Under review as a conference paper at ICLR 2026

SUBLINEAR SKETCHES FOR APPROXIMATE NEAREST
NEIGHBOR AND KERNEL DENSITY ESTIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Approximate Nearest Neighbor (ANN) search and Approximate Kernel Density
Estimation (A-KDE) are fundamental problems at the core of modern machine
learning, with broad applications in data analysis, information systems, and large-
scale decision making. In massive and dynamic data streams, a central challenge
is to design compact sketches that preserve essential structural properties of the
data while enabling efficient queries.

In this work, we develop new sketching algorithms that achieve sublinear space
and query time guarantees for both ANN and A-KDE for a dynamic stream of
data. For ANN in the streaming model, under natural assumptions, we design a
sublinear sketch that requires only O(n**#~") memory by storing only a sublinear
(n~") fraction of the total inputs, where p is a parameter of the LSH family, and
0 < 1 < 1. Our method supports sublinear query time, batch queries, and extends
to the Turnstile model. While earlier works have focused on Exact NN, this is
the first result on ANN that achieves near-optimal trade-offs between memory
size and approximation error. Next, for A-KDE in the Sliding-Window model, we

Nieo=}
sketch rows, W is the LSH range, N is the window size, and € is the approximation
error. This, to the best of our knowledge, is the first theoretical sublinear sketch
guarantee for A-KDE in the Sliding-Window model.

We complement our theoretical results with experiments on various real-world
datasets, which show that the proposed sketches are lightweight and achieve con-
sistently low error in practice.

propose a sketch of size O (RW - log2 N), where R is the number of

1 INTRODUCTION

Modern machine learning and data analysis often require answering similarity and density queries
over massive and evolving datasets. As data grows in scale and arrives in dynamic streams, it
becomes infeasible to store or process everything explicitly, and the central challenge is to design
compact sketches that preserve essential structure while supporting efficient queries. This challenge
has been highlighted in seminal works on sublinear algorithms, streaming, and high-dimensional
data processing (Alon et al., |1996; Indyk & Motwanti, |1998}; |Gionis et al., [1999; Muthukrishnan,
2005} |Cormode & Muthukrishnan, 2005). Two central problems in this setting are Approximate
Nearest Neighbor (ANN) search and Approximate Kernel Density Estimation (A-KDE).

Approximate Nearest Neighbor (ANN): The Approximate Nearest Neighbor (ANN) problem
formalizes similarity search in high-dimensional spaces. In its standard (c,)-formulation, given a
point set IP in a metric space (X', D), the task is to preprocess P so that, for any query g € X, if the
distance to its nearest neighbor in [P is at most 7, then with probability at least 1 — ¢ the algorithm
returns a point within distance cr of g. This formulation corresponds to the modern version of the
(r1,72)-PLEB problem introduced by Indyk & Motwani| (1998), with a relaxed variant due to Har-
Peled et al.| (2012)) that permits null or arbitrary answers if no point lies within distance 7;. In the
seminar work of |Har-Peled et al.|(2012)), Har-Peled et al. obtained fully dynamic solutions to ANN,
though such methods require at least linear space and are not designed for the streaming model.
Subsequent advances, particularly those based on locality-sensitive hashing (e.g., Panigrahy| (2005));
Andoni & Indyk|(2008));|/Andoni et al.[(2014);/Andoni & Razenshteyn! (2015); |Andoni et al.| (2017);

Under review as a conference paper at ICLR 2026

Ahle|(2017)), have achieved strong trade-offs between space and query time, though again primarily
in static or dynamic settings rather than streaming.

Approximate Kernel Density Estimation (A-KDE): Kernel density estimation (KDE) is a
classical non-parametric method for estimating probability distributions from data (Davis et al.,
20115 |Parzen| |1962; |Silverman, [2018; |Scottl 2015). Given a sequence of i.i.d. random variables
z1,...,2, € RY the density at a query x is estimated as p(z;0) = £+ 3" | K, (2 — z;), where
K, (-) is a kernel function with bandwidth . While highly effective, exact KDE becomes computa-
tionally prohibitive for large-scale or streaming datasets, which motivated the approximate version
(namely, A-KDE), where the goal is to return, for any query ¢, a (1 & €) multiplicative approxima-
tion to the true density with probability at least 1 — 6. A-KDE thus provides a principled framework
for large-scale density estimation, balancing accuracy and efficiency. Notable advances include
RACE (Coleman & Shrivastava, [2020), which compresses high-dimensional vectors into compact
counters; TAKDE (Wang et al., [2023)), optimal in the sliding-window setting; and KDE-TRACK
(Qahtan et al.,2016), designed for spatiotemporal streams.

Streaming Applications: Consider a personalized news agent or financial assistant powered by
large language models: vast streams of articles or market updates arrive dynamically, yet the system
must provide timely, personalized insights without storing or processing the entire corpus. Approx-
imate nearest neighbor (ANN) search enables real-time matching of a user’s evolving interests to
relevant news items or market updates, while approximate kernel density estimation (A-KDE) cap-
tures shifts in topical or market distributions to adapt recommendations. A similar challenge arises
in large-scale image and video platforms, where streams of photos or frames arrive continuously.
ANN supports fast similarity search for recommendation, moderation, or retrieval in these large-
scale systems, while A-KDE tracks distributional changes such as emerging styles, anomalies, or
trending categories.

Such scenarios are not limited to text or vision: related needs appear in personalization, anomaly
detection, and monitoring of high-volume data streams (Alon et al., 1996} Indyk & Motwani, [1998;
Muthukrishnan, 2005; (Cormode & Muthukrishnan, 2005} Jégou et al.l 2011} |Coleman & Shrivas-
tava, 2020; |Qahtan et al., |2016; [Wang et al., 2023). Across these domains, storing or processing all
data explicitly is infeasible, making compact sketches essential for balancing efficiency and accuracy
in large-scale retrieval problems.

A central question is how to efficiently perform approximate nearest neighbor (ANN) search and
approximate kernel density estimation (A-KDE) on massive, dynamically evolving data streams.

In this work, we use three most commonly used models of streaming, namely, insertion only, turn-
stile, and sliding window (see Appendix [A.T.4]for their formal definitions and related work).

1.1 FORMAL PROBLEM DEFINITIONS

Problem 1 (Streaming (c, 7)-Approximate Near Neighbor (ANN)). Let (X, D) be a metric space,
and let P C X be a stream of at most n points. The goal is to maintain a data structure over the
stream such that, for any query point q € X':

* If Dp(q) < r, then with probability at least 1 — ¢ (for 0 < 6 < 1), the data structure
returns some p' € P N B(q,cr).

s The data structure stores only a sublinear fraction of the stream, i.e., O(n'=") points (for
0 < n < 1), while supporting efficient updates and queries.

We refer to this task as the Streaming (c, r)-Approximate Near Neighbor Problem with failure prob-
ability 9.

Problem 2 (Sliding-Window Approximate Kernel Density Estimation (A-KDE)). Let {x;}:;>1 be a
data stream, where each x; is drawn from a (potentially time-varying) density p;(x). Let N denote
the window size, and let Ty = {t — N + 1, ...t} denote the indices of points in the current window.

Under review as a conference paper at ICLR 2026

Given a query X, the sliding-window KDE at time t is defined as:

- 1
h(x;0¢) = N Z Ko, (x — x5),
JET:

where K, is a kernel with bandwidth oy.

The goal is to maintain a compact sketch that supports Approximate KDE (A-KDE) over the sliding
window, enabling efficient updates and queries.

