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Abstract

User-level differential privacy (DP) provides certifiable
privacy guarantees to the information that is specific to
any user’s data in federated learning. Existing methods
that ensure user-level DP come at the cost of severe accu-
racy decrease. In this paper, we study the cause of model
performance degradation in federated learning with user-
level DP guarantee. We find the key to solving this issue
is to naturally restrict the norm of local updates before ex-
ecuting operations that guarantee DP. To this end, we pro-
pose two techniques, Bounded Local Update Regularization
and Local Update Sparsification, to increase model quality
without sacrificing privacy. We provide theoretical analy-
sis on the convergence of our framework and give rigorous
privacy guarantees. Extensive experiments show that our
framework significantly improves the privacy-utility trade-
off over the state-of-the-arts for federated learning with
user-level DP guarantee.

1. Introduction
Federated learning (FL) [17] is a promising paradigm of

distributed machine learning with a wide range of applica-
tions [5,13,15]. FL enables distributed agents to collabora-
tively learn a centralized model under the orchestration of
the cloud without sharing their local data. By keeping data
usage local, FL sidesteps the ethical and legal concerns and
is advantageous in privacy compared with the traditional
centralized learning paradigm.

However, FL alone does not protect the agents or users
from inference attacks that use the output information. Ex-
tensive inference attacks demonstrate that it is feasible to
infer the subgroup of people with a specific property [19],
identify individuals [24], or even infer completion of social
security numbers [4], with high confidence from a trained
model.

*Corresponding Author.

To solve these issues, differential privacy (DP) [6] has
been applied to FL in order to protect either each instance
in the dataset of any agent (instance-level DP) [11, 25, 26],
or the whole data of any agent (user-level DP) [7, 12, 18].
These two DP definitions on different levels are suitable for
different situations. For example, when several banks aim
to train a fraud detection model via FL, instance-level DP is
more suitable to protect any individual records of any bank
from being identified. In another situation, when a smart-
phone app attempts to learn a face recognition model from
users’ face images, it is more appropriate to apply user-level
DP to protect each user as a unit.

Existing methods that ensure user-level DP [7, 12, 18]
are predominantly built upon Gaussian mechanism which
is a Gaussian noise perturbation-based technique. Unfortu-
nately, directly applying the Gaussian mechanism to ensure
strong user-level DP in FL drastically degrades the utility
of the resulted models. Specifically, the Gaussian mecha-
nism requires to clip the l2 magnitude of local updates to
a sensitivity threshold S and adding noise proportional to
S to the high dimensional local updates. These two steps
lead to either large bias (when S is small) or large variance
(when S is large), which slows down the convergence and
damages the performance of the global model [30]. How-
ever, existing methods [7, 12, 18] do not explicitly involve
interaction between the operations for ensuring DP and the
learning process of FL, which makes the learning process
hard to adapt to the clipping and noise perturbation opera-
tions, thereby leading to utility degradation of the learned
models.

To address the above issues, in this paper, we propose
two techniques to improve the model utility in FL with user-
level DP guarantees. Our motivation is to naturally reduce
the l2 norm of local updates before clipping, thereby mak-
ing the local updates more adaptive to the clipping oper-
ation. First, we propose Bounded Local Update Regular-
ization (BLUR). It introduces a regularization term to the
agent’s local objective function and explicitly regularizes
the l2 norm of local updates to be bounded. As a result, the
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l2 norm of local updates could be naturally smaller than S,
thereby decreasing the impact of clipping operation. Then
we propose Local Update Sparsification (LUS) to further
reduce the magnitude of local updates. Before clipping, it
zeros out some update values that have little effect on the
performance of the local model, thereby reducing the norm
of local updates without damaging the accuracy of the local
model.

Our contributions can be summarized as follows:

• We propose two techniques to improve the model util-
ity with user-level DP guarantee in federated learning.

• We provide theoretical analysis on the convergence of
our framework and give rigorous privacy guarantees.

• Extensive experiments validate the effectiveness and
advantages of the proposed methods.

2. Related Work
The concept of user-level differential privacy in feder-

ated learning was introduced by [18]. They propose DP-
FedAvg to train models for next-word prediction in a mo-
bile keyboard meanwhile ensuring user-level DP guarantee
by employing Gaussian mechanism and composing privacy
guarantees via moment accountant. The following work
[12, 27] ensures user-level DP by discretizing the data and
adding discrete Gaussian noise before performing secure
aggregation. They also provide a novel privacy analysis
for sums of discrete Gaussians. Both of the above methods
ensure user-level DP via noise perturbation-based method,
which requires to clip norm of model update or data and add
noise to the clipped vectors. Nevertheless, the clipping and
noise perturbation steps inevitably interfere with the per-
formance of the resulting model. Different from the afore-
mentioned methods, a recent study [30] proposed AE-DPFL
which ensured user-level DP by a voting-based mechanism
with secure aggregation. AE-DPLF does not need to clip
the model or data, thereby relieving the accuracy degrada-
tion issue. However, the AE-DPFL framework assumes that
unlabeled data from the global distribution is available to
the server, which is very hard to satisfy in practical applica-
tions. Our work follows the paradigm of the noise perturba-
tion methods but we aim to improve the training process by
naturally bounding the local update norms.

