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ABSTRACT

In federated learning, there are two critical challenges: 1) the data on distributed
learners is heterogeneous; and 2) communication resources within the network are
limited. In this work, we propose a framework, Federated Adaptive Dissimilarity
Measure (FedADM), which can be regarded as an adaptively enhanced version
of the Federated Proximal (FedProx) algorithm. This adaptiveness is primarily
manifested in two aspects: (i) how it adaptively adjusts the proximity between the
local models on different learners and the global model; and (ii) how it adaptively
aggregates local model parameters. Building on the FedProx model, FedADM
incorporates the concept of the Lagrangian multiplier to control the proximal co-
efficients of different learners, using “parameter dissimilarity” to address data
heterogeneity. It explicitly captures the essence of using “loss dissimilarity” to
adaptively adjust the aggregation frequency on distributed learners, thereby reduc-
ing communication overhead. Theoretically, we provide the performance upper
bounds and convergence analysis of our proposed FedADM. Experiment results
demonstrate that FedADM allows for higher accuracy and lower communication
overhead compared to the baselines across a suite of realistic datasets.

1 INTRODUCTION

Data privacy and security are of paramount importance, especially in highly sensitive sectors such as
healthcare, finance, and smart manufacturing. Typically, data in different institutions or departments
is stored independently, making it challenging to effectively integrate and utilize this dispersed data
architecture. Federated learning technology (Kairouz et al., 2021; Chen et al., 2024; Wang et al.,
2024b) offers a potent solution to this “data island” issue, enabling the collaborative use of multi-
source data across institutions for distributed model training. This approach allows for the resolution
without the direct exchange of any sensitive information, thus ensuring the security of the data (Yang
et al., 2023; Zhang et al., 2023; Hu et al., 2023).

Federated learning represents a promising method of distributed machine learning training, partic-
ularly showing distinct advantages over other traditional distributed optimization methods in het-
erogeneous data settings (Yang et al., 2019; Chen et al., 2021). The Federated Proximal (FedProx)
algorithm is a classic federated learning approach tailored for heterogeneous data distributions (Li
et al., 2020). It incorporates a proximal term in local model training, which helps the local mod-
els converge towards the global aggregated model, thereby accelerating learning in heterogeneous
data and promoting model convergence. However, it lacks in-depth exploration and utilization of
heterogeneous data and does not adequately consider resource consumption. Although there has
been significant work in federated learning optimizing participant selection (Cho et al., 2022; Tang
et al., 2022), local update frequency (Singhal et al., 2021; Ruan & Joe-Wong, 2022), and aggregation
count (Pillutla et al., 2022; Zhang et al., 2023; Li et al., 2023; Wang et al., 2024b; Lee et al., 2023) to
reduce overheads, achieving global optimum remains challenging. A pivotal question of federated
learning regarding the data heterogeneity and limited communication resources that emerge in our
research is:

Question 1 How can we deeply excavate and precisely harness the heterogeneity inherent in data
to guide the local updates and global aggregation processes in federated learning?
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In this work, we introduce the Federated Adaptive Dissimilarity Measure (FedADM), a federated
learning approach that addresses this question. The effective utilization of heterogeneous informa-
tion directly impacts the performance and speed of model learning. Heterogeneity in distributed
data can be measured through network parameters, loss functions, and gradient information. The
FedADM approach firstly utilizes a variety of heterogeneity metrics, including parameter dissim-
ilarity and loss dissimilarity, to improve the training efficiency and accuracy of the model. Our
contributions to this work are as follows:

• Parameter Dissimilarity for Local Network: We construct a proximal term in the local loss
functions by utilizing the parameters dissimilarity between local and global aggregation.
Note that this approach dynamic controls the influence of parameter dissimilarity on the
local loss function by adjusting the proximal coefficient, thus promoting the convergence
of the local model.

• Loss Dissimilarity for Surrogate Function: The framework utilizes local loss dissimilarity
to construct a surrogate for the optimization objective function. This effectively captures
the variations in local models and theoretically achieves a suboptimal solution for the num-
ber of local updates. This strategy aids in optimizing the frequency of local updates and
global aggregations.

