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ABSTRACT

Humans inherently possess generalizable visual representations that empower
them to efficiently explore and interact with the environments in manipulation
tasks. We advocate that such a representation automatically arises from simultane-
ously learning about multiple simple perceptual skills that are critical for everyday
scenarios (e.g., hand detection, state estimate, etc.) and is better suited for learning
robot manipulation policies compared to current state-of-the-art visual represen-
tations purely based on self-supervised objectives. We formalize this idea through
the lens of human-oriented multi-task fine-tuning on top of pre-trained visual en-
coders, where each task is a perceptual skill tied to human-environment interac-
tions. We introduce Task Fusion Decoder as a plug-and-play embedding translator
that utilizes the underlying relationships among these perceptual skills to guide
the representation learning towards encoding meaningful structure for what’s im-
portant for all perceptual skills, ultimately empowering learning of downstream
robotic manipulation tasks. Extensive experiments across a range of robotic tasks
and embodiments, in both simulations and real-world environments, show that
our Task Fusion Decoder improves the representation of three state-of-the-art vi-
sual encoders including R3M, MVP, and EgoVLP, for downstream manipulation
policy-learning. More demos, datasets, models, and code can be found at our
anonymous webpage.

1 INTRODUCTION

In the fields of robotics and artificial intelligence, imbuing machines with the ability to efficiently
interact with their environment has long been a challenging problem. While humans can effortlessly
explore and manipulate their surroundings with very high generalization, robots often fail even when
faced with basic manipulation tasks, particularly in unfamiliar environments. These representations
empower us to perceive and interact with our environment, effectively learning complex manipu-
lation skills. How to learn generalizable representations for robotic manipulations thus has drawn
much attention.

Existing representation learning for robotics can be generally divided into three streams. 1) Tradi-
tionally representations were hand-crafted (e.g., key point detection (Das et al., 2021) inspired by
biological studies (Johansson, 1973)). They provide strong inductive bias from human engineers,
but encode a limited understanding of what matters about human behavior. 2) Modern state-of-the-
art methods (Chen et al., 2016; Higgins et al., 2016; He et al., 2020; Chen et al., 2020; He et al.,
2022; Nair et al., 2022) propose to automatically discover generalizable representations from data,
e.g., by masked image modeling and contrastive learning techniques. Though general-purpose or
language semantic-based representations can be learned, they fail to grasp human behavior biases
and motion cues, e.g., hand-object interaction, for robotic manipulation tasks. 3) Recent human-in-
the-loop methods (Bajcsy et al., 2018; Bobu et al., 2022; 2023a) attempt to disentangle and guide
aspects of the representation through additional human feedback. However, they are limited to learn-
ing from low-dimensional data (e.g., physical state trajectories) due to the huge amount of human
labels that are required. Each of these approaches comes with its own set of drawbacks, which lead
to suboptimal performance in robotic manipulations.

In this work, we propose that a robust and generalizable visual representation can be automatically
derived from the simultaneous acquisition of multiple simple perceptual skills that mirror those crit-
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Figure 1: Left: human-oriented representation learning as a multi-task learner. Right: robots lever-
age the human-oriented representation to learn various manipulation tasks.

ical to human-environment interactions, as shown in Fig. 1. This concept aligns with insights from
cognitive science (Kirkham et al., 2002), which posits that humans learn to extract a generalizable
behavioral representation from perceptual input by mastering a multitude of simple perceptual skills,
such as spatial-temporal understanding and hand-object contact estimation, all of which are critical
for everyday scenarios. Centered on these human-inspired skills, we introduce Task Fusion De-
coder (TFD) as a plug-and-play multitask learner to learn human-oriented representation for robotic
manipulation. Unlike current state-of-the-art visual representations, which primarily rely on self-
supervised objectives, our approach harnesses the power of these human-inspired perceptual skills
with low-cost human priors.

