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Abstract

The widespread deployment of products powered by machine learning models
is raising concerns around data privacy and information security worldwide. To
address this issue, Federated Learning was first proposed as a privacy-preserving
alternative to conventional methods that allow multiple learning clients to share
model knowledge without disclosing private data. A complementary approach
known as Fully Homomorphic Encryption (FHE) is a quantum-safe cryptographic
system that enables operations to be performed on encrypted weights. However,
implementing such mechanisms in practice often has significant computational
overhead and can expose potential security threats. Novel computing paradigms,
such as analog, quantum, and specialized digital hardware, present opportunities
for implementing privacy-preserving machine learning systems while enhancing
security and mitigating performance loss. This work instantiates these ideas by
applying the FHE scheme to a Federated Learning Neural Network architecture
that integrates both classical and quantum layers.

1 Introduction

With the widespread deployment of Machine Learning (ML) applications, the level of direct human-
machine interaction has increased rapidly. This surge has raised concerns and increased user aware-
ness about the capabilities and limitations of these technologies. As the impact of Machine Learning
(ML)–based gadgets becomes more relevant in the public discourse, governmental agencies begin
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to develop and implement regulatory policies regarding the fair use and overall protection of user
data. For example, the 2016 EU Data Regulation Act [1] and the Brazilian LGPD from 2018 [2]
establish guidelines for the processing of personal data, setting the security requirements for safe
information storage and delimiting the scope of use of these data. To address this issue, the Federated
Learning (FL) framework was proposed [3, 4] as a mechanism for coordinating multiple independent
clients that cooperate in a shared learning task by transmitting only the “knowledge” of the trained
model to their peers while keeping private data stored locally. In contrast to conventional ML, where
data is often centralized in a single server for model training, this distributed approach is suitable
for addressing data privacy concerns. Each independent client shares their model updates with a
server responsible for combining and broadcasting the aggregated model back to its clients. This
allows one to benefit from the insights produced through other clients’ data without ever having direct
access to it. However, these benefits are not free. The siloing of the data compromises the speed
with which “knowledge” diffuses through the network, affecting the efficiency of training in the form
of computational overheads and communication inefficiencies [5]. Moreover, exposing model data
to potentially vulnerable communication channels between clients and the server could defeat FL’s
original privacy goal. Even with the distribution of data for each client in an FL framework, the
privacy of this data can be threatened by the interception of messages between the clients and the
server. Once these messages are intercepted, the original private data can be inferred. To this end,
an extra layer of quantum-safe privacy protection is implemented by encrypting the model updates
before reaching the central server so that its aggregation operations are performed on this data without
decrypting it. This technique is known as Fully Homomorphic Encryption (FHE) [6]. Implementing
this technique prevents the server from accessing direct model updates, which prevents any potential
intercept of the messages sent by the clients. Clients can then trust that the aggregation technique is
performed without exposing their local data or the resulting learning model. Since the encryption
occurs before the model updates are communicated, each client’s local ML model is not restricted, yet
it is protected by FHE. This layer of protection comes at the expense of higher resource consumption
to manipulate encrypted model updates [6].

New techniques must be implemented to address all the considerations of data privacy on the scale
on which these FL models will be deployed. Tackling this challenge requires improvements in how
efficiently each client can learn individually, reducing the number of communication rounds, and
in how to encrypt the messages exchanged with a server. We consider that novel computational
paradigms can be the answer to these challenges. In particular, we claim that each client can address
their learning tasks with enhanced architectures that leverage this hardware. The compositional nature
of deep learning models allows some of its layers to be implemented using new computing paradigms
such as photonic [7], neuromorphic [8, 9] or quantum computers [10]. These machines consist of
specialized hardware with promising computational speedup capabilities relevant to ML, such as
matrix multiplication or calculating gradients.

One paradigm that has received particular attention in the context of privacy is Quantum Comput-
ing [11]. Quantum computing (QC) is the processing of information using phenomena explained
through quantum mechanics. The basic information unit for QC is the quantum bit or qubit, which can
be a superposition of the states 0 or 1. Processing over qubits subject to quantum mechanics allows
one to accelerate specific computational tasks, even exponentially [10]. Quantum computers, that
is, devices capable of implementing quantum computations, are still limited in size and capabilities
primarily concerned with handling unintended interactions with their environment [10], which has the
same effect of projecting the quantum states onto a classical one, known as measurement. However,
they are steadily gaining traction, with the potential expectation that in the future they can surpass
classical machines [12, 13] in tasks related to combinatorial optimization [14] and cryptography [15].
This opens the doors for hybrid ML algorithms that, acknowledging and accounting for the limitations
of each computational paradigm, take advantage of the classical and quantum layers [16, 17].