• Experiment Results: Extensive experiments verify the effectiveness and convergence of the
FedADM under limited communication resources using three real datasets, four cases with
heterogeneous data, various neural network models, and different system configurations.

2 RELATED WORK

Security has significantly advanced the development of federated learning technologies within the
field of distributed optimization (Kim et al., 2023; Ye et al., 2023; Tang et al., 2024). Generally,
assumed that the data points are non-independent and non-identically distributed (non-IID) (Pillutla
et al., 2022; Liao et al., 2023). These increase the difficulty of federated learning.

Data Heterogeneity FedProx, a seminal work, introduced a proximal term to facilitate training col-
laboration across heterogeneous data sources (Li et al., 2020). Building on this, reference (Wu et al.,
2023) defined the local objective function to incorporate the momentum-based variance-reduced
technique. (Wu et al., 2024) modeled federated learning as non-convex minimax optimization prob-
lems. Moreover, (Pathak & Wainwright, 2020) developed the FedSplit method employing operator
splitting, and (Zhao et al., 2023) decomposed an upper bound of the objective into a bias term and a
variance term to achieve a trade-off between heterogeneity and aggregation. The above works focus
on reconstructing the objective function, which lacks a deep exploration of heterogeneity. Our work
analyzes and utilizes dissimilarity in parameters and losses and then reconstructs objective guiding
model optimization to achieve more accuracy and robustness.

Aggregation Automated aggregation control significantly enhanced the efficiency of federated
learning and reduced communication overhead, as demonstrated through methods like simple
weighted aggregation (Li et al., 2023), two-stage clustering aggregation (Zhou et al., 2024), cross-
round aggregation (Wang et al., 2024a), and layer-wise aggregation (Lee et al., 2023; Chan et al.,
2023). Although existing aggregation methods improved the communication efficiency of federated
learning (Nguyen et al., 2022; Wang et al., 2021; Chu et al., 2022; An et al., 2023; Chen et al., 2022),
they often did not take into account dynamically constrained communication resources.

Convergence Guarantee The theoretical guarantees for the convergence of models in federated
learning had been extensively studied (Mitra et al., 2021; Koloskova et al., 2022; Charles &
Konečnỳ, 2021; Zhang et al., 2022; Gao et al., 2021). These works included convergence guaran-
tees for non-convex federated optimization (Yuan & Li, 2022) and asynchronous federated learning
(Bornstein et al., 2022). Furthermore, the work by (Nguyen et al., 2020) designed a fast-convergent
mechanism and theoretically verified the improvement of a lower bound for local models. To sim-
plify optimization problems, we use surrogate functions to prove the models’ convergence.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 FEDRATED OPTIMIZATION: METHODS

A federated learning model is considered, operating within a constrained resource budget R. This
model consists of a central controller and n local learners. Each learner maintains its own network
parameters and performs local updates during the training process. After every τ local update, learn-
ers transmit their model updates to the central controller. Upon receiving these updates, the central
controller performs a global aggregation and redistributes the results back to the local learners. De-
fine T as the total number of iterations conducted by each learner, with each iteration denoted by t,
where t ∈ {1, 2, . . . , T}. Let K represent the number of aggregations, calculated as T/τ , with each
aggregation indexed by k, where k ∈ {1, 2, . . . ,K}. Both local updates and global aggregations
during the federated learning process consume resources, which may include transmission band-
width, storage capacity, and computational power. Consider M distinct types of resources, each
type labeled as m, where m ∈ {1, 2, . . . ,M}. The variables cm and bm denote the resource con-
sumption per local update and per global aggregation, respectively, for the m-th type of resource.
Rm represents the total available budget for resource type m. The primary objective is to optimize
the frequency of local updates and global aggregations by minimizing the loss function of the central
controller, all while adhering to the constraints imposed by the limited resources. This optimization
problem can be formally expressed as follows:

min
τ,K

F (w)

s.t. T cm +Kbm ≤ Rm, ∀m ∈ {1, 2, ...,M}
T = Kτ.