Task Fusion Decoder is carefully designed with the following considerations. 1) It learns perceptual
skills on the largest ego-centric video dataset Ego4D (Grauman et al., 2022) with three representative
tasks that capture how humans manipulate objects: object state change classification (OSCC), point-
of-no-return temporal localization (PNR), and state change object detection (SCOD). In this way, the
robot manipulation representation space is learned and distilled from real-world human experience.
2) It takes advantage of its inside self- and cross-attention mechanisms to establish information flow
across tasks through the attention matrix and learn inherent task relationships automatically through
end-to-end training. The underlying relationships between these perceptual skills are utilized to
guide the representation learning towards encoding meaningful structure for manipulation tasks. 3)
It is plug-and-play and can be directly built on previous foundational backbones with an efficient
fine-tuning strategy, which enables it to be easily generalized and transferred to novel settings and
models. We will show it improves the performance of various state-of-the-art models on various
robot manipulation benchmarks and tasks.

Our contributions are three-fold. 1) We introduce an efficient and unified framework, Task Fusion
Decoder, tailored as a human-oriented multitask learner aimed at cultivating representations guided
by human-inspired skills for robotic manipulations. 2) The plug-and-play nature of our framework
ensures flexibility, allowing it to seamlessly adapt to different base models and simulation environ-
ments. To demonstrate its real-world applicability, we also collect and open-source a real-world
robot manipulation dataset, comprising 17 kinds of tasks featuring expert demonstrations. 3) Exten-
sive experiments across various model backbones (i.e., MVP (Xiao et al., 2022), R3M (Nair et al.,
2022), and EgoVLP (Qinghong Lin et al., 2022)), benchmarks (i.e., Franka Kitchen (Gupta et al.,
2019), MetaWorld (Yu et al., 2020), Adroit (Rajeswaran et al., 2017), and real-world manipulations),
and diverse settings (e.g., different cameras and evaluation metrics) demonstrate our effectiveness.

2 RELATED WORK

Representation learning for robotic learning. Representation learning, with the goal of acquiring
effective visual encoders (Nair et al., 2022; Mu et al., 2023a; Hansen et al., 2022; Ze et al., 2023;
Parisi et al., 2022; Yen-Chen et al., 2020; Shridhar et al., 2022; Khandelwal et al., 2022; Shah &
Kumar, 2021; Seo et al., 2022), is crucial to computer vision and robotic learning tasks. Recently, it
has been dominated by unsupervised and self-supervised methods (Chen et al., 2016; Higgins et al.,
2016; He et al., 2020; Chen et al., 2020; He et al., 2022; Nair et al., 2022; Ma et al., 2022; Brohan
et al., 2022; Alakuijala et al., 2023; Karamcheti et al., 2023; Mu et al., 2023b; Jing et al., 2023;
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Figure 2: The pipeline for the finetuning framework by using task fusion network. The task fusion
decoder which includes the cross-attention and self-attention, can adjust the video encoder repre-
sentation and fuse different tasks information.

Majumdar et al., 2023). These methods try to learn disentangled representations from large datasets
(Russakovsky et al., 2015; Goyal et al., 2017; Damen et al., 2018; Shan et al., 2020; Grauman et al.,
2022). Though requiring little human cost, these methods purposefully bypass human input, conse-
quently, the learned representations are prone to spurious correlations and do not necessarily capture
the attributes that are important for downstream tasks (LeCun, 2022; Bobu et al., 2023b). For exam-
ple, Xiao et al. (Xiao et al., 2022) propose using masked autoencoders (MAE) to learn a mid-level
representation for robot learning of human motor skills (e.g., pick and place). However, the MAE
representation is tailored for reconstructing pixel-level image structure and does not necessarily en-
code essential high-level behavior cues such as hand-object interaction. To mitigate this, another line
of works attempts to leverage human priors by explicitly involving a human in the learning loop to it-
eratively guide the representation towards human-orientated representations (Bobu et al., 2021; Katz
etal., 2021; Bobu et al., 2022; 2023a). However, these methods do not scale when learning from raw
pixels due to the laborious human costs. Our idea fills the gap between unsupervised/self-supervised
and human-guided representation learning. Our human-oriented representation arises from simul-
taneously learning about multiple perceptual skills from large and well-labeled video datasets that
already capture human priors. Through this, we can effectively capture important attributes that are
important for human motor skills in everyday scenarios in a human-oriented but label-efficient way.