1.2 OUR CONTRIBUTIONS

This work makes progress on two central problems in large-scale data analysis: streaming Approx-
imate Nearest Neighbor (ANN) search (Problem [I)) and Approximate Kernel Density Estimation
(A-KDE) (Problem [J). We design new sketching algorithms that provably achieve sublinear space
while supporting efficient queries, and we validate their effectiveness through extensive experiments.
Below, we highlight our key contributions.

Our contributions to ANN (Problem([T): At first glance, maintaining even approximate solutions
for ANN in the streaming model with sublinear sketches appears rather hopeless: an adversary
can force any algorithm to store nearly all the data by giving inputs from scaled multidimensional
lattices. However, real-world data is far from adversarial and often follows natural distributional
assumptions (Mou & Wang, [2017; |(Coleman et al) 2019). Leveraging this, we prove that under
a Poisson point process model—a well-studied and practically relevant distribution—ANN in the
streaming setting does admit efficient sketching.

Our approach revisits the classical Motwani—Indyk framework (Indyk & Motwani,[1998)) and shows
that, under Poisson distributed inputs, it suffices to retain only a sublinear fraction of the stream,
namely O(n!~") points obtained by uniform sampling. This leads to a simple yet powerful sketch-
ing scheme with the following guarantees:

1. Streaming ANN with sublinear space. Our sketch provides (¢, 7)-ANN guarantees while
storing only a vanishing fraction of the input.

2. Turnstile robustness. We extend our guarantees to the Turnstile model, assuming only
mild restrictions on adversarial deletions within any unit ball.

3. Parallel batch queries. Our scheme naturally supports batch queries, which can be exe-
cuted in parallel to achieve significant speedups.

To our knowledge, this is the first work to obtain such guarantees for ANN in the streaming model
under realistic assumptions. Importantly, the simplicity of our scheme makes it broadly applicable
and easy to generalize.

Empirical validation. We complement our theory with experiments on real-world datasets. The
results demonstrate that our sketches are lightweight, achieve consistently low error, and provide
truly sublinear space usage in high-e regimes without compromising accuracy. In particular:

1. We show that for € = 0.5, we obtain sublinear sketches for all > 0.5. More generally, for
every sufficiently large e, there exists a threshold 7* such that for all 7 > n*, our scheme
guarantees sublinear sketches without compromising on performance.

2. Our method outperforms the Johnson—Lindenstrauss (JL) baseline: beyond € ~ 0.7-0.8 on
siftlm, and beyond € ~ 0.9 on fashion-mnist.

Our contributions to A-KDE (Problem [2): The RACE algorithm of [Coleman & Shrivastava
(2020) provides an elegant sketch for KDE in dynamic data streams and naturally supports the
Turnstile model, thanks to its ability to handle both insertions and deletions. However, RACE lacks
the mechanism to manage temporal information explicitly, making it unsuitable for the sliding-
window model where data must expire once it falls outside the most recent N updates.

Under review as a conference paper at ICLR 2026

To address this challenge, we incorporate the classical EXPONENTIAL HlSTOGRA result (Datar
et al. (2002)) into each RACE structure. EXPONENTIAL HISTOGRAM is a powerful tool for main-
taining aggregates over the most recent N updates with provable accuracy guarantees, and here they
enable us to count, with bounded error, how many elements in the active window hash to the same
LSH bucket as the query q. This delicate combination allows us to design the first sketch for the
A-KDE in the sliding-window model, which explicitly handles expiration of old data while retain-
ing the efficiency of RACE. Our construction does incur an extra log2 N factor in space compared
to plain RACE, but it uniquely enables sliding-window guarantees. We further extend this approach
to handle batch updates, where data arrives in mini-batches; here, the window consists of NV batches,
and the EXPONENTIAL HISTOGRAM is naturally adapted to this setting.

Empirical validation. We evaluate our sliding-window A-KDE sketch on real-world datasets. The
results highlight that:

1. The empirical relative error of KDE estimates is significantly smaller than the worst-case
theoretical bound, even with a small number of rows in the sketch.

2. Our sliding-window A-KDE achieves accuracy comparable to RACE (Coleman & Shri-
vastava, 2020) on News Headlines and ROSIS Hyperspectral Images, while
uniquely supporting explicit expiration and batch updates.

Due to space paucity, proofs of the Lemmas and Theorems marked with (x) are deferred to the
Appendix.

2 PRELIMINARIES

Locality Sensitive Hashing: Let X be a metric space and D : X x X — R is a distance metric.

Definition 2.1. A family H = {h : X — U} is (r1,r2,p1,p2)-sensitive for (X, D) if for any
p,q € X, we have:

 If D(p,q) <11, then Poey[h(q) = h(p)] > p1.
* If D(p,q) > 2, then Pren[h(q) = h(p)] < pa.

For a locality-sensitive family to be useful, it must satisfy the inequalities p; > p2 and 1 < ra.
Two points p and g are said to collide, if h(p) = h(q). We denote the collision probability by
k(x,y). Note that k(.,.) is bounded and symmetric i.e. 0 < k(x,y) < 1,k(z,y) = k(y,x), and
k(x,x) = 1. It is known that if there exists a hash function i (z) with k(z, y) and range [1, W], the
same hash function can be independently concatenated p times to obtain a new hash function H(.)
with collision probability kP (x,y) for any positive integer p. The range of the new hash function
will be [1, WP]. In particular, We use two such hash families in our analysis: (1) SRP-LSH (also
known as, Angular LSH) as described in |Charikar| (2002) and (2) p-stable LSH, described in |Datar,
et al.[|(2004).

We also require the concepts of the EXPONENTIAL HISTOGRAM (Datar et al.l 2002)), the Repeated
Array-of-Counts Estimator (RACE) (Coleman & Shrivastaval 2020), and the static (¢,)-ANN re-
sult of [Har-Peled et al| (2012). Due to space constraints, these preliminaries are deferred to Ap-

pendix [A.T]

3 STREAMING (C,R)-APPROXIMATE NEAR NEIGHBOR

We generalize the classical Motwani—-Indyk scheme Indyk & Motwani| (1998)) to the streaming set-
ting by formulating the (¢, 7)-ANN problem under the assumption that the number of points inside
any ball follows a Poisson distribution with an appropriate mean parameter. Within this framework,
we prove that it suffices to retain only a sublinear sample of the data stream, specifically O(n!~7)
points obtained through uniform random sampling.

! An exponential histogram can maintain aggregates over data streams with respect to the last N data ele-
ments. For example, it can estimate up to a certain error the number of 1’s seen within the last N elements,
assuming data is in the form of Os and 1s.

Under review as a conference paper at ICLR 2026

The Algorithm: Let NV be an upper bound on the size of the data stream ID. We initialize a family
of hash functions ‘H with parameters k and L, chosen as functions of N and €. Below, we describe a
scheme that inserts points from the stream into our data structure and employs the Query Processing
routine to solve the (¢, 7)-ANN problem for any query point g (see Algorithm .

Algorithm 1 StreamingANN

Require: Data stream D, query point g, LSH family H, parameters k£ and L, sampling parameter 7
1: Initialize L independent hash functions {g1, g2,..., 9.}
2: for each point p € D do
3: decide whether to drop or store p > Use uniform sampling to store approximately O(n!~")
elements
4: for j = 1to L do
5: Insert p into bucket g;(p)
6.
7

: end for
: end for
Query processing:
8: Initialize candidate list C < ()
9: for j =1to Ldo
10: Retrieve all points from bucket g;(q) and add to C
11: if |C| > 3L then

12: break
13: end if
14: end for

15: Remove duplicates from C
16: p* < argming, cc D(py, q)
17: if D(p*,q) < r then

18: return p*

19: end if

20: return NULL

LLITTTTITI |T | J/7| [TTTTT]
sampleeachpoint A1 [[[[L1 11 1 [T TT]
withp = n™ L =nf
e = CEFTIITTT EEEE
cee : [Lst: <o)

LsH:gvy LITTTTTTT] AL |}F| |
s L

Figure 1: Illustration of the insertion (left) and querying (right) parts of StreamingANN

Correctness: A query g can succeed when certain events take place, which are mentioned here.