Other works related to our paper are those employ-
ing regularization or sparsification techniques in FL. Previ-
ous works [22] and [2] also introduce regularization terms
into objective function for each device. Nevertheless, they
aim to apply the regularization technique to address the
data/device distribution heterogeneity issue in FL, which is
different from our goal of bounding the sensitivity of local
updates. Another line of works [3, 11] also apply the spar-
sification technique in privacy-preserving FL. Both of them

focus on ensuring instance-level DP and employing spar-
sification to reduce communication costs. On the contrary,
our work utilizes the sparsification technique to improve the
model utility with user-level DP guarantee.

3. Preliminary
3.1. Federated Learning (FL)

Federated learning [17] is a multi-round protocol be-
tween an aggregation server and a set of agents in which
agents jointly train a model. Let P denotes the set of all
agents with |P| = N , and Di denote the local dataset of
client i ∈ P with ni samples. The set D =

⋃
i∈P Di de-

notes the full training set. Let fi(w, z) denotes the loss
function for client i over a model w and a sample z, and
fi (w,Di) =

1
ni

∑
z∈Di

fi(w, z) denotes the empirical loss
over a model w and a dataset Di. Without causing ambi-
guity, we also denote the local loss function as fi(w) in
the following. In FL, agents try to jointly train a model
that minimizes the weighted average of local loss functions:

min
w∈Rd

{f(w,D) =
∑
i∈P

ni

n
fi (w,Di)} (1)

where n=
∑

i∈P ni is the total dataset size of all agents. To
solve this optimization task, the widely used FedAvg proto-
col executes the following two steps in the communication
round t:

• Local updating. The server samples a set of agents
Pt. Each agent i ∈ Pt downloads the global
model wt−1 from server, then performs local train-
ing on local dataset by executing wt,q

i ← wt,q−1
i −

ηl∇wfi

(
wt,q−1

i ,Di

)
for Q steps with wt,0

i initialized

as wt−1. Finally, each agent uploads the model update
∆t

i = wt,Q
i −wt,0

i to server.

• Model aggregation. The server receives model up-
dates {∆t

i|i ∈ Pt} from participants and aggregates
them to update global model by wt ← wt−1 +
ηg
∑

i∈Pt

ni

nPt
∆t

i.

3.2. Differential Privacy (DP)

Differential privacy [6] is a formal notion of privacy that
provides provable guarantees against the identification of
individuals in a private set. We denote D ≃ D′ as a pair
of adjacent datasets, which means that D′ can be obtained
from D by changing only one record.

Definition 1 Differential Privacy. A randomized algo-
rithm M satisfies (ϵ, δ)-differential privacy if for any
adjacent datasets D ≃ D′ for any subset of outputs
S ⊆ Range(M) it holds that Pr[M(D) ∈ S] ≤
eϵ Pr [M (D′) ∈ S] + δ.
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The definition indicates that one could not distinguish be-
tween D and D′ by observing the output of M, thereby
protecting individuals in D from identification. A simple
way to achieve (ϵ, δ)-DP is to take a vector-valued deter-
ministic function F and inject appropriate Gaussian noise,
the scale of which depends on the sensitivity of F .

Definition 2 (l2 Sensitivity). Let F be a function, the L2-
sensitivity of F is defined as S = maxD≃D′ ∥F (D)−
F (D′) ∥2, where the maximization is taken over all pairs
of adjacent datasets.

Lemma 1 Let F be a function, δ ∈ (0, 1) and ϵ>0. For
c >

√
2 ln(1.25/δ), the Gaussian mechanism F(D) +

N (0, σ2I) with parameter σ ≥ cS/ϵ ensures (ϵ, δ)-DP.

3.3. Differential Privacy for Federated Learning

In FL, DP can be defined into instance-level DP and
user-level DP, depending on how adjacent dataset is de-
fined. Our work focuses on the latter.

Definition 3 User-level DP. When D′ is constructed by
adding or removing one agent with all its data records.

