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MV-DIFFUS3R: REFINING MULTI-VIEW DIFFUSIONS
FOR GEOMETRIC COHERENCE 3D RECONSTRUCTION
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Figure 1: MV-Diffus3R Pipeline Overview. Our two-stage approach decouples view generation
from geometric refinement. GPT-generated multi-view images often exhibit geometric inconsisten-
cies such as incorrect rotational angles (bottom-left example), which compromise 3D reconstruction
quality. MV-Diffus3R serves as a plug-and-play refinement module that transforms inconsistent
multi-view sets into geometrically coherent representations suitable for high-quality 3D reconstruc-
tion.

ABSTRACT

Recent breakthrough text-to-image models like GPT achieve unprecedented pho-
torealistic quality, yet our analysis reveals critical geometric inconsistencies when
leveraging these models for multi-view generation. These inconsistencies man-
ifest as specific rotational errors—such as facial expressions changing between
views (open mouth becoming closed) or object details disappearing during rota-
tion (remote control buttons missing in side views)—alongside systematic tex-
ture loss that compromises downstream 3D reconstruction quality. While existing
methods attempt to address multi-view consistency through end-to-end genera-
tion with geometric constraints, they face an inherent trade-off between visual
fidelity and geometric coherence, often producing over-smoothed results that sac-
rifice the exceptional detail quality achievable by models like GPT. To harness
the full potential of these powerful 2D foundation models while resolving their
geometric limitations, we introduce a novel two-stage pipeline that strategically
decouples view generation from geometric refinement. Our core contribution
is MV-Diffus3R, a specialized plug-and-play refinement module that takes high-
quality but geometrically inconsistent multi-view images from GPT and produces
geometrically coherent outputs suitable for high-quality 3D reconstruction. MV-
Diffus3R employs Plücker ray embeddings for precise geometric conditioning and
a dual-pathway attention mechanism that simultaneously preserves fine visual de-
tails while enforcing cross-view geometric correspondence. Through comprehen-
sive evaluation on GPT-generated multi-view sets, we demonstrate superior geo-
metric fidelity compared to existing methods, achieving 33% FID improvements
while maintaining exceptional visual quality.
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Figure 2: MV-Diffus3R refinement module. Given four geometrically misaligned input views with
detail loss from text-to-image generators, the model leverages Plücker ray embeddings as geometric
conditioning and applies 3D-aware alignment modules to produce geometrically coherent outputs
while preserving high-frequency visual details.

1 INTRODUCTION

State-of-the-art text-to-image models have achieved unprecedented photorealistic quality, yet criti-
cal geometric inconsistencies emerge when leveraging these models for multi-view generation. Our
experimental analysis reveals that these inconsistencies manifest as rotational errors—facial expres-
sions changing between views or object details disappearing during rotation—alongside systematic
texture loss that fundamentally compromises downstream 3D reconstruction quality.

Current approaches face significant limitations in harnessing the capabilities of these powerful 2D
foundation models. End-to-end text-to-3D methods such as DreamFusion Poole et al. (2022) and
Magic3D Lin et al. (2023) produce over-smoothed results due to inherent tension between maintain-
ing 3D consistency and preserving exceptional detail quality. Multi-view generation methods like
Zero-1-to-3++ Shi et al. (2023), SyncDreamer Liu et al. (2024b), and MVDream Shi et al. (2024a)
face an inescapable trade-off between visual fidelity and geometric coherence. Most critically, these
monolithic approaches cannot exploit the full expressive power of foundation models without ex-
tensive modifications that compromise their exceptional qualities.

To overcome these limitations, we introduce a novel two-stage pipeline that strategically decouples
view generation from geometric refinement. This architecture enables unrestricted utilization of
existing 2D foundation models while dedicating a specialized refinement stage to correcting geo-
metric inconsistencies. Our pipeline leverages these models without modification, followed by MV-
Diffus3R (MultiView Diffusion for 3D-aware Refinement), a plug-and-play module that transforms
geometrically inconsistent multi-view sets into coherent representations suitable for high-quality 3D
reconstruction.

MV-Diffus3R employs Plücker ray embeddings for precise geometric conditioning and a dual-
pathway attention mechanism that preserves fine visual details while enforcing cross-view geometric
coherence. The method operates without requiring camera pose estimation or 3D supervision, mak-
ing it practically applicable to real-world generation workflows.