Lemma 3.1. Let P be the set of points at the time when the query is executed. Define B(p,r) as a
ball of radius r surrounding a point p. We define the following two events for any query point q:

* E, : 3p’ € B(q,r) such that g;(p') = g;(q) for some j € {1,...,L}.

» E5 : The number of points from P — B(q, r3) which hash to the same bucket as q is less
than 3L i.e.

L
"I~ Bla.r2)) Ng; (9,(a))| < 3L.

If Eq and Eq hold, then the query q succeeds

Under review as a conference paper at ICLR 2026

Proof. Denote the nearest neighbor of query q as p*. We have two cases:

Case 1 Ip* € B(q,r): Since the algorithm stores 3L candidate points, Eo holding implies that the
candidate set has a non-zero number of vacant spots. Now, if E; also holds, we know that there
exists p’ € B(q,r) such that g;(p’) = g;(q) for some j € {1,..., L}. So this p’ must get added to
the candidate set. Since we ultimately return a point that is closest to the query point q, we guarantee
that we return p’ or a closer point. But since p’ € B(q,r), trivially we have that p’ € B(q, cr),
hence the query g succeeds.

Case 2 Ap* € B(q,r): In this case, the algorithm can return null or any point in P, so the query g
succeeds trivially. O

It is to be noted that the aforementioned p’ does not need to be the nearest neighbor of the query
point. It suffices to have a point present in a ball of radius r surrounding the query after the random
sampling. In the following lemma, we show how we can set the parameter k to guarantee the success
of E, with high probability.

Lemma 3.2 (x). Ifwe set k = [log, /s n|, for a certain query q event Eq succeeds with probability
P, >1— 3%’ if we store O(n!=") points from the stream independent of how the data is distributed.

Now, we show that if we set k as per Lemma|3.2] assuming that our data is obtained from a Poisson
point process, we can guarantee the success of E; with high probability for an appropriate choice
of L.

Lemma 3.3. Assume that the points are distributed in such a manner that the number of points
in every ball of radius r is distributed as a Poisson random variable with mean m. Given that
k = flogl/p2 n), if we set L = z—f, for a certain query q event Eq succeeds with probability

Py > (1 — e ™P)(1 — 1/e) on sampling O(n'=") points from the stream

Proof. We require that 3p’ € B(q,r) such that g;(p’) = g;(q) for some j € {1,...,L}. First,
consider the probability that there is at least one point retained in a ball of radius r surrounding the
query after the uniform sampling, i.e. 3p’ € B(q,r). We know that the data follows a Poisson
distribution, so if we say that the number of points in a ball of radius r surrounding a query is a
Poisson random variable K with mean m:

PP(No points in the r-ball after uniform sampling) = E[(1 — p)¥]
= e_mp
where p = n~" is the probability that we choose to store the point in the data structure while
uniformly sampling. This implies that the probability of having at least one point (p’) close to the

query is (1 — e~ ™P),

Now, given that there exists p’ € B(q,), we can lower bound the probability that g;(p’) = g;(q)
for some j € {1,..., L} as follows:

logy /p, T _ _
P(g;(p') = g;(@) = pf = py /" = pin” Bn (/P — pipe)
Combining these two statements, the probability of success of event E; is lower bounded as:
P(Eq) > (1 — e ™P)(1 — (1 — pin~")") (using equation|T)
> (1—e ™P)(1 —1/e) (setting L = n”/p1)

+1

(See Appendix for the detailed proof)

We can now use the above Lemmas (Lemmas [3.1] [3.2] [3.3) to prove the following theorem.

Theorem 3.1 (x). Let (X, D) be a metric space, and suppose that there exists a (r,cr,p1,pa)-

o . . log (5
sensitive family H, with p1,p2 € (0,1), and define p = 1og(il;'

P2
of points contained in any ball of radius r can be modeled as a Poisson random variable with mean
m, where m > Cn'l for some constant C' > 0. Then, for a point set P C X comprising at most n
points, there exists a data structure for streaming (c, r)-nearest neighbor search with the following
guarantees:

We further assume that the number

Under review as a conference paper at ICLR 2026

s The data structure stores only O(n'=") points from the stream.
* Each query requires at most O(n? /p) distance computations and O (Z—f -logy /p, n) eval-
uations of hash functions from H. The same bounds hold for updates.

e The data structure uses at most O(n**P=" /p,) words of space, in addition to the space
required to store P.

1 e"P4e—1
3nn + emp+1

The probability of failure is at most
of C.

which is less than 1 for an appropriate choice

The result of Theorem naturally extends to the batch querief] setting (see Appendix [A.2.4).

ANN in the Turnstile Model: In the turnstile setting, arbitrary deletions can break ANN guaran-
tees if the nearest neighbor within a query ball is removed. To mitigate this, we assume an adversary
can delete at most d points from any ball of radius . Under this restriction, the earlier sublinear-
sample guarantees hold by bounding the probability that a ball contains at least d + 1 points. We
prove that, under natural assumptions on point distributions in a stream and limiting deletions per
region, we can maintain a sublinear-sized data structure that supports efficient approximate nearest
neighbor queries with low failure probability, handling both insertions and deletions (see Theo-
rem[A.4). The complete description of this section is provided in Appendix [A.2.5]

4 SLIDING-WINDOW APPROXIMATE KERNEL DENSITY ESTIMATION
(A-KDE)

In |Coleman & Shrivastava (2020), the authors propose RACE, an efficient sketching technique
for kernel density estimation on high-dimensional streaming data. We have seen that we can get
low relative errors using a larger number of repetitions in RACE. We propose a modified RACE
structure to make it suitable for a sliding window model by using EXPONENTIAL HISTOGRAM
(Datar et al.,|2002)). We give bounds on the number of repetitions i.e. , the number of rows, to obtain
a good estimate of the KDE with high probability.

The Algorithm: In RACE, we increment A[i, h;(x)] for every new element & coming from
dataset D. In the sliding window model, we are interested in the last N elements, assuming that
we get an element every time step. Hence, we have to find the number of times a counter has been
incremented in the last /V time steps. This problem is similar to the BASIC COUNTING problem in
sectionm where the incoming stream of data is 1 if the counter is incremented at a time instant,
otherwise 0. We will store an EXPONENTIAL HISTOGRAM for each cell of RACE. On querying the
EXPONENTIAL HISTOGRAM, we will get an estimate of the count in a particular cell. In the RACE
sketch, the estimator is computed by the median of means procedure. For our purposes, we will
take the average of ACE estimates over L independent repetitions. The algorithm to construct the
modified RACE array and estimate KDE for a given query is given in 2]

Stream D
X JO)

Sketch A

Figure 2: Illustration of the pre-processing (left) and querying (right) parts of Algorithm

%A query consists of a set of points Q = {qi}f;l, and each batch can be viewed as B independent queries