Multitask learning. Multitask representation learning uses proxy tasks to instill human’s intuition
on important attributes about the downstream task in representation learning (Brown et al., 2020;
Yamada et al., 2022). The hope is that by learning a shared representation optimized for all the tasks,
robots can effectively leverage these representations for novel but related tasks. Tasks have inherent
relationships and encoding their relationships into the learning process can promote generalizable
representations that achieve efficient learning and task transfer (e.g., Taskonomy (Zamir et al., 2018)
and Cross-Task (Zamir et al., 2020)). However, learning the underlying relationship between tasks
remains a challenge. Previous methods use a computational approach to identify task relationship by
manually sampling feasible task relationships, training and evaluating the benefit of each sampled
task relationship (Zamir et al., 2018; 2020). However, their scalability remains a serious issue as
they require running the entire training pipeline for each candidate task relationship. (Bahl et al.,
2023) adopts a multi-task structure for affordance. Compared with directly predicting affordance ,
the visual representation learning method is more flexible to fit various kinds of robot learning tasks
with observation space. We advance multi-task learning by enabling the model to automatically
learn the task relationship during training. Our method explicitly helps each task to learn to query
useful information from other tasks.

3 METHODOLOGY

In recent advancements within the field of visual-motor control, there has been a growing em-
phasis on harnessing the remarkable generalization capabilities of machine learning models to
develop unique representations for robot learning. As representatives, R3M (Nair et al., 2022)
proposes a large vision-language alignment model based on ResNet (He et al., 2016) for be-
havior cloning; MVP (Xiao et al., 2022) leverages masked modeling on Vision Transformer
(ViT) (Dosovitskiy et al., 2020) to extract useful visual representation for reinforcement learning;
EgoVLP (Qinghong Lin et al., 2022) learns video representations upon a video transformer (Bain
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et al., 2021). To leverage their successes, we proposed to cultivate better representations for robotic
manipulation by fine-tuning these vision backbones with human-oriented guidance from diverse hu-
man action related tasks. In the following sections, we introduce our Task Fusion Decoder, which
is a general-purpose decoder that can work with any existing encoder networks. We then detail its
training for multi-task structure. For the human-oriented tasks selection, we leverage three mutually
related tasks in the hand object interaction benchmark from the Ego4D dataset for joint training. We
describe them as follows.

The object state change classification (OSCC) task is to classify if there is a state change in the video
clip; the point-of-no-return temporal localization (PNR) task is to localize the keyframe with state
change in the video clip; the state change object detection (SCOD) task is to localize the hand object
positions during the interaction process.

3.1 TAsK FUuSION DECODER

Previous works primarily incorporate high-level information from the entire visual scene, often over-
looking the vital influence of human motion within the representation. However, human knowledge
such as hand-object interactions in the environments is important for robotic manipulations. To
gather different human pre-knowledge concurrently, it is crucial to incorporate different temporal
and spatial tasks simultaneously into a single representation. Also, different vision tasks should
have information interaction, for the human-like synesthesia. To achieve this, we design a decoder-
only network structure Task Fusion Decoder, which can both induce task-specific information and
integrate different tasks.

Task Fusion Decoder is a multitask learner (see Figure 15) aiming to learn three human-oriented
tasks which are originally from the ego-centric video dataset Ego4D (Grauman et al., 2022): ob-
ject state change classification (OSCC), point-of-no-return temporal localization (PNR), and state
change object detection (SCOD). The definition for the three tasks can be found in Figure 3. It is
also designed to work with various vision backbones, such as ResNet (He et al., 2016), ViT (Doso-
vitskiy et al., 2020), and Timesformer (Bain et al., 2021). Given a video, we denote its number of
input frames as 7', the outputted number of patches (for ViT) or feature map size (for ResNet) per
frame as P, and the representation dimension for the encoder as D. In this way, we can have: (1)
the global feature h.;; € R'*P representing the whole video sequence, e.g., the class token for ViT
or final layer feature for ResNet; and (2) hiota; € RPXT)XD a5 dense features with spatial and
temporal information preserved.

