± 1.4
7 0.3 9.0± 1.0 2.1± 0.0 15.8± 0.7
7 0.4 11.2± 1.1 1.8± 0.0 9.2± 0.5
7 0.5 12.9± 1.2 1.7± 0.0 5.9± 0.6

DRD2_SELFEDIT

Table 9: DRD2_SELFEDIT Design Results

N α Error Rate (%) Mean Set Size Empty Set (%)

3 0.1 9.8± 1.3 2.0± 0.0 64.5± 0.5
3 0.2 14.6± 2.2 1.9± 0.1 42.3± 0.2
3 0.3 19.6± 3.2 1.7± 0.0 24.0± 0.9
3 0.4 22.5± 3.2 1.6± 0.0 12.3± 0.1
3 0.5 24.5± 4.0 1.5± 0.0 7.3± 0.6

5 0.1 9.5± 1.2 2.6± 0.1 53.0± 1.5
5 0.2 14.0± 2.4 2.3± 0.1 33.3± 2.6
5 0.3 20.7± 2.1 2.0± 0.0 14.9± 0.6
5 0.4 25.8± 2.6 1.7± 0.1 8.1± 1.1
5 0.5 28.8± 3.1 1.6± 0.0 4.2± 0.4

7 0.1 11.8± 1.3 3.1± 0.1 46.6± 0.8
7 0.2 19.5± 3.3 2.6± 0.0 22.9± 3.5
7 0.3 24.8± 6.3 2.1± 0.1 12.2± 1.9
7 0.4 28.6± 7.1 1.8± 0.1 7.4± 1.7
7 0.5 31.6± 6.3 1.7± 0.0 4.0± 0.6

QED_HGRAPH
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Table 10: QED_HGRAPH Design Results

N α Error Rate (%) Mean Set Size Empty Set (%)

3 0.1 10.1± 0.7 1.2± 0.0 70.7± 1.9
3 0.2 17.0± 0.6 1.3± 0.0 45.4± 1.6
3 0.3 21.2± 1.4 1.3± 0.1 26.8± 0.9
3 0.4 25.2± 1.5 1.3± 0.0 13.2± 1.2
3 0.5 28.2± 1.7 1.2± 0.0 6.9± 0.6

5 0.1 12.2± 0.7 2.6± 0.0 27.2± 0.2
5 0.2 18.8± 1.1 2.3± 0.1 7.1± 0.2
5 0.3 24.4± 1.2 1.8± 0.0 0.0± 0.0
5 0.4 27.7± 1.3 1.6± 0.1 0.0± 0.0
5 0.5 29.9± 1.0 1.5± 0.1 0.0± 0.0

7 0.1 10.4± 1.2 2.5± 0.1 56.6± 0.8
7 0.2 17.5± 1.2 2.0± 0.0 31.7± 1.8
7 0.3 22.0± 1.4 1.7± 0.1 18.9± 1.6
7 0.4 26.1± 1.5 1.4± 0.0 9.4± 1.5
7 0.5 29.1± 1.6 1.3± 0.0 4.9± 1.1

QED_SELFEDIT

Table 11: QED_SELFEDIT Design Results

N α Error Rate (%) Mean Set Size Empty Set (%)

3 0.1 10.1± 0.4 1.2± 0.0 64.8± 1.8
3 0.2 14.4± 0.9 1.3± 0.1 45.2± 1.5
3 0.3 18.8± 1.4 1.3± 0.1 27.1± 1.8
3 0.4 21.5± 1.9 1.2± 0.1 13.3± 1.0
3 0.5 23.4± 1.9 1.2± 0.0 7.0± 1.0

5 0.1 11.9± 0.8 2.7± 0.1 26.0± 2.4
5 0.2 20.1± 1.2 2.3± 0.1 7.0± 0.7
5 0.3 25.8± 1.4 1.9± 0.1 0.0± 0.0
5 0.4 28.4± 1.5 1.6± 0.1 0.0± 0.0
5 0.5 29.9± 2.1 1.5± 0.2 0.0± 0.0