The main contributions of this work are as follows:

• A novel two-stage pipeline that decouples view generation from geometric refinement, en-
abling unmodified use of powerful 2D foundation models while achieving superior geo-
metric consistency for 3D reconstruction
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• MV-Diffus3R, a plug-and-play refinement module that corrects geometric inconsistencies
and texture degradation in foundation model multi-view outputs, effectively bridging 2D
visual quality and 3D structural requirements

• Comprehensive experimental validation demonstrating 33% FID improvement over exist-
ing methods while preserving exceptional visual quality and establishing efficiency suitable
for practical deployment

2 RELATED WORK

2.1 TEXT-TO-3D GENERATION USING 2D PRIORS

Recent advances exploit strong 2D foundation models to bypass the lack of large-scale 3D data, pri-
marily via Score Distillation Sampling (SDS) Poole et al. (2022). Early instantiations like Dream-
Fusion Poole et al. (2022) and Magic3D Lin et al. (2023) demonstrated text-to-3D synthesis, with
follow-ups improving fidelity and optimization: HiFA Zhu et al. (2024) (dual-space distillation
and timestep annealing), ProlificDreamer Wang et al. (2023) (Variational Score Distillation), and
preference-based tuning such as DreamDPO Zhou et al. (2025). To reduce optimization cost, amor-
tized or feed-forward paradigms have been proposed, including sparse-view reconstruction and
pseudo-image diffusion (e.g., Instant3D Li et al. (2023a), PI3D Liu et al. (2024a)) and student-
teacher distillation schemes (e.g., ET3D Lorraine et al. (2023), GANFusion Attaiki et al. (2024)).

While existing methods produce visually plausible 3D content, they frequently suffer from geo-
metric inconsistencies and misaligned views when considered jointly.Our approach addresses this
limitation through specialized post-hoc refinement rather than end-to-end generation.

2.2 MULTI-VIEW CONSISTENCY IN GENERATIVE MODELS

Maintaining geometric coherence across views has been tackled in 3D-aware generative models,
from early neural rendering GANs (e.g., HoloGAN Nguyen-Phuoc et al. (2019), GRAF Schwarz
et al. (2021)) to more recent tri-plane and imitation-based designs like EG3D Chan et al. (2022) and
Mimic3D Chen et al. (2023). A core difficulty stems from conflicting 2D priors leading to multi-
front or canonical-view collapse Jain et al. (2022); Armandpour et al. (2023); remedies include prior
fine-tuning and modified sampling Seo et al. (2024); Huang et al. (2024). Multi-view diffusion
approaches (e.g., MVDream Shi et al. (2024b), Zero123++ Shi et al. (2023), SyncDreamer Liu
et al. (2024b), MVDiffusion Tang et al. (2023), Era3D Li et al. (2024)) advance consistency-aware
generation, but they still navigate a fidelity-vs-coherence trade-off. Crucially, none directly target
post-hoc geometric refinement of small inconsistent view sets, which is the gap our method fills.

2.3 DIFFUSION-BASED IMAGE EDITING AND CONTROL

Controllable diffusion models have enabled sophisticated image editing and conditioning.
Instruction-driven editing (InstructPix2Pix Brooks et al. (2023)), spatial conditioning modules (Con-
trolNet Zhang et al. (2023), T2I-Adapter Mou et al. (2023b)), and style/attribute manipulation tech-
niques (e.g., StyleDiffusion Li et al. (2023c), DiffusionCLIP Kim et al. (2022)) provide the back-
bone for targeted transformations. Inpainting and compositional edits have matured via methods
like RePaint Lugmayr et al. (2022), Palette Saharia et al. (2022), and Paint by Example Yang et al.
(2022), while recent control advances (DragDiffusion Shi et al. (2024c), DragonDiffusion Mou et al.
(2023a), Delta Denoising Score Hertz et al. (2023), Contrastive Denoising Score Nam et al. (2024))
offer finer latent manipulation.