(1)

3.1 FEDERATED PROXIMAL (FEDPROX)

The datasets on the learners are often non-IID, resulting in varying labels and data quantities among
the learners. This non-IID distribution can cause model performance variability, convergence dif-
ficulties, and overfitting issues. To address these challenges, FedProx introduces a proximal term
during local training. The FedProx method trains a model that minimizes global loss, ensuring that
local model parameters do not deviate excessively from the global model parameters. The objective
function of FedProx for local learner i with a proximal term is described as follows:

F p
i (wi) = Fi (wi) +

μ

2
‖wi −wk,global‖2 , (2)

where wi are the parameters of the i-th learner, i ∈ {1, 2, . . . , n}, and wk,global are the global
parameters from the k-th aggregation, the proximal term coefficient is represented by μ. This term
adjusts the closeness of local updates to the initialized global model. The global loss function,
relevant to the i-th learner’s dataset, is denoted by

F p (w) =

n∑
i=1

F p
i (w), (3)

where w represents the central controller’s model parameters, obtained through global aggregation.
Specifically, w = 1

D

∑n
i=1 Diwi denotes the weighted average of the local model parameters from

all learners participating in the aggregation, where Di is the number of samples at the i-th learner.
Here, D is the sum of the number of samples across all learners, given by D =

∑n
i=1 Di. The

optimal model parameters at the k-th aggregation are

wk,global
Δ
= argmin

w∈{w(kτ):k=1,2,...,K}
F p(w). (4)

3.2 DEFINITIONS IN FEDADM

Definition 1 (Bounded Parameter Dissimilarity) An upper bound of the parameter dissimilarity
between the parameters of the i-th learner wi, and the global parameters of the k-th aggregation
wk,global, is given by

‖wi −wk,global‖ ≤ ξ, (5)

where ξ is a predefined parameter deviation tolerance.
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Since the data distribution varies across different learners, setting dynamic control parameters for
the proximal term allows for more precise control over its importance in the training process. Specif-
ically, the objective function for local learners with adaptive proximal terms is described as follows:

F p
i (wi, μi,k) = Fi (wi) +

μi,k

2
‖wi −wk,global‖2 , (6)

where μi,k denotes the proximal term coefficient for the i-th learner at the k-th aggregation. The
parameters of the i-th learner are wi, and the global parameters of the k-th aggregation are wk,global.
It is easy to see that equation 6 can be regarded as the Lagrangian function of the local objective
function, which satisfies the bounded parameter dissimilarity condition stated in Definition 1. The
proximal term coefficient μi,k acts as a regulator of sensitivity constraints, adaptively adjusting
μi,k by utilizing the parameter dissimilarity between wi and wk,global. With each local gradient
aggregation, a new wk,global is obtained, and thus, the proximal coefficient is updated by

μi,k = μi,k−1 + α(‖wi −wk,global‖ − ξ), (7)

where α represents the learning rate that regulates the update speed of the proximal coefficients. This
update method enhances the regularization effect by increasing the proximal term coefficient when
the local model parameters significantly deviate from the global model, thereby compelling the local
model to align more closely with the global model. Conversely, if the local model parameters are
close to the global model, the proximal coefficient is reduced.

The local training parameters are updated using the gradient descent method that is given by:

wi(t) = wi(t− 1)− η (∇Fi (wi(t− 1)) + μi,k ‖wi(t− 1)−wk,global)‖ , (8)

where η is a given learning rate. To effectively manage the data heterogeneity across various learn-
ers, it is crucial to analyze the relationship between the local and global loss functions:

Definition 2 (Local Loss Dissimilarity) The local loss dissimilarity captures the heterogeneity of
the local network, which is modeled by:

1

n

n∑
i=1

‖Fi (wk,global)‖2 ≤ B2
k‖F (wk,global)‖2 +H2

k , (9)

which fits the relationship between the behavior of local loss and the global loss, scaled by Bk and
adjusted by a constant Hk at the k-th aggregation.