For time-related tasks, representation h; for the whole video sequence is required for learning. We
choose h.;s as hy and adopt a time positional embedding to localize the frame. For spatial-related
tasks, representation h for capturing the localization of one specific action, so we adopt a frame
pre-selection strategy to select the keyframe that only covers the state change frame from h¢otq;. In
this case, hy € RP*P denotes the representation of the state change frame. Similarly, we adopt
a positional encoding for hg before feeding into the decoder network. For ResNet, we append an
additional transformer encoder network to adapt the convolutional feature to the patch-wise feature.

Within Task Fusion Decoder, we define 10 task tokens zf as the input of the ky;, decoder layer,
where 1 < k < N,z¥ and 24 are object state change classification(OSCC) task token and temporal
localization(PNR) task token, respectively; 25 — 2F, are state change object detection(SCOD) task
tokens, which provide nominated bounding boxes for hand and object detection. The k;; layer of
the decoder structure can be formulated as:

{fk}; = Self-Attention({z"};) (1)
{2F1}; = Cross-Attention(hs, { fF}:),i € {1,2} (2)
{2F1}; = Cross-Attention(h,, { fF},),3 < i < 10 3)

where fF is the feature after interacting between task tokens, zf“ is the feature of next layer

decoder input. Self-attention can perform task fusion for each layer. For the last layer of the decoder
network, we adapt 10 MLP layers for 10 different task tokens as translators for the tasks with human
pre-knowledge.

3.2  JOINT MULTITASK TRAINING
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For the SCOD task, we formulate it an object detection task following DETR (Carion et al., 2020),
which uses the Hungarian algorithm (Kuhn, 1955) to select the most nominated bounding boxes for
hands and objects. The decoder outputs are logits for bounding-box positions and object classes.
We get the L ¢ by a bounding box localization loss and a classification loss.

For joint training of the three multi-tasks, we propose to balance the three losses by adding weighted
terms as a variance constraint (Kendall et al., 2018) for them:

1 1 1

ELOSCC + ELpnr + ﬂLscod + log(0'10'20'3)7 5)
where o; is a learnable variance. By leveraging such a constraint, the three tasks are automatically
learned in a balanced manner.

L=

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We leverage our Task Fusion Decoder to finetune three backbone models that are frequently used
in robotics tasks: R3M, MVP, and EgoVLP. The FHO slice of the Ego4D dataset is used. The

Table 1: Success rate evaluation on R3M model. We indicate Figure 4: Tasks defined in Ki-
performance decrease in Blue and performance increase in Red. tchen, MetaWorld and Adroit en-
vironments from different views.

env | R3M (%) R3M-+ours (%)
sdoor-open 64.00 79.00 (+15.00) .

ldoor-open 38.33 29.00 (-9.33)

Kitchen light-on 75.00 77.34 (+2.34)
micro-open 27.34 28.67 (+1.33)

knob-on 61.34 58.00 (-3.34)

average 53.20 54.40 (+1.20)

assembly 93.67 98.67 (+5.00)
bin-pick 44.67 56.33 (+11.66)

metaworld button-press 56.34 62.67 (+6.33)
hammer 92.67 86.34 (-6.33)
drawer-open 100.00 100.00 (+0.00)

average 77.47 80.80 (+3.33)

pen 67.33 70.00 (+2.67)

adroit relocate 63.33 66.22 (+2.89)
average 65.33 68.11 (+2.78)
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Table 2: Success rate evaluation on the EgoVLP and MVP models.