Our work extends this line with geometry-aware conditioning tailored for multi-view alignment:
unlike general spatial control, our Plücker ray embeddings and dual-pathway attention explicitly
encode 3D geometric relationships, enabling refinement that existing diffusion-control frameworks
do not address.
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3 PROPOSED METHOD

In this section, we present MV-Diffus3R, a multi-view to multi-view geometry enhancement module
designed to address the geometric distortions and detail inconsistencies commonly produced by
large generative models. The architecture leverages a dual-path alignment strategy that combines
global geometry preservation with local view-dependent refinement to transform distorted multi-
view image sets into geometrically coherent representations. Building upon the InstructPix2Pix
framework, MV-Diffus3R incorporates specialized 3D-aware alignment modules and Plücker ray
embeddings to maintain spatial consistency across viewpoints while correcting artifacts inherent
in upstream generation processes. The model takes as input a set of distorted multi-view images
along with orientation hints, and produces refined outputs suitable for downstream 3D reconstruction
applications.

3.1 DATASET CONSTRUCTION

Front Left Back Right
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T

Figure 3: Dataset visualization showing paired training examples. Top row: SV3D-generated
distorted views with geometric inconsistencies. Bottom row: corresponding Objaverse XL ground
truth renderings across four orthogonal viewpoints.

To validate our decoupled pipeline architecture and specialized geometric refinement capabilities,
we construct paired datasets that systematically capture the geometric inconsistencies characteristic
of state-of-the-art generative models. Our dual-dataset approach directly supports the core contribu-
tions outlined in the introduction by providing controlled training scenarios and realistic evaluation
conditions that demonstrate the effectiveness of separating view generation from geometric refine-
ment.

Our training dataset leverages the Objaverse XL collection combined with SV3D Voleti et al. (2024)-
generated distortions to create controlled geometric inconsistency patterns. For each selected object,
we render 21 geometrically consistent ground truth views at distinct azimuthal angles with fixed
elevation, then employ SV3D Voleti et al. (2024) to generate corresponding distorted multi-view
sets from a single frontal input. This process systematically introduces the characteristic artifacts
observed in single-view-to-multi-view generation, including asymmetrical features, shape deforma-
tions, and cross-view detail inconsistencies. We implement DINO similarity filtering with scores
in the range [0.7, 0.9] to retain moderate distortions while excluding extreme geometric failures,
yielding approximately 50,000 objects corresponding to 1.05 million total training images.

For evaluation, we construct a secondary dataset using the Google Scanned Objects Downs et al.
(2022) collection paired with latest ChatGPT image generation model generated multi-view sets.
This evaluation approach directly captures the geometric inconsistencies and viewpoint ambiguities
encountered when using state-of-the-art text-to-image models for multi-view generation, particu-
larly the challenges in maintaining left-right consistency and preventing axis confusion during text-
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based rotation commands (complete prompt engineering specifications and rendering configurations
provided in supplementary material). The resulting dataset provides realistic assessment conditions
that validate our method’s practical applicability to current generative model outputs, demonstrating
the plug-and-play refinement capabilities central to our pipeline architecture.

3.2 MV-DIFFUS3R

MV-Diffus3R represents a specialized plug-and-play refinement module that addresses the previ-
ously unexplored task of multi-view geometric alignment without requiring additional camera pose
estimation or 3D supervision. Given a set of four orthogonal views exhibiting geometric distortions
produced by upstream generators, MV-Diffus3R leverages Plücker ray embeddings as geometric
conditioning to produce refined, geometrically coherent multi-view outputs. This module serves as
the geometric consistency engine in our decoupled pipeline architecture, enabling full utilization
of existing 2D foundation models without modification while achieving superior geometric consis-
tency.

3.2.1 ARCHITECTURE DESIGN

The architecture of MV-Diffus3R addresses the fundamental challenge of generating geometrically
consistent multi-view image sets while preserving high-frequency visual details. Building upon
the InstructPix2Pix framework for established image editing capabilities, we introduce our core
innovation: a novel 3D-aware alignment module that operates through a dual-pathway attention
mechanism specifically designed for multi-view geometric refinement.

Geometric Conditioning Through Plücker Ray Embeddings Our method employs Plücker ray
embeddingsPlücker (1828) as the primary geometric conditioning mechanism, providing unambigu-
ous spatial information to distinguish between visually similar but geometrically distinct viewpoints.
As established in the preliminary section, these six-dimensional embeddings uniquely identify each
ray in 3D space, enabling robust geometric disambiguation even when different camera poses pro-
duce visually similar projection patterns.