When Bk approaches 1 and Hk nears 0, it indicates that the gradient at each learner closely aligns
with the global gradient. The Bk and Hk are updated by

Bk =

√∑n
i=1 ‖Fi(wk,global)‖2
n · ‖F (wk,global)‖2

, (10)

Hk =

√√√√max

(
0,

1

n

n∑
i=1

‖Fi(wk,global)‖2 −B2
k ‖F (wk,global)‖2

)
. (11)

4 FEDADM: THEORETICAL ANALYSIS

The specific expression of the variables τ and K in the objective function equation 1 is analytically
challenging for two main reasons: (i) it depends on the convergence characteristics of the gradient;
(ii) resource consumption dynamically changes. The sketch of the theoretical analysis is as follows:
First, analyze the upper bound of convergence and use this boundary to approximate the solution to
equation 1. Based on the local loss dissimilarity, a linear search method is used to optimize τ and
K, obtaining the asymptotically optimal solution for equation 1.
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4.1 CONVERGENCE ANALYSIS

The convergence of Algorithm 1 is verified, and an upper bound is obtained between the loss func-
tion F (wk,global) with aggregation parameters and the loss function F (w∗) with optimal parameters.
The convergence analysis of Algorithm 1 comprises two steps: (i) measuring the gap in parameters
between distributed gradient descent and centralized gradient descent at the kτ -th iteration (note that
federated learning has not yet undergone global aggregation at the kτ -th iteration when computing
the gap); (ii) combining the gap identified in the first step with the convergence upper bound of
centralized gradient descent to derive the upper bound of convergence for w.

To facilitate the convergence analysis, we also consider a centralized training framework that in-
volves only a global neural network with no local learners. All information is observable, and
network parameters are updated using the centralized gradient descent method. To ensure a fair
comparison between distributed federated learning and centralized learning, it is crucial to main-
tain consistency in the loss functions used in both approaches. In centralized training, this involves
leveraging the global aggregation parameters wk,global from federated learning to construct a proxi-
mal term. Similarly, the centralized network incorporates a proximal term at the k-th interval that is
given by:

vk (t) = vk (t− 1)− η (∇F (vk (t− 1)) + μ̄k (vk (t− 1)−wk,global)), (12)

where μ̄k = 1
n

∑n
i=1 μi,k and t ∈ [(k − 1)τ, kτ ] for a given k, k = 1, 2, ...,K.

We establish the following assumptions regarding the loss function used in local training.

Assumption 1 For any learner i, we have:

1) F p
i (wi, μi,k) is convex.

2) F p
i (wi, μi,k) is (ρi + μi,kξ)-Lipschitz, which means that there exists a constant ρi > 0 such that

for any wi,w
′
i, the following inequality holds:

‖F p
i (wi, μi,k)− F p

i (w
′
i, μi,k)‖ ≤ (ρi + μi,kξ)‖wi −w′

i‖. (13)

3) F p
i (wi, μi,k) is (βi + μi,k)-Smooth, which means that there exists a constant βi > 0 such that

for any wi,w
′
i, the following inequality holds:

‖∇F p
i (wi, μi,k)−∇F p

i (w
′
i, μi,k)‖ ≤ (βi + μ̄k)‖wi −w′

i‖. (14)

Based on Assumption 1, we can derive the properties of the central controller’s loss function: F p(w)
is convex, (ρ+ μi,kξ)-Lipschitz, (β + μi,k)-Smooth (Wang et al., 2019), where ρ = 1

D

∑n
i=1 Diρi

and β = 1
D

∑n
i=1 Diβi. Moreover, it describes the differences between the gradients of the local

learner loss and the global loss. This divergence measures how the data is distributed across different
learners.

Definition 3 (Gradient Divergence) An upper bound of the differences is:

‖∇F p
i (wi, μi,k)−∇F p(w, μ̄k)‖ ≤ δi (15)

where ∇F p (w, μ̄k) =
1
n

∑n
i=1 ∇F p

i (wi, μi,k) and δ = 1
D

∑n
i=1 Diδi.

Using the aforementioned assumptions and definitions, we first find the gap between the parameters
of distributed gradient descent w(t) and centralized gradient descent vk(t) as follows:

Lemma 4.1 For any interval k, and any iteration t ∈ [(k − 1)τ, kτ ]

‖w(t)− vk(t)‖ ≤ h(t− (k − 1)τ), (16)

where

h(x) = δ
∑

i
(βμ

(η(β + μi,k) + 1)x − 1

n(β + μi,k)
− ηxβμ

n
), (17)

and βμ = β+μ̄k

β+μi,k
, x is a non-negative integer.