7 0.1 18.2± 2.7 2.1± 0.2 56.7± 1.5
7 0.2 26.9± 3.8 1.9± 0.2 34.7± 2.9
7 0.3 34.5± 3.0 1.6± 0.1 18.3± 2.2
7 0.4 39.2± 3.0 1.4± 0.1 10.2± 2.5
7 0.5 42.1± 2.5 1.3± 0.0 5.7± 1.6

TARGETDIFF
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Table 12: TARGETDIFF Design Results

N α Error Rate (%) Mean Set Size Empty Set (%)

5 0.1 10.0± 1.5 2.5± 0.1 37.9± 2.6
5 0.2 17.4± 1.5 2.2± 0.1 21.4± 3.1
5 0.3 27.2± 3.5 2.0± 0.1 8.6± 0.0
5 0.4 34.2± 2.9 1.7± 0.1 2.1± 1.4
5 0.5 37.0± 1.2 1.6± 0.0 0.4± 0.7

10 0.1 9.4± 2.7 3.7± 0.1 21.9± 8.0
10 0.2 22.5± 3.5 2.9± 0.0 6.2± 3.5
10 0.3 29.4± 0.9 2.3± 0.0 1.2± 0.0
10 0.4 35.6± 0.9 1.8± 0.0 0.0± 0.0
10 0.5 37.5± 3.5 1.6± 0.1 0.0± 0.0

15 0.1 11.2± 1.8 4.7± 0.1 15.0± 5.3
15 0.2 21.9± 2.7 3.5± 0.0 3.8± 1.8
15 0.3 31.9± 0.9 2.4± 0.0 1.2± 1.8
15 0.4 36.9± 2.7 1.8± 0.0 0.6± 0.9
15 0.5 38.1± 2.7 1.6± 0.1 0.0± 0.0

MOLCRAFT

Table 13: MOLCRAFT Design Results

N α Error Rate (%) Mean Set Size Empty Set (%)

5 0.1 9.8± 1.2 2.6± 0.1 40.7± 1.9
5 0.2 18.7± 1.4 2.3± 0.2 20.7± 5.6
5 0.3 26.0± 3.1 2.0± 0.1 7.7± 0.7
5 0.4 29.3± 5.3 1.7± 0.0 2.4± 0.0
5 0.5 32.9± 4.2 1.6± 0.0 1.2± 1.2

10 0.1 9.9± 1.3 3.6± 0.3 22.2± 3.3
10 0.2 18.2± 2.0 3.0± 0.2 9.9± 2.1
10 0.3 25.1± 0.7 2.2± 0.1 2.9± 1.4
10 0.4 28.0± 1.4 1.8± 0.1 2.1± 0.7
10 0.5 29.6± 2.5 1.7± 0.1 0.4± 0.7

15 0.1 11.1± 0.0 4.3± 0.0 16.0± 0.0
15 0.2 19.8± 0.0 3.2± 0.0 1.2± 0.0
15 0.3 23.5± 0.0 2.2± 0.0 1.2± 0.0
15 0.4 27.2± 0.0 1.8± 0.0 1.2± 0.0
15 0.5 28.4± 0.0 1.6± 0.0 1.2± 0.0

DECOMPDIFF
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Table 14: DECOMPDIFF Design Results

N α Error Rate (%) Mean Set Size Empty Set (%)

5 0.1 9.6± 2.6 2.6± 0.3 25.0± 2.2
5 0.2 16.7± 4.7 2.3± 0.2 11.7± 0.7
5 0.3 24.2± 0.7 2.0± 0.0 2.5± 2.2
5 0.4 26.7± 0.7 1.7± 0.1 1.2± 0.0
5 0.5 28.8± 1.2 1.6± 0.1 0.8± 0.7