We extend the standard UNet input from 8 channels to 14 channels to accommodate this geometric
conditioning. The concatenated input tensor is formulated as:

xinput = concat(zt, cimg, cray) ∈ R14×H×W (1)

where zt ∈ R4×H×W represents the noised latent features at timestep t, cimg ∈ R4×H×W contains
the VAE-encoded conditioning images, and cray ∈ R6×H×W comprises the spatially broadcasted
Plücker ray embeddings for geometric conditioning.

This geometric conditioning proves critical when upstream generators fail to maintain left-right con-
sistency, often producing visually similar or identical images for different viewpoints. The Plücker
embeddings enable the model to disambiguate view relationships and prevent refinement failures
that would otherwise occur due to insufficient geometric constraints.

Dual-Pathway Attention Mechanism Our dual-pathway attention mechanism represents the core
architectural innovation that enables simultaneous preservation of fine visual details through local
alignment while enforcing global geometric coherence across the entire view set. This design ad-
dresses the inherent trade-off between visual fidelity and geometric consistency that constrains ex-
isting monolithic approaches.

Local Geometry Alignment enforces view-specific correspondence by establishing the front view
as the primary geometric reference, motivated by the observation that text-to-image generators typi-
cally produce the most accurate representation in the initial front view.Liu et al. (2023); Zhang et al.
(2025); Ahn et al. (2024) For each diffusion block output fi where i ∈ {front, left, back, right}, we
compute the query, key, and value projections:

Qi = fiWQ, (2)
Kfront = ffrontWK , (3)
Vfront = ffrontWV (4)

5
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Figure 4: Multi-view comparison demonstrating MV-Diffus3R’s geometric refinement capabilities
against existing methods. Given identical GPT-generated input conditions, our approach achieves
superior view consistency and detail preservation across four orthogonal viewpoints compared to
current text-to-3D and image-to-3D techniques. GT column shows ground truth reference images.

The local alignment features are then obtained through cross-attention for non-front views:

f
(i)
local = CrossAttention(Qi,Kfront,Vfront) (5)

For the front view itself, we apply self-attention to maintain feature consistency:

f
(front)
local = SelfAttention(ffront) (6)

Global Geometry Alignment complements the local alignment and prevents over-dependence on
the front view by providing each view with access to holistic geometric information. We compute a
global feature representation by encoding all four input views through a VAE encoder and perform-
ing element-wise averaging:

gglobal =
1

4

4∑
i=1

VAEenc(Ii) (7)

where Ii represents the input image for the i-th view.

The global key-value projections are computed as:
Kglobal = Vglobal = gglobalWglobal (8)

Each diffusion block output then performs cross-attention with this global feature:

f
(i)
global = CrossAttention(Qi,Kglobal,Vglobal) (9)
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The final output feature for each view combines both pathways through residual connection:

f
(i)
output = f

(i)
input + f

(i)
local + f

(i)
global (10)

This dual-pathway architecture ensures that each view benefits from both targeted front-view align-
ment and comprehensive global geometric context, enabling effective refinement while maintaining
detail preservation. The modular design allows seamless integration with any existing text-to-image
or single-view-to-multi-view generation system without requiring model modifications or retraining,
establishing a framework that can evolve with advances in 2D generation technology.

4 EXPERIMENTS

We evaluate MV-Diffus3R through comprehensive quantitative and qualitative analysis, demonstrat-
ing superior geometric refinement capabilities while maintaining visual fidelity.

4.1 EXPERIMENTAL SETUP

Implementation Details. Training employed 640,000 steps with batch size 4 across 8 NVIDIA
V100 GPUs over 5 days. The model initializes from InstructPix2Pix weights using standard diffu-
sion ϵ-prediction:

L = Et,xGT ,ϵ∼N (0,I)

[
∥ϵ− ϵθ(xt,xSV 3D, ctext, cray, t)∥2

]
Inference establishes the front view as primary alignment reference with BLIP2-generated cap-
tions Li et al. (2023b). DDIM inversion generates 14-channel inputs (4 noise latents, 4 VAE-encoded
conditioning views, 6 Plücker ray embeddings) requiring 16GB VRAM with FP16 precision.