env | EgoVLP (%) | EgoVLP+ours (%) || MVP (%) | MVP+ours (%)
sdoor-open 43.00 44.00 (+1.00) 32.00 44.00 (+12.00)
Idoor-open 4.00 7.00 (+3.00) 9.00 11.00 (+2.00)
Kitchen light-on 19.00 12.00 (-7.00) 18.00 15.00 (-3.00)
micro-open 11.00 16.00 (+5.00) 4.00 7.00 (+3.00)
knob-on 11.00 14.00 (+3.00) 6.00 4.00 (-2.00)
average 17.60 18.60 (+1.00) 13.80 16.20 (+2.40)
assembly 10.67 21.33 (+10.66) 14.67 27.33 (+12.66)
bin-pick 4.67 12.00 (+7.33) 3.33 4.00 (+0.67)
metaworld button-press 24.00 15.33 (-8.67) 40.67 32.00 (-8.67)
hammer 58.00 81.33 (+23.33) 98.67 97.33 (-1.34)
drawer-open 62.67 88.67 (+26.00) 40.67 44.00 (+3.33)
average 32.00 43.73 (+11.73) 39.60 40.93 (+1.33)
pen 67.33 69.33 (+2.00) 60.67 62.00 (+1.33)
adroit relocate 26.67 32.00 (+5.33) 16.00 19.33 (+3.33)
average 47.00 50.67 (+3.67) 38.34 40.67 (+2.33)

training dataset contains 41,000 video clips and the validation dataset contains 28,000 video clips.
We randomly sample 16 frames from each video clip as the input. The image resolution is 224 x 224.
We adopt the training code base in (Qinghong Lin et al., 2022). For all training experiments, we set
the learning rate to 3 x 1075 and the batch size to 66. The training takes three days on 5 A6000
GPUs with AdamW optimizer used.

4.2 EXPERIMENTAL RESULTS IN SIMULATORS

In this section, we verify that our finetuning strategy yields representation that improves the robot’s
imitation learning ability compared with directly using pretrained backbones in three simulation
environments: Franka Kitchen, MetaWorld, and Adroit, shown in Fig. 4. In Kitchen and MetaWorld,
the state is the raw perceptual input’s embedding produced by the visual representation model. In
Adroit, the state contains the proprioceptive state of the robot along with the observation embedding.

For R3M (Nair et al., 2022), we follow its evaluation procedure (Nair et al., 2022) to test our repre-
sentation under the behavior cloning setting. We train an actor policy that maps a state to robot action
over a total of 20,000 steps with the standard action prediction loss. The number of demonstrations
used for training imitation policies in the three environments is 50, 25, and 100, respectively. Dur-
ing the evaluation process, we evaluate the policy every 1000 training steps and report the three best
evaluation results from different visual views. The results are shown in Tab. 1. For EgoVLP and
MVP, the number of demonstrations used for training imitation policies in the three environments is
10, 50, and 100, respectively. We evaluate policy every 5000 training steps and report the best result
from different visual views. The results are shown in Tab. 2.

From Tab. 1 and Tab. 2, we observe that our fine-tuning strategy improves the policy success rate
compared to directly using the backbones, indicating our method can help capture human-oriented
and important representation for manipulation tasks.

4.3 ABLATION STUDY

In this section, we evaluate the success rate results with ablations on temporal-related tasks and
spatial-related tasks to understand the benefits of inducing perceptual skills in the model and the
necessity of different perceptual skills for different tasks. We use R3M as the base model and re-
implement the training on the model with only time-related tasks and the model with only spatial-
related tasks. We select five environments from Franka Kitchen, MetaWorld, and Adroit.