DP-FedAvg [18] is the first to guarantee user-level DP in FL
by applying Gaussian mechanism. To ensure user-level DP,
before uploading local updates to the server, DP-FedAvg
clips the norm of per-agent model update ∆t

i to a thresh-
old S and adds scaled Gaussian noise to the bounded up-
date, as shown in Alg. 1. Although DP-FedAvg ensures
user-level DP, it severely harms the utility of the resulted
models. In this work, we aim to develop a federated learn-
ing framework that has little negative impact on the model
utility meanwhile ensuring user-level DP.

4. Methodology
We start by analyzing the impact of clipping and adding

noise operations in the local update. We denote ∆t
i as the

local update at communication round t from agent i before
clipping, denote ∆̃t

i as the local update after clipping but
before adding noise, and denote ∆

t

i as the local update after
clipping and adding noise. Let d denote the dimension of
∆t

i, then the expected mean-square error of the estimate
∆

t

i can be computed as follows

E
[
1

d

∥∥∥∆t

i −∆t
i

∥∥∥2
2

]
≤ 1

d

(
E
[∥∥∥∆̃t

i −∆t
i

∥∥∥2
2
+
∥∥∥∆t

i − ∆̃t
i

∥∥∥2
2

])
=

1

d
max

(
0, ∥∆t

i∥ − S
)2

+
σ2S2

|Pt|
(2)

The detailed derivation of Eq. 2 is provided in the Ap-
pendix. Eq. 2 indicates that ∆

t

i is a biased estimation of

Algorithm 1 DP-FedAvg
Input: Agent sampling probability p ∈ (0, 1], clipping
threshold S, noise scale σ.
Output: Trained model wT

Server
1: Initialize global model w0

2: for t = 1 to T do
3: Pt ← Sample agents with probability p;
4: for i ∈ Pt in parallel do
5: ∆

t

i = LocalUpdate
(
wt−1, i

)
;

6: end for
7: wt ← wt−1 + ηg

1
|Pt|

∑
i∈Pt

∆
t

i;
8: end for
9: return wT

LocalUpdate
1: wt,0

i ← Download wt−1;
2: for q = 1 to Q do
3: Sample batch B ⊆ Di ;
4: wt,q

i ←wt,q−1
i −ηl 1

|B|
∑

(x,y)∈B∇wfi

(
wt,q−1

i , x, y
)

;
5: end for
6: ∆t

i = wt,Q
i −wt,0

i ;

7: ∆̃t
i = ∆t

i/max
(
1,

∥∆t
i∥2

S

)
;

8: return ∆̃t
i +N (0, S2σ2Id/|Pt|)

∆t
i. At the right side of Eq. 2, the first and second term re-

flect the deviation introduced by clipping and adding Gaus-
sian noise, respectively. To minimize the deviation, we can
decrease the right side of the inequality in two ways:

• Ensuring ∥∆t
i∥ is not greater than S for each i and t;

• Using a smaller clipping threshold S.

The first way indicates that we should somehow limit the l2
norm of the local update to make it smaller than S. Intu-
itively, if ∥∆t

i∥ is large, e.g. ∥∆t
i∥ ≫ S, the clipping opera-

tion could lead to much of the update information contained
in ∆t

i be dropped and makes the resulted ∆̃t
i less informa-

tive. The second way indicates that we can use smaller
S to limit the impact of Gaussian noise. Intuitively, this
works because the variance of added Gaussian noise is pro-
portional to S2. Using smaller S can directly reduce the
perturbation effect of adding noise. However, when we also
consider the first way, we can find that it is difficult to re-
duce the deviation by only reducing S without considering
∥∆t

i∥. Because for the same ∥∆t
i∥ that is greater than S,

only reducing S could increase ∥∆t
i∥ − S, which enlarges

the negative impact of clipping operation. This indicates
that the key to solve the problem is to naturally reduce the
norm of local updates at each communication round.

Based on the above observation, we propose two tech-
niques to improve the utility federated learning with user-
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level DP guarantee, termed Bounded Local Update Regu-
larization and Local Update Sparsification. Our motivation
is to reduce the norm of local updates by regularizing local
models and making the local updates sparse.

4.1. Bounded Local Update Regularization (BLUR)

In vanilla FedAvg, each agent trains the local model by
optimizing the objective function of

min
w∈Rd

fi(w) (3)

which does not impose any constraints on weight updates.
However, when we apply the Gaussian mechanism to en-
sure user-level DP, the l2 norm of weight update must be
limited to ensure the sensitivity of weight update smaller
than a threshold S. To this end, the l2 norm of weight up-
date should be considered as a constraint in the local op-
timization. Let wt denote the local initial weight at com-
munication round t. Then the local optimization should be
formulated as

min
w∈Rd

fi (w) s.t. ∥w −wt∥ ≤ S (4)

The above formulation can be converted to an unconstrained
optimization by transforming the constraint to a regulariza-
tion term (BLUR) as

min
w∈Rd

{hi(w) ≜ fi(w) +
λ

2
Rt(w)}

where Rt(w) = max
(
0, ∥w−wt∥2−S2

)
(5)

Directly optimizing Eq. 3 may lead to ∥∆t
i∥ ≫ S, in which

case applying clipping operation to ∆ could result in much
of the information in ∆t

i being dropped, thereby impeding
the convergence of the local training process. On the con-
trary, ∆t

i obtained by optimizing Eq. 5 is more adaptive to
the clipping operation as the regularization term in Eq. 5
effectively limits the l2 sensitivity of ∆ to be smaller than
the clipping threshold S.