Evaluation Protocol. We evaluate on Google Scanned Objects Downs et al. (2022) with GPT-
generated multi-view sets (4,000 evaluation images). Baselines include Zero-1-to-3++, Sync-
Dreamer, MVEdit Chen et al. (2024), Hunyuan3D 2.0 Zhao et al. (2025), and InstructPix2Pix fine-
tuning. We assess performance using eight metrics: FID, CLIP, DINO Oquab et al. (2024), PSNR,
SSIM, and LPIPS for image quality assessment; ULIP Xue et al. (2023) and Uni3D Zhou et al.
(2023) for 3D reconstruction quality.

4.2 QUANTITATIVE RESULTS

Method FID ↓ CLIP ↑ DINO ↑ PSNR ↑ SSIM ↑ LPIPS ↓
Original GPT Image 327.082 0.501 0.551 8.894 0.4906 0.5086
Instruct Pix2Pix 327.935 0.511 0.536 9.3337 0.4983 0.536
Zero123++ 355.711 0.540 0.484 9.4253 0.4772 0.5733
SyncDreamer 349.864 0.530 0.527 9.096 0.4798 0.5108
MVEdit 316.758 0.528 0.612 10.7757 0.5215 0.4574
Hunyuan 3D 2.0∗ 230.611 0.666 0.698 9.7887 0.504 0.4346

Instruct Pix2Pix (Finetuned)† 193.506 0.784 0.662 14.2127 0.6116 0.2259
Ours (MV-Diffus3R) 154.915 0.785 0.772 14.5717 0.6345 0.196
∗Uses native reconstruction pipeline; all other methods use Trellis for mesh generation.
†Finetuned on distorted images generated by SV3D for domain adaptation.

Table 1: Quantitative comparison of multiview refinement methods on the GSO evaluation dataset.
Image quality metrics (FID, CLIP, DINO, PSNR, SSIM, LPIPS) assess visual fidelity, semantic
consistency, and perceptual quality of refined views. Lower FID and LPIPS scores and higher values
for all other metrics indicate superior performance.

Table 1 demonstrates MV-Diffus3R’s substantial improvements across all metrics. Our method
achieves the lowest FID (154.915, 33% improvement over Hunyuan3D 2.0), highest CLIP (0.785)
and DINO (0.772) scores, indicating superior semantic consistency and detail preservation. The
new image quality metrics further validate our approach: PSNR (14.57), SSIM (0.635), and LPIPS
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Method ULIP-I ↑ Uni3D-I ↑
Original GPT Image 0.109 0.554
Instruct Pix2Pix 0.111 0.579
Zero123++ 0.117 0.605
SyncDreamer 0.119 0.603
MVEdit 0.114 0.580
Hunyuan 3D 2.0∗ 0.127 0.597

Instruct Pix2Pix (Finetuned)† 0.126 0.592
Ours (MV-Diffus3R) 0.128 0.597

∗Uses native reconstruction pipeline.
†Finetuned on distorted images.

Table 2: 3D reconstruction quality comparison on the GSO evaluation dataset using geometric un-
derstanding metrics. All methods except Hunyuan 3D 2.0 use Trellis for mesh generation. Higher
values indicate better geometric reconstruction quality.

(0.196) significantly outperform existing methods, demonstrating enhanced perceptual quality and
reduced distortion. For 3D assessment, we achieve the highest ULIP-I score (0.128) and competitive
Uni3D-I performance (0.597), confirming that geometrically refined images improve downstream
reconstruction quality.

Traditional single-view-to-multi-view methods struggle with geometric consistency when provided
with distorted inputs. While Hunyuan3D 2.0 shows reasonable performance, it cannot match our
refinement quality. The InstructPix2Pix baseline demonstrates the necessity of specialized geometric
conditioning, as naive fine-tuning fails to address multi-view consistency effectively.

4.3 ABLATION STUDIES

Component Integration Image Quality 3D Reconstruction Quality
Inv. Plücker Local Global FID ↓ CLIP ↑ DINO ↑ ULIP-I ↑ Uni3D-I ↑

193.506 0.784 0.662 0.126 0.592
✓ 185.690 0.771 0.742 0.123 0.585
✓ ✓ 187.053 0.777 0.745 0.120 0.581
✓ ✓ ✓ 162.892 0.767 0.765 0.128 0.598
✓ ✓ ✓ ✓ 154.915 0.785 0.772 0.128 0.597

Table 3: Ablation study demonstrating the progressive contribution of each architectural component
across image quality and 3D reconstruction metrics. Checkmarks indicate which modules are incor-
porated in each configuration. All model variants were trained for 640,000 steps for fair comparison.