As shown in Tab. 3, in most environments, robotics require both spatial and temporal perceptual
skills to enhance the representation of observations. However, in several environments, only one
perceptual skill is sufficient, and the other may have a negative effect. In the ‘ldoor’ environment,
we believe that time information plays a leading role because capturing state changes over time can
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Table 3: Ablation study about time-related tasks and spatial-related tasks.

env | R3M | R3M+time | R3M+spatial |  Ours(R3M+spatial+time)
micro 23.00 25.00 26.00 28.00
light 67.00 75.00 70.00 83.00
Idoor 41.00 46.00 23.00 32.00
assembly 84.00 84.67 83.33 92.67
relocate 36.67 37.33 40.00 36.67

Table 4: The OSCC and PNR task results on the Ego4D benchmark.
Model | Video-Text Pretrained | OSCC ACC% (1) | PNR ERR (seconds) ()

TimeSformer Imagenet Init. 70.3 0.616
TimeSformer EgoVLP 73.9 0.622
Ours EgoVLP 76.3 0.616

be challenging. In the ’relocate’ environment, spatial perception takes the lead as objects in the
manipulation scene are readily apparent.

4.4 REAL-WORLD ROBOT EXPERIMENT

Dataset. We collect a Fanuc Manipulation

dataset for robot behavior cloning, including 17 uninsere
manipulation tasks and 450 expert demonstra- eorrange _ _
tions, as shown in Fig. 5. We employ a FANUC ’ 02%  18.1% O e
LRMate 200iD/7L robotic arm outfitted with an N V4 use tool
SMC gripper. The robot is manipulated using op- : e

erational space velocity control. Demonstrations

were collected via a human operator interface, o
which utilized a keyboard to control the robot’s

end effector. We established a set of seven key

bindings to facilitate 3D translational, 3D rota- &
tional, and 1D gripper actions for robot control. 3% oq 1063
During these demonstrations, we recorded cam-

era images, robot joint angles, velocities, and ex- brush cupleweep roteess stapler
pert actions. stack cup

open pour

In the training phase of behavior cloning, we con- Figure 5: The distribution of our real-world
catenate the robot’s joint angles with encoded im- robot dataset in a Fanuc robot, which covers
age features to form the input state. Rather than Many kinds of actions.

directly imitating expert actions in the robot’s op-

erational space (Nair et al., 2022), we opt to imitate the joint velocities derived from the collected
joint trajectories. This approach allows for manipulation learning at a control frequency different
from that of the human demonstrations, thereby offering flexibility in the network’s inference time.

hook push

18.1%

close
1%

separate cup
place

Fig. 6 presents experimental results for four representative tasks: pushing a box, closing a laptop,
opening a drawer, and moving a cube to a specified location. During both training and evaluation,
the robot arm’s initial states and objects’ initial states are randomized. We benchmark our approach
against three existing methods: R3M, MVP, and EgoVLP. Our method outperforms most of these
baselines across multiple tasks.

4.5 EVALUATION OF PERCEPTUAL TASKS ON EGo4D

To validate whether the multi-task network structure can capture task relationships and enhance
computer vision representation, we employ our Task Fusion Decoder on the Ego4D Hand and Object
Interactions benchmark. Due to label limitations, we re-implement our model using only time-
related tasks, specifically OSCC and PNR. Subsequently, we evaluate the accuracy of object state
change classification and temporal localization error in absolute seconds.
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Figure 6: The result of our real robot experiments. The tasks are push the box, close the laptop,
open the drawer, and push the cube from left to right.

From the results in Tab. 4, we observe that our model improves OSCC accuracy by 2.4% and reduces
the PNR error by 0.006 seconds compared to the trained EgoVLP model. When compared to the
ImageNet initialization model, our approach achieves a 6% improvement in OSCC accuracy while
maintaining nearly identical PNR task performance. The strong result of these vision tasks verifies
that our task fusion model can capture the task relationship hence making them benefit each other,
showing effectiveness in learning a multi-task joint representation.

5 REPRESENTATION ANALYSIS

In this section, to demonstrate the effectiveness of our method, we first analyze the attention map in
the manipulation scene to observe the impact of the spatial-related task. We then visualize the frame
distribution at different times using a t-SNE figure (Van der Maaten & Hinton, 2008) to assess the
effect of keyframe prediction.

