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ABSTRACT

In this paper, we present a unified platform to study domain generalization in
the federated learning (FL) context and conduct extensive empirical evaluations
of the current state-of-the-art domain generalization algorithms adapted to FL. In
particular, we perform a fair comparison of 11 existing algorithms in solving do-
main generalization either centralized domain generalization algorithms adapted
to the FL context or existing FL domain generalization algorithms to compre-
hensively explore the challenges introduced by FL. These challenges include sta-
tistical heterogeneity among clients, the number of clients, the number of com-
munication rounds, etc. The evaluations are conducted on five diverse datasets
including PACS (image dataset covering photo, sketch, cartoon, and painting do-
mains), FEMNIST (image dataset containing writing digits and characters written
by more than 3500 users), iWildCam (image dataset with 323 domains), Py150
(natural language processing dataset with 8421 domains) and CivilComments
(natural language processing dataset with 16 domains). The experiments show
that the challenges brought by federated learning stay unsolved in realistic ex-
perimental settings. Furthermore, the code base supports fair and reproducible
evaluation of new algorithms with little implementation overhead.

1 INTRODUCTION

Federated learning (FL) Konečnỳ et al. (2016) is a distributed machine learning approach that as-
sumes each client or device owns a local dataset and this local dataset cannot be exchanged or
centrally collected because of privacy or communication constraints. Given this context, a natural
paradigm for FL (e.g., FedAvg McMahan et al. (2017)) is to alternate between two stages: clients
locally update the model based on its local dataset and a central server aggregates client models.
Because the clients may be phones, network sensors, hospitals, or alternative local information
sources, the local datasets are naturally heterogeneous between clients. Specifically, there are at
least two types of realistic statistical data heterogeneity in the FL context. Client heterogeneity is
the data heterogeneity between clients involved in training—e.g., hospitals may use different stain-
ing procedures or imaging equipment. Train-test heterogeneity is the data heterogeneity between the
training and testing data—e.g., the performance on a new client that was not involved in training or
a natural shift in real-world test data due to changes over time, location, or context.

Client heterogeneity has long been considered a statistical challenge since federated learning was
introduced. FedAvg McMahan et al. (2017) has experimentally shown that their methods effec-
tively mitigate some client heterogeneity. There are many other extensions based on the FedAvg
framework tackling the heterogeneity among clients in FL Hsieh et al. (2020); Li et al. (2020);
Karimireddy et al. (2020). There is an alternative setup in FL, known as the personalized setting,
which aims to learn personalized models for different clients to tackle heterogeneity. Numerous
recent papers have proposed FL models and algorithms to accommodate personalization Smith et al.
(2017); Chen et al. (2018); Hanzely et al. (2020); T Dinh et al. (2020); Deng et al. (2020); Acar
et al. (2021). However, these prior works only train the model on simple data sets such as MNIST,
EMNIST, and CIFAR10 and the client heterogeneity is constructed mainly through class imbalance,
which assumes the ratio of data from each class is different for each client but the class conditional
distributions are homogeneous across clients. Class imbalance is a special kind of heterogeneity
called prior probability shift. In practice, due to the difference between the location of the local
data collector (cameras, sensors, etc), real data heterogeneity is more complex than simple class
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Figure 1: Our benchmark simultaneously evaluates train-test heterogeneity (i.e., domain general-
ization) as seen in the top left and client heterogeneity across domains by splitting the domain data
amongst clients. The client heterogeneity can be homogeneous (left), heterogeneous (center), or
domain separated (right), where M is the number of domains, K is the number of clients, color
denotes domain data, and λ is the domain balance parameter. The right three panels demonstrate the
domain split for homogeneous, heterogeneous, and domain separation when K ≤M.

imbalance as in many prior works. Furthermore, most prior FL works do not consider train-test
heterogeneity but rather assume the train and test data are i.i.d.

While most FL works have usually ignored train-test heterogeneity, the task of domain generaliza-
tion (DG) Blanchard et al. (2011) formalizes a special case of train-test heterogeneity in which the
training algorithm has access to data from multiple source domains and the goal is to perform well
on data from an unseen test domain. There is an active line of research on domain generalization
in the centralized setting Muandet et al. (2013); Saito et al. (2018); Ganin & Lempitsky (2015);
Long et al. (2015); Arjovsky et al. (2019); Sagawa et al. (2019); Shi et al. (2021); Li et al. (2018).
Current benchmark papers Koh et al. (2021); Gulrajani & Lopez-Paz (2020) provide thorough com-
parisons between different algorithms for DG. However, these centralized DG benchmarks do not
consider the unique constraints of the FL context. In particular, they fail to provide insights on how
the client dataset heterogeneity, the number of clients, and the communication budget will influence
the generalization ability. From the FL side, to the best of our knowledge, there are currently only
four published works, FedADG Zhang et al. (2021), FedDG Liu et al. (2021), FedSR Nguyen et al.
(2022) and FedGMA Tenison et al. (2022) that tackle DG in the FL context but their evaluations are
limited in the follwing senses: 1) The evaluation datasets are limited in the number and diversity
of domains. FedDG Liu et al. (2021) only evaluates on retinal fundus images with 4 domains and
prostate T2-weighted MRI images from 6 domains, and FedADG only focuses on PACS and VLCS,
which share similarities in terms of number of domains (each with only 4 domains) and sample
size. FedGMA Tenison et al. (2022) only focuses on ColorMNIST with a few domains. However,
we consider more realistic datasets with thousands of domains. See Sec. 4.2 for details. 2) Their
evaluations are restricted to the case when the number of clients is equal to the number of domains,
which may be an unrealistic assumption (e.g., a hospital that has multiple imaging centers or a de-
vice that is used in multiple locations). For example, FedSR Nguyen et al. (2022) and FedADG
Zhang et al. (2021) only evaluates on the case when the number of clients equals to the number
of domains. However, we show in this paper, FedSR Nguyen et al. (2022) and FedADG Zhang
et al. (2021) are sensitive to clients number, and they fail even on the simple dataset PACS when the
clients number large than 20. See Sec. 4.3 massive number of clients for detail. 3) They fail to show
the network effect of FL; in particular, neither work considers the influence of the number of clients
on the performance, and FedADG Zhang et al. (2021) does not consider the effect of the number of
communication rounds. In summary, the current DG benchmarks fail to consider challenges unique
to FL, and the few FL methods for DG have limited evaluations.

Therefore, more systematic evaluation is needed both to aid in systematic progress at the intersection
of FL and DG but also to aid in answering many open questions. For example, how does client

2



Under review as a conference paper at ICLR 2023

domain heterogeneity influence the performance of current algorithms? What is the performance of
a direct translation of centralized DG algorithms (if applicable) to the FL context? How does the
performance of current algorithms scale with the number of clients and communications rounds on
complicated real-world datasets?