We conduct systematic ablation using additive methodology, incrementally integrating proposed
modules. Table 3 and Figure 5 present quantitative and visual analysis.

DDIM inversion yields immediate improvements across FID, DINO, PSNR, and SSIM, demon-
strating enhanced detail preservation. Plücker ray embeddings provide crucial geometric disam-
biguation, evidenced by stabilized ULIP-I scores for visually similar views. The Local Alignment
module shows significant improvements by establishing front-view geometric reference, with en-
hanced CLIP scores reflecting improved semantic consistency. The Global Alignment module pre-
vents front-view overfitting through holistic geometric context, achieving optimal balance between
consistency and detail preservation across all metrics including the newly added PSNR, SSIM, and
LPIPS measures.

4.4 QUALITATIVE ANALYSIS

Figure 4 demonstrates superior geometric consistency and detail preservation compared to baselines.
Traditional methods exhibit significant artifacts when processing distorted inputs, while our refine-
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(a) Baseline Methods (b) Proposed Components

Figure 5: Ablation study comparing baseline methods against our proposed components. The
table presents a direct side-by-side comparison. (a) Left: Baseline and inversion methods fail to
correct severe geometric inconsistencies across the four views. (b) Right: Our components progres-
sively improve multi-view consistency. Adding Plücker Ray guidance, Local Alignment (+ Local),
and Global Alignment (+ Global) systematically enhances the geometry, with our final result closely
matching the Ground Truth (GT).

ment successfully corrects inconsistencies while maintaining high-frequency details. The ablation
visualization illustrates progressive refinement through component integration, with each module
contributing to improved geometric coherence without compromising visual quality.

4.5 LIMITATIONS

Our method faces constraints when upstream generators produce identical images across view-
points—common with complex scenes or certain prompts. While Plücker embeddings provide dis-
ambiguation, lack of visual variation constrains meaningful geometric relationship inference. This
limitation affects any multi-view refinement method, highlighting the importance of diverse initial
view generation. Despite this constraint, our method demonstrates substantial improvements across
the majority of evaluation cases.

5 CONCLUSION

We present MV-Diffus3R, a plug-and-play post-refinement module that addresses geometric in-
consistencies in multi-view images generated by large-scale text-to-image models. Our two-stage
pipeline decouples initial view generation from geometric refinement, enabling effective utiliza-
tion of existing 2D foundation models without modification. The core contribution lies in special-
ized conditioning using Plücker ray embeddings and dual-pathway attention to enforce geometric
coherence while preserving visual details. Experimental results demonstrate substantial improve-
ments in handling characteristic distortions from diffusion-based generation systems, particularly
addressing feature loss during rotational view synthesis. Our method achieves superior performance
metrics across multiple evaluation benchmarks, showing significant enhancement in geometric con-
sistency without sacrificing visual quality.The proposed approach represents a novel paradigm for
3D mesh generation workflows, suggesting that dedicated post-processing modules can effectively
bridge powerful but geometrically inconsistent 2D generators with downstream 3D reconstruction
systems.
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A LARGE LANGUAGE MODEL USAGE DISCLOSURE

All experimental methodology, architectural innovations, and research contributions presented in
this paper are entirely our original design and implementation. The core concept of optimizing GPT-
generated multi-view images for 3D geometric consistency, including the MV-Diffus3R architecture
with Plücker ray embeddings and dual-pathway attention mechanisms, represents our independent
research contribution.
As non-native English speakers, we first composed the entire manuscript in English ourselves, in-
cluding all scientific content and experimental design. We subsequently used Large Language Mod-
els solely to polish sentence structure and correct grammatical errors. The LLM assistance was
limited to linguistic refinement and did not contribute to research methodology or scientific conclu-
sions.
Our evaluation methodology intentionally uses GPT’s image generation to create multi-view test
sets with Google Scanned Objects (GSO) ground truth. This design choice aligns with our research
objective of refining GPT-generated outputs for improved geometric consistency, ensuring practical
relevance of our experimental validation.