Under review as a conference paper at ICLR 2026

Algorithm 2 Approximate KDE sketch construction and querying for sliding window

Preprocessing:
Require: Data set D, LSH family H of range W, parameters kand L
1: Initialize L independent hash functions {h1, ha, - - - , hr } where each h; is constructed by con-
catenating p independent hashes from H
A —empty > RACE structure
t<0 > timestamp initialized to 0
for p € Ddo
for iin1to L do
Jj hi(p)
if A[i,] is empty then
Create an Exponential Histogram at A[é, j] with timestamp ¢
else
10: Add a 1 to the exponential histogram at Az, j] with timestamp ¢
11: end if
12: end for
13: t—t+1

bl

14: end for

Query processing:
Require: RACE sketch A, Query g, Hash functions {h1, ho, - -+ , hy} initialized in preprocessing
15: y+0 > initialize the KDE estimate to 0

16: fori=1to L do

17: if A[i, h;(q)] is not empty then

18: ¢ + the estimate of count in the exponential histogram at A[i, h;(q)]

19: y<y+ec

20: end if

21: end for

22: y<«y/L > compute the approximate KDE
23: return y

Correctness: The algorithm is illustrated in Fig.[2] Consider the ACE Estimator. We know that if
we have the actual counts, then X = A[h(q)] is an unbiased estimator for the Kernel Density with
bounded Variance. So, K = E[X] is the Kernel Density estimate. We will now show that by
using EXPONENTIAL HISTOGRAM, the new estimator for a single ACE instance approximates K up
to a certain error.

Lemma 4.1 (x). Let Y be the new estimator obtained from querying the EXPONENTIAL HISTOGRAM
at Alh(q)]. Then, E[Y] < (14 €¢)K

We use r independent instances of the ACE array to estimate the kernel density. Hence, the KDE
estimator in the current setting is, Y = % >-i_, Y;. The expectation of Y is EY; and the variance of
Y is Var() where Y; is the i*" independent instance of ACE. Now we will show the bounds of
the estimator ¥ and derive the necessary bounds on r.

Lemma 4.2 (»). |Y — EY| < €E[Y] holds with probability 1 — & if:

a2
< 2max{X;} log (2)

= (1+¢)2K2 5

where 1 is the number of repetitions of ACE (or the number of rows in the RACE array data
structure).

Now we will show that ¥ gives a multiplicative approximation of the KDE with probability 1 — §.

Lemma 4.3. The estimator Y gives a (1 + €) approximation of the Kernel density with probability
1-4.

Under review as a conference paper at ICLR 2026

Proof. Let the KDE be given by K. The estimator from the modified RACE algorithm is Y. Then,
|V — K| < |V —EY| + |EY — K] (using triangle inequality)
< €EY + ¢'K (using lemmafd-2]and penultimate inequality of equation [3])
< €'(1+ €')K + €'K (using last inequality of equation 3)
< (2¢ +€*)K
= K (substituting € = 2¢' + €’?)
— |V —K| <K
Note that the bound from Lemma holds with probability 1 — §. Hence, this result holds with
probability 1 — 6. O
Let us compute the space requirement of the sketch proposed for our algorithm.

Lemma 44 (x). The proposed RACE data structure has space complexity

o (RW- \/ﬁil log? N) where R is the number of rows, W is the range of the hash func-

tion, € is the relative error for KDE, N is the window size.

Using the above lemmas, we can state the main theorem as follows

Theorem 4.1. Suppose we are given an LSH function with range W. Then the proposed sliding
window RACE data structure with

weo (e = (5)

independent repetitions of the hash function provide a 1+e multiplicative approximation to K (which

is the KDE) with probability 1 — 6, using space O (RW . ﬁ log? N) where N is the window

size.

We can extend the result of Theorem [.1]to batch queries setting (see Appendix [A.3.4)

5 EXPERIMENTS

Experiments for ANN: We evaluate the efficacy of our streaming ANN approach on standard
benchmarks, focusing on the trade-offs between sampling aggressiveness (parameter 1) and the
approximate recall/accuracy of (¢, 7)-ANN queries. We also investigate the interplay between e and
7, demonstrating that for sufficiently large €, sub-linear sketch sizes are attainable with n < p.

Datasets. Experiments were conducted on two standard ANN benchmarks |Aumiiller et al.| (2020):
siftlm Jegou et al| (2010) (IM vectors, 128-dimensions) and fashion-mnist |Xiao et al.
(2017) (60,000 images, 784-dimensions).

Implementation. All data structures were implemented in Python, assuming float32 vectors.
Compression is measured relative to N x d x 4/10242 MB. No additional memory optimizations
were applied. We used the p-stable scheme described in Datar et al.|(2004) for hashing.

Baseline. We compare against Johnson-Lindenstrauss (JL) projection Johnson et al.|(1984), the only
known strict one-pass solution for (¢, r)-ANN.

Experimental Setup. Two experiments were performed: (1) Comparison with JL: We compared
our method and the JL baseline by sweeping over ¢ = 0.5 to 1 and adjusting compression rates
via k (JL) and 7 (ours). Each run stored 50,000 points and issued 5,000 queries with » = 0.5.
Metrics included approximate recall@50, (c,r)-ANN accuracy, and memory usage. (2) Sketch
Size Scaling: Using the si ft1m dataset, we fixed ¢ = 0.5 and varied 7 (0.2 to 0.8) and dataset size
N (1,000 to 160,000), measuring sketch size.

Experiments for A-KDE: We evaluate the effect of row count in the sliding-window A-KDE
sketch on mean relative KDE error.

Under review as a conference paper at ICLR 2026

Sketch Size vs N (epsilon=0.5)

(a) (b)

Figure 3: (a) Summary of the median performance difference between Streaming ANN and JL across
€, and (b) Memory requirements scale with stream size N for fixed € = 0.5 for the sift 1m dataset.

Datasets. (a) News Headlines [Kulkarni(2017): 80k headlines embedded into 384-dim vectors
using all-MiniLM-L6-V (b) ROSIS Hyperspectral Data |[Sowmya et al.|(2019): each
pixel as a spectral vector.

Implementation. Sliding-window A-KDE uses (a) angular LSH and (b) p-stable Euclidean LSH
(rehashing used for range-bounding). Bandwidth parameter p = 1. Reported results use a single-
query setting. The theoretical relative error is taken as 0.21, while the experimental error is observed
to be much lower.

Baseline. We compare against RACE |Coleman & Shrivastaval (2020), which works for general
streaming setting.

Experimental Setup. Three experiments: (1) Sketch Size vs. Error: Log mean relative error vs.
sketch size (100 to 3200 rows) for window size 450, e = 0.21, using both hashes and datasets. (2)
Window Size Effect: Log mean error vs. rows, for L2 hash and angular hash, for different window
sizes 64 to 2048. (3) Comparison with RACE: Compared A-KDE using Angular hash and window
size 260 with RACE.

Mean Relative Error vs Sketch size L2 hash

Log(Mean Relative Error)
1 | |

(a) (b)

Figure 4: (a) Effect of sketch size on KDE estimates using Euclidean hash (b) Effect of the window
size on mean relative error for Sliding window A-KDE with Euclidean hash on news headlines data

Discussion: The median difference plotE]in Figure [3ashows that Streaming ANN outperforms JL
on both metrics beyond certain values of e. We show a more detailed comparison of approximate
recall/accuracy vs compression rate for both datasets in Appendix [A.4] Figure 3b]shows us that for
this choice of €, we can obtain sub-linear sketches for > 0.5. Putting these experiments together,
we can see that it is possible to attain sublinear sketches for Problem [I|for an appropriate choice of
€ with good performance.

For A-KDE, increasing sketch size reduces mean error for Euclidean kernels(Fig. 4a)), while angular
hashing shows dataset-specific behavior. Higher window sizes minimize error for text data(Fig. b)),
with A-KDE performing similar to RACE (Fig.[7). These results validate our theoretical guarantees
and demonstrate practical effectiveness across tasks.