2 Related Work

Since its inception, FL has focused on communication-efficient learning with applications to data
privacy [3]. Subsequent research has expanded on this foundation, with different applications [4,
18, 19] and addressing challenges arising from practice such as training over non-IID data [20].
FL combined with FHE has gained prominence as a privacy-preserving approach to ML [21]. In
particular, there has been an increase in applications in healthcare [22, 23], where preserving privacy
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is crucial when working with data from medical diagnosis and imaging [24–26]. Recent work has
focused on tackling the computational inefficiencies inherent in FHE [27, 28].

Another prominent area consists of adding quantum computing layers to the distributed clients’
architecture, giving rise to an extension of Quantum Machine Learning (QML) [29, 30] known as
Quantum Federated Learning (QFL) [16,31]. Special attention has been paid to QFL on quantum [32]
or decentralized data [33]. Extensions of QFL considering other classical ML architectures, such as
convolutional networks [34, 35], have been proposed. Applications of QFL in healthcare have been
explored using existing quantum hardware [36] or classical simulations of quantum computers [23].
Other applications in finance [37] and Internet-of-Things (IoT) security [17] have been explored.
There are also previous developments for integrating it with encrypted weights [38]. Finally, as a
novel technology, it faces implementation and resource allocation challenges [39, 40].

3 Problem Description and Methodology

Despite its applications in distributed ML, classical FL still faces challenges. Among these are
communication bottlenecks across large networks [41], privacy concerns during model updates [42],
especially sensitive data such as those found in healthcare applications [23], and computational
inefficiencies due to training large datasets on devices with limited resources [43]. QFL is a distributed
learning paradigm capable of tackling some of these challenges. It consists of clients capable of
accessing quantum computers that collaboratively train a global model while communicating with
a centralized classical server. Since the local computations found in FL tend to be smaller than
centralized ML datasets, it becomes a great use case for the still resource-constrained quantum devices
available today [10, 44]. Furthermore, QFL is capable of using quantum-enhanced communication
protocols that offer inherent privacy advantages over the classical ones [15].

In a standard neural network, the weights are iteratively updated by gradient descent. The weight
update at time step t+1 is W t+1

i = W t
i −η∇L(W t

i ), where W t
i denotes the weight at time t for client

i, η is the learning rate, and ∇L(W t
i ) is the loss function gradient with respect to the weight. This

update minimizes the loss by adjusting the weights accordingly. However, in a scenario using FHE,
the process changes since weights are encrypted on each client. FHE allows performing the same
calculations on the encrypted weights E(W t

i ), generating new encrypted weights as E(W t+1
i ) =

E(W t
i ) − η∇L(E(W t

i )), leveraging FHE’s ability to perform operations directly on encrypted
parameters. FL with FHE aggregates encrypted weights across multiple clients without revealing

data

Client

Server

S ← Aggregation(wi)

. . .

encrypt

decrypt

Figure 1: The client nodes utilize local data to train a model that incorporates both classical and quantum
layers. After training, these models are encrypted and transmitted to a central server for aggregation into the
average of all encrypted models. This new global model is then distributed to all clients. This global model
is decrypted on each client, initiating another round of training. Intruders to the client-server communication
would only intercept of quantum-safe encrypted models.

individual weights. The server operates on encrypted weights as E(St+1) =
∑N

i=1 ciE(W
t+1
i ),

where ci is a proportion parameter for the i-th client. Upon receiving the updated weights, the clients
decrypt them and set their weights for the next model as W t+1

i = E−1(E(St+1)).

QFL with FHE works by training and encrypting the models for all clients in parallel. At the same
time, a centralized server receives models, aggregates them, and redistributes the new model to all
clients according to the procedure just described. This process repeats until convergence or meeting
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any other stopping criterion. Algorithm 1 gives a pseudocode description of the procedure, and Fig. 1
shows a high-level visualization.