Major contributions: This work addresses the above questions, and our contributions can be sum-
marized as follows. 1) We propose a standardized definition of client domain heterogeneity that
is unique to the FL context and interpolates between domain homogeneity and domain separa-
tion (see Figure 1) while limiting the class imbalance. In particular, we develop an experimental
setup method to split dataset domain samples among any number of clients (see subsection 3.1).
2) We provide a fair comparison over multiple representative centralized DG methods adapted to
the FL context as well as four prior works on federated domain generalization on five different
benchmark datasets. 3) We also explore the impact on the generalization ability of client domain
heterogeneity, the total client number, communication rounds, which are unique to the FL con-
text. 4) From these results, we identify significant generalization gaps between centralized do-
main generalization and domain generalization in the federated Learning setting. 5) We release
an extensible open-source code library for studying domain generalization in the FL context (see
https://github.com/anonymous-lab-ml/benchmarking-dg-fed).

2 BACKGROUND AND RELATED WORK

Domain generalization. Domain generalization (DG) task Blanchard et al. (2011) tackles the clas-
sification problem where the domains of test and training dataset are heterogeneous, i.e., the test
data comes from an unseen domain distribution. Existing DG algorithms design alternative objec-
tives seeking for a good approximation usually by utilizing training data from multiple domains.
Schölkopf et al. (2021) claims that current machine learning model only captures superficial statis-
tical correlation rather than underlying causal relationship between data and their labels. Inspired
by causality Lopez-Paz et al. (2017); Peters et al. (2016); Heinze-Deml et al. (2018), Arjovsky et al.
(2019) proposes IRM seeking invariant predictor on top of the representation. Li et al. (2018) in-
stead, explicitly tries to align the feature representation distribution by minimizing the maximum
mean discrepancy (MMD) Gretton et al. (2006). Similarly, Sun & Saenko (2016) proposes CORAL
which utilizes the second-order information. Besides invariant representation, Shi et al. (2021)
solves the DG problem using regularization, the proposed FISH algorithm is a first-order method
aligning the gradient directions generated by data from different domains. Sagawa et al. (2019)
introduces the objective that tackles the worst-performed domain. The proposed algorithm did not
directly optimize the objective by solving the minimax objective, but to solve ERM while increas-
ing the importance of domains with larger loss during training. Zhang et al. (2017) proposes a
straightforward data augmentation principle called Mixup that trains a neural network on convex
combinations of data from two distinct domains.

Federated Domain Generalization: Limited works seek to solve the DG task in the FL context.
Liu et al. (2021) recently proposed FedDG, a federated learning paradigm specifically designed
for medical image classification. The proposed method requires sharing the amplitude spectrum
of images among local clients. Zhang et al. (2021) applies generative adversarial network (GAN)
Goodfellow et al. (2020) in the FL context, where each client contains four models: a featurizer Φ, a
classifier w, a generator G and a discriminator F . The featurizer Φ and classifier w solves the classi-
fication task, while the generator G learns the feature distribution Z. During local training, FedADG
Zhang et al. (2021)first trains the featurizer Φ and classifier w by minimizing the empirical loss, then
trains the generator G and the discriminator F using the GAN Goodfellow et al. (2020) approach.
After the local training, the central server aggregates the local featurizer, classifier and generator.
However, this method requires training 4 models together along with tens of hyperparameters to
tune, which makes it hard to converge empirically. Tenison et al. (2022) proposes a new aggrega-
tion method called Federated Gradient Masking Averaging (FedGMA) with the goal of improving
generalization across clients and of the global model. Their gradient masking prioritizes gradient
components that are aligned with the overall dominant direction across clients while the inconsistent
components of the gradient are given less importance. Yuan et al. (2021) introduced the concept par-
ticipation gap to identify dataset heterogeneity. They train models using a set of participating clients
and examine their performance on held-out data from these clients as well as an additional set of
non-participating clients. Therefore it is closely related to domain adaptation in FL context, which
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is different than the domain generalization setting considered in this benchmark, i.e., the training
and test domains do not overlap. Nguyen et al. (2022) proposed FedSR where they enable domain
generalization while still respecting the decentralized and privacy-preserving natures of FL context
by enforcing ℓ2-norm and a conditional mutual information regularizer on the representation. In
Table 1, we give an overview of domain heterogeneity across two dimensions: 1) between training
and testing datasets (i.e., standard vs domain generalization task) and 2) among clients (i.e., domain
imbalance between clients). While some work has considered the standard supervised learning task
(left column), a new fair evaluation is needed to understand the behaviour of domain generalization
algorithms in the federated context including the influence of data heterogeneity, communication
budget, and the number of clients.

Table 1: Different Tasks with Domain Heterogeneity in the FL Context

Among clients Between training and testing datasets
Standard Supervised Learning Domain Generalization (our focus)

Homogeneous (λ = 1) Standard FL with Domain Homogeneity Federated DG with Domain Homogeneity
Heterogeneous (0 < λ < 1) FL with Domain Heterogeneity Federated DG with Domain Heterogeneity
Domain separation (λ = 0) FL with Domain Separation Federated DG with Domain Separation

3 PROBLEM SETUP

3.1 DOMAIN HETEROGENEITY.

Algorithm 1 DomainSplit function where
w.l.o.g. the domains are assumed to be in de-
scending order, i.e., n1 ≥ n2 ≥ · · · ≥ nM .
Input K,n1, . . . , nM

if K ≤M then
∀k, Pk ← ∅
for m = 1, 2, . . . ,M do

k∗ ∈ argmink
∑

m′∈Pk
nm′

Pk∗ ← Pk∗ ∪ {m}
end for

else if K > M then
∀k ∈ {1, 2, . . . ,M}, Pk ← {k}
for k = M + 1, . . . ,K do

m∗ ∈ argmaxm
nm∑K

k′=11[m∈Pk′ ]

Pk ← {m∗}
end for

end if
Output Pk

Implementation of domain heterogeneity We
now provide a concrete procedure for implement-
ing domain heterogeneity for the benchmark (see
Figure 1 for an illustration). Given the number of
training samples for all M domains, denoted by
{nm}Mm=1 where nm is the number of samples for
domain m, we first assign “primary” domains Pk ⊆
{1, 2, . . . ,M} to each client via the domain split
function defined in Algorithm 1, i.e., {Pk}Kk=1 =
DomainSplit(K, {nm}Mm=1). Algorithm 1 carefully
handles two cases: fewer clients than domains (K ≤
M ) and more clients than domains (K > M ). In
the first case, the domains are sorted in descend-
ing order and are iteratively assigned to the client
k∗ which has the smallest number of training sam-
ples

∑
m′∈Pk∗ nm′ currently. In this way, the al-

gorithm outputs {Pk}Kk=1 such that no client shares
domains with the others but attempts to balance the
total number of training samples between clients. In
the case K > M , we first assign the domains one by
one to the first M clients. Then, starting from client
k = M + 1, we iteratively split the largest domain m∗, where the samples are evenly split among
all clients where m∗ ∈ Pk. In this way, some clients may share one domain, but no client holds two
domains simultaneously. Again, this also attempts to balance the number of samples across clients
as much as possible.