*Kaggle link

“Median difference is the median value of the difference in the respective metric (approximate re-
call/accuracy) as we vary compression rates. So a positive median difference corresponds to our scheme
consistently out-performing the baseline.

10

https://www.kaggle.com/code/masterchen09/all-minilm-l6-v2

Under review as a conference paper at ICLR 2026

REFERENCES

Thomas Dybdahl Ahle. Optimal las vegas locality sensitive data structures. In 2017 IEEE 58th
Annual Symposium on Foundations of Computer Science (FOCS), pp. 938-949. IEEE, 2017.

Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the frequency
moments. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing,
pp- 20-29, 1996.

Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest neigh-
bor in high dimensions. Communications of the ACM, 51(1):117-122, 2008.

Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hashing for approximate near
neighbors. In Proceedings of the forty-seventh annual ACM symposium on Theory of computing,
pp. 793-801, 2015.

Alexandr Andoni, Piotr Indyk, Huy L Nguyen, and Ilya Razenshteyn. Beyond locality-sensitive
hashing. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms,
pp- 1018-1028. SIAM, 2014.

Alexandr Andoni, Thijs Laarhoven, Ilya Razenshteyn, and Erik Waingarten. Optimal hashing-based
time-space trade-offs for approximate near neighbors. In Proceedings of the twenty-eighth annual
ACM-SIAM symposium on discrete algorithms, pp. 47-66. SIAM, 2017.

Martin Aumiiller, Erik Bernhardsson, and Alexander Faithfull. Ann-benchmarks: A benchmarking
tool for approximate nearest neighbor algorithms. Information Systems, 87:101374, 2020.

Moses S Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings of
the thiry-fourth annual ACM symposium on Theory of computing, pp. 380-388, 2002.

Benjamin Coleman and Anshumali Shrivastava. Sub-linear race sketches for approximate kernel
density estimation on streaming data. In Proceedings of The Web Conference 2020, pp. 1739-
1749, 2020.

Benjamin Coleman, Richard G Baraniuk, and Anshumali Shrivastava. Sub-linear memory sketches
for near neighbor search on streaming data. arXiv preprint arXiv:1902.06687, 2019.

Graham Cormode and Shan Muthukrishnan. An improved data stream summary: the count-min
sketch and its applications. Journal of Algorithms, 55(1):58-75, 2005.

Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream statistics over
sliding windows. SIAM journal on computing, 31(6):1794-1813, 2002.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceedings of the twentieth annual symposium on
Computational geometry, pp. 253-262, 2004.

Richard A Davis, Keh-Shin Lii, and Dimitris N Politis. Remarks on some nonparametric estimates
of a density function. In Selected Works of Murray Rosenblatt, pp. 95-100. Springer, 2011.

Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. Similarity search in high dimensions via
hashing. In Proceedings of the 25th International Conference on Very Large Data Bases (VLDB),
volume 99, pp. 518-529, 1999.

Sariel Har-Peled, Piotr Indyk, and Rajeev Motwani. Approximate nearest neighbor: Towards re-
moving the curse of dimensionality. 2012.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse of
dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of computing,
pp. 604-613, 1998.

Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor
search. IEEE transactions on pattern analysis and machine intelligence, 33(1):117-128, 2010.

11

Under review as a conference paper at ICLR 2026

Hervé Jégou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor
search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(1):117-128, 2011.

William B Johnson, Joram Lindenstrauss, et al. Extensions of lipschitz mappings into a hilbert
space. Contemporary mathematics, 26(189-206):1, 1984.

Rohit Kulkarni. A million news headlines. https://www.kaggle.com/datasets/
therohk/million-headlines, 2017. CSV data file; over 1.2 million news headlines from
ABC (Australian Broadcasting Corporation), CCO Public Domain license. Accessed: 2025-09-21.

Chen Luo and Anshumali Shrivastava. Arrays of (locality-sensitive) count estimators (ace) anomaly
detection on the edge. In Proceedings of the 2018 World Wide Web Conference, pp. 1439-1448,
2018.

Wenlong Mou and Liwei Wang. A refined analysis of Ish for well-dispersed data points. In 2017 Pro-
ceedings of the Fourteenth Workshop on Analytic Algorithmics and Combinatorics (ANALCO),
pp. 174-182. SIAM, 2017.

S. Muthukrishnan. Data streams: Algorithms and applications. Foundations and Trends in Theoret-
ical Computer Science, 1(2):117-236, 2005.

Rina Panigrahy. Entropy based nearest neighbor search in high dimensions. arXiv preprint
¢s/0510019, 2005.

Emanuel Parzen. On estimation of a probability density function and mode. The annals of mathe-
matical statistics, 33(3):1065-1076, 1962.

Abdulhakim Qahtan, Suojin Wang, and Xiangliang Zhang. Kde-track: An efficient dynamic density
estimator for data streams. IEEE Transactions on Knowledge and Data Engineering, 29(3):642—
655, 2016.

David W Scott. Multivariate density estimation: theory, practice, and visualization. John Wiley &
Sons, 2015.

Bernard W Silverman. Density estimation for statistics and data analysis. Routledge, 2018.

V. Sowmya, K. P. Soman, and M. Hassaballah. Hyperspectral Image: Fundamentals and Advances,
pp. 401-424. Springer International Publishing, Cham, 2019.

Yinsong Wang, Yu Ding, and Shahin Shahrampour. Takde: temporal adaptive kernel density es-
timator for real-time dynamic density estimation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(11):13831-13843, 2023.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

A APPENDIX

A.1 MISSING PARTS OF PRELIMINARIES

A.1.1 APPROXIMATE NEAREST NEIGHBOR:

In [Har-Peled et al.| (2012)), the authors give a scheme to solve the (c,r)-ANN problem with the

following guarantees:

Theorem A.1 (Har-Peled et al|(2012)). Suppose there is a (r, cr, p1, p2)-sensitive family H for

log(+

(X, D), where py,p2 € (0,1) and let p = loi”i;.
P2

for the (¢, r)-Approximate Near Neighbor Problem over a set P C X of at most n points, such that:

Then there exists a fully dynamic data structure

* Each query requires at most O (%f) distance computations and O (Z—f -log 1 n) evalua-
P2

tions of hash functions from H. The same bounds hold for updates.

12

https://www.kaggle.com/datasets/therohk/million-headlines
https://www.kaggle.com/datasets/therohk/million-headlines

Under review as a conference paper at ICLR 2026

1+
* The data structure uses at most O("pl .
to store P.

) words of space, in addition to the space required

The failure probability of the data structure is at most % + % <1

Given a (r, cr, p1, p2)-sensitive family H of hash functions, the authors amplify the gap between the
“high” probability p; and “low” probability po by concatenating several functions. For a specified
parameter k, they define a function family G = {g : X — U*} such that

g(p) - (h"Ll (p)a hi, (p)a) hik (p))

where h; € H and I = {iy,...,ix} C {1,...,|H|}. For an integer L, they choose L functions
g1, -..,g9r from G independently and uniformly at random. During preprocessing, they store a
pointer to each p € P in the buckets g1 (p), ..., gr(p). Since the total number of buckets may be

large, they retain only the non-empty buckets by resorting to “standard” hashing.