5.1 ATTENTION MAP VISUALIZATION

The initial goal of the spatial-related task we designed is to capture the interaction between hands
and manipulated objects and transfer it to the field of robotics manipulation. Therefore, we aim to
demonstrate that our method places greater emphasis on the manipulation area while filtering out
redundant information from the entire task area.

To validate our training strategy, we visualize the attention map of the last layer for R3M (ResNet)
by Grad-CAM (Selvaraju et al., 2017). We separately visualize the attention maps for the original
model, our fine-tuned model, and the ablative model, which includes only the time-related task,
as shown in Fig. 7. We can see that: in both real robot scenes and simulation scenes, after the
manipulation occurs, our method adjusts the representation to focus more on the action area, while
the base model does not exhibit such an effect. Additionally, even with the time-related task, our
method still cannot concentrate on the manipulation’s local area, which confirms the effectiveness
of the spatial-related task design in our network.
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Figure 7: The attention map visualization in different scenes. The pictures are original picture, base
R3M model result and ours spatial ablation model result and ours model result from left to right.

5.2 T-SNE VISUALIZATION OF RRESENTATIONS

In this section, we plot the t-SNE
figure for the representations of the .
whole sequence of the manipulation
task in four kitchen environments at
the same time. Because we add
OSCC and PNR tasks for the hu-
man pre-knowledge for the model, &
which can capture the state change ® o ot
and predict the state change frame, :

R3M Ours

the model will change the distribution ! ok . = R >5°
for the representations of a manipula-
tion task sequence. Figure 8: Left: the t-SNE figure for R3M model Right: the

t-SNE figure for our model. Our model has a stronger ability

As shown in Fig. 8, we classify each to capture the state change

action sequence into before manipu-
lation action and after manipulation
action. In more tasks, our model can have a bigger gap for representation in temporal, and get a
clearer relationship between before-action and after-action representations.

6 CONCLUSION AND DISCUSSION

In conclusion, this work introduces a novel paradigm in the field of robot representation learning,
emphasizing the importance of human-oriented perceptual skills for achieving robust and general-
izable visual representations. By leveraging the simultaneous acquisition of multiple simple per-
ceptual skills critical to human-environment interactions, we propose a plug-and-play module Task
Fusion Decoder, which acts as an embedding translator, guiding representation learning towards en-
coding meaningful structures for robotic manipulation. We demonstrate its versatility by improving
the representation of various state-of-the-art visual encoders across a wide range of robotic tasks,
both in simulation and real-world environments. Furthermore, we introduce a real-world dataset
with expert demonstrations to support our findings.

Future work and broader impact. In the future, we will explore the incorporation of a feedback
loop or reward function into a joint visual representation learning and policy learning framework.
Our approach has no ethical or societal issues on its own, except those inherited from robot learning.
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A APPENDIX

A.1 NETWORK ARCHITECTURE AND CORRESPONDING TASK FUSION DECODER NETWORK
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(a) Task fusion decoder for vision transformer. (b) Task fusion decoder for video transformer.
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Figure 9: Task fusion decoder for transformer structures.
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Figure 10: Task fusion Decoder for Resnet.

During the training process of Task Fusion Decoder, we need to set up different network structures
for video transformer, vision transformer and Resnet. In this section, we introduce the details of the
task fusion decoder in different networks.

Video Transformer encodes a video sequence into a single feature. One single video transformer
encodes the video into class token feature hys € R*P and total feature hiprq € RIXE)IXD We
directly use the class token feature h.;s as our temporal feature h; for the embedding of the whole
video sequence and adopt a frame-selector to get the keyframe feature h, € R”*P as shown in
Fig. 9.

Vision Transformer encodes a single image into feature space, so we need 1" encoder networks to
deal with the T frames input video separately. The class token representation h., € RT*P is the
gather representation for 7" separate frames, and the total representation hiorq; € RTXPxD e
also directly use h.;s as our h; used for time-related decoder tasks. After that, we add a learnable
time positional encoding to localize the frame. We also adopt the frame selection and add positional
encoding for this model and get the spatial representation h, € RT*P as shown in Fig. 9.