The effect of BLUR can also be interpreted as an adap-
tive adjustment to the local learning rate by considering
both model update norm and learning step. Without using
BLUR, the local update can be expressed as

wt,Q
i −wt = −ηl

Q−1∑
q=0

gt,q
i (6)

where Bq denotes the local batch of data at the local step q

and gt,q
i = 1

|Bq|
∑

(x,y)∈Bq
∇fi
(
wt,q−1

i , x, y
)

with E
[
gt,q
i

]
=

∇fi
(
wt,q

i

)
. The result in Eq. 6 can be easily obtained by

unrolling the update step of DP-FedAvg (line of LocalUp-
date in Alg. 1). While applying BLUR, the local model is
updated by optimizing Eq. 5. as

wt,q
i ← wt,q−1

i − ηl
1

|B|
∑

(x,y)∈B

∇hi

(
wt,q−1

i , x, y
)

(7)

Lemma 2 Suppose at communication round t, the local
model on agent i is updated by repeating Eq. 7 with λ< 1

ηl

for Q iterations. Then we have the final local update

wt,Q
i −wt = −ηl

Q−1∑
q=0

γt,q
i gt,q

i (8)

where γt,q
i =

{
(1− ληl)

q, if ∥wt,q
i −wt∥>S

1, otherwise

Lemma 2 shows that BLUR introduces an adaptive dis-
count factor γt,q

i to the local learning rate. At the local step
q, if the norm of the current update is larger than S, the
learning rate at this step would be discounted by (1− ληl)

q

to restrict the impact of this update step. On the contrary,
if the norm of the current update is smaller than S, the ef-
fect of this step would not be limited. More concretely, the
training process is forced to the local optimal that lies in the
norm-restricted space.

We note that a similar regularization term has been ap-
plied in the previous work FedProx [22]. However, an im-
portant distinction between FedProx and our BLUR is that
we aim to employ the regularization method to bound the
sensitivity of the local updates by S, while FedProx ap-
plies the regularization method to tackle the statistical het-
erogeneity problem in federated learning. As a result, the
impact of clipping threshold S is taken into account in our
BLUR while FedProx does not involve a threshold in the
regularization term.

4.2. Local Update Sparsification (LUS)

Sparsification is a widely used technique to improve
communication efficiency in distributed training [16,23,28]
or to reduce the model complexity of DNNs [8, 14]. In-
spired by the previous works, we expect to further reduce
the norm of local updates by eliminating some parameter
updates which can be removed with less impact on model
performance.

Suppose in a local update process, the initial model
weight is w0. The model weight after local training is w
and the corresponding update is ∆w. Here, we denote the
whole model weight vector as w and denote a specific pa-
rameter in the model as w. We can zero out the update of
a specific parameter w to 0 by setting w ← w0 and get the
corresponding model weight w̃ and model update ∆w̃. By
applying the Taylor series on fi(w̃), we can get the loss
value as

fi (w̃) = fi (w)− ∂fi (w)

∂w
(w0 − w) + o

(
w2
)

(9)

Ignoring the higher-order term, we have

|fi (w̃)− fi (w)| =
∣∣∣∣∂fi (w)

∂w
(w0 − w)

∣∣∣∣ (10)
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Algorithm 2 Local Update with BLUR and LUS
Input: Current global model wt−1, clipping threshold S,
noise scale σ, regularization factor λ, number of preserved
update values s
Output: Local update

1: wt,0
i ← Download wt−1;

2: for q = 1 to Q do
3: Sample batch B ⊆ Di ;
4: Update local model wt,q

i using Eq. 7;
5: end for
6: ∆t

i = wt,Q
i −wt,0

i ;
7: Compute mask matrix M(∆t

i, s) according to Eq. 12;
8: ∆̂t

i ←M(∆t
i, s) ◦∆t

i;

9: ∆̃t
i = ∆̂t

i/max
(
1,

∥∆̂t
i∥2

S

)
;

10: return ∆̃t
i +N (0, S2σ2/|Pt|)

We define the utility cost of zeroing out ∆w as

T (∆w;w) ≜

∣∣∣∣∂fi (w)