A.1.2 REPEATED ARRAY-OF-COUNTS ESTIMATOR (RACE)

In |Coleman & Shrivastava (2020), the authors propose RACE, an efficient sketching algorithm
for kernel density estimation on high-dimensional streaming data. The RACE algorithm com-
presses a dataset D into a 2-dimensional array A of integer counters of size L. X R where each
row is an ACE (Arrays of (locality-sensitive) Counts Estimator) data structureEkLuo & Shrivastava,
2018). To add an element x € D we compute the hash of = using L independent LSH functions
hi(x), ha(x), ..., hr(x). Then we increment the counters at A[i, h;(x)] for all ¢ € [1,...,L]. So
each array cell stores the number of data elements that have been hashed to the corresponding LSH
bucket.

The KDE of a query is roughly a measure of the number of nearby elements in the dataset. Hence,
it can be estimated by averaging over hash values for all rows of RACE:

R 1 <&
K(q) =1 > Ali.hi(q)]
=1

For a query g the RACE sketch computes the KDE using the median of means procedure rather
than the average to bound the failure probability of the randomized query algorithm. The key result
of [Luo & Shrivastavalis:

Theorem A.2 (ACE estimator). Given a dataset D and an LSH family H with finite range [1, W],
construct a hash function h : x — [1, WP] by concatenating p independent hashes from H. Suppose
an ACE array A is created by hashing each element of D using h(.). Then for any query g,

E[Ah(@)]) = Y ¥(z,q)

xecD

ACE is useful for KDE because it is an unbiased estimator. Moreover, |(Coleman et al.| have shown
a tight bound on the variance.

Theorem A.3. Given a query q, the variance of ACE estimator Alh(q)] is bounded as:
2
var(A[h(q)]) < (Z kp/Q(-’”ﬂ))
xzeD

This implies that we can estimate KDE using repeated ACE or RACE with very low relative error
given a sufficient number of repetitions p.

A.1.3 EXPONENTIAL HISTOGRAM

We want to solve the BASIC COUNTING problem for data streams with regard to the last V elements
seen so far. To be specific, we want to count the number of 1’s in the last NV elements given a stream

SACE is an extremely fast and memory efficient algorithm used for unsupervised anomaly detection which
does not require to store even a single data sample and can be dynamically updated.

13

Under review as a conference paper at ICLR 2026

of data elements containing O or 1. Datar et al.| (2002) proposed an algorithm for this problem,
which provides a (1 + €) estimate of the actual value at every instant. They use an EXPONENTIAL
HISTOGRAM (EH) to maintain the timestamp of active 1’s in that they are present within the last
N elements. Every bucket in the histogram maintains the timestamp of the most recent 1 and the
number of 1’s called the bucket size. The buckets are indexed as 1, 2, ... in decreasing order of their
arrival times i.e. the most recent bucket is indexed 1. Let the size of the i*" bucket be denoted as
C;. When the timestamp of a bucket expires, we delete that bucket. The estimate for the number of
I’s at any instant is given by subtracting half of the size of the last bucket from the total size of the
existing buckets, i.e. (TOT AL — LAST)/2. To guarantee counts with relative error of at most ¢,
the following invariants are maintained by the algorithm (define & as [1/€]) :

1. Invariant 1: Bucket sizes c1, o, . . . , ¢, are such that V5 < m we have ———2——

<
214335 ¢i) —

Bl

2. Invariant 2: Bucket sizes are non-decreasing, i.e. ¢; < co < ¢3 < --- < ¢;y,. Further, they
are constrained to only powers of 2. Finally, for every bucket other than the last bucket,
there are at most % + 1 and at least % buckets of that size.

It follows from invariant 2 that to cover all active 1’s, we need no more than n < (% 41)- (log(24 +
1) 4+ 1) buckets. The bucket size takes at most log N values, which can be stored using log log N
bits, and the timestamp requires log N bits. So the memory requirement for an EH is O(% log? N).
By maintaining a counter each for TOT AL and LAST, the query time becomes O(1).

A.1.4 STREAMING MODELS

Insertion-Only: In the insertion-only streaming model, data arrives sequentially and can only be
appended to the dataset; deletions are not allowed. This model captures many practical scenarios,
such as log analysis, clickstreams, and sensor readings, where storing all data explicitly is infeasible.
The goal is to maintain a compact summary that supports approximate queries using sublinear mem-
ory. Classical sketches such as Count-Min (Cormode & Muthukrishnan, [2005), AMS (Alon et al.,
1996), and their extensions to similarity search and density estimation (Indyk & Motwani, [1998;
Coleman & Shrivastava, |2020) have demonstrated the effectiveness of insertion-only algorithms for
both high-dimensional similarity search and approximate kernel density estimation.

Turnstile: The Turnstile model generalizes insertion-only streams by allowing both additions and
deletions of data elements. This model is essential in settings where the dataset evolves dynamically
or counts need to be adjusted, such as network traffic monitoring, dynamic graphs, and streaming
recommendation updates. Maintaining sublinear sketches under Turnstile updates is more challeng-
ing, but prior work has shown that linear sketches, hash-based methods, and RACE-style counters
can provide provable guarantees on query accuracy while supporting deletions efficiently (Indyk &
Motwani, |1998}; |Cormode & Muthukrishnan, 2005} |Coleman & Shrivastaval 2020). For ANN, fully
dynamic LSH and entropy-based methods have also been developed to handle updates in this model
(Har-Peled et al., 2012 |Andoni et al.l [2017).

Sliding Window: In many applications, only the most recent data is relevant. The sliding-window
model maintains a succinct summary of the last W updates, automatically expiring older elements.
This model is particularly suitable for time-evolving datasets such as streaming video, sensor net-
works, or financial transactions, where queries should adapt to current trends. Exact computation of
statistics like kernel density is often infeasible in this setting, motivating the development of approx-
imate sketches. Techniques such as the EXPONENTIAL HISTOGRAM (Datar et al., |2002), combined
with RACE (Coleman & Shrivastava, |2020) or other linear sketches, allow efficient approximation
of both ANN and KDE over sliding windows (Wang et al.,|2023}; |Qahtan et al., | 2016). These meth-
ods balance memory efficiency, update speed, and approximation guarantees, making them practical
for large-scale streaming environments.

14

Under review as a conference paper at ICLR 2026

A.2 MISSING PARTS AND PROOFS OF SECTION

A.2.1 PROOF OF LEMMA[3.2]

Proof. For any p’ € P — B(q,cr), the probability of collision under a fixed g; is at most p§ <

log n . _
727 = 1 Since we store only n' =" points, the expected number of such collisions is at most

n~" for one g;, and at most L - n~" across all L functions. Let IN denote the random variable for
the number of collisions. Using Markov’s Inequality, we can say that the probability that more than
3L such collisions occur is:

L-n=" 1
PIN>3L)<EN/3L — = —
(N'23L) < /3L < 3L 3n"n
Thus the success probability for event Eo, P, =1 — P(N >3L) > 1 — % O

A.2.2 MISSING DETAILS IN PROOF OF LEMMA [3.3]

Probability of no points in the r-ball after uniform sampling
K] K ~ Poisson(m)
k

= 1—p)k.em!
ZO:(e

P(No points in the r-ball after uniform sampling) = E[(1 — p)

_ ,—m — (m(l_p))k
=¢€ Z k!
0
— e~ mem(1-p)
= e_mp

Upper bound on success probability of E;
P(Eq1) = P(3p’ € B(q,r) such that g;(p) = gj(g) forsomej € {1,...,L})
= P(3p' € B(q,r) A g;(p') = g;(q) for some j € {1,...,L})
= P(3p’' € B(q,r)) - P(9;(p’) = g;(q) forsomej € {1,...,L})

=(1—-e™). |1-P m 9;(P") # gj(q) (using De Morgan’s Law)
= =) | 1= [T Plosw) # 95(@)
= =) | 1= [T - Plo; (@) # 95(a))

> (1—e ™)1 — (1 —pin~")F) (using equation|T)
By setting L = n”/p1,
(1= ™)(1 = (1 —pn=)""/7)
(1= e)1 — ey
(1—e"™)(1—1/e)

51

v

v

In the second inequality, we have used 1 — z < e™”.