After selecting the primary domains Pk for each client, we define the training sample counts, denoted
nm,k(λ), for domain m, client k, and domain balance parameter λ ∈ [0, 1] :

nm,k(λ) = λ
nm

K
+ (1− λ)

1[m ∈ Pk] · nm∑K
k′=1 1[m ∈ Pk]

, (1)

where rounding to integers is carefully handled when not perfectly divisible and where 1[·] is an
indicator function. This is simply a convex combination between a uniform splitting of domains
among clients (i.e., the nm

K term) and a splitting where each client has a disjoint set of domains (i.e.,
the 1[m∈Pk]·nm∑K

k′=1
1[m∈Pk]

term)—unless K > M and then we try to split domains evenly based on number

of samples as defined in Algorithm 1. After defining nm,k(λ),we can denote the total training
samples related to client k with domain balance parameter λ as nk(λ) =

∑M
m=1 nm,k(λ).
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3.2 FEDERATED DOMAIN GENERALIZATION

In the federated domain generalization problem, we are interested in collaboratively training a model
across the clients to perform well on unseen test domainsD ∈ Dtest, which is different from training
domains 1, . . . ,M. Therefore, we focus on minimizing not the average loss on the source domains
constructed from each client fk(θ) = E(x,y)∼Dk

[ℓ(((x, y); θ))] ≈ (1/nk)
∑nk

i=1 ℓ(x
i
k, y

i
k; θ), but on

the unseen test domains, in either an average (or worst-case sense) as defined below

min
θ

ED∼DtestE(x,y)∼D[ℓ(((x, y); θ))], or min
θ

sup
D∼Dtest

E(x,y)∼D[ℓ(((x, y); θ))]. (2)

To solve equation 2 in the federated learning context, we need to consider client domain heterogene-
ity, as it can introduce unique challenges for domain generalization. In particular, local client may
not have access to all the domains, and their domains may only overlap partially; in the extreme
case, local data included in one client may naturally form a unique domain. Therefore, whether cen-
tralized generalization ability is achievable when local client has heterogeneous domains remains
unknown. Further, if some distributed algorithms can achieve the centralized generalization ability
as if the server has information of all the domains, the communication cost remains unclear. In
addition, the impact on the generalization ability of the total clients number remains unknown.

Adapting Centralized DG Methods to FL Setting. To adapt centralized methods, we simply run
the centralized DG method at each client locally with their own local dataset (see subsection 3.1
for how the local datasets are created), and then compute an average of model parameters at each
communication round (see next paragraph). This approach is straightforward for the homogeneous
(λ = 1) and heterogeneous (λ = 0.1) settings where each client has data from all domains—
albeit quite imbalanced for λ = 0.1. This can be seen as biased updates at each client based on
biased local data. Similarly, this approach can be implemented in the domain separation case if at
least one client holds multiple non-overlapping domains (i.e., ∃k, |Pk| ≥ 2, which would happen
if K < M ). However, if all clients only have one primary domain, i.e., ∀k, |Pk| = 1, which will
happen if K ≥M , this simple approach cannot be extended to the domain separation setting (λ = 0)
because centralized DG methods require data from at least two domains. In fact, these centralized
DG methods degenerate to ERM if there is only one domain per client. Extending these methods to
the case where all clients only have one domain is an interesting direction for future work.

Synchronization Schedule and Batch Creation For all algorithms, we run E epochs locally
on each client and then the server computes a weighted average of the resulting models, i.e.,
θt+1 =

∑K
k=1

nk

n θt+1
k . Because each epoch runs through the whole dataset, the k-th client runs∑

m nm,k/B batches, where B denotes the batch size. For FedAvg (ERM) and FedGMA, we uni-
form randomly sample a batch from the local dataset without considering the domain labels. For the
FL adaptations of centralized algorithms, we use the sampling method from the WILDS benchmark
Koh et al. (2021), namely each client uniform randomly samples two domains from its local dataset
and then uniform randomly samples B/2 examples from each domain without replacement. Be-
yond simple model averaging, FedGMA Tenison et al. (2022) additionally adopts a global masking
operation at the server for update changes. We refer the readers to Appendix B.2 for the detailed
hyperparameters including learning rate, batch size, and model selection.

4 MAIN RESULTS

We adapt six representative centralized DG methods into FL context, include IRM Arjovsky et al.
(2019), Fish Shi et al. (2021), MMD Li et al. (2018), Coral Sun & Saenko (2016), GroupDRO
Sagawa et al. (2019), Mixup Zhang et al. (2017), and compare them with FedDG Liu et al. (2021),
FedADG Zhang et al. (2021), FedSR Nguyen et al. (2022) and FedGMA Tenison et al. (2022) which
are naturally designed for solving domain generalization tasks in federated learning.

4.1 BASELINE SETTING (PACS AND FEMNIST-62)

In the baseline setting, we consider three domain heterogeneity regimes on image classification
tasks PACS Li et al. (2017) widely used in domain generalization, and on FEMNIST-62 (digits and
characters) Cohen et al. (2017), a prototype dataset in the FL context.
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PACS. We evaluate PACS with K = 100 clients, M = 2 training domains (cartoon, sketch), 1
validation domain (art painting) and 1 test domain (photo). The maximum communication rounds
is set to 50 with 1 local epoch per communication. The domain balance parameter was varied
λ ∈ {1, 0.1, 0}. For the domain separation case λ = 0, each client locally only has one training
domain (i.e., ∀k, |Pk| = 1); in this case, no centralized methods are suitable (see subsection 3.2) so
we only compare the four federated domain generalization methods to ERM.

Figure 2 plots the held-out test accuracy versus communication rounds on PACS with increasing
domain heterogeneity. As seen from Figure 2, 1) most algorithms perform reasonably well in the
homogeneous case (λ = 1) except FedADG and FedSR. In fact those two fail in all three cases. They
are sensitive to the client number and work favorably when K is small, e.g. K = 2, see subsec-
tion 4.2 for discussion on the effect of number of clients. 2) As domain heterogeneity increases, i.e.,
λ from 1 to 0.1, the algorithms consistently converge slower and have worse test accuracy, which
demonstrates that domain heterogeneity among clients is a unique extra challenge introduced by
FL. In particular, the centralized DG methods FISH, CORAL, IRM, and MMD extended to the FL
setting have poor performance compared with that of ERM in the heterogeneous case, while Group-
DRO outperforms ERM both in homogeneous and heterogeneous case. 3) In the domain separation
case, because K > M for PACS, each client locally only holds one training domain, and thus no
centralized methods are suitable to use. FedDG requires sharing the amplitude spectrum of images
among local clients, which causes privacy concerns. Therefore, even for this dataset containing only
four domains in total, prior works struggle to compete with ERM.
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Figure 2: Accuracy versus communication rounds for PACS; total clients and training domains
(K,M) = (100, 2); increasing domain heterogeneity from left to right: λ = (1, 0.1, 0).

Table 2: Test accuracy on PACS dataset with held-
out-domain validation; total client number K =
100; total training domain number M = 100.
N.A. refers to not applicable.