10 0.1 11.2± 0.5 3.4± 0.1 13.5± 0.9
10 0.2 19.2± 0.1 2.7± 0.0 2.6± 0.0
10 0.3 24.4± 3.6 2.1± 0.1 0.0± 0.0
10 0.4 26.3± 0.9 1.7± 0.1 0.0± 0.0
10 0.5 27.6± 0.9 1.6± 0.1 0.0± 0.0

15 0.1 9.6± 0.9 4.3± 0.4 8.3± 2.7
15 0.2 19.2± 3.6 2.9± 0.1 1.3± 1.8
15 0.3 23.7± 4.5 2.3± 0.1 0.0± 0.0
15 0.4 26.9± 3.6 1.8± 0.0 0.0± 0.0
15 0.5 27.6± 2.7 1.7± 0.1 0.0± 0.0
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E.2 COMPARING DIFFERENT TEST STATISTICS

In this section, we include additional results for Section 4.5 comparing different test statistics. While
the power varies based on the choice of the test statistic, CONFHIT attains valid coverage across
statistics.

Figure 7: Comparison of score statistics on DRD2 (HGRAPH2GRAPH, N=3). Left: rejection (power) at
α = 0.1, 0.3. Right: error vs. α

Figure 8: Comparison of score statistics on DRD2 (HGRAPH2GRAPH, N=5). Left: rejection (power) at
α = 0.1, 0.3. Right: error vs. α

Figure 9: Comparison of score statistics on DRD2 (HGRAPH2GRAPH, N=7). Left: rejection (power) at
α = 0.1, 0.3. Right: error vs. α

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Figure 10: Comparison of score statistics on SBDD (TARGETDIFF, N=5). Left: rejection (power) at α = 0.1, 0.3.
Right: error vs. α

Figure 11: Comparison of score statistics on SBDD (TARGETDIFF, N=10). Left: rejection (power) at α =
0.1, 0.3. Right: error vs. α
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E.3 P-VALUES

In this section, we show the validity of conformal p-value plots described in section 4.5, across tasks
and datasets. In each panel, the distribution remains close to the uniform (dashed line; see also the
reported KL divergence from uniformity), confirming approximate validity of our p-values (albeit
slightly conservative).

Figure 12: Density of conformal nested p-values for QED using SELFEDIT at set sizes k = 3, 5, 7.

Figure 13: Density of conformal nested p-values for DRD2 using HGRAPH at set sizes k = 3, 5, 7.

Figure 14: Density of conformal nested p-values for SBDD using TARGETDIFF at set sizes k = 1, 5, 10.

F EFFECT OF PREDICTOR QUALITY

In this section, we investigate how the accuracy of the predictor affects the performance of CONFHIT.
We consider three scenarios:

1. Normal predictor where the calibrated classifier outputs p = Pr(active | x).
2. Noisy predictor obtained by adding uniform Gaussian noise, giving

p̃ =
p+N (0, 1)

2
.

3. Inverse predictor obtained by replacing p with 1− p.

Figure 15 illustrates how CONFHIT behaves under these perturbation settings. Even when the
predictor is corrupted or inverted, the method maintains valid error control, with empirical error rates
remaining below the target line y = 100α. This demonstrates that the statistical validity of CONFHIT
does not rely on predictor accuracy.

Predictor quality affects only the power. As the predictor becomes less informative, the conformal sets
become less efficient, which leads to a higher frequency of empty sets or larger sets depending on the
task. Despite this expected degradation, the method consistently preserves its coverage guarantees.
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Figure 15: Effect of predictor quality on CONFHIT’s error rate on the CMO task. In both DRD2 (top) and QED
(bottom) using the Hgraph model, noisy and inverse predictors exhibit reduced power but maintain valid error
control across all values of α.

Figure 16: Results for heuristic baseline with predicted probabilities (while varying predictor quality), showing
rejection rates and error rates for QED with N = 5 using the Hgraph model. As predictor quality deteriorates,
the performance quickly drops with severe violation of the error control.