∂w
∆w

∣∣∣∣ = ∣∣∣∣∂fi (w)

∂w
(w0 − w)

∣∣∣∣ (11)

Large T (∆w;w) indicates that zeroing out ∆w will lead to
much utility cost to w, thereby ∆w should be preserved in
∆w. On the contrary, the updates that have little impact on
model performance would be zeroed out. Suppose there are
J layers in the model. Let wj ∈ Rdj denote the weight
in the j-th layer and let Ts (∆wj) denote the s-th largest
value of set {T (∆w;w) | w ∈ wj}. To make local update
∆w sparse, we define a mask function to generate 0-1 mask
matrix for update ∆w in the j-th layer of model w as

Mj(∆w;w, sj) ≜

{
1, if T (∆w;w) ≥ Ts (∆wj)
0, otherwise

(12)

where Mj(w;w, s) ∈ Rdj is the mask matrix for layer up-
date ∆wj . Let M (∆w, s) denotes the mask matrix for
model update ∆w, which is constructed by applying Eq.
12 to each layer. Then the sparsification process can be ex-
pressed as

∆w̃←M(∆w, s) ◦∆w (13)

where ◦ denotes Hadamard-product. After sparsification,
for each layer update ∆w̃j , sj update values from ∆wj

that have largest T (w;w) values are preserved and others
are zeroed out. As a result, ∥∆w̃∥ would be consistently
smaller than ∥∆w∥. By adjusting s, we can control the
sparsity of local update, thereby adjusting the norm reduc-
tion, to improve the utility of uploaded model updates.

5. Theoretical Results
In this section, we give the formal privacy guarantee and

rigorous convergence analysis of our FL framework.

5.1. Privacy Analysis

In this subsection, we give the formal privacy guarantee.
Same with DP-FedAvg, our method applies Gaussian mech-
anism to each agent’s local update to ensure DP guarantee.
At each communication round, the privacy guarantee of our
method is equal to that of DP-FedAvg, if applying the same
noise scale for both methods. For privacy cost accumula-
tion, the composition theorem can be leveraged to compose
the privacy cost at each round. In this paper, we make use
of the moments accountant [1, 20] to obtain tighter privacy
bounds than previous strong composition theorem [6].

Specifically, the moments accountant tracks a bound
of the privacy loss random variable. Given a ran-
domized mechanism M, the privacy loss at output
o ∈ Range(M) is defined as ℓ (o;M,D,D′,aux) ≜
log Pr[M(D,aux)=o]

Pr[M(D′,aux)=o] . Then, the privacy loss random
variable L (o;M,D,D′,aux) is defined by evaluat-
ing the privacy loss at the outcome sampled from
M(D). In our framework, the auxiliary informa-
tion at round t is the current global weight wt−1.
The moments accountant are defined as αM(λ) ≜
maxD,D′,aux logE [exp (λL (M,D,D′,aux))]. Accord-
ing to the tail bound of moments accountant,M is (ϵ, δ)-DP
with δ = minλ exp (αM(λ)− λε). Then, for an adaptive
mechanismM1:K =M1, . . . ,MK , according to the com-
posability of moments accountant, the privacy guarantee of
M1:K can be calculated by αM1:K

(λ) ≤
∑K

k=1 αMk
(λ).

Based on Theorem 1 in [1], we obtain the following theorem
for privacy cost accumulation of FedAvg with our method
Alg. 2 as local update method.

Theorem 1 (Privacy Guarantee). Let P denote the number
of participant clients in a communication round. There exist
constants c1 and c2 so that given the number of communi-
cation rounds T , for any ϵ<c1q

2T , FedAvg that uses Alg. 2
as local update method satisfy (ϵ, δ) user-level DP for any

δ>0, if we choose σ ≥ c2
P
√

T log(1/δ)

Nϵ .

5.2. Convergence Analysis

In this subsection, we present the convergence results of
our method for general loss functions. Our analysis is based
on the following assumptions:

Assumption 1 (L-Lipschitz Continuous Gradient). There
exists a constant L>0, such that ∥∇fi(x)−∇fi(y)∥ ≤
L∥x− y∥,∀x,y ∈ Rd, and i ∈ P .

Assumption 2 (Unbiased Local Gradient Estimator). For
any data sample z from Di, the local gradient estimator is
unbiased, e.g., E [∇fi(w, z)] = E [∇fi(w)] ,∀w ∈Rd and
i∈P .
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Assumption 3 (Bounded Variance). There exist two con-
stants σl>0 and σg>0 such that for any w ∈ Rd and i ∈ P ,
the variance of each local gradient estimator is bounded by
E
[
∥∇fi (w, z)−∇fi (w)∥2

]
≤ σ2

l , for any data sample z
fromDi, and the global variance of the local gradient of the
cost function is bounded by ∥∇fi (w)−∇f (w)∥2 ≤ σ2

g .