Centralized λ = 1 λ = 0.1 λ = 0
ERM 0.8389 0.8766 0.9144 0.9377
IRM 0.9180 0.8156 0.5449 N.A.
Fish 0.9030 0.8497 0.6311 N.A.
Mixup 0.8635 0.7653 0.5551 N.A.
MMD 0.9186 0.8150 0.6341 N.A.
Coral 0.9216 0.8150 0.5515 N.A.
GroupDRO 0.9060 0.9395 0.9437 N.A.
FedDG 0.8922 0.9234 0.9275 0.9521
FedADG 0.8922 0.1892 0.0592 0.0598
FedSR 0.8754 0.1246 0.1263 0.1257
FedGMA N.A. 0.882 0.8467 0.8446

We also report the final test accuracy using
held-out-domain validation in Table 2, similar
results with in-domain validation is deferred to
Table. 13 in Sec.Appendix C. It shows as the
domain heterogeneity increases (λ from 1 to 0),
the test accuracy of current centralized meth-
ods (except GroupDRO) degrades dramatically
using either validation principle. For the cur-
rent four natural FL algorithms, only FedDG
works comparably to ERM, FedGMA performs
worse than the above two on PACS, and be-
cause FedADG and FedSR are sensitive to the
number of clients, they both fail to converge in
this case as K = 100.

FEMNIST-62 (digits and characters). We
consider the FL prototyping dataset FEMNIST-
62 with K = 100 clients and treat handwritten digits and characters each users created as a natural
domains. We split into M = 2586 training domains, 320 validation domains, and 331 test domains.
The maximum communication rounds is set to 50 with 1 local epoch per communication. The do-
main balance parameter is varied λ ∈ {1, 0.1, 0}. For the homogeneous and heterogeneous cases,
each client locally holds M = 2586 training domains. The data are divided according to Equation 1.

6



Under review as a conference paper at ICLR 2023

For the domain separation case, given that K < M, we use Algorithm 1 to split the domains to each
client. Therefore, each client holds multiple non-overlapping domains. All of the methods are ap-
plicable on this dataset. We observe that as the domain balance parameter λ decreases from 1 to
0, FedGMA, FedSR are consistently comparable to ERM while the others fail. The in-domain and
held-out domain accuracy are reported in Table 7, Sec.Appendix C.
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Figure 3: Accuracy versus communication rounds for FEMNIST; total clients and training domains
(K,M) = (100, 2586); increasing domain heterogeneity from left to right panel: λ = (1, 0.1, 0).

4.2 MORE REALISTIC DATASETS (PY150, CIVILCOMMENTS, IWILDCAM)

Table 3: Test accuracy on IWildCam dataset with
held-out-domain validation; total client number
K = 243, training domain M = 243.

Centralized λ = 1 λ = 0.1 λ = 0
ERM 0.2727 0.1762 0.1241 0.0707
IRM 0.2629 0.0718 0.0903 N.A.
Fish 0.3103 0.0781 0.0977 N.A.
Mixup 0.2923 0.0264 0.0370 N.A.
MMD 0.3134 0.0718 0.0924 N.A.
Coral 0.3270 0.0718 0.0926 N.A.
GroupDRO 0.2531 0.0530 0.0908 N.A.
FedDG 0.2771 0.1445 0.1191 0.0503
FedADG 0.0049 0.0049 0.0049 0.0049
FedSR 0.0056 0.0056 0.0056 0.0056
FedGMA N.A. 0.0106 0.0957 0.0106

In this subsection, we tackle more realistic
domain generalization tasks in the FL con-
text. We include three domain heterogeneity
regimes on natural language processing dataset
Py150 (with 8421 domains), CivilComments
(with 16 domains), and image dataset iWild-
Cam (with 323 domains). Note Mixup Zhang
et al. (2017), FedDG Liu et al. (2021), and
FedADG Zhang et al. (2021) are only suitable
for image datasets, thus are excluded in the ex-
periments on Py150 and CivilComments.

In the following experiments on these three
datasets, we choose maximum communication
round C = 50 for IWildCam, and C = 10 for
Py150 and CivilComments, 1 local epoch per
communication. For the homogeneous and heterogeneous case, respectively, each client locally
holds all the training domains. For the domain separation case, we use Algorithm 1 to split the
domains to each client. When K < M, client locally holds non-overlapping domains; all of the
centralized methods are applicable in this case. When K ≥ M, each client locally only holds
one training domain; thus, no centralized method is applicable, only four natural federated domain
generalization methods are applicable, we compare them with ERM.

Py150: We evaluate Py150 with 100 clients, 5477 training domains, 261 validation and 2471 test
domains. Given that K < M, we compare all the methods except Mixup, FedDG and FedADG
in all three different domain heterogeneity regimes. IWildCam: We evaluate IWildCam with 323
clients, 243 training domains, 32 validation and 48 test domains. We compare all the methods
in homogeneous and heterogeneous regimes. Given that K = M, we can only compare FedDG,
FedADG, FedSR, FedGMA with ERM in the domain separation regime. CivilComments: Civil-
Comments is a special kind of DG where the test domain is a subpopulation of the training domain,
and our goal is to perform well on the worst-case domain. CivilComments contains 100 clients and
16 domains. We compare all the methods except Mixup, FedDG and FedADG in homogeneous and
heterogeneous regimes. Given that K < M, we can only compare FedSR, FedGMA with ERM in
the domain separation regime.
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Table 4: Test accuracy with held-out-domain validation; total client number K = 100.

(a) Py150 Dataset with M = 5477

Centralized λ = 1 λ = 0.1 λ = 0
ERM 0.6833 0.6827 0.3874 0.3343
IRM 0.6771 0.6722 0.374 0.3734
Fish 0.6634 0.6731 0.3734 0.2487
MMD 0.6558 0.6731 0.3745 0.3039
Coral 0.6558 0.6723 0.3755 0.3325
GroupDRO 0.5127 0.6824 0.3358 0.3356
FedSR
FedGMA N.A. 0.6628 0.3737 0.3567

(b) CivilComments Dataset with M = 16

Centralized λ = 1 λ = 0.1 λ = 0
ERM 0.5413 0.3929 0.3390 0.3331
IRM 0.6408 0.6153 0.6093 N.A.
Fish 0.6713 0.6435 0.6086 N.A.
MMD 0.6520 0.6121 0.6093 N.A.
Coral 0.5847 0.6121 0.6093 N.A.
GroupDRO 0.6383 0.6028 0.4954 N.A.
FedSR 0.6442 0.3603 0.3389 0.3188
FedGMA N.A. 0.3341 0.3157 0.3195
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Figure 4: PACS: Held-out DG test accuracy versus number of clients.

We compare the final test accuracy using held-out validation in Table 4a for Py150, Table 4b for
CivilComments, and Table 3 for IWildCam. (Using two validation criterion are summarized in
Table 8, Table 9 and Table 10 in Appendix C). The results show that the performance of ERM
dominates the other algorithms on these three datasets. No algorithm achieves its centralized domain
generalization ability, where centralized corresponds to training on the centralized dataset gathered
from all the training clients. We also plot accuracy versus communication figures in Figure 7 for
Py150, Figure 6 for CivilComments and Figure 8) for IWildCam in Sec. C.