Algorithm 1 Quantum Federated Learning with Fully Homomorphic Encryption
1: Require:
2: ctx: Fully homomorphic encryption context
3: N : Number of federated clients
4: params: Encryption parameters
5: G: Quantum gate set
6: D: Parameterized Quantum Circuit (PQC) depth

Ensure: Aggregated global model wg

7: Initialization:
8: Generate CKKS context ctx← CKKSContext(params)
9: Generate Galois keys for rotations keys← ctx.generate_galois_keys()

10: Initialize global QNN model wg ← InitializeQNN(D,G)
11: Client-Side QNN Training and Encryption:
12: for each client k ∈ {1, . . . , N} in parallel do
13: Prepare quantum dataset Dk ← PrepareQuantumDataset(k)
14: Train local QNN wk ← TrainQNN(Dk,wg, D,G)
15: Quantize and encrypt the local model wenc

k ← Encrypt(Quantize(wk), ctx)
16: Send encrypted model wenc

k to the server
17: end for
18: Server-Side Aggregation:
19: Initialize S ← 0 ▷ Accumulator for weighted sum
20: ntotal ←

∑N
k=1 nk ▷ Total number of samples across all clients

21: for each client k ∈ {1, . . . , N} do
22: Receive wenc

k from client k
23: Aggregate encrypted weights S ← S +wenc

k · nk
ntotal

24: end for
25: Client-Side Decryption and Global Model Update:
26: for each client k ∈ {1, . . . , N} in parallel do
27: Decrypt aggregated model wg ← Decrypt(S, secret_key)
28: Update global QNN model wg on the client
29: end for
30: PQC Update:
31: Adjust PQC parameters and architecture wg ← OptimizePQC(wg, D,G)
32: Model Distribution:
33: for each client k ∈ {1, . . . , N} in parallel do
34: Send global model wg to client k
35: end for
36: Repeat from step 11 until maximum communication rounds
37: return wg

3.1 Quantum Neural Network Initialization and Client-Side Training

The Quantum Neural Network (QNN) is initialized by constructing a variational Parameterized
Quantum Circuit (PQC) with a specified depth D and a set of quantum gates G. An example of this
PQC that we used in our illustrative test cases is given in Fig. 2. This variational PQC, which will
be trained on quantum data, uses parameters such as quantum gate angles and biases that can either
be initialized randomly or based on pre-trained values. After initialization, each client prepares its
quantum dataset Dk, which could be based on local quantum measurements or preexisting datasets.
Using this data, the client trains its local QNN through variational quantum algorithms. Once training
is complete, the model weights are quantized to a fixed precision format to reduce the size of the
encrypted parameters before encrypting the weights for secure transmission to the central server. The
CKKS scheme is configured with a polynomial modulus degree of 8192, which defines the ring size
Z[X]/(Xn + 1) with n = 8192, providing a security level of 128 bits. The coefficient modulus is
split into four primes with bit sizes [60, 40, 40, 60], resulting in a total modulus size of 200 bits,
balancing security and computational efficiency. The global scaling factor of 240 ensures sufficient
precision for fixed-point arithmetic.
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Figure 2: Depiction of quantum circuit used at the client’s level for QFL. Input data is encoded into a quantum
state using angle embedding via parameterized rotation gates RX(θi). The encoded quantum states are then
processed by a PQC, where the weights & parameters of the PQC are encrypted using FHE. The encrypted
quantum states undergo operations involving parameterized rotation gates & Controlled-NOT gates, facilitating
entanglement & complex quantum state manipulation in the encrypted domain. After measurement, classical
outputs are obtained, and the Cross-Entropy loss is computed. The encrypted parameters θi are updated during
training using a classical optimizer.

3.2 Server-Side Aggregation and Global Model Update

On the server, encrypted QNN weights from all clients are aggregated using a weighted summation
method, where each client’s contribution is proportional to the size of their data set. This ensures
that the global model reflects each client’s training effort. Further optimizations to the PQC, such as
modifying the depth D or adjusting the gate set G, may be performed to enhance model performance.
After these updates, the global model is distributed back to the clients, and this iterative process
continues until convergence, ultimately resulting in a privacy-preserving QNN model.

4 Computational Results

Training times for FHE-FedQNN models are notably extended due to the combined computational
demands of quantum simulation and FHE. This increased duration is particularly evident with datasets
like CIFAR-10, where the use of 6 qubits to represent 10 classes adds to the computational burden.
Similarly, Brain MRI, which requires 4 qubits for 4 classes, and PCOS, with only 2 qubits for 2
classes, reflect varying computation times based on the number of qubits utilized. The choice of
batch size is adapted to the dataset’s size. For CIFAR-10, with a substantial number of images (48k
training and 12k testing), a batch size of 128 is used. In contrast, smaller datasets such as Brain MRI
and PCOS, with 5.7k/1.3k and 2.56k/0.64k samples, respectively, used smaller batch sizes of 32.
These adjustments help to optimize computation within the FL framework according to the size of
the dataset.