B MULTI-VIEW GENERATION METHODOLOGY

This appendix provides comprehensive implementation details, dataset documentation, and addi-
tional experimental analysis to support the main paper. The content is organized into four sections
that detail our multi-view generation methodology, technical implementation specifications, dataset
construction process, and boundary case analysis.

B.1 STRUCTURED PROMPTING STRATEGY

Our multi-view generation approach employs a hierarchical prompting strategy that separates global
consistency constraints from view-specific requirements. This architectural decision enables supe-
rior geometric coherence across generated views while maintaining fine-grained object details.

B.1.1 PROMPT TEMPLATE ARCHITECTURE

The following structured template governs multi-view image generation with GPT’s model:

Generate a 0° Front View of [User Input Description] using ChatGPT image gen-
eration tools
Global Consistency Constraints:

• Maintain perfect object centering across all viewpoints
• Preserve consistent scale throughout the view sequence
• Eliminate perspective distortion, tilt, and skew artifacts
• Apply uniform white background without shadows
• Generate square 1024×1024 resolution outputs
• Ensure surface detail, texture, and color consistency

View-Specific Parameters:
• Orient object directly facing the viewer (0° azimuth)
• Establish canonical reference for subsequent view generation

This hierarchical specification enables the model to maintain global coherence while adapting to
view-specific requirements, resulting in significantly improved multi-view consistency compared to
unstructured approaches.
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Front Left Back Right

Prompt: “An unscrambled Rubik’s cube”

Figure 6: Multi-view generation failure without structured prompting. The model produces incon-
sistent geometry, scale variations, and view-dependent artifacts when global constraints and view-
specific instructions are absent.

B.1.2 IMPACT OF STRUCTURED PROMPTING

Figure 6 demonstrates the critical importance of structured prompting for multi-view generation.
Without explicit constraint separation, text-to-image models produce systematic failures including
scale drift, orientation inconsistencies, and progressive detail loss that fundamentally compromise
geometric integrity.

C IMPLEMENTATION SPECIFICATIONS

C.1 TRAINING CONFIGURATION

Table 4 presents the complete hyperparameter configuration employed during model training. These
parameters were optimized through systematic grid search on our validation dataset, balancing com-
putational efficiency with model performance.

Parameter Value
Learning Rate 1e-4
Optimizer Adam
Adam β1 0.9
Adam β2 0.95
Adam ϵ 1e-06
Adam Weight Decay 1e-2
Batch Size 4
Random Seed 42
Loss Function L1
Gradient Clipping 10.0
LR Scheduler Cosine Annealing
Warmup Steps 10,000
Validation Split 10%
Training Steps 640,000
Mixed Precision FP16
Gradient Checkpointing Enabled
Memory Efficient Attention XFormers

Table 4: Training hyperparameter configuration for MV-Diffus3R. The batch size of 4 reflects mem-
ory constraints from the 14-channel input tensor incorporating Plücker ray embeddings.
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C.2 MODEL ARCHITECTURE DETAILS

Table 5 specifies the architectural parameters governing our geometric conditioning and attention
mechanisms. These configurations were selected to optimize the balance between computational
efficiency and geometric refinement quality.

Component Configuration
Attention Heads 8
Attention Dropout 0.2
Noise Prediction ϵ-parameterization
EMA Enabled
Text Guidance Scale 7.0
Image Guidance Scale 2.5
Text Encoder CLIP ViT-B/32
3D Reconstruction TRELLIS-image-large

Table 5: Architecture specifications for geometric conditioning and inference.

D DATASET DOCUMENTATION

D.1 TRAINING DATASET CONSTRUCTION

Our training dataset pairs SV3D-generated distortions with geometrically consistent ground truth
renderings from Objaverse XL. This approach creates controlled geometric inconsistency patterns
essential for learning effective refinement strategies. Figure 7 illustrates representative examples
from our training dataset, demonstrating the systematic distortions that our method learns to correct.

The SV3D generation process introduces diverse geometric artifacts including asymmetric features,
shape deformations, and cross-view detail inconsistencies that provide comprehensive training sce-
narios for our refinement model.