4.3 ADDITIONAL FL-SPECIFIC CHALLENGES FOR DOMAIN GENERALIZATION

Besides domain heterogeneity, we also investigate the challenges brought by FL, including massive
number of clients number and communication constraints, which are unique to the FL setting.

i) Massive number of clients: In this experiment, we explore the performance of different algo-
rithms when the number of clients K increases on PACS. We fix the communication rounds C = 50
and the local number of epoch is 1 (synchronizing the models every epoch). Figure 4 plots the
held-out DG test accuracy versus number of clients for different levels of data heterogeneity. The
following comments are in order: given communication budget, 1) current domain generalization
methods all degrade a lot in particular after K ≥ 50, while the performance ERM and FedDG main-
tain relatively unchanged as the clients number increases given communication budget. FedADG
and FedSR are are sensitive to the clients number, and they both fail after K ≥ 20. 2) Even in the
simplest homogeneous setting λ = 1, where each local client has i.i.d training data, current domain
generalization methods IRM, FISH, Mixup, MMD, Coral, GroupDRO work poorly in the existence
of large clients number, this means new methods are needed for DG in FL context when data are
stored among massive number of clients.

ii) Communication constraint: To show the effect of communication rounds on convergence, we
plot the test accuracy versus communication rounds in Figure 5. We fix the number of clients
K = 100 on PACS and decreases rounds of communication (together with increasing local epochs),
that is, C = (50, 10, 5) (with E = (1, 5, 10)). That is, if the regime restricts the communication
budget, then we increase its local computation E to have the same the total computations. Therefore,
the influence of communication on the performance is fair between algorithms because the total
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data pass is fixed. We observe that 1) the curves are relatively “flat” for most of algorithms, this is
predictable because we vary the number of pass of the data E per round for a changing C, and locally
the aggregation rules are the same θt+1 =

∑K
k=1

nk

n θt+1
k , where nk is the training sample size at

client k. 2) In particular, ERM, GroupDRO, and FedDG can achieve comparable good performance
when communication budget is low (C = 10) comparable to when there communication budget is
high (C = 50), showing their communication efficiency in the FL context.
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Figure 5: PACS: Held-out DG test accuracy vs. varying communications (resp. varying echoes ).

5 CONCLUSION AND DISCUSSION

This work evaluates multiple algorithms to solve domain generalization task in the federated learning
context. We evaluate the influence of client domain heterogeneity, the total number clients, and
communication rounds on the domain generalization ability. We show that DG in FL context is an
unsolved problem, and it brings abundant new challenges. Specifically, the following aspect might
be future directions of interest: 1) domain heterogeneity across the clients dramatically impacts the
generalization ability on image dataset PACS and IWildCAM as well as NLP datasets Py150 and
CivilComments; designing new FL algorithm to recover centralized domain generalization ability
remains open; 2) previous works (eg, FedSR, FedADG) evaluate the generalization ability built upon
small number of clients K is not enough, massive clients setting needs to be take into consideration;
3) more realistic datasets need to be considered in the domain generalization in FL context; 4) For
the domain separation case, few prior works are applicable to the case where each client only holds
one domain—new DG algorithms for the FL setting are required for this case. We list the gap table
below for summarizing the current DG algorithms performance gap w.r.t ERM in the FL context, in
particular, positive means it outperforms ERM, negative means it is worse than ERM. It can be seen
that in the on the simple dataset, the best DG migrated from centralized setting is better than ERM.
In the domain separation case, no centralized DG algorithms can be adapted to it, and FedDG and
FedADG performs comparably good in this setting. However, they fail in harder datasets. Federated
DG algorithms that outperforming ERM, supporting NLP dataset, and free of data sharing are still
in need.

Table 5: Gap Table: Current Progress in solving DG in FL context

Comparing to FedAvg-ERM
DG migrated from centralized setting FedDG FedADG FedSR FedGMA

Domain Separation ✗ ✓ ✓ ✓ ✓
Baseline Dataset: PACS +2.93% +1.44% −87.99% −81.20% −9.32%

Baseline Dataset: FEMNIST +5.14% −0.93% −0.28%
Realistic Dataset: Py150 +3.91% ✗ ✗ +2.24%

Realistic Dataset: CivilComments +27.03% ✗ ✗ −1.43% −1.36%
Realistic Dataset: IWildCam -10.44% −3.17% −2.04% −6.51% −6.26%

Free of Data Sharing ✓ ✗ ✓ ✓ ✓
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mnist to handwritten letters. corr abs/1702.05373 (2017). arXiv preprint arXiv:1702.05373, 2017.

Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Adaptive personalized federated
learning. arXiv preprint arXiv:2003.13461, 2020.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In
International conference on machine learning, pp. 1180–1189. PMLR, 2015.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Arthur Gretton, Karsten Borgwardt, Malte Rasch, Bernhard Schölkopf, and Alex Smola. A kernel
method for the two-sample-problem. Advances in neural information processing systems, 19,
2006.

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. arXiv preprint
arXiv:2007.01434, 2020.

Filip Hanzely, Slavomı́r Hanzely, Samuel Horváth, and Peter Richtárik. Lower bounds and opti-
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A REPRODUCIBILITY STATEMENT

Code for reproduce the result is available at the anonymous link. We include detailed documentation
in using our code to reproduce the results throughout the paper. We also provide documentation in
adding new algorithm’s DG evaluation in the FL context.

B EXPERIMENTS SETTING SUPPLEMENTARY

B.1 DATASETS AND MODELS

In this section, we introduce the datasets we used in our experiments, and the split method we used
to build heterogeneous datasets in the training and testing phase as well as the heterogeneous local
training datasets among clients in the FL. Datasets. We contain three datasets as the benchmark:
PACS Li et al. (2017), IWildCam Koh et al. (2021), and Py150 Koh et al. (2021). These three datasets
cover different levels of difficulty as well as different types of tasks. PACS and IWildCam are both
image classification datasets and Py150 is a natural language processing (NLP) dataset. PACS is an
image dataset for domain generalization. It consists of four domains, namely Photo (1,670 images),
Art Painting (2,048 images), Cartoon (2,344 images), and Sketch (3,929 images). This task requires
learning the classification task on a set of objects by learning on totally different renditions. The
Py150 is a natural language processing dataset containing 150, 000 python source code dataset from
8, 421 repository. The goal is to predict the next token given the context of previous tokens. This is
a real-world NLP dataset that contains multiple repositories which naturally form multiple domains.
The IWildCam contains wild animals captured by multiple heats or motion-activated static cameras.
Due to the variation in camera model, position, color, background, and relative animal frequencies,
the samples form multiple domains. It contains 203, 029 images from 323 different camera traps,
the images contain 182 different animal species. For Py150 and IWildcam datasets, we follow the
same split method as the Wilds Koh et al. (2021). For PACS, we use cartoon and sketch as the
training domains, art-painting as the held-out-validation domain, and photo as the test domain, and
we use 90% of the data from cartoon and sketch domains to be the training domains, and about 5%
to be in-domain validation, and other 5% to be the in-domain test set. During the sampling, we keep
the class distribution the same among the training dataset, the in-domain validation dataset, and the
in-domain test dataset. Models. For image classification datasets PACS and IWildCam, we use
ResNet50 model He et al. (2016), and Py150 is a natural language processing (NLP) dataset where
we use OpenAI GPT2 Radford et al. (2019) to train.