Concerning Table 1, although the introduction of FHE results in computational overhead, the impact
on test accuracy for FHE-FedQNN models is minimal. The difference compared to standard FedQNN
models is around 1-2%, suggesting that the benefits of enhanced data security and quantum processing
can outweigh this slight accuracy trade-off. Upon evaluating the FHE-FedQNN model, it was
observed that there was improved performance in the PCOS dataset, resulting in a 4% gain in
classification accuracy. This progress suggests that the FHE scheme could potentially assist the model
in managing the noise introduced by encryption, thereby improving its generalization capabilities.
Despite the increased test loss in the FHE-FedQNN model, which is likely due to noise amplification
from FHE, the quantum model demonstrates superior generalizability. All models achieved near-
optimal training accuracies, a typical outcome in FL settings since each client trains on a subset of
data. However, test accuracy, which is measured on a separate set of test images, more accurately
reflects the performance of the aggregated federated model.

5 Discussion

In the end, the more complicated architecture of FL with FHE induces a trade-off from speed to
privacy. We have shown that new computing paradigms, and in particular a quantum computer, can be
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Table 1: Comprehensive performance analysis of Fully Homomorphic Encryption-Enabled Federated Quan-
tum Neural Networks (FHE-FedQNN) and Federated Neural Networks (FHE-FedNN) versus their Standard
counterparts (non-FHE) on CIFAR-10, Brain MRI, and PCOS Datasets. Each model was trained over 20 Rounds
with 20 clients and 10 epochs per round.

FHE-FedQNN Models Standard FedQNN Models

Dataset Train.
Acc.

Test.
Acc.

Test.
Loss

Time
(min)

Train.
Acc.

Test.
Acc.

Test.
Loss

Time
(min)

CIFAR-10 [45] 99.10% 70.12% 1.240 156.5 97.15% 72.16% 1.202 151.5
Brain MRI [46] 99.60% 88.75% 0.360 116.5 100.00% 89.71% 0.338 110.6
PCOS [47] 100% 70.15% 1.09 87.2 100% 66.19% 0.611 70.9

FHE-FedNN Models Standard FedNN Models

Dataset Train.
Acc.

Test.
Acc.

Test.
Loss

Time
(min)

Train.
Acc.

Test.
Acc.

Test.
Loss

Time
(min)

CIFAR-10 [45] 100% 68.53% 1.322 136.4 100% 71.09% 1.257 128.9
Brain MRI [46] 100% 88.4% 0.402 98.4 100.00% 90.36% 0.298 89.3
PCOS [47] 100% 64.11% 1.379 84.3 100% 65.37% 0.813 68.6

used in these ML models as a tool to accelerate local computations. The small-scale clients’ models
in FL are more amenable to the limits encountered on current quantum devices. However, considering
the current quantum hardware scale, this approach still has limitations. These can be mitigated in
some cases by classical simulation of quantum systems via tensor networks [23, 48], although only
practical until a certain scale. In the future, advances in quantum hardware, qubit error correction,
and encryption techniques are expected to make QFL practical for real-world applications.

For future work, an in-detailed study of the loss flow & the gradients flow rate is necessary to provide
conclusive evidence on the performance impact of QNNs integrated with FHE. This investigation will
help quantify the trade-offs between encryption and model accuracy. Additionally, exploring more
advanced quantum circuit designs is crucial to mitigate the issue of barren plateaus, which can hinder
optimization and training in quantum neural networks. These efforts will enhance both the efficiency
and scalability of FHE-enabled QNNs. All code for the results in the methodology is open source
and available in the repository https://github.com/elucidator8918/QFL-MLNCP-NeurIPS.

6 Perspectives

FL has emerged as a viable technology for machine learning in domains where data privacy is
important. Challenges related to training efficiency and vulnerability to eavesdropping have spurred
a number of developments, including FHE. Leveraging the composability of current deep learning
methods, some proposals have integrated classical and novel computational paradigms to satisfy
the ever-growing requirements of FL applications. In particular, quantum computing has been
successfully integrated with FL in this work and others [23, 31, 34, 40]. Our contribution was to show
the potential of combining FHE with quantum FL and provide an implementation of these methods
that is replicable on classical computers through efficient simulation of quantum circuits. The results
obtained suggest that incorporating both quantum layers and FHE does not significantly increase the
training time, and in some cases, it even improves the learning metrics. More importantly, it shows
how new computing paradigms can already aid in relevant ML tasks.

These novel computational paradigms still have significant untapped potential. We highlight that
FL can be the meeting point of two branches of quantum information sciences: quantum computing
and quantum communication. To achieve exponential speedups using QML, it has been shown that
one can operate directly over quantum data, without the need for encoding [33, 49]. At the same
time, the advantages of quantum communication arise only when transmitting qubits. Exploring the
simultaneous usage of both technologies presents a fascinating application of this technology, with
federated and machine learning being the use case that requires them together.
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