5
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From Lemma 4.1, it is evident that μ significantly influences the upper bound of parameter conver-
gence. Given that the data distribution is non-IID, we frequently observe that μ̄k �= μi,k, leading to
more intricate behavior in the functional response. Consequently, selecting an optimal μi,k is cru-
cial for enhancing convergence rates and improving accuracy. A closer analysis of the function h(x)
reveals the presence of x in the exponent, which indicates that larger values of x, corresponding to
a greater number of local training iterations, result in substantially increased function values. This
suggests that an increase in local training iterations amplifies the disparity between the model pa-
rameters in federated learning compared to those in centralized learning. The proof can be found in
Appendix A. Based on the results in Lemma 4.1, we further derive the upper bound on the difference
between the two loss functions F p(w(T ), μ̄K)− F p(w∗, μ̄K):

Lemma 4.2 Under the following conditions:

1) η ≤ 1
β+maxμi,k

2) ηϕ− (ρ+maxμi,K)
τξ2 > 0

3) For any k, we have F p(vk(kτ), μ̄k)− F p(w∗, μ̄K) ≥ ε

4) F p(w(T ), μ̄K)− F p(w∗, μ̄K) ≥ ε

where ε > 0 and ϕ =
(
1− (β+μ̄k)η

2

)
min
k

1
‖vk((k−1)τ)−w∗‖2 , μ̄ = 1

K

∑K
k=1 μk, then the upper

bound of the objective function as follows:

F p(w(T ), μ̄K)− F p(w∗, μ̄K) ≤ 1

T
(
ηϕ− ρh(τ)

τε2

)
− μ̄Kξh(τ)

ε2 − ξ2

2ε2

K−1∑
k=1

(μ̄k+1 + μ̄k)

. (18)

Lemma 4.2 establishes an upper bound on the gap between the loss functions at the parameters set
to w(T ) and the optimal solution w∗. This relationship is also influenced by μi,k and ξ. Notably,
this upper bound is inversely proportional to the number of training iterations, T . Thus, as training
progresses, the objective function approaches convergence. A detailed proof is provided in the Ap-
pendix B. Building on these insights, the subsequent Theorem 1 elaborates on the further derivation
of these bounds.

Theorem 1 (Upper Bound of Surrogate Function) When η ≤ 1
β+maxμi,k

, we have

F p(wk,global, μ̄K)− F p(w∗, μ̄K) ≤ 1

4ηϕT
+ h′(τ) + (ρ+ μ̄Kξ) ρh (τ) , (19)

where

h′(τ) =

√
2Tρh(τ) + 2τ μ̄Kξh(τ) + τ(μ̄K − μ̄1)

ηϕT 2
. (20)

In Theorem 1, the optimal gap F p(wk,global, μ̄K) − F p(w∗, μ̄K) is related to h(τ), where δ within
h(τ) incorporates information about the data distribution across different learners. With a fixed total
number of iterations T , the optimal gap increases as τ and δ increase. Given τ and δ, as iterations
T grow larger, the optimal gap decreases. Notably, when τ = 0 (i.e., gradient aggregation occurs
after every local update), both h(τ) and h′(τ) tend towards zero, and as T approaches infinity,
the optimal gap tends towards zero. This indicates that the algorithm’s solution becomes closer to
the optimal solution. However, due to limited resources and typically τ > 1, as T tends towards
infinity, convergence is only possible to a non-zero optimal gap. The detailed proof can be found in
Appendix C.