B.2 HYPERPARAMETERS AND MODEL SELECTION

Hyperparameters To make fair comparisons, we allocate the same budget during training for
each algorithm on each dataset. The budget includes the times of allowed hyperparameter search,
model architecture, local computation resources, and communication rounds. For each dataset, we
fix the model architecture and initialization to be the same. We conduct eight times hyperparameter
searching for each algorithm, and choose the set of hyperparameters that achieves the best perfor-
mance. For all the datasets and algorithms, we set 100% for clients’ participation in the training
during each communication.

For PACS, we fix the number of clients K = 100, 50 communications in total where each commu-
nication happens after one epoch of local training. the batch size is 64. We use Adam optimizer and
the learning rate is 1 × 10−3 except for FedSR algorithm, where we choose SGD with lr= 0.002,
momentum= 0.9 and weight decay= 5× 10−4.

For Py150, we set K = 100, and the total number of communication is 3 in the centralized case
and 10 in the distributed case. The batch size is 96. We use AdamW optimizer, lr = 8× 10−5, and
ϵ = 1× 10−8.

For IWildcam, the number of clients K = 243, 12 communications in the centralized case, and 50
communications in the federated learning case, and the batch size is 16. We use Adam optimizer
where the learning rate is 3× 10−5.
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For FEMNIST, the number of clients K = 100, 20 communications in the centralized case, and 40
communications in the federated learning case, and the batch size is 64. We use Adam optimizer
where the learning rate is 1× 10−3.

For CivilComments, the number of clients K = 100, 5 communications in the centralized case, and
10 communications in the federated learning case, and the batch size is 16. We use Adam optimizer
where the learning rate is 1× 10−5.

For each dataset, we choose the hyperparameters starting from their default value consistent with the
choice in previous benchmarks DomainBed Gulrajani & Lopez-Paz (2020) Wilds Koh et al. (2021),
or their value proposed in the original paper .

Model Selection In DG, model selection could significantly affect the model performance. During
training, we evaluate the aggregated model by using the validation dataset after each communica-
tion round. After performing C communication rounds, we select the model that achieves the best
performance on the validation dataset. This work adopts two model selection methods for the DG
task: in-domain and held-out-domain model selection Gulrajani & Lopez-Paz (2020). In-domain
model selection method uses validation dataset which is independent and identically sampled from
the training dataset. The held-out-domain model selection method uses validation dataset that only
contains examples from a set of domains that do not overlap with the training and testing domains.

C OTHER EVALUATION

We put our extra evaluations here for reference. The experiments are summarized in terms of dataset.

C.1 PACS and FEMNIST

Table 6: Test accuracy on PACS with two model selection criterion: in-domain / held-out domain
validation; total clients number K = 2. First column “centralized” corresponding to the centralized
domain generalization accuracy, i.e., client number K = 1. Increasing domain heterogeneity from
left panel to right panel: λ = (1, 0.1, 0). The number in boldface highlights the highest test accuracy
in that column. N.A. refers to not applicable.

In-Domain Validation Held-Out-Domain Validation
Centralized λ = 1 λ = 0.1 λ = 0 Centralized λ = 1 λ = 0.1 λ = 0

ERM 0.8389 0.8982 0.8234 0.8958 0.8593 0.9084 0.9144 0.9377
IRM 0.918 0.9174 0.8814 N.A. 0.9347 0.9467 0.9389 N.A.
Fish 0.8916 0.9359 0.9204 N.A. 0.9449 0.9497 0.9251 N.A.
Mixup 0.9060 0.9371 0.9072 N.A. 0.9012 0.9371 0.9072 N.A.
MMD 0.9072 0.9299 0.8928 N.A. 0.9210 0.9263 0.9335 N.A.
Coral 0.8886 0.9138 0.8988 N.A. 0.9204 0.9341 0.9311 N.A.
GroupDRO 0.8952 0.9018 0.8964 N.A. 0.9150 0.9491 0.9269 N.A.
FedDG 0.9024 0.8701 0.8683 0.6856 0.8922 0.8772 0.9036 0.9383
FedADG 0.9024 0.7958 0.9569 0.9473 0.8922 0.9126 0.9329 0.9341
FedSR 0.8246 0.8725 0.9060 0.8928 0.8617 0.8898 0.9060 0.8952
FedGMA 0.8485 0.8850 0.7922 0.8114 0.8602 0.8850 0.9425 0.9251

We report the final test accuracy using two validation criterion in Table 6. It shows that the homo-
geneity case (λ = 1 column) may even slightly outperform the its counterpart centralized domain
generalization accuracy in the simple case (small client and domain numbers). This could come
from the natural regularization brought by the FL. In the domain separation case (λ = 0 column),
although FedADG is not communication efficient as shown in Fig 2, it seems to be more robust
across validation strategies whereas FedDG performs poorly using in-domain validation.

Overall, as expected, existing DG algorithms with enough communication rounds are able to per-
form reasonably well in this simple setting where the dataset is simple and the number of clients and
domains are small.
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Table 7: Test accuracy on FEMNIST dataset with two model selection criterion: in-domain / held-
out-domain validation; total client number K = 100; total training domain number M = 3500.

In-Domain Validation Held-Out-Domain Validation
Centralized λ = 1 λ = 0.1 λ = 0 Centralized λ = 1 λ = 0.1 λ = 0

ERM 0.8544 0.8368 0.8398 0.8399 0.8544 0.8368 0.8398 0.8399
IRM 0.8442 0.8303 0.8389 0.8328 0.8442 0.8303 0.8389 0.8328
Fish 0.8487 0.8331 0.8290 0.8264 0.8487 0.8331 0.8290 0.8264.
Mixup 0.8337 0.8275 0.8168 0.8161 0.8337 0.8275 0.8168 0.8161
MMD 0.8442 0.8430 0.8323 0.8293 0.8442 0.8430 0.8323 0.8293
Coral 0.8457 0.8403 0.8328 0.8513 0.8457 0.8403 0.8328 0.8513
GroupDRO 0.8413 0.8447 0.8139 0.8052 0.8413 0.8447 0.8139 0.8052
FedDG
FedADG
FedSR 0.8470 0.8320 0.8316 0.8306 0.8470 0.8300 0.8316 0.8306
FedGMA N.A. 0.8486 0.8395 0.8371 N.A. 0.8486 0.8395 0.8371

C.2 MORE REALISTIC DATASETS (PY150, CIVILCOMMENTS, IWILDCAM)

To observe the convergence of each algorithm, we plot Figure 7 for Py150 (resp. Figure 6 for Civil-
Comments and Figure 8 for IWildCam). It shows that with realistic dataset as well as with non-trivial
number of clients, all of the algorithms tend to be more sensitive to domain heterogeneity. Even in
the heterogeneous case, where each client locally holds all the training domains, their generalization
abilities on the unseen domains are much worse than its centralized counterpart; let alone to solve
the even harder domain separation case.