D.2 EVALUATION DATASET CHARACTERISTICS

The evaluation dataset comprises GPT’s generated multi-view sets paired with Google Scanned
Objects ground truth, capturing real-world geometric inconsistencies encountered in production
workflows. Figure 8 presents examples that demonstrate the characteristic artifacts arising from
text-based view generation commands.

These evaluation examples represent practical deployment scenarios, exhibiting progressive detail
degradation, left-right consistency failures, and rotational ambiguities inherent to text-based view
generation systems.

E BOUNDARY CASE ANALYSIS

While MV-Diffus3R demonstrates robust performance across diverse object categories, we identify
specific boundary cases that present challenges for geometric refinement. Figure 9 illustrates two
primary scenarios where refinement effectiveness is reduced.

The first scenario involves multi-object scenes where spatial relationships between discrete entities
cannot be properly disambiguated through our single-object optimization approach. The second
scenario occurs when upstream generators produce visually similar views across different view-
points, preventing the establishment of meaningful geometric correspondences despite Plücker ray
conditioning.

These boundary cases inform practical deployment considerations and highlight the importance of
appropriate input generation for optimal refinement results. When upstream generators provide
sufficient visual variation and single-object focus, our method consistently achieves high-quality
geometric refinement suitable for downstream 3D reconstruction applications.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Example 1 Example 2
Front Left Back Right Front Left Back Right

SV3D

GT

SV3D

GT

SV3D

GT

Figure 7: Training dataset examples showing SV3D-generated distortions (SV3D rows) paired with
ground truth renderings from Objaverse XL (GT rows). Each example demonstrates characteristic
geometric inconsistencies including asymmetric features, shape deformations, and cross-view detail
loss that our method learns to correct.
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Example 1 Example 2
Front Left Back Right Front Left Back Right

GPT gen.

GSO GT

GPT gen.

GSO GT

GPT gen.

GSO GT

Figure 8: Evaluation dataset examples comparing GPT generated multi-view generation with
Google Scanned Objects (GSO GT) ground truth. The GPT gen. rows demonstrate characteris-
tic inconsistencies from text-based rotation commands, including detail loss across views, left-right
confusion, and perspective shifts that impact 3D reconstruction quality.
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Example 1: Multi-object Scene

Front Left Back Right

Input

Output

Issue Multiple objects confuse geometric correspondence

Example 2: Visually Similar Views

Front Left Back Right

Input

Output

Issue Insufficient visual variation prevents geometric disambiguation

Example 3: Severe Occlusion

Front Left Back Right

Input

Output

Issue Occlusion limits refinement capability

Figure 9: Limitation analysis showing three challenging scenarios for MV-Diffus3R. The method
encounters reduced effectiveness when handling: (1) multi-object scenes where spatial relationships
between entities cannot be properly disambiguated, (2) visually similar views where insufficient
variation across viewpoints prevents the model from establishing meaningful geometric correspon-
dences despite Plücker ray conditioning, and (3) severe occlusion with multiple objects that provide
insufficient visual cues for geometric alignment. These cases represent fundamental boundaries of
refinement-based approaches.
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SV3D Dataset GPT Dataset
Front Left Back Right Front Left Back Right

Condition

Ours

MV Diffus3R

”A plain gray mug with a handle.” ”Purple tape with white writing on it.”

Condition

Ours

MV Diffus3R

”A rustic wooden mug with a twisted handle.” ”A black and white jar with a red label.”

Condition

Ours

MV Diffus3R

”A 3D render of a green trash bin.” ”A gray pet bowl with a bone pattern.”

Figure 10: Multi-view refinement comparison across SV3D and GPT-generated datasets. Our
method demonstrates consistent geometric refinement capabilities across diverse input sources and
object categories. Left panels: Results on SV3D-generated distorted views showing correction
of characteristic single-view-to-multi-view artifacts including asymmetric features and shape de-
formations. Right panels: Results on GPT-generated multi-view sets demonstrating refinement of
text-based rotation inconsistencies and left-right disambiguation failures. For each example, Con-
dition rows show input multi-view sets with geometric distortions, while Ours rows present MV-
Diffus3R refined outputs achieving improved cross-view consistency while preserving fine visual
details. Corresponding 3D reconstruction results generated using the TRELLIS model are provided
in the supplementary video materials, demonstrating improved mesh quality and geometric coher-
ence achieved through our refinement approach.
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