15

Under review as a conference paper at ICLR 2026

A.2.3 PROOF OF THEOREM[3.1]

Proof. Assume that there exists p* € B(q,r) (otherwise, there is nothing to prove). From Lemma
3.1} we can see that for a query to succeed, we require that events E; and E5 occur with constant
probability.

From Lemma [3.2] and Lemma [3.3] we can infer that for appropriate choice of k and L, the query

fails with probability at most ﬁ + % This proves the failure probability of the theorem.
O

A.2.4 EXTENSION TO BATCH QUERIES

The result extends naturally to the batch streaming setting, where a query consists of a set of points
Q = {q:}2.,. Each batch can be viewed as B independent queries, and the guarantees of Theo-
rem [3.1]apply to each. Moreover, the structure admits straightforward parallelization, making batch
queries especially efficient in practice.

Corollary 1. The Streaming ANN data structure extends to the batch streaming setting, where a
query consists of a set Q = {q;}B .. In this case:

s The data structure stores only O(n'=") points from the stream.

* Each batch requires at most O (B . Z—f) distance computations and O (B . Z—f -log, 4y, n)

evaluations of hash functions from H.

o The data structure uses at most O(n**°="/p,) words of space, in addition to the space
required to store IP.

The probability of failure of the batch is at most B (3”% + Em11471) with each independent query

empT1
1 e"P4e—1
3nn + e7np+1 .

failing with probability at most

A.2.5 ANN IN TURNSTILE MODEL

For the turnstile model, an arbitrary deletion of points from the data structure may not be effective
because an adversary could remove all points except the nearest neighbor within a ball surrounding
the query. If our random sampling does not retain this point, the subsequent query would fail. Hence,
a natural assumption would be that an adversary is allowed to delete at most d points from any ball
of radius . Now, we can retain the earlier guarantees by bounding the probability that there are at
least d + 1 points in an r-ball surrounding the query. We begin by stating some smaller results that
we will require to establish the main result for the turnstile case.

Lemma A.1. (Tail Bound for a Poisson random variable) Let S ~ Poisson()\) and d < A. Then
P(S < d) < ed—k-i—dln%'

Proof. Forany t > 0, we can say P(S < d) = P(e™® > e7') < e E[e~*®] using Markov’s

inequality. We also know that the MGF of a Poisson random variable is E[e~*5] = eM¢ ™ —1),

Thus, putting it all together, we can say that,
P(S < d) < e)\(eft—l)—'rtd

Define p(t) := A(e~* — 1) + td. Differentiating and setting ¢’ (¢t) = 0 gives e~ = d/\. Since
d <)\, we obtain the optimum as t* = lng. Substituting ¢* into o (t) yields

A A
o) =A($-1)+ dln= =d—A+dln
Hence, we obtain the result stated in the lemma

P(S < d) < 6d7/\+dln%

16

Under review as a conference paper at ICLR 2026

Lemma A.2. (Poisson Thinning) Let K ~ Poisson(m) be the number of points in a ball. Suppose
each point is kept independently with probability p € [0,1]. Let S denote the number of points that
remain after sampling. Then S ~ Poisson(mp).

Proof. Conditioning on K, given K = k, we know that the number of retained points S follows a
Binomial(k, p) distribution:

PS=s|K=F) = (’Z)psu ke

Thus, we can obtain the unconditional probability as

P(szs)ziP(sz)P(szsm:k)
k=s

= mF [k
_ —m 'Y 5(1 — k—s
S e (Gra-p

k—s

N (mp)® (m(1—p))
B ; ¢ sl (k—9)!

Summing over k > s gives a Poisson tail series that sums to an exponential:

P(S=s)=¢ " (”Z’ S (m(lﬂ_ P) _ e*mi(”zi’!’)s em(=p) _ g=mp W;I!D)S

)

t=0

which is the probability mass function for Poisson(mp) . Therefore S ~ Poisson(mp). O

We use these results to prove theorem for ANN under the turnstile model.

Theorem A.4. Let (X, D) be a metric space, and suppose there exists an (r,cr, p1, p2)-sensitive
log(4+)

log(55)"
contained in any ball of radius r can be modeled as a Poisson random variable with mean m, where
m > Cn'l for some constant C' > 0. Assume that an adversary may delete up to d points from any
r-ball (strict turnstile) such that d < mp. Then, for a point set P C X comprising at most n, points,
there exists a data structure for turnstile streaming (c, r)-nearest neighbor search with the following
guarantees:

Samily H, with p1,p2 € (0,1), and define p =

We further assume that the number of points

e The data structure stores only O(n*=") points from the stream.

* Each query requires at most O(n? /p) distance computations and O (’;—f -logy /, n) eval-
uations of hash functions from ‘H. The same bounds hold for updates.

e The data structure supports arbitrary deletion of points as per the strict turnstile model (up
to d points from each r-ball)

e The data structure uses at most O(n**P=" /p,) words of space, in addition to the space
required to store IP.

mp

The failure probability is at most 371w + % + ed—mpHdin 5 (1 %) which is less than 1 for an
appropriate choice of C and d.

Proof. The proof doesn not vary too much from that of the vanilla streaming case. For correctness,
we still require Lemma[3.1]to hold. It is easy to see that E, as defined in Lemma 3.1] holds trivially
on deletion of points under the turnstile model, because the probability of hashing far-away points
strictly decreases on deleting points from the data structure.

We need to show that E; still holds with sufficiently high probability. We follow a similar approach
to Lemma|[3.3]to show that after deletion of up to k points, Ip’ € B(q,r) such that g;(p’) = g,(q)

17

Under review as a conference paper at ICLR 2026

for some j € {1,---,L}. We know that the original data follows a Poisson distribution, so if
we say that the number of points in a ball of radius r surrounding a query is a Poisson random
variable K with mean m, we can use Lemma[A.2]to say that the number of retained points follows
a Poisson distribution with mean mp, where p = n~" is the probability that every point is retained
independently. Denote this distribution by S.

P (At most d points lie in an r-ball surrounding the query point) = P(S < d)
< ed mp-+dln mP

This implies that the probability of having at least d + 1 points close to the query is (1 —
ed—mp—l—d In 7B)

Now, given that there exists p’ € B(q,r) even on deleting k points in the worst case, we can lower
bound the probability that g;(p’) = () for some j € {1,..., L} as follows:
)

n+1

P(g;(p") = g;(0)) > p} >y e pin” Bn (/P = e (2)

So, the worst case probability of success of event E; is:
P(E;y) > (1 — ed=mpHdIn %y (1 (1 — pyn~")L) (using equation)

Now, similar to Lemma 3.3] we can set L = n”/p; to obtain Py = (1 — ed=mpHdIn %)(1 — 1) So
now, using Lemma [3.2)and the success probability derived above, we can say that for an approprlate
choice of k and L, the guarantees of our data structure hold with failure probability Sn" + -+

d mp-+dIn 22 (1 _ %) O

A.3 MISSING PARTS AND PROOFS OF SECTION]

A.3.1 PROOF OF LEMMA [A.]]
Proof. Suppose the relative error of the estimate from the EXPONENTIAL HISTOGRAM algorithm is
€. So,
Y — X| <X
Taking expectation on both sides,
= E[|Y — X|] < {E[X] = /K (since K = E[X])