We also reported accuracy using the in-domain and held-out domain validation for Py150 in Table 8,
CivilCommnets in Table 9, and IWildCAM in Table 10.

Table 8: Test accuracy on Py150 dataset with two model selection criterion: in-domain / held-out-
domain validation; total client number K = 100.

In-Domain Validation Held-Out-Domain Validation
Centralized λ = 1 λ = 0.1 λ = 0 Centralized λ = 1 λ = 0.1 λ = 0

ERM 0.6743 0.6827 0.3874 0.3343 0.6833 0.6827 0.3874 0.3343
IRM 0.6771 0.6722 0.374 0.3734 0.6771 0.6722 0.374 0.3734
Fish 0.6634 0.6726 0.3734 0.2487 0.6634 0.6731 0.3734 0.2487
MMD 0.6495 0.6731 0.3745 0.3039 0.6558 0.6731 0.3745 0.3039
Coral 0.6495 0.6723 0.3755 0.3103 0.6558 0.6723 0.3755 0.3325
GroupDRO 0.5127 0.6824 0.3358 0.3356 0.5127 0.6824 0.3358 0.3356
FedSR
FedGMA N.A. 0.6624 0.3737 0.3567 N.A. 0.6628 0.3737 0.3567

Table 9: Test accuracy on CivilComments dataset with two model selection criterion: in-domain /
held-out-domain validation; total client number K = 100.

In-Domain Validation Held-Out-Domain Validation
Centralized λ = 1 λ = 0.1 λ = 0 Centralized λ = 1 λ = 0.1 λ = 0

ERM 0.5413 0.3929 0.3390 0.3331 0.5413 0.3929 0.3390 0.3331
IRM 0.6213 0.6153 0.6093 N.A. 0.6408 0.6153 0.6093 N.A.
Fish 0.6038 0.6435 0.6086 N.A. 0.6713 0.6435 0.6086 N.A.
MMD 0.5981 0.6121 0.6093 N.A. 0.6520 0.6121 0.6093 N.A.
Coral 0.5827 0.6121 0.6093 N.A. 0.5847 0.6121 0.6093 N.A.
GroupDRO 0.6383 0.6028 0.4804 N.A. 0.6383 0.6028 0.4954 N.A.
FedSR 0.6442 0.3603 0.3389 0.3188 0.6442 0.3603 0.3389 0.3188
FedGMA N.A. 0.3341 0.3157 0.3195 N.A. 0.3341 0.3157 0.3195
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Table 10: Test accuracy on IWildCam dataset with two model selection criterion: in-domain / held-
out-domain validation; total client number K = 243.

In-Domain Validation Held-Out-Domain Validation
Centralized λ = 1 λ = 0.1 λ = 0 Centralized λ = 1 λ = 0.1 λ = 0

ERM 0.2727 0.1762 0.1241 0.0707 0.2727 0.1762 0.1241 0.0707
IRM 0.2845 0.0710 0.0903 N.A. 0.2629 0.0718 0.0903 N.A.
Fish 0.3103 0.0781 0.0977 N.A. 0.3103 0.0781 0.0977 N.A.
Mixup 0.2620 0.0264 0.0371 N.A. 0.2923 0.0264 0.0370 N.A.
MMD 0.3225 0.0711 0.0924 N.A. 0.3134 0.0718 0.0924 N.A.
Coral 0.2857 0.0718 0.0926 N.A. 0.3270 0.0718 0.0926 N.A.
GroupDRO 0.2531 0.0524 0.0908 N.A. 0.2531 0.0530 0.0908 N.A.
FedDG 0.2866 0.1445 0.1023 0.0503 0.2771 0.1445 0.1191 0.0503
FedADG 0.0049 0.0049 0.0049 0.0049 0.0049 0.0049 0.0049 0.0049
FedSR 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056
FedGMA N.A. 0.0081 N.A. 0.0081
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Figure 6: Accuracy versus communication rounds for CivilComments; total clients and training
domains K = 100 increasing domain heterogeneity from left to right: λ = (1, 0.1, 0).
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Figure 7: Accuracy versus communication rounds for Py150 ; Total clients number K = 100;
increasing domain heterogeneity from left to right panel: λ = (1, 0.1, 0).
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Figure 8: Accuracy versus communication rounds for IWildCam; Total clients number K = 243;
increasing heterogeneity from left to right panel: λ = (1, 0.1, 0).

C.3 ADDITIONAL FL-SPECIFIC CHALLENGES FOR DOMAIN GENERALIZATION

In this subsection, we reported the additional results related to Sec 4.3. Including Table 11, Table 12,
Table 13, Table 14 for test accuracy using the held-out and in-domain validation for PACS with
K = 20, 50, 100, 200, respectively.

Table 11: Test accuracy on PACS dataset with two model selection criterion: in-domain / held-out-
domain validation; total client number K = 20; total training domain number M = 2.

In-Domain Validation Held-Out-Domain Validation
Centralized λ = 1 λ = 0.1 λ = 0 Centralized λ = 1 λ = 0.1 λ = 0

ERM 0.8389 0.9293 0.9455 0.9569 0.8389 0.9305 0.9539 0.9485
IRM 0.9180 0.9461 0.9275 N.A. 0.9180 0.9479 0.9431 N.A.
Fish 0.9030 0.9449 0.9443 N.A. 0.9030 0.9515 0.9467 N.A.
Mixup 0.8635 0.9581 0.9431 N.A. 0.8635 0.9581 0.9461 N.A.
MMD 0.9186 0.9461 0.9389 N.A. 0.9186 0.9491 0.9431 N.A.
Coral 0.9216 0.9449 0.9461 N.A. 0.9216 0.9491 0.9455 N.A.
GroupDRO 0.9060 0.9401 0.9521 N.A. 0.9060 0.9461 0.9539 N.A.
FedDG 0.9024 0.9275 0.9275 0.8952 0.8922 0.9365 0.9425 0.9521
FedADG 0.9024 0.1347 0.1269 0.1257 0.8922 0.1455 0.1269 0.1257
FedSR 0.8470 0.1850 0.1886 0.1497 0.8470 0.1784 0.2090 0.1222
FedGMA

Table 12: Test accuracy on PACS dataset with two model selection criterion: in-domain / held-out-
domain validation; total client number K = 50; total training domain number M = 2.

In-Domain Validation Held-Out-Domain Validation
Centralized λ = 1 λ = 0.1 λ = 0 Centralized λ = 1 λ = 0.1 λ = 0

ERM 0.8389 0.9371 0.9437 0.9533 0.8389 0.9479 0.9539 0.9509
IRM 0.9180 0.9371 0.9401 N.A. 0.9180 0.9455 0.9389 N.A.
Fish 0.9030 0.9407 0.9030 N.A. 0.9030 0.9401 0.9162 N.A.
Mixup 0.8635 0.9503 0.9407 N.A. 0.8635 0.9335 0.9419 N.A.
MMD 0.9186 0.9389 0.9329 N.A. 0.9186 0.9413 0.9389 N.A.
Coral 0.9216 0.9389 0.9228 N.A. 0.9216 0.9419 0.9413 N.A.
GroupDRO 0.9060 0.9443 0.9515 N.A. 0.9060 0.9419 0.9515 N.A.
FedDG 0.9024 0.9329 0.9287 0.9515 0.8922 0.9377 0.9371 0.9515
FedADG 0.9024 0.1862 0.1862 0.1862 0.8922 0.1814 0.1820 0.1832
FedSR 0.8246 0.1269 0.1401 0.1509 0.8754 0.1305 0.1521 0.1275
FedGMA
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Table 13: Test accuracy on PACS dataset with two model selection criterion: in-domain / held-out-
domain validation; total client number K = 100; total training domain number M = 2.