Convolution Based Network like Resnet also encodes image representation separately. However,
because there is a gap between convolution style representation and transformer style representation,
we additionally add two layers transformer encoder for the representation to adapt the feature into a
similar feature style as shown in Fig. 10.

A.2 EXTENDED SIMULATION RESULTS
The result mentioned in the paper is the average result from different views, thus, we visualize the

results from different views. As the results shown in Tab. 5 and Tab. 6, our method outperforms the
base model in most views from different environments.
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Table 5: Success rate evaluation on R3M model from different views in Kitchen and Metaworld
environments.

Left camera Right camera
env R3M (%) R3M+ours (%) | R3M (%) R3M+ours (%)
sdoor-open 66.00 82.67 62.00 75.33
Idoor-open 35.33 35.33 41.33 22.67
Kitchen !ight—on 70.67 76.00 79.33 78.67
micro-open 36.00 38.67 18.67 18.67
knob-on 66.67 62.00 56.00 54.00
average 54.93 58.93 51.47 49.87
assembly 94.67 100.00 92.67 97.33
bin-pick 62.00 69.33 27.33 43.33
metaworld button-press 62.00 64.00 50.67 61.33
hammer 96.67 88.67 88.67 84.00
drawer-open | 100.00 100.00 100.00 100.00
average 83.07 84.40 71.87 77.20

Table 6: Success rate evaluation on R3M model from different views in adroit environment.

env View-1 Top-view View-4
R3M (%) ours (%) | R3M (%) ours (%) | R3M (%) ours (%)
pen 64.67 69.33 71.33 71.33 66.00 66.00
adroit relocate 69.33 67.33 62.00 70.67 58.67 60.67
average 67.00 68.33 66.67 71.00 62.34 63.34

A.3 REAL WORLD ROBOT EXTEND EXPERIMENT

In this section, we present visualizations of evaluation trajectories from real-world robot experi-
ments, which illustrate the distinctions between our model and the base model. From top to bottom,
we showcase both our success and failure results in comparison to the base model.

In the ‘Opening Drawer’ task, the base model frequently misses the target drawer handle, whereas
our model succeeds in handling it. Similarly, in the ‘Closing Laptop’ task, the base model’s robot
arm often slides over the laptop’s edge.

A.4 TRAINING AND TESTING SETTING

For the finetuning of the large vision encoder, we freeze the first 2/3 layers of the vision encoder,
and keep the last 1/3 layers of the vision encoder trainable. For example, for the EgoVLP pretrained
model with a total of 12 layers, we maintain the last four layers trainable, which can both keep
large model representation and induce human perceptual tasks for large vision encoder. During the
deployment on robotics tasks, the vision encoder, whose representation has been shifted by the task
fusion decoder, keep frozen and train a robotics policy.

A.5 LEARNABLE SIGMA

In this section, we visualise the sigma learned during the multi-task training. As show in Fig. 16,
Fig. 17, Fig. 18, sigmal and sigma 3 shows decrease during the training process. The sigma for
OSCC is about -1.3e-5, for PNR is about -3e-5, for SCOD is about 0.01, while the loss value of
SCOD is about 1e3 times over PNR and OSCC.
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Figure 12: A success result of closing laptop task using our model.

A.6 ROBOT POLICIES DECODING

We decode our robot policy in this section for different tasks head. As shown in the figures below,
most tasks meet the expection for the oscc, pnr and scod prediction. For robotics task, most bounding
boxes can capture the contact position, which is from hand object interaction points.
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Figure 14: A failure result of closing laptop task using baseline model.
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Figure 15: The training and inference setting in our work.
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Figure 16: Sigma 1 training process.
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Figure 17: Sigma 2 training process.
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Figure 18: Sigma 3 training process.
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Figure 19: Human Policies Decoding — example 1.
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Figure 22: Robot Policies Decoding — example 4.
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Figure 23: Robot Policies Decoding — example 5.
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Figure 24: Robot Policies Decoding — example 6.
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