G ADDITIONAL BASELINES

G.1 HEURISTIC BASELINE

We evaluate a simple confidence based heuristic. Given a predicted probability p̂ of success, the
heuristic selects the smallest n such that (1− p̂)n ≤ α. This provides a natural baseline that depends
only on classifier scores without any uncertainty calibration.

The results in Figures 16 and show that this heuristic does not reliably control the error rate. When
the predictor is accurate, the error rates sometimes follow the target line, but under noisy or inverted
predictors the error increases sharply and often surpasses the desired level. The degradation is visible
across both DRD2 and QED: the error curves drift upward as the predictor worsens, and the rejection
rates fluctuate significantly, indicating unstable behavior.

In contrast, ConfHit remains below the target line in all cases. The predictor quality affects only the
power, whereas the heuristic baseline loses error control as soon as the predictor becomes unreliable.
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Figure 17: Conformal LM baseline for molecule optimization. Error rate (left) and empty–set percentage (right)
versus α for QED and DRD2 at N = 5 using the Hgraph model. The method breaks coverage and underperforms
CONFHIT despite relying on an oracle that is unavailable in real-world settings.

The empirical curves highlight that the heuristic transitions from reasonable to poor performance,
while ConfHit maintains stable guarantees across all predictor settings.

G.2 COMPARISON TO ORACLE BASED METHODS

We adapt an oracle-based CLM (Quach et al., 2023) baseline as depicted in Algorithm 3 to use
the sum of prediction scores as the total confidence of a candidate set, without performing any
density correction or filtering of low–quality samples. As shown in Figure 17, this baseline fails to
maintain valid guarantees: the empirical error rate systematically exceeds the target level, and the
empty–set percentages deviate sharply from expected behavior across all α. Despite relying on an
idealized oracle, this approach also exhibits lower power than CONFHIT, whereas CONFHIT attains
both higher detection power and valid coverage due to its calibrated scoring rule and density-aware
correction. Finally, we emphasize that this baseline is not directly comparable to CONFHIT, since
it assumes access to a perfect oracle predictor—an unrealistic requirement in practical molecular
design workflows.

Algorithm 3 Conformal Sampling for Constrained Molecular Optimization

Input: Input molecule x; generator pθ(· | x); scoring function F ; calibrated threshold λ; sampling
budget kmax

Output: Candidate set Cλ certified to contain at least one improved molecule
1: Cλ ← ∅ {Initialize output set}
2: for k = 1 to kmax do
3: Sample yk ∼ pθ(· | x) {Generate candidate}
4: Cλ ← Cλ ∪ {yk} {Add to set}
5: if F(x,Cλ) ≥ λ then
6: break {Set certified}
7: end if
8: end for
9: return Cλ

H ROBUSTNESS AND DIAGNOSTICS FOR DENSITY RATIO ESTIMATION

H.1 SENSITIVITY ANALYSIS

We study the effect of misspecifying the likelihood ratios by applying power transformations wγ

across a range of exponents γ. Figure 18 shows how such transformations affect the KL divergence
of the p-values of the negative samples, together with the resulting error rate and rejection (empty set)
rate. In practice, such results can be used to judge whether the analysis is robust enough. Here, we
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Figure 18: Effect of power transformations wγ of likelihood-ratio weights on QED and DRD2 using the
HGraph2Graph model at N = 5 at different α. Across all transformations, CONFHIT maintains a graceful
degradation of error control with major changes in terms of the rejection rate.

additionally evaluate the error control performance under such perturbation to also show the robust
performance of CONFHIT.

The KL divergence here measures the deviation of the empirical p-value distribution from the
Uniform(0,1) distribution. Smaller values indicate that the transformed likelihood ratios still produce
p-values close to uniform, while larger values reflect increasing distortion away from the ideal uniform
shape. In both the datasets, we see that the KL divergence is only moderately affected under moderate
misspecification. Only on amplifying the weights (γ > 3) causes the KL divergence to rise sharply in
the QED case we notice substantial deviation from uniformity.