Assumption 4 (Bounded Gradient). The loss function
fi(w; z) has G-bounded gradients, i.e., for any w ∈
Rd, i ∈ P , and any data sample z from Di, we have
∥∇fi(w; z)∥ ≤ G.

Based on the above assumptions, we have the following
convergence results:

Theorem 2 (Convergence of Our Protocol). Under As-
sumptions 1-4, the sequence of outputs {wt} generated by
Alg. 1 with Alg. 2 as local update method satisfies:

1

T

T∑
t=1

E
[
αt
∥∥∇f (wt

)∥∥2]
≤ O

(
1

ηgηlQT
+ η2l Q

2 +
ηgηl
P

)
︸ ︷︷ ︸

From FedAvg

+ O
(
ηgσ

2S2d

ηlQP 2

)
︸ ︷︷ ︸

From operations for DP

where αt := 1
N

∑N
i=1 min

(
1, S

ηlβt
i∥

∑Q−1
q=0 γt,q

i gt,q
i ∥

)
with

βt
i =

∥Mt
i ◦

∑Q−1
q=0 γt,q

i gt,q
i ∥

∥
∑Q−1

q=0 γt,q
i gt,q

i ∥
.

The bound of Theorem 2, contains the first term inherited
from standard FedAvg and the second term introduced by
operations for DP guarantees. Comparing with the conver-
gence rate of DP-FedAvg, our method achieves quadratic
speedup convergence with respect to P in the second term,
while that of DP-FedAvg is linear speedup [29]. To ana-
lyze the privacy/utility trade-off of our framework, we can
replace the σ in Theorem 2 with that from Theorem 1. To
analyze the impact of privacy parameters, let S = ηlQc
with c ≥ G and σ2 substituted. We can obtain the follow-
ing results about privacy/utility trade-off.

Corollary 1 (Convergence with Privacy Guarantee). Un-
der Assumptions 1-4, for any clipping threshold S ≥ ηlQG
and σ as in Theorem 1, for any (ϵ, δ) satisfying the
constraints in Theorem 1, we have

1

T

T∑
t=1

E
[
αt
∥∥∇f (wt

)∥∥2]
≤ O

(
1

ηgηlQT
+ η2l Q

2 +
ηgηl
P

)
︸ ︷︷ ︸

From FedAvg

+O

(
ηgηlQTd ln

(
1
δ

)
N2ϵ2

)
︸ ︷︷ ︸

From operations for DP

and the best rate one can obtain from the above bound is
Õ
(√

d
Nϵ

)
by optimizing ηl, ηg, Q, T .

6. Experiment Settings

In this section, we conduct experiments to illustrate the
advantages of DP-FedAvg with BLUR and LUS over the
previous arts for FL with user-level DP guarantees.

Baselines. Our method aims at improving the perfor-
mance of DP-FedAvg [18]. As a result, we choose DP-
FedAvg as our baseline. DP-FedAvg ensures user-level DP
guarantee by directly employing Gaussian mechanism to
the local updates. To compare with SOTA methods, we also
compare our method with previous works DDGauss [12]
and AE-DPFL [30]. DDGauss ensures user-level DP by
discretizing the data and adding discrete Gaussian noise
before performing secure aggregation. AE-DPFL ensures
user-level DP by a private voting mechanism with secure
aggregation.

Datasets and models. We evaluate on two datasets: EM-
NIST and CIFAR-10. EMNIST is an image dataset with
hand-written digits/letters over 62 classes grouped into
3400 clients by their writer. It substantially involves user-
level DP with natural client heterogeneity and non-iid data
distribution. CIFAR-10 is also an image dataset with 50K
training samples and 10K testing samples over 10 classes.
For CIFAR-10 dataset, we follow prior works [10, 31] to
model non-iid data distributions using a Dirichlet distribu-
tion Dir(α), in which a smaller α indicates higher data het-
erogeneity, as it makes the local distribution more biased.
For both datasets, we conduct experiments on two models
with different number of parameters: CNN-2-Layers model
from [21] and ResNet-18 [9]. The model size is about 1.0M
for CNN-2-Layers model and 11.1M for ResNet-18.