4.2 FEDADM ALGORITHM

In this subsection, a surrogate function for the loss function equation 1 of the central controller is
constructed. The loss function equation 1 of the central controller is challenging due to the incorpo-
ration of local gradient updates and the real-time fluctuations in resource consumption. Therefore,

6
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the upper bound F p(wk,global, μ̄K) − F p(w∗, μ̄K) from Theorem 1 is utilized to approximate loss
function equation 1, the optimal loss value F p(w∗, μ̄K) is a constant, the minimization of loss
F p(wk,global, μ̄K) is equal to minimize F p(wk,global, μ̄K) − F p(w∗, μ̄K). The K in equation 1 is
satisfied with:

K ≤ Rm

cmτ + bm
, ∀m ∈ {1, 2, . . . ,M}. (21)

We aim to minimize the upper bound of the loss function’s gap, thereby finding the optimal value

of τ . Based on equation 21 and T = Kτ , T is replaced with max
m

cmτ+bm
Rmτ , the upper bound is

redefined as:

G (τ) =
max
m

cmτ+bm
Rmτ

4ηϕ
+ h′(τ) +

(
ρ+ μ̄

T/τ
ξ
)
ρh (τ) , (22)

where the given η ≤ 1
β . The surrogate function of the loss function equation 1 is rewritten as:

min
τ,K∈{1,2,3,...}

G (τ)

s.t. K ≤ Rm

cmτ+bm
, ∀m ∈ {1, 2, ...,M}

T = Kτ,

(23)

from which the approximately optimal τ∗, K∗, and T ∗ are

τ∗ = argmin
τ

G(τ), K∗ = min
m

Rm

cmτ + bm
, T ∗ = min

m

Rm

cmτ + bm
τ∗. (24)

During each aggregation, the estimated upper bound in equation 22 is used to replace the challenging
primal problem equation 1. A linear search method is then employed to find the value of τ∗ that
minimizes equation 23, which is then used to determine the number of local update times for the
next interval.

The detailed process of the FedADM algorithm with distributed gradient descent is as follows: We
first initialize the parameters. Local Updates: Within each global aggregation k, each learner i per-
forms τ iterations of local updates. Each learner receives the latest global model parameters wk,global

and computes wi(t) updates via equation 6, along with μi,k via equation 7. The Lipschitz constant
is updated applying ρi = ‖F p

i (wi, μi,k)− F p
i (w

′
i, μi,k)‖ / ‖wi −w′

i‖ − μi,kξ, and the smooth-
ness constant is given by βi = ‖∇F p

i (wi, μi,k)−∇F p
i (w

′
i, μi,k)‖ / ‖wi −w′

i‖ − μ̄k. Updates
F p
i (wi, μi,k) and ∇F p

i (wi, μi,k) are then sent back to the central controller. Global Aggrega-
tion: The central controller aggregates updates from all local learners using a weighted average
to update the global model parameters w(t). The loss of the central controller F p(w(t)) is com-
puted by equation 3. If F p(w(t)) < F p(wk,global) is satisfied, the parameters wk,global are set to
w(t). Parameter Estimation: After updating the global model, parameters related to loss such

as ρ̂, β̂, and δ̂ are estimated by ρ̂ = 1
D

∑n
i=1 Diρi, β̂ = 1

D

∑n
i=1 Diβi, δ̂ = 1

D

∑n
i=1 Diδi and

∇F p(w, μ̄k) = 1
n

∑n
i=1 ∇F p

i (w, μi,k). The parameters of resource consumption ĉm and b̂m are
also estimated. The parameters Bk and Hk in local loss dissimilarity are obtained from equation 10
and equation 11. The remaining parameter ϕ is regarded as a given control parameter because it
includes the unknown w∗. Compute τ∗ and K∗: By utilizing loss dissimilarity, we construct the
surrogate function equation 23 to replace the primal optimization problem equation 1. A centralized
controller then uses line search to compute τ∗, subsequently calculating K∗ and T ∗. If a STOP flag
is met (e.g., the number of iterations has reached the predefined maximum T or resource consump-
tion exceeds limit Rm or F p(wk,global, μ̄K)− F p(w∗, μ̄K) tends to zero), the process progresses to
termination; otherwise, it continues with further iterations.