The error rate consistently stays near the target level across all transformations for α = 0.1 and
below the target level for α = 0.3. Only the rejection rate is affected, with lower rejection occurring
when the KL divergence is small and higher rejection when the p-values deviate more strongly from
uniform. This shows that mild misspecification primarily adjusts the conservativeness of the method
without affecting its validity.

A similar pattern appears for DRD2 . Flattened weights reduce the KL divergence, while large values
of γ inflate it. Error control remains stable throughout, whereas the rejection rate increases in the
high-KL regime corresponding to more severe distortions of the p-value distribution. Overall, these
results demonstrate that ConfHit is robust to moderate incorrect specification of the likelihood ratios.

H.2 SCAFFOLD SPLITTING ON CALIBRATION SET

To assess the robustness of the calibration procedure, we perform a scaffold split on the calibration
negatives. We select the top 30 scaffolds that also appear in the test set, producing a nontrivial
distribution shift that reflects realistic drug discovery scenarios where scaffold diversity plays an
important role. This setting provides a diagnostic test: if the calibration procedure is effective, the
resulting p-values on this shifted split should remain close to uniform.
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(a) QED + Hgraph: Calibration significantly reduces
deviation of p-value distribution from uniformity.

(b) DRD2 + Hgraph: Calibrated p-values closely
match the uniform distribution.

Figure 19: P-value distributions on scaffold-split calibration negatives for QED (left) and DRD2 (right). In
both cases, calibration produces p-values that closely follow the uniform distribution, indicating that the density
correction remains reliable under scaffold-based distribution shift.

Figures 19a and 19b show the p-value distributions before and after applying the density ratio
correction. In both QED and DRD2, the uncalibrated p-values deviate substantially from the ideal
uniform distribution, as indicated by large KL divergences. After calibration, the p-values become
significantly closer to uniform, with much lower KL divergences and a visibly more homogeneous
density across the interval.

The close match between the calibrated p-values and the uniform reference suggests that the cali-
bration procedure successfully corrects for distributional differences tied to scaffold variation. This
indicates that the method is likely to remain well calibrated on the test set, even when the chemical
space differs from the training distribution. In practical applications, having partial knowledge of the
test set’s chemical space enables a simple sanity check: if the p-values on the corresponding scaffolds
appear close to uniform, one can be confident that the method will behave reliably on the actual test
compounds.

H.3 BALANCE CHECKS

Finally, To diagnose the effect of density correction, we compare the feature means of the calibration
set with the test set before and after reweighting as discussed in Section 3.3. Figures 20 and 21 show
the mean and standard deviation of each feature dimension, where post-calibration test features are
weighted by the likelihood ratio pcal(x)/ptest(x).

For QED (Figure 20), the pre-calibration test features differ substantially from the calibration
distribution, especially in the first dimension. After applying density correction, the weighted test
features align much more closely with the calibration means across all dimensions. The cosine
distance between the mean feature vectors decreases from 0.0623 to 0.0105, indicating a strong
improvement in distributional matching.

A similar trend appears for DRD2 (Figure 21), where large discrepancies in several dimensions are
substantially reduced after reweighting. The cosine distance drops from 0.0491 to 0.0075, confirming
that the corrected test distribution becomes much closer to the calibration distribution.

These balance checks provide a practical diagnostic: given an unlabeled test set, one can evaluate
whether density correction brings its feature distribution closer to the calibration set, indicating that
the calibration procedure is likely to remain valid.
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Figure 20: Feature means for QED using the Hgraph model at N = 5. Density correction aligns the test features
more closely with the calibration distribution.

Figure 21: Feature means for DRD2 using the Hgraph model at N = 5. Density correction reduces the
discrepancy between calibration and test distributions.
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