— [E[Y] - E[X]| <E[)Y — X[] < ¢K)
— [E[Y] - K| < €K
— E[Y] < (1+¢)K

O

A.3.2 PROOF OF LEMMA [4.2]

Proof. FromPB] |Y; - X;| < €X; = X;(1—¢) <Y; < X;(1+€)Vie {1,2,---,r}. It follows
from Hoeffding’s inequality, where we define € as €'E[Y],

P(|Y —EY| > ¢E[Y]) < 2exp (W2>
a;)
26/2E i R
(26’X)) (using e = €E[Y])
<9 2¢?E[Y
- r(2¢ max{X })
rEY;?
<2 (S max(X, }2) (using E[Y] E[Y:])

18

Under review as a conference paper at ICLR 2026

To bound this probability by §, we need :

EY?
2 exp (“) <4

 2max{X;}?
2 max{ X, }? 2 2 max{ X, }? 2
> 2 e (2) > 2SR 0 (2
- T =]E[}/Z]Q og s = (1 i 6/)2K2 og s
Thus |[Y — EY'| < ¢’E[Y] holds with probability 1 — & if r satisfies the aforesaid bound. O

A.3.3 PROOF OF LEMMA [4.4]

Proof. The number of cells in the modified RACE is RW. Each cell is represented by an EX-

PONENTIAL HISTOGRAM of space complexity (9(617 log? N) where € is the relative error of the
EXPONENTIAL HISTOGRAM. The relative error for KDE ¢ is related to ¢’ as (using lemma4.3)):

e=2+6é? —= ¢ =vVite—1

Hence, the total space requirement for modified RACE is:

1 1 1
RW -O(=10g> N) = RW - O(———10g’ N) = O | RBW ———1 2N>
(4 10 N) (e o) (g

A.3.4 EXTENSION TO BATCH QUERIES

We define the dynamic streaming dataset where a batch of data points at a new timestamp ¢ is

denoted by X(*) = {acgt) € R}7™,. Let the batch size (n;) be a constant, say R. For the sliding
window setting, we will consider the last [V batches for the KDE estimation, rather than the last N
data points.

Our algorithm can be extended for this setting accordingly. We have to modify the only update step
in the EXPONENTIAL HISTOGRAM. The EXPONENTIAL HISTOGRAM has to estimate the number of
elements in the last NV batches which hash to h;(g). The maximum increment for an EXPONENTIAL
HISTOGRAM in a RACE cell at a given time step is Rﬂ Datar et al.| show that the EXPONENTIAL
HISTOGRAM algorithm can be generalized for this problem using at most (k/2+ 1) (log(252 + 1) +
1) buckets, where k = [€]. The memory requirement for each bucket is log N +log(log N +log R)
bits. Hence, we get the following corollary from theorem 4.1

Corollary 2. Suppose we are given an LSH function with range W. The data comes in batches of
size R at every time step. Then the proposed sliding window RACE data structure with

2 max{ X, }? 2

r=0————log| =

< 1ok °\5
independent repetitions of the hash function provide a 1 £ € multiplicative ap-
proximation to K (which is the KDE) with probability 1 — 0, wusing space

(@) (TW - ——L —(log(2NRv/1 + ¢)(log N + log(log N + log R))) where N is the window

V1t+e—1
size.

A.4 ADDITIONAL PLOTS FROM SECTION[3]

Streaming ANN. From Figures |Se| and we see that beyond an appropriate value for €, our
algorithm outperforms the JL baseline in terms of both approximate recall and ANN accuracy for
both datasets. From [5a] [5b] [5c| and [5d] we illustrate the crossing over of curves as we increase
epsilon, with both methods achieving similar approximate recalls and accuracies for lower epsilon,
but with our algorithm outperforming the baseline for higher epsilon. We can also see that our
scheme achieves a reasonable trade-off between performance and sketch size, achieving compres-
sion rate < 1 while still maintaining good recall and accuracy for both datasets. Note that in case
our parameters allow a sublinear sketch, the compression rates only improve as we scale N.

Sthis will happen when all the elements in the current batch of size R hash to the same LSH bucket

19

Under review as a conference paper at ICLR 2026

Approximate Recall@so vs Compression (£=0.9) Approximate Recall@50 vs Compression (¢=0.5) Approximate Recall@50 vs Compression (¢=1)

Approximate Recall@50 vs Compression (¢=0.6)

(a) (b)

ANN Accuracy vs Compression (£=0.5) ANN Accuracy vs Compression (=1)

ANN Accuracy vs Compression (¢=0.8)

ANN Accuracy vs Compression (£=0.5)

r

AN Accur

(© (d)

Median Difference vs & (StreamingANN vs JL)

Median Difference vs (StreamingANN vs JL)
o Approximate Recal@50 :
8- (crAW Accuracy [R - —
02
02
° g
8 £ -04
H 5
502 5
H]
=06
“0s
08
—o— Approximate Recall@50
s -8 (c-ANN Accuracy
Py Py P o Py Py Py 060 065 070 075 080 085 080 095 100
! €

Figure 5: Effect of € on the performance of our scheme. Left column: results for sift1m, Right
column: results for fashion-mnist. (a) and (b) Recall vs Compression rate for 2 values of ¢, (c)
and (d) (¢,)-ANN Accuracy vs Compression Rate for 2 values of €. (e) and (f) Median differences
in Approximate Recall and ANN Accuracy over varying e.

A-KDE. From fig.[6d] it is observed that the behaviour of mean relative error is erratic for A-KDE
with angular hash, especially with ROSIS images. Fig. [6b]shows the dependency of mean relative
error on varying window sizes: 64,128,256,512,1024,2048. For N = 256, the error minimizes,
whereas it flattens out for other window sizes. These discrepancies in the plots can be attributed to

the underlying data distribution.

Mean Relative Error vs Sketch size Angular hash 2s Mean Relative Error vs Number of Rows Angular hash

—— text
—— image

o 50 100 150 200 250 300 0 500 1000 1500 2000 2500 3000
Sketch size in KB Number of rows.

Figure 6: KDE experiments: (a) Effect of sketch size on KDE estimates using Angular hash, (b)
Effect of sliding window size on mean relative error for Sliding window A-KDE with angular hash

on ROSIS image data.

20

Under review as a conference paper at ICLR 2026

Mean Relative Error vs Number of Rows Mean Relative Error vs Number of Rows
e ——— e
L o race o o et e
oy
% as0
528
s
-8 575
: % oo o 5 % oo o

150 00 150 00
Number of Rows in RACE Sketch Number of Rows in RACE Sketch

(a) (b)

Figure 7: Comparison between RACE structure with Angular Hash and Sliding window A-
KDE with Angular Hash on two datasets (a) ROSIS Hyperspectral data (b) News
headlines

21

	Introduction
	Formal Problem Definitions
	Our Contributions

	Preliminaries
	Streaming (c,r)-Approximate Near Neighbor
	Sliding-Window Approximate Kernel Density Estimation (A-KDE)
	Experiments
	Appendix
	Missing Parts of Preliminaries
	Approximate Nearest Neighbor:
	Repeated Array-of-Counts Estimator (RACE)
	Exponential Histogram
	Streaming Models

	Missing Parts and Proofs of Section 3
	Proof of Lemma 3.2
	Missing details in proof of Lemma 3.3
	Proof of Theorem 3.1
	Extension to batch queries
	ANN in Turnstile Model

	Missing Parts and Proofs of Section 4
	Proof of Lemma 4.1
	Proof of Lemma 4.2
	Proof of Lemma 4.4
	Extension to batch queries

	Additional Plots from Section 5