As demonstrated in Algorithm 1, it exhibits markedly low computational complexity. For each
global aggregation, the central controller collects parameters from n participating learners, encom-
passing M types of resources. The number of steps required for local updates, obtained through line
search, does not exceed T s

max. The total count of global aggregations is denoted by K, and the com-
putational complexity of this global aggregation phase is O(K(nM + T s

max)). Regarding the local
gradient updates, these are executed T times in total. Additionally, each local learner processes M
resource types during each aggregation phase, leading to enhanced local computations. The com-
putational complexity for local updates across all learners amounts to O(T +KM). Consequently,
the overall computational complexity of Algorithm 1 is computed as O(K(nM +T s

max+M)+T ),
balancing both global and local computational demands efficiently.
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Algorithm 1 FedADM Algorithm for Federated Learning

1: Initialize w(0),wk,global ← w(0), τ∗ ← 1, t ← 1, k ← 1.
2: Initialize wi(0) to all learners i ∈ {1, 2, . . . , n}.
3: for k = 1 to K do
4: for t = 1 to τ∗ do
5: for each learner i in parallel do
6: Receive current global model parameters wk,global.
7: Compute local updates with parameter dissimilarity:

min
wi

{
F p
i (wi, μi,k) = Fi (wi) +

μi,k

2
‖wi −wk,global‖2

}
.

8: Send the update Δwi(t) = wi(t)−wi(t− 1) to the server.

9: Send the update μi,k, ρ̂i, β̂i, F
p
i (wi, μi,k),∇F p

i (wi, μi,k) to the server.
10: end for
11: Aggregate updates at the server:

w(t) = w(t− 1) +
1

n

n∑
i=1

Δwi(t).

12: end for
13: Compute F p(w(t)) according to equation 3.
14: wk,global ← w(t) if F p(w(t)) < F p(wk,global).

15: Estimate ρ̂, β̂, δ̂, Bk, Hk.

16: Estimate resource consumption ĉm and b̂m.
17: Check for STOP flag: If the STOP flag is true, stop.
18: Compute τ∗ in equation 23 with loss dissimilarity.
19: Compute K∗, and T ∗.
20: k ← k + 1.
21: end for

5 SIMULATION RESULTS

5.1 EXPERIMENTAL SETUP

Datasets and Models: We conduct experiments using three popular datasets: MNIST (LeCun et al.,
1998), Fashion-MNIST (Xiao et al., 2017), and CIFAR-10 (Krizhevsky et al., 2009). For the MNIST
and Fashion-MNIST datasets, a simple Support Vector Machine (SVM) Cortes (1995) serves as the
backbone for training and testing, while for CIFAR-10, we use a Convolutional Neural Network
(CNN) (He et al., 2016). For detailed information about the datasets, refer to Appendix D.1.

Baselines and Cases: Our method is compared with existing similar approaches, including FedAvg
(McMahan et al., 2017), FedProx (Li et al., 2020), and centralized learning. The experiments con-
sider four distinct cases with varying data distributions across learners. In Case 1, each learner
performs random sampling of uniformly informative data. In Case 2, each learner contains different
types of labels, indicating heterogeneous data across learners. In Case 3, each learner possesses the
complete dataset. In Case 4, the first half of the learners contain only data samples from Case 1,
while the second half contains only data samples from Case 2.

Implementation Details: In the simulation, we configure the number of local learners to vary be-
tween 5 and 100, with learners uniformly sampled from the dataset. We assume that the resource
consumed is time, with a total time resource of 60 seconds unless otherwise specified. For more
information regarding training and control parameters, please refer to Appendix D.1. Experiments
are implemented using TensorFlow. Locally, experiments are conducted on CPU machines equipped
with a 2.3 GHz Intel Core i7 processor and an NVIDIA 3070Ti GPU. For more resource-intensive
tasks, we use a remote server equipped with a 16 vCPU Intel(R) Xeon(R) Gold 6430 processor, 120
GB of memory, and two RTX 4090 GPUs along with six RTX 2080Ti GPUs.
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5.2 SIMULATION RESULTS

Performance Analysis for Methods and Cases: Figure 1 displays a comparison of the FedADM
method’s performance on prediction accuracy and loss over homogeneous and heterogeneous data
against other baselines such as FedAvg, FedProx, and centralized learning (dataset: MNIST, clas-
sifier: SVM). It is evident that the proposed FedADM method demonstrates significant advantages
regardless of the data homogeneity. This underscores the effectiveness of the proposed FedADM
method and illustrates the benefits of exploiting parameter and loss dissimilarities.