In-Domain Validation Held-Out-Domain Validation
Centralized λ = 1 λ = 0.1 λ = 0 Centralized λ = 1 λ = 0.1 λ = 0

ERM 0.8389 0.8766 0.9144 0.8958 0.8389 0.8766 0.9144 0.9377
IRM 0.9180 0.8156 0.5449 N.A. 0.9180 0.8156 0.5449 N.A.
Fish 0.9030 0.8497 0.6311 N.A. 0.9030 0.8497 0.6311 N.A.
Mixup 0.8635 0.7653 0.5551 N.A. 0.8635 0.7653 0.5551 N.A.
MMD 0.9186 0.8150 0.6341 N.A. 0.9186 0.8150 0.6341 N.A.
Coral 0.9216 0.8150 0.5515 N.A. 0.9216 0.8150 0.5515 N.A.
GroupDRO 0.9060 0.9395 0.9437 N.A. 0.9060 0.9395 0.9437 N.A.
FedDG 0.9024 0.8868 0.8880 0.8952 0.8922 0.9234 0.9275 0.9521
FedADG 0.9024 0.0915 0.0732 0.0592 0.8922 0.1892 0.0592 0.0598
FedSR 0.8246 0.118 0.1341 0.1138 0.8754 0.1246 0.1263 0.1257
FedGMA

Table 14: Test accuracy on PACS dataset with two model selection criterion: in-domain / held-out-
domain validation; total client number K = 200; total training domain number M = 2.

In-Domain Validation Held-Out-Domain Validation
Centralized λ = 1 λ = 0.1 λ = 0 Centralized λ = 1 λ = 0.1 λ = 0

ERM 0.8389 0.8635 0.8287 0.8539 0.8389 0.8287 0.9210 0.8659
IRM 0.9180 0.6790 0.5000 N.A. 0.9180 0.7802 0.4934 N.A.
Fish 0.9030 0.7802 0.4850 N.A. 0.9030 0.7802 0.4892 N.A.
Mixup 0.8635 0.6701 0.5551 N.A. 0.8635 0.6671 0.5551 N.A.
MMD 0.9186 0.8150 0.6341 N.A. 0.9186 0.8150 0.6341 N.A.
Coral 0.9216 0.8150 0.5018 N.A. 0.9216 0.8150 0.4916 N.A.
GroupDRO 0.9060 0.8144 0.6090 N.A. 0.9060 0.8162 0.6844 N.A.
FedDG 0.9024 0.7916 0.8898 0.8868 0.9204 0.9204 0.8898 0.8934
FedADG 0.9024 0.0915 0.0732 0.0592 0.8922 0.1892 0.0592 0.0598
FedSR
FedGMA

Table 15: Test accuracy on PACS dataset with two model selection criterion: in-domain / held-out-
domain validation; total client number K = 200; total training domain number M = 2; Communica-
tion Rounds C = 5.

In-Domain Validation hH-Out-Domain Validation
Centralized λ = 1 λ = 0.1 λ = 0 Centralized λ = 1 λ = 0.1 λ = 0

ERM 0.8389 0.9006 0.9132 0.9257 0.8389 0.9006 0.9132 0.9257
IRM 0.9180 0.8599 0.7431 N.A. 0.9180 0.8599 0.7431 N.A.
Fish 0.9030 0.8275 0.6479 N.A. 0.9030 0.8275 0.6479 N.A.
Mixup 0.8635 0.8222 0.5760 N.A. 0.8635 0.8222 0.5760 N.A.
MMD 0.9186 0.8605 0.7413 N.A. 0.9186 0.8605 0.7413 N.A.
Coral 0.9216 0.8593 0.7413 N.A. 0.9216 0.8593 0.7413 N.A.
GroupDRO 0.9060 0.9048 0.8916 N.A. 0.9060 0.9048 0.8916 N.A.
FedDG 0.9024 0.8940 0.9108 0.8952 0.8922 0.8940 0.9108 0.9521
FedADG 0.9024 0.0915 0.0732 0.0592 0.8922 0.1892 0.0592 0.0598
FedSR
FedGMA
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Table 16: Test accuracy on PACS dataset with two model selection criterion: in-domain / held-out-
domain validation; total client number K = 200; total training domain number M = 2; Communica-
tion Rounds C = 10.

In-Domain Validation Held-Out-Domain Validation
Centralized λ = 1 λ = 0.1 λ = 0 Centralized λ = 1 λ = 0.1 λ = 0

ERM 0.8389 0.9186 0.8587 0.8958 0.8389 0.9078 0.8970 0.9377
IRM 0.9180 0.8347 0.7707 N.A. 0.9180 0.8473 0.7707 N.A.
Fish 0.9030 0.8473 0.6737 N.A. 0.9030 0.8473 0.6737 N.A.
Mixup 0.8635 0.8359 0.5796 N.A. 0.8635 0.8359 0.5796 N.A.
MMD 0.9186 0.8341 0.7707 N.A. 0.9186 0.8473 0.7707 N.A.
Coral 0.9216 0.8473 0.7707 N.A. 0.9216 0.8473 0.7707 N.A.
GroupDRO 0.9060 0.9222 0.9186 N.A. 0.9060 0.9222 0.9186 N.A.
FedDG 0.9024 0.9084 0.8880 0.8952 0.8922 0.9084 0.9275 0.9521
FedADG 0.9024 0.0915 0.0732 0.0592 0.8922 0.1892 0.0592 0.0598
FedSR
FedGMA

C.4 TRAINING TIME, COMMUNICATION ROUNDS AND LOCAL COMPUTATION

In this section, we provide training time per communication in terms of the wall clock training time.
Notice that for a fixed dataset, most of algorithms have similar training time comparing to ERM,
where FedDG and FedADG are significantly more expensive.

Table 17: Wall-clock Training time per communication (unit: s).

Wall Clock
PACS FEMNIST Py150 CivilComments IWildCam

ERM 143 262 6566 3958 6301
IRM 147 297 7089 4085 6454
Fish 148 324 7770 5483 7072
Mixup 144 264 N.A. N.A. 6294
MMD 144 287 7603 4024 6663
Coral 144 287 7212 3901 6597
GroupDRO 145 307 8121 4690 9311
FedDG 352 N.A. N.A. 32172
FedADG 181 N.A. N.A. 11094
FedSR 151 280 4403 7136
FedGMA 143 261 6545 4525 6795
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