Configuration. For EMNIST and CIFAR-10 respec-
tively, we set the number of rounds T to 1000 and 300, the
default agent selection probability p to 0.04 and 0.06, the
mini-batch size to 64 and 50, the local LR ηl to 0.03 and 0.1
For all experiments, the number of local iterations Q = 30,
server LR ηg = 1. The privacy parameter δ = 1

N . For a
specific ϵ, the clipping threshold S for vanilla DP-FedAvg is
decided by grid search from {0.01, 0.03, 0.1, 0.3, 1.0}. We
find S = 0.03 and S = 0.3 perform best on EMNIST and
CIFAR-10, respectively. The hyper-parameter of BLUR
is the regularization parameter λ. The hyper-parameter of
LUS is the number of preserved updates s. Instead of using
s, we define and adjust the sparsity c = 1 − s/d. A larger
c indicates more update values are zerod out. While us-
ing BLUR and/or LUS, the hyper-parameters λ and c are
chosen by grid search from {0.05, 0.1, 0.2, 0.4, 0.8} and
{0.1, 0.3, 0.5, 0.7, 0.9}, respectively. The default λ and c
are set to λ = 0.4 and c = 0.7.
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Model Setting DP-FedAvg AE-DPFL DDGauss Ours

CNN-2-Layers
ϵ = 2.0 69.65± 0.74 71.16± 0.47 69.35± 0.61 74.48± 0.52
ϵ = 4.0 72.32± 0.81 74.63± 0.59 72.16± 0.76 75.85± 0.61
ϵ = 6.0 74.12± 0.75 76.25± 0.42 74.34± 0.70 77.48± 0.54
ϵ = 8.0 75.36± 0.64 77.41± 0.33 75.20± 0.68 78.09± 0.46

ResNet-18
ϵ = 2.0 73.52± 0.53 76.37± 0.41 73.16± 0.58 78.58± 0.39
ϵ = 4.0 75.51± 0.60 79.22± 0.46 75.65± 0.64 80.29± 0.47
ϵ = 6.0 77.19± 0.55 80.24± 0.37 77.64± 0.61 81.55± 0.46
ϵ = 8.0 78.06± 0.49 81.33± 0.46 78.03± 0.52 82.12± 0.52

Table 1. Performance comparison under different privacy budgets on EMNIST dataset. A smaller ϵ indicates a stronger privacy guarantee.

Model Setting DP-FedAvg AE-DPFL DDGauss Ours

CNN-2-Layers
α = 0.1 53.84± 1.04 55.79± 0.86 53.55± 1.12 58.95± 0.95
α = 1 58.67± 0.85 60.00± 0.57 58.28± 0.96 63.74± 0.70
α = 10 62.25± 0.71 63.93± 0.45 62.43± 0.77 65.34± 0.52
α = 100 63.73± 0.64 64.51± 0.32 63.80± 0.69 66.05± 0.45

ResNet-18
α = 0.1 59.73± 0.96 63.11± 0.65 59.37± 1.04 64.50± 0.88
α = 1 63.49± 0.81 65.80± 0.51 63.84± 0.89 67.27± 0.62
α = 10 65.64± 0.69 67.62± 0.42 65.85± 0.72 68.96± 0.54
α = 100 66.58± 0.60 68.39± 0.35 66.74± 0.63 69.42± 0.47

Table 2. Performance comparison given different data settings on CIFAR-10 dataset. A smaller α indicates higher data heterogeneity.

7. Experimental Results

Performance under different privacy budgets. Table 1
shows the test accuracies for different level privacy guar-
antees on EMNIST. Our method consistently outperforms
the previous SOTA methods for private FL under differ-
ent privacy budgets. Specifically, using BLUR and LUS
can improve the accuracy of DP-FedAvg by 3% ∼ 4%
and 4% ∼ 5% for CNN-2-Layers and ResNet-18, respec-
tively. Comparing with SOTA methods, our method con-
sistently provides significant improvements. For instance,
on ResNet-18, our method provides gains of 4% ∼ 5% to
DDGauss and 1% ∼ 2% to AE-DPFL. We also observe that
the improvement on the larger model (ResNet-18) is rela-
tively greater than that on the smaller model (CNN), which
is a favorable advantage as we tend to use a large model to
achieve better performance in practice. Moreover, the im-
provement for smaller ϵ is relatively greater than that for
larger ϵ. For instance, the accuracy improvement over DP-
FedAvg is 4.83% for ϵ = 2, and 2.73% for ϵ = 8 on CNN-
2-Layers model. This is also a merit of our method as we
tend to use smaller ϵ to ensure stronger DP guarantees.

Effectiveness of BLUR. We conduct experiments to
validate the effectiveness of BLUR. The experiments
are conducted on EMNIST with ResNet-18. The pri-
vacy budget is ϵ = 6.0. To verify the effectiveness
of BLUR, we study the performance of DP-FedAvg +
BLUR with various regularization hyper-parameter λ from
{0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8}, where λ = 0 indicates the
vanilla DP-FedAvg. As shown in Figure 2, using BLUR

consistently speeds up the convergence and improves the
test accuracy of DP-FedAvg.
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Figure 1. Effectiveness of BLUR with various λ. Vanilla DP-
FedAvg is denoted by λ = 0. Using BLUR can consistently speed
up the convergence and improve the test accuracy.

Method Sparsity Accuracy (%) Gain (%)
DP-FedAvg 0.0 76.24 +0.00

DP-FedAvg
+ LUS

0.1 76.52 +0.28
0.3 77.28 +1.04
0.5 77.75 +1.51
0.7 77.54 +1.30
0.9 77.39 +1.15

DP-FedAvg
+ BLUR
+ LUS

0.1 78.28 +2.04
0.3 79.26 +3.02
0.5 79.97 +3.73
0.7 80.32 +4.08
0.9 80.17 +3.93

Table 3. Effectiveness of LUS with different sparsity. Using LUS
consistently improves the accuracy and is synergistic with BLUR.
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Figure 2. Distributions of local update norms (before clipping) at each
round from DP-FedAvg (left) and ours (right). The y-axis and x-axis
denote communication rounds and local update norms, respectively.

10 20 30 40
Local Update Steps

50

55

60

65

70

75

80

Te
st

 A
cc

ur
ac

y 
(%

) FedAvg
DP-FedAvg
Ours

Figure 3. Impact of local update
steps on CIFAR-10.
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Figure 4. Impact of active
agent numbers on CIFAR-10.

Effectiveness of LUS. To validate the effectiveness of
LUS, we conduct experiments on DP-FedAvg + LUS and
DP-FedAvg + BLUR + LUS with various sparsity c from
{0, 0.1, 0.3, 0.5, 0.7, 0.9}, where sparsity=0 indicates not
using LUS. From Table 3, we observe that when equip-
ping DP-FedAvg with LUR solely, the performance of DP-
FedAvg are improved by about 0.58% ∼ 1.51%. How-
ever, compared with DP-FedAvg + BLUR, DP-FedAvg +
BLUR + LUS obtains more performance gains by at most
2.07%, which indicates that the effectiveness of LUS can
be boosted while cooperating with BLUR, and certifies that
the effects of BLUR and LUS are synergistic.

Effects of bounding local update norms. To verify the
effects of our method on bounding the norm of local up-
dates, we show in Figure 2 the distributions of local updates
norm before clipping in each communication round. The
clipping bound is set to be 0.1 for both DP-FedAvg and our
method. In contrast to DP-FedAvg, the clipping operation
distorts less information in our framework, witnessed by a
much smaller difference in the norm of local updates and
the clipping threshold, which is smaller than 0.1 in most
cases. Moreover, the local updates used in our method ex-
hibit much less variance compared with DP-FedAvg. This
is consistent with our motivation of making the local up-
dates more adaptive to clipping by naturally reducing the
norm of local updates before clipping.

Impacts of data heterogeneity. We explore different data
heterogeneity by changing α for Dirichlet distribution in Ta-
ble 2. We observe that our method consistently outperforms
other baselines for different data heterogeneity. Moreover,
using BLUR and LUS can lead to more accuracy gain when
data heterogeneity is higher. For example, the accuracy gain
is 5.11% for α = 0.1, and 2.32% for α = 100 on CNN-2-
Layers. The reason for this could be that when data hetero-
geneity is higher, the local data distribution is more biased
to the global distribution, leading to larger norm of local up-
dates. Therefore, the clipped local updates are more biased
to the original local updates. Employing BLUR and LUS

can mitigate this by bounding the norm of local updates.

Impacts of communication frequency. We explore dif-
ferent local updating steps Q on CIFAR-10, so that a larger
Q means longer communication delays before the global
communication. Results in Figure 3 indicates that our ap-
proach is robust against different levels of communication
delays while DP-FedAvg leads to performance degradation
when Q is large, e.g. Q = 40. This is because that updating
local models for more steps makes the updated local mod-
els more far away from the global model, leading to larger
norm of local updates. On the contrary, our method can ef-
fectively limit the norm of local updates, thereby reducing
the accuracy drop caused by clipping.

Impacts of active agents. We explore different agent
sampling probability p on CIFAR-10. Using larger p means
more agents participate in each round of communication but
also requires more noise injection to the local updates ac-
cording to Theorem 1. Results in Figure 4 indicates that
equipping DP-FedAvg with BLUR and LUS makes it more
robust against different levels of agent sampling rates.

8. Conclusion
We study the cause of model utility degradation in fed-

erated learning with DP and find the key is to naturally
bound the local update norms before clipping. We then
propose local regularization and sparsification methods to
solve the problem. We provide theoretical analysis on the
convergence and privacy of our framework. Experiments
show that our framework significantly improves model util-
ity over SOTA for federated learning with DP guarantee.
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