Figure 1: Comparison of prediction accuracy (left) and loss value (right) across different methods.

Figure 2 shows the impact of the optimal local update times τ∗ on prediction accuracy and loss
across four different cases (datasets: Fashion-MNIST, classifier: SVM). The optimal τ∗ varies by
case, highlighting the importance of precisely optimizing the adaptive local update times. Please
refer to Appendix D.2, Figure 6 for another experiment involving the MNIST dataset and SVM
classifier.

Figure 2: Impact of the optimal local update times τ∗: (1) Loss on training data using FedADM, (2)
Loss on training data using FedProx, (3) Prediction accuracy on testing data using FedADM, and
(4) Prediction accuracy on testing data using FedProx.

Performance Analysis under Varied Conditions: Figure 3 presents the performance of FedADM
compared to FedProx in terms of prediction accuracy and loss with varying numbers of local learners
(dataset: MNIST, classifier: SVM). Considering four different cases, the results indicate that as the
number of learners increases, FedADM maintains higher accuracy and lower loss. The FedADM
method performs better in homogeneous data compared to heterogeneous data.

Figure 3: Comparison of the performance between the proposed FedADM and FedProx across
different numbers of learners n (5, 10, 15, 20, 30, 50, and 100).
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Figure 4: Comparison of τ∗ values over different resource times R.

Figure 5: The behavior of B, H , and μ values over iterations T .

Figure 4 illustrates local update times of FedADM under different resource budgets for four cases
(dataset: MNIST and CIFAR-10, classifier: CNN). The τ∗ represents the local update times. As
we have seen, Case 3 in both datasets shows a constant high value, indicating stable performance
over time. However, for the other cases, the value of τ∗ decreases significantly as the total resource
increases, reflecting reduced local updates as more resources are allocated. Figure 7 shows the
performance comparison of different methods as a function of total resource R (datasets: MNIST,
classifier: CNN). It highlights that our method consistently outperforms the other methods across
different resource levels, achieving lower loss and higher accuracy. The centralized learning model
shows a strong performance, but with more iterations, our method provides superior accuracy while
maintaining competitive loss reduction. This figure is in Appendix D.2. Figure 8 showcases the
performance in terms of prediction accuracy and loss under different datasets (dataset: MNIST and
CIFAR-10, classifier: CNN). The results highlight the robustness of our method in achieving low
loss and high accuracy on both datasets. This figure is in Appendix D.2.

Convergence Behavior: Figure 5 shows the behaviors of parameters for μ of parameter dissim-
ilarity and Bk, Hk of loss dissimilarity, highlighting the variations and overall trends during the
process. As the iteration number T increases, the proximal term coefficient μ for measuring param-
eter dissimilarity tends to be smaller, and the parameters Bk, and Hk for local loss dissimilarity in
the FedADM method, respectively converge to 1 and 0.

6 CONCLUSION

This work proposes FedADM, which utilizes parameter dissimilarity and loss dissimilarity to ad-
dress data heterogeneity and reduce communication overhead in federated learning. Parameter dis-
similarity is embedded into the local objective functions to guide local models towards approxi-
mating the global model, while loss dissimilarity is integrated into the surrogate function to finely
control local updates and aggregation. We derive the convergence bounds for FedADM by con-
sidering the Lipschitz continuity and smoothness properties. Our experiments achieved superior
performance compared to the baselines across three datasets, four cases, and two neural network
models, demonstrating the convergence behavior of FedADM in resource-limited heterogeneous
networks.
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7 REPRODUCIBILITY

To set up the necessary datasets in our project, follow these steps: First, download the MNIST
dataset from Yann LeCun’s website and place the extracted files into the datasets/mnist
folder in project directory. Next, for the CIFAR-10 dataset, download the CIFAR-10 binary
version from Alex Krizhevsky’s CIFAR page, extract the *.bin files, and move them to the
datasets/cifar-10-batches-bin folder. Lastly, obtain the Fashion-MNIST dataset from
the Zalando Research GitHub repository, follow the instructions for downloading, and place the
dataset files into the datasets/fashion-mnist directory. These steps ensure that all datasets
are correctly positioned for